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The usual penalty methods for sclving nonlinear programming prob-
lems are subject to numerical instabilities, because the derivatives
of the penalty functions increase without bound near the solution as
computation proceeds. In recent years, the idea has arisen that such
instabilities might be circumvented by an approach involving a '
Lagrangian function containing additional, penalty-like terms. Most
of the work in this direction has been for problems with equality con-
5traints. Here some new results of the author for the inequality case
are described, along with references to the current literature. The

proofs of these results will appear elsewhere.

Eguality Constraints

Let ro’fl""’fm be real-valued functions on a subset X of a

linear topological space, and consider the problem
(1) minimize fo(x} over {x ¢ lei(x} =0 for i=l,...,m}.

The augmented Lagrangian for this problem, as first introduced in 1958
by Arrow and Solow [2], is

m
(2) L(x,y,r) = £ (x) + ) [rfi(xJE ¥y i(x)],

where r > 0 1is a penalty parameter and y = (yl,...,ym) e A", In
fact, this is just the ordinary Lagrangian funetion for the altered
problem in which the objective function fo is replaced by

2

fo + r?l + ...+rfW2, with which 1t agrees for all points satisfying

the constraints,

The motivation behind the introduction of the guadratic terms is
that they may lead to a representation of a local optimal solution in
terms of a local unconstrained minimum. If X 1is a local optimal
solution to (1) with corresponding Lagrange multipliers 51, as fur-

nished by classical theory, the function
i
-y E =
Lo(x,¥) = £ (x) + izl YTy (x)

¥This werk was supported in part by the Air Force Office of Scientific
Research under grant AF-AFOSR-T72-2260.
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has a stationary point at X which is a local minimum relative to the
manifold of feasible soltuions. However, this stationary point need
not be a local minimum in the unconstrained sense, and L may even
have negative second derivatives at X 1in certain directions normal
to the feasible manifold. The hope 1s that by adding the terms
rfi(x}a, the latter possibility can be countered, at least for r
large enough. It 1s not difficult to show this is true if x satis-
fies second-order sufficient conditions for optimality (ef. [1]).

The augmented Lagranglan glves rise to a basic c¢lass of algo-

rithms having the fellowlng form:

Given (yH,rk), minimize L(x,yk,rk} {partially 7) in

(3) ix € X to get xk. Then, by some rule, modify yk,rk)

to get (yk+1,rk+1}.
Typical exterior penalty methods correspond to the case where
k+1 k : k+1 k ,
¥ =y =0 and r = ar (o = seme factor > 1). In 1968,

Hestenes [10] and Powell [19] independently drew attention to poten-
tial advantages of the case

(4) k+l k k 18

NG = y +2r VyL(xk,y‘,rk), r >r

The same type of algorithm was subsequently proposed also by Haarhoff
and Buys [9] and investigated by Buys in his thesis [4]. Some dis-
cussion may also be found in the book of Luenberger [13]. Recently
Bertsekas [3] has obtained definitive results in the case where an
e~bound on the gradient 1s used as the stopping criterion for the
minimization at each stage. These results confirm that the conver-
gence 1s essentially superlinear when rk + =, Various numerical
experiments involving modifications of the Hestenes-Powell algorithm
still In the pattern of (3) have been carried out by Miele and his
associates [15], [16], [17], [18]; see also Tripathl and Narendra [26].
Some Infinite-dimensional applications have been considered by Rupp
[241, [257.

An algorithm of Fletcher [6] (see alsc [7], [8]) may, in one form,
be considered also as a "continuous" wversien of (3) in which certain
functions of x are substituted for y and r in L{x,v,r); one
then has 2 single function to be minimized. The original work of
Arrow and Solow [2] also concerned, in effect, a "continuous" version

F

of (3) in which x and ¥y values were modified simultanecusly in

locating a saddle polnt of L.

Inequality Constraints.

For the inequality-constrained problem,
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(P) minimize f (x) over {x ¢ X £y(x) €0, 4 =1,,..,m},

it 1is not immedlately apparent what form the augmented Lagrangian
should have, but the natural generalization turns out to he

m
(5) Lx,y,r) = £ (x) + | AL (x),y4,7),
i=]
where 2
rfi(x) + yifi(x} ir fi(x) > —yi/Er,
(6) R(fi(x),?i.f) -

2 - i - "
-)in Jlir if fi(X) < )"ir"z--

In dealing with (5), the multipliers y; are not constrained to be
nonnegatlive, in contrast with the ordinary Kuhn-Tucker thecry. This
Lagrangizan was introduced by the author in 1970 [20] and studied in a
Series of papers [21], [22], [23], the main results of which will be
indicated below. It has alsc been treated by Buys [3] and Arrow,

Gould and Howe [1]. Related approaches to the ineguality-constrained
problem may be found in papers of Wierzbicki [27], [28], [22], Fletcher
[7], Kort and Bertsekas [11], Lill [12], and Mangasarian [14].

To relate the augmented Lagrangilan to penalty approaches, it
should be noted that by taking y = 0 one obtains the standard
"quadratic” penalty function. Observe also that the eclassical Lag-
grangian for problems with inequalities can be viewed as a limiting
case! ful
£, (x) + E“ yifi(x) 1t ¥ 20
(7) lim L{(x,¥,r) = L (x,y) = L=

r+0 -= 1f y # 0.

The following properties of (5)-(6) can be verified [21], [23]:
L{x,y,r) 1is always concave in (y,r), and it is continuously differ-
entiable (onece) in x if every fi is differentiable., Furthermore,
it is convex in x if (X and) every fi is convex; the latter is
referred to as the convex case. Higher-order differentiability is
not lnherited by L from the functions fi along the "transition
surfaces” corresponding to formula (6). However, as will be seen from
Theorem 4 below, most of the interest in connection with algorithms
and thelr convergence centers on the local properties of L 1in a
neighborhood of a point (X,7,r) such that X 4is a local optimal solu-
tion to (P), ¥ is a corresponding multiplier vector in the classical
sense of Kuhn and Tucker, and r > 0. If the multipliers §i satisfy
the complementary slackness condltions, as usually has to be assumed
in a close analysis of convergence, it is clear that none of the
"transition surfaces" will pass through (X,¥,r), and hence L will
be two or three times c¢ontinucusly differentiable in some nelghborhocd



of (x,y,r), if every f, has this order of differentiability.
(Certain related Lagrangians recently proposed by Mangasarian [14]
inherit higher-order differentiability everywhere, but they are not
eoncave in  (y,r}.)

The class of algorithms (3) described above for the equality case
may also be studied in the inequalify case. In particular, rule (4)
gives an immediate generalization of the Hestenes-Powell algorithm.
We have shown in [22] that in the finite-dimensional convex case, this

algorithm always converges globally i1f, say, an optimal solution ¥

1

exists along with a Kuhn-Tucker vector ¥. This is true even if the
. . . . . b¢ I :
minimization in obtaining x is only approximate in a certalin s

ense,
The multiplier vectors yk converge to some particular Kuhn-Tucker
vector ¥y, even though the problem may possess more than one such
vector. For convex and nonconvex problems, results on local rates of
convergence In the equality case are applicable if the multipliers at
the locally optimal solution in question satisfy complementary slack-

ness conditions.

Dual Problem.

The main theoretical properties of the augmented Lagrangian,
fundamental to all applications, can be described in terms of a certain
dual problem corresponding to the global saddle point problem for L.
To shorten the presentation here, we henceforth make the simplifying
assumption that X 1s compact and the functions fi are continuous.

It must be emphasigzd that this assumption is not required, and that

the more general setting is in fact the one treated in [21]1, [22], [23].
It should alsoc be clear that our focus on inegquality constraints
involves no real restriction. Mixtures of eguations and inequalities

can be handled in much the same way.
The dual problem which we associate with (P) in terms of the

augmented Lagrangian L 1is

(D) maximize g(y,r) over all y ¢ R® and r » 0, where
g(y,r) = min L(x,y,r) (finite),
xeX

Néte that constraint vy > 0 is not présent in this problem. Nor does
the condition r > 0 represent a true constraint, since, as is easily
Seen, g(y,r) is nondecreasing as a function of r for avery ¥.

Thus the dual problem is one of unconstrained maximization. Further,
gly,r) 1is conecave in (y,r), and in the convex case it is continu-

ously differentiable, regardless of the differentiability of £, [P11.
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THEOREM 1[23].min(P) = sup(D) = 1lim g{yk,rk), where (yk,rxjmz
1 1 S

- K 173
denctes an arbitrary sequence with vy bounded and rlsse

=l

THEOREY 2[#LIet (v

sup(D) = 1im g{y‘,;ﬁj and y= bouﬂaed (but not necessari with
r® > =), Let xk minimize L{x, v‘,r ) over X to within e°,
where sk + 0. Then all cluster points of the sequence KL are

optimal solutions to (P).

T ), denote any seguence with

¢\

If y = 0, Theorem 1 asserts the familiar fact in the theory of
penzlty functions that

(8) ‘min(?) = 1lim min[fo(x) + rk maxeio,?iij]].
oKy XX 1

[ t=]

el

i . k \ k N
which s5t111 »™ + =, but vy is allowed to wvary. Perhaps

More generally it sugmests a lar rer class of enalty-like methods in
5 Joa ot &= = :
u

good rule for choosing yk, such a method could yield improved
convergence and thereby reduce some of the numerical instabilities
assocliated with having rk + =, Theorem 2 even holds out the attrac-
tive possibility of algorithms in which both yk and o remaln
bounded. The fundamental question here is whether a bounded maximi-
zing sequence (fk,rk} exlsts at all for (D). In other wards, under
what circumstances can it be said that the dual problem has an optimal
solution (¥,r)?

It is elementary from Theorem 1 and the definition of the dual
that a necessary and sufficient condition for (§,F) to be an optimal
Solution to (D) and X to be 2 (globally) optimal solution to (P) is
that (X,y,7) bve a (global) saddle point of L. The following
theorems on saddle points therefore show that our nquestion about the
existence of bounded maximizing sequences (y ,r£) has an affirmative

answer for "most" problems.

THEOREM 3 [21]. 1In the convex case, (x,y,r) is a saddls point
of L 12 and only 17 (x,7) 5 a saddle point of the classical

. Suppose that X ¢ int X ¢ R, and that each £

]
P &
e of ¢class near x.

(a) If (X,¥,r) is a global saddle point of L, then {(x,¥)
atisfies the second-

optimality in (P

ol

order necessary conditions (5, p,25] for local

, and X 1s globaily optimal.

—_—
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(b) If (x,y) satisfies the second-order sufficient conditions

p.30] for local optimality in (P) and x 1is uniguely globally

optimal, then (x,y,r} is a global saddle point of L for all T

sufficiently largei

Part (b) of Theorem 4 stensthens a local result of Arrow, Gould

and Howe [1] invelving assumptions of complementary slackness and the

superflucus constraint y > 0. A corresponding local result has zalso

been furnished by Manpasarian [14] for his different family of

-4

Lagrangians. It is shown in [23] that the existence of a dual optimal
solution (y,r) depends precisely on whethe (B) has a secend-order
stabllity property with respect to the ordinary class of perturbations.
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