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The analysis of the stability of Hamiltonian dynamical systems in
various economic models depends on the “curvature’ of the Hamiltonian
function at a rest point of the system. or equivalently, on growth properties
involving gradients or subgradients. The purpose of this note is to establish
a general property peinting in particular to a simplification of conditions
assumed by Cass and Shell [1].

In this context, a Hamiltonian H: R" X R"—[—o0, H4-2¢] is an
extended-real-valued function such that H(k, Q) is concave in k and
convex in Q. The dynamical system of interest in the case of a constant
discount rate p is

keboH(k, Q), —Q + pQ e &H(k, Q) (1)

where &,/ and &,/ are the subdifferentials [2] with respect to O and k (or
if differentiability is present, the gradients), and a rest point is a pair,
(k*, 0*) satisfying

O & BoH(k*, 0%), p@* = 8. H(K*, O0%). (2)

Particular attention is directed to determining the existence of solutions to
(1) satisfying

k(D) =k and 1{1’313 e (k(t) — k%) - (Q(t) — 0%) =0, (3)

and whether such a solution is stable in the sense of converging to (k*, 0%)
ast— +oo.

The author in [3] and [4] developed results on existence and stability
on the basis of assuming A was strictly or strongly convex—concave in a
neighborhood of (2). Cass and Shell [1] showed under different assump-
tions, to be considered below, that (1) and (3) imply convergence of
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k(z) to k*. Brock and Scheinkman [5] obtained convergence of (k(r), o)
to (k*, 0*) under more differentiability but less convexity. Gaines [6]
proved the existence of solutions to (1), (3), using a different approach and
different growth assumptions on A than the author.

Tn the paper of Cass and Shell, a certain global growth property of H is
implicit in the conditions they impose on the under lying technology. For
instance, it is a consequence of their model that solutions to (1) satisfy a
universal bound || k(¢)] = B. We wish to discuss not this aspect of their
work, but their conditions involving the function

Bk, Q) = inf{—R - (k — k%) + 2-(Q — Q%) -I- p@* - (k — k¥)|
w Reé Hk, Q), z € 8,H(k, 0)). (4)

(where inf @ = ). Clearly ®(k*, 0*) = 0. It is known that @ is
everywhere nonnegative by virtue of the concavity—convexity of H (sce
below).

The crucial condition invoked by Cass and Shell can be stated as follows:

(S) For every ¢ = 0 there exists & = 0 such that
Ik —k*1 == Dk, Q) |- plk — k*) (@ — Q%) =6

We shall establish that (S) can be expressed equivalently in the apparently
weaker forms in Theorem 1 below. For this we need the harmless technical
assumption that 17 is closed in the sense of [2, Section 34]. (This is always
true for H arising from an economic model, A direct sufficient condition is
that H < — oo everywhere and H(k, Q) is upper semicontinuous in &.)

TikoREM 1. Suppose H is finite on a neighborhood of (k*, O%) and
closed.
@) If p = 0, (S) holds if merely @(k, Q) = 0 for all (k, Q)
= (k*, 0¥).
(b) If p=0, (S) holds if for every (K', Q") with k' Q' = 0 the
function
@(t) = Bk* -+ th', Q% + 1Q") -I- pt¥k’ - o'
satisfies @(t) = 0 for all t = 0 and
I'n;n inf p(f) = 0.
Theorem 1 will be derived from a more general result. Consider an

aa‘bitrarv multifunction 4: RY — RY and any pair x*, y* such that
£ A(x*). Define

B(x) = infi(x — ¥%) - (¥ — y*)| y & A} ()
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The case above corresponds to x = (k, Q) e R* x R",
Ak, Q) ={(—R, 2)| Re &, H(k, Q). z € igH(k, Q)}, (6)
X% = (k*, Q%), y* = (p0*, 0). ™
One says in general that A4 is moenotone if
¥y A(x) for i =0, 1, implies (x; — x) " (3, — 1) =0, (8)
It is maximal monotone if it is monotone and its graph
G(A) = {(x, y)c RY x R¥ | ye A(x)}
is not properly contained in the graph of any other monotone
A’ 7 RY — R¥. The effective domain of 4 is
D(A) = {x| A(x) == o}

The connection with monotonicity and the present context is the following.

THEOREM 2 [T7].  If A is given by (6) for a closed concave-convex function
H which is finite on a neighborhood of a point (k*, Q%), then A is maximal
monotone and (k*, Q%) zint D(A4).

THrOREM 3. Lef A : RY-» RY bhe an arbitrary maximal monotone
multifunction and let @ be defined by (5) for any x* and y* satisfying
x*cint D{A) and y* = A(x*). Then the inf in (5) is always attained, and @
is an everywhere lower semicontinuous function with '

D(x) = Bx* =0 forall x.

Moreover, the expression @(x* + sx')s is for any x' nondecreasing as a
Junction of s = 0
In particular, the function
0(s) = (1/s) min{@(x)] | x - x* || = 5}, s = 0.
is nonnegative, lower semicontinuous, nondecreasing, and
D(x) 2 Ul x — x* Pl x — x*|  forall x + x*, (10)
Proof. Consider two values s, 7= 5, =0 and any y, e 4(x* + s.x7),
i = 1, 2. The monotonicity of 4 implies
0= [(x* —5x) - (¢F - 523)] - (31 — J)
= (51— 95" (31—
= (83 — s)[s7 ((\' ) - n (g )
— SN AR ) — x¥) - (1,- 1),
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and consequently, since the y; are arbitrary,
0 < (5, — SH[ETP* + six’) — 53 Pe* +s3x)].

Thus s71@(x* L 5x’) is nondecreasing in 5 = 0 as claimed.
The maximal monoctonicity of 4 is known [8] to imply that int D(A4) is
convex and (since int D(A) is nonempty by hypothesis),

D(A) C cl int D(A). (11)

Furthermore A is compact-valued and upper semicontinuous on int D(4)
(cf. [8]). Therefore, @ is lower semicontinuous on int D(4) and the inf in
(5) is attained there.

Consider now a noninterior point X of D(4). By (11) and the convexity
of int D(A) we have x* - s(X¥ — x*) =int D(A) for 0 =C s <= 1. In view of
this and the monotonicity of @(x* — sx’)/s in 5 == 0 for all x’, the global
lower semicontinuity of @ will follow if we show that the restriction of @
to the line

L={x*+Xx—x*)| —ow <A< L0}
is lower semicontinuous at Xx. Let
M = {u|uX — x7) =04

ie., M is the N — 1 dimensional subspace of RY orthogonal to L. Define

Afx) =M ifxelL

= & ifxé L
A(x) = (4 + A)x) = Aolx) - M ifxel
= if x&lL.

The multifunction A, is trivially maximal monotone. Therefore, A4; is
maximal monotone, because 4, — 4 -~ 4, and D(4,) N int D(4) = =

[9]. Tn particular 4,(x) is closed for cach x = L. Note that since M is
N — 1 dimensional, 4,(x) actually has a very simple structure:

Afxy =(Ax)n L)y + M forxel

(equivalent to a one-dimensional maximal monotone multifunction). Also
y* e A,(x*), and the function

Dy(x) = mf{{x — x*)  (y — )| y € 44(x)} (12)
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coincides on L with ®(x). One sees easily from the “one-dimensional”
nature of 4, that, relative to L. @, is lower semicontinuous and the inf in
(12) is always attained. Therefore, @ is lower semicontinuous relative to L
and (inasmuch as x — x* | M for x e L) the inf in (5) is attained for all
x = L. This finishes the argument that @ is globally lower semicontinuous.

Proof of Theorem 1. (a) is obvious from (10) and the lower semi—
continuity of @: if @(x) =- 0 for all x == x*, then 8(s) == 0 for all s == 0.
For (b), we make use merely of the lower semicontinuity of

l}’{k’, Q') — d)”t* _— k,, Q”c - Q,} "1|— pk, “ Q'.

We have ¥P(k’, Q') positive by hypothesis except at the origin, where it
vanishes. The hypothesis that

}i_m inf Y(ik', 10") =

implies by a simple compactness argument that actually for some r > 0
and o = 0
Pk, Q) <8 = (K, Q) <r

Therefore, for any € = 0,
inf{¥(k’, 0" | k' | = €} = min{, 8} >0

where

5. = min{¥k’, 0 | k. Q' < r, | k' |l = €.

This is the desired conclusion.
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