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THE GENERIC NATURE OF OPTIMALITY CONDITIONS
IN NONLINEAR PROGRAMMING*

J. E.SPINGARNTY anp R. T. ROCKAFELLARL #

First- and second-order optimality conditions are treated for parameterized classes of
nonlinear programming problems in R, Under certain assumptions, it is shown that almost
all problems in the class are such that every local minimizer satisfies the strong form of the
optimality conditions.

1. The motivation behind generic conditions. Optimality conditions in nonlinear
programming are used in the design and analysis of algorithms. the study of sensitiv-
1ty to changes in parameter values. and in theoretical situations involving duality and
the existence of “prices.” It is characteristic of such applications that. to get anywhere.
omne has to assume that any solutions to the problem satisfy conditions stronger than
are really necessary for optimality. However, such an assumption is awkward because
it may well be impossible to verify.

For instance, an algorithm may be guaranteed to converge in a certain manner to a
solution to a nonlinear programming problem, provided that the solution has certain
properties. But these properties often cannot be checked (and the algorithm therefore
Justified) unless the exact solution is known in advance! In fact, 1t is rare in nonlinear
programming that one ever sees more than an approximate solution, and then only
after lengthy computation.

Actually, for most applications, the assertions that can be made about a class of
problems are of greater value than those concerning a particular problem (in which
numerical values are assigned to all parameters). One would like to know that a
property or kind of behavior is “typical.” although there may be “exceptional” cases.
Intuition and experience are often helpful in this regard, but a sound theory requires a
more solid mathematical footing. To draw an analogy, intuition and experience say a
lot about how a computational procedure may be expected to work in practice. but
theoretical analysis of convergence is valuable nonetheless for the insights and
discipline it provides. -

A condition is said to be generic for a class of problems if it is “usually™ true for
problems in the class in one of the several rigorous mathematical senses that have
been developed. The aim of this paper is to treat the standard optimality conditions in
nonlinear programming from this point of view. For simplicity, we limit ourselves here
to the problem

minimize f(x) over all x € R” such that
g(x)<0fori=1,....m,

where the functions f and g, are continuously differentiable.
Any theory of generic conditions depends heavily on the “classes™ of problems
relative to which the generic assertions are made, as well as the particular notion of
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“gencric” which is adopted. One approach, reminiscent of work that has been done on
various economic models, would be to identify (Q) with a point (f, g, ..+, £,,)in a
linear space of highly differentiable functions from R" to R™*! under the Whitney
topology. (In this topology, a sequence of functions converges if all the partial
derivatives up to a certain order converge uniformly on all bounded sets.) A “class™ of
problems would be represented by such a space itself, or perhaps by some subset with
nonempty interior. A condition would be said to-hold generically if the subclass for
which it fails forms a point set of first Baire category (i.e.. a countable union of
nowhere dense sets).

We feel this approach would be unsatisfactory in nonlinear programming for
several reasons. The emphasis on high orders of differentiability seems alien to the
subject. While smoothness may be necessary for certain results, it would seem to be a
mistake to adopt a conceptual framework inherently dependent on it. Furthermore,
the “classes™ of problems are not sharp enough. (The deformations that are allowed
are too general) The associated notion of what constitutes an “exceptional™ set of
problems is very difficult to interpret in a meaningful way in applications.

The alternative that to us appears superior is an approach based on the “almost
everywhere” concept of measure theory. In this case the “classes” of problems are
much more restricted and better able to reflect the fine structure that must be taken
into consideration. We imagine as a “class” a set of problems

minimize f*(x) over all x € R” satisfying (0w
: , ) (w
gi(x)<Ofori=1....m, ()
where w is a parameter vector ranging over a set W C R*. The components of w may
represent costs, demand, cte., that are variable within the context of a particular
model (as opposed to other parameter values that are “structural” and therefore best
recarded as “fixed” for the class). Tt is natural to fhink of w as a random vector

governed by some probability measure on B An “exceptional™ set of problems s

conciuvn helds senerically (relative 1o the f 1

then vne whose prob ty is 0. A cenditien hold
class) if it holds with probability 1.

We propose, therefore, the general study of what assumptions are needed on a
parameterized class of problems like {(Q(w)) 1 w € W} and a probability measure on W
in order that various properties. such as standard conditions for optimality, are sure 1o
hold except for a subclass of measure zero, OF course this is a large project, and only a
limited contribution can be presented here, Besides the motivation already mentioned,
there is the prospect of specific applications to areas like stochastic programming.
which are directly concerned with problems dependent on random parameters.

An important case is where the probability measure 13 given by a density with
respect to ordinary k-dimensional (Lebesgue) measure on the set W' C R*: one can
cover all such probabilities simultancously by considering as exceprional those sets of
Lebesgue measure zero. Spingarn’s thesis [4] develops a fairly general theory
addressed to this case and applicable to a wide choice of parameterizations.

In the present paper we treat only a special kind of parameterization by vectors
w = (t, ) € R" X R™ which. however, turns out to be fundamental in some respects:

minimize f(v) — x-v overall x € R”

e . ; Mt u
satisfying g,(x) < w foralli€ 1= {I,..., m}. (Q(e. 1))
Let us say that (Q(v.1) is a “troublesome”™ problem if it has a locally optimal
solution which does not satisfy the “strong second-order conditions for optimality”
(cf. §3). Our main result states that when f and g are sufficiently smooth, the set of all



GENERIC NATURE OF OPTIMALITY IN NONLINEAR PROGRAMMING 427

w= (v, u) E R" X R™ for which (Q(r, 1)) is troublesome 1 of (Lebesgue) measure
zero.

2. First-order conditions, For a feasible solution x to (Q(v. u)), the set of active
constraint indices 1%

Iwmx)=liel . g(x)=

The standard first-order conditions for local op[imalit\-‘ of x i (Q(v, u)) are that x
should be feasible and there should exist a vector y € R such that

VAx)+ X v Ve(x)=0v and

foralli € [, eithery, =0ori & I(u, x).

Of course, as stated, these conditions are not actually necessary for optimality. They
are only necessary under an additional assumption-—a constraint qualification-—that in
practice is often difficult or impossible to venify. Many constraint qualifications have
been studied, but the strongest that ever seems to be needed (for the purpose of
drawing some conclusion about the first-order conditions) 1s

{Vg(x) i€ I(u.x)} is a lincarly independent set. (CQ)

For the proof that the first-order optimality conditions are necessary when x satisfies
(CQ). we refer to Hestenes |2].

TuroreMm 1. Suppose the functions g,. ..., Zw ot R™ are of class C". Fix any
v € R Then for all u except in a ser of measure zero in R™, (Q(r. u)) is such that
every feasible solution x satisfies condition (CQ) (and hence every locally optimal

solution x satisfies (KT for some v & R).

The principal tool in the proofl of theorem 1 will be the well-known theorem of
Sard. To state it, a few definitions will be needed.

An fz—recnmg."e C C R" 1s a nonempty set of the form C={x:1a <. < b,
i=1.. ..n}. The measure of Cis [T/, (b, — a). A subset § — R" has mcustfr(’ zern
if for every ¢ > 0 there exists a countable family of n-rectangles covering S. the sum of
whose measures is less than e

Let ¢ : R*— R' be a differentiable map. For anv x & R, do(x) will denote the
Jacobian of ¢ at x. If range (do(x)) # R, then x 15 a critical point for . If y = o(x)
for some critical point x, then y is a critical value for &1 otherwise, 1 is a fegr.ﬂ"m value
for o¢.

Sarp’s Turorey.  Ler ¢ R'—= R be differentiable of class 70 where r >
max{(, s — ). Then the ser f)__f\ critical values for ¢ is of measture zero in R,

For a proof of Sard’s Theorem, L‘nn&;u]{ Abraham and Rmbhin [1].

PrOOF oF THEOREM |. For x € R" and @ # S < /. let ¢%(x) denote the |S|-
dimensional vector with Comp(menb g(x) (i = 8) By Sard’s Theorem. the set of
critical values for g is of measure zero in R So. if w— u¥ denotes projeclion onto
B,

N(SY={w&E R"™:u’ isacritical value for g*)

is of measure zero in R (a subset of R™ = R™ 51 x RIS whose R*lsections are all
of measure zero is itsell of measure zero: this follows from Fubini's Theorem). Then
N=Ug 500 N(S5)is also of measure zero.
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Suppose w&N and x € R", and let S = I(u, x). Since u&N(S), {Vg(x):i
€ I(u, x)} is linearly independent. Hence (CQ) is satisfied at x.

3. Second-order conditions. When the functions f and g, are twice differentiable,
a vector x is said to satisfy the strong second-order conditions for local optimality in
(Q(v, wy) if x is feasible, condition (CQ) holds for x, and there exists y € R} such
that (K7") holds with

y; >0 foralli € I{u. x), and (3.1

every nonzero z € R”" for which z- Vg, (x) =0

3.2
for alli € I{u. x) satisfies z- H (x. )z > 0, (52}

where H(x, v) is the Hessian of the Lagrangian function in (Q(v, v)):
H(x,y) = V¥(x) + 2 »:Vg(x).
!

These conditions are known to guarantee that x is an isolated locally optimal solution
to (Q(r, u)). They also have other important consequences, for example with respect
to the sensitivity of x to changes in value of the components of v and w; cf. Hestenes
[2]. McCormick [3]. (Somewhat weaker conditions would be enough to guarantee local
optimality.)

THEOREM 2. Suppose the functions f. g, . ... g, are of class C*. Then except for
(v, w) belonging to a set of measure zero in R™ X R™, (Q(v, w)) is such that for every
locally optimal solution x and every y € R satisfying the first-order conditions (KT)
with x, the strong second-order conditions actually hold.

Before passing to the proof, we note that here. in contrast to theorem 1. the
parameter vector v has an essential role. Generally speaking, there is no assurance
that for a given ¢ the conclusion will hold for almost every u, and indeed this can be
false. This serves to emphasize how crucial it is to have the right concept of the
“class™ of problems relative to which a generic statement is to be made. Too large a
class may render the result meaningless (the actual problems of interest may them-
selves form a negligible subclass, because of their special structure). But too small a
class may render the result invalid. We refer again to Spingarn [4] for a more refined
theory of the kinds of parameterizations that are workable.

CoROLLARY.  Suppose f is of class C* and g,. . ... g, are of class C". Then except
for (v. w) belonging to a set of measure zero in R"™ X R™. (Q(v. w)) is such that every
lacally optimal solution x satisfies the strong second-order conditions.

The corollary 1s obtained by combining theorems 1 and 2. The exceptional u-set in
theorem 1 is of measure zero for each v, so the exceptional (1, u)-set in R" X R™ is
also of measure zero.

PrOOF OF THEOREM 2. For 1 € R, let #(r) = max*(0, r). Then # is of class C' with
8'(1) = 2 - max(0, r). Consider the map ¥ : R” X R™— R" x R™ defined for any
xXER"and B=(f,,....8,)E R by

Vi(x)+ gﬂ( - BV g (x)

Y(x', B)= s(x) +8(By)

2a(X) + 8( )
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This map is of class C', so by Sard's Theorem its set of critical values is of measure
zerom R" X R™.

Let (v, 1) be a regular value for W and suppose x to be a local minimizer for
(Q(v. w)). Let y € RT be such that (KT) is satisfied. From the definition of ¥, there is
a unique f € R such that

. ="
¥(x. 8)=(}) (3.3)
8(—-B)=y Tloralliel withf <0iffi € I(u. x). (3.4)
Let G(x) denote the n X m matrix whose columns are the gradients Vg (x), and let
[8°(B)
D(B)=
8’( IBm)J
The Jacobian of ¥ at (x, B) is

H(x.y) | = G(x)D(~-p
b e | )| = S m)_

G(x)" | D(B)

Since (v, u) is a regular value for W, it follows from (3.3) that @\W(x. 3) is nonsingular.
If for some i € I we had f3, =0, then the (7 + i)th column of d¥(x, ) would vanish,
in contradiction to nonsingularity, Hence by (3.4).

B, <0ei€ l(u x)e=y >0. (3.5)

In particular, part (3.1) of the strong second-order conditions holds. Furthermore,
since for 3 < 0 one has #°(8) =0 and #'(— B,) > 0. we may conclude from (3.5) and
the nonsingularity of @y (x, ) that the gradients Vg,(x) for i € /(u, x) are linearly
independent. Thus condition (CQ) holds.

It remains only to show that the Hessian condition (3.2) is satisfied. Since x is
locally optimal and the constraint qualification (CQ) holds. we know from the theory
of necessary conditions for optimality that at least z- H(x. )z 2 0 is true in (3.2) (cf.
Hestenes [2]). Therefore, if (3.2) were violated by some z. it would have to be with
- H(x,y)z = 0. and z would thus be a nonzero optimal solution to the problem of
minimizing A(z") = }z"- H(x, r)z" subject to =" Vg.(x) =0 for all i £ I(u, x). Here
Vh(z) = H(x, v)z (because H(x, v) is symmetric). so the theory of first-order optimal-
ity conditions implies the existence of scalars w for i & I(u. x) such that

Hix.v)z+ X wVg(x)=0. (3.6)
o)

Recalling that for i € J(u, x) we have 0°(8,) = 0 and #'(— f3,) > 0. while for i & I(u, x)
we have 8°( ) > 0 and #'(—- f8,) = 0, we definc

—wi/0'(—B;) if i e I(u x),
5= o
ol (Va(x) )/ 0By P I x).
Then

dv(x. By (j';) = (8)

as follows for the top half of the array from (3.6) and for the bottom half from the
constraint z- Vg (x) =0 for rows i € /(u. x) and from the choice of 5, for rows
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i€ I(u, x). Since d¥(x, ) is nonsingular, we must have z =0, s =0. But z was
supposed to be nonzero. This contradiction validates (3.2) and finishes the proof of
theorem 2.
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