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GENERALIZED SURGRADIENTS
TN NONCONVEX PROGEAMMING

R.T. Pockafellar®

ms typically invelve a number of parameters besides

Optimization probl
the variables over which the optimization takes place. The role of these

parameters can be important not only in applications whers rhe parameters can

lues, but alse in theorstical analysis and computation.

1tral case which is actually of far greater generalicy than

t us consider for each u ={ul,.,.,uﬁ)eR$ the problam

minimize fo[x) subject to

FJ {x)+u, =0

implicity that the functions fi are 211 of ¢lass £ on B,

|5 :
(1) {xeR |ti(xJ & for =051, 0m )
is bounded for every choice of constants .. Let
i
2 plu) = inf{Fu) (optimal walue)
Hlu) = argmin(? ) (optimal sclutions).
@ I

What can be said about the way p{u} and X(u) depend on the parameter

estion turns out to be fundamental in understanding the nature

itions in {PJJ, among other things. The awkward fact is

that despite the swoothness of the functions £,, the function 7 can well
L

fail to t 1ifferent Ardinor ay tinu AT =

fail to be differen e ir crdinary semse, or even continuous. About

all that can be conc 1 OUr assumptions is that p is

lower semicontinucus from and X{u} {s nonempty and compact

for every wu such that plu) <=, (We interpret the infimum in

when thers are no feasible solutions.)

less, p cannot be totally lacking in differentiability prop-

Neverth

ertiess of some sort or another, bacause these are closely tied inm with the

R

nature of Lagrange multiplierz for (P ), at least in epecial cases. Fnr

each =xeX(u) let

(33 I{u,x) ={i>0[f, (x) +u, =0} (active comatraint indices),
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1
(4) K (u,x) = set of y= (}'1,...,ym)€Rm sarisfyving
s
J20 for dieIl{u,x),

Yii=0 for ifI(u,x),

(x) = 0,

m
VE (%) +L v
’9() i=1 F4i771

& 1
(5) Ko(u,x) = same but with the term V£, (x) omitted.
] 1
The elements of K (u,x) are the first-order Lagrange multiplier vectors for
i 1 3 - o
(Pu) at x. The condition K_(u,x)= {0} is (an equivalent form of) the

Mangasarian-Fromovitz constraint qualification [1], and as is well krown, it

is equivalent to Kl{u,x) being both nonempty and compact. It-is
in particular, therefore, when Kl(u,x) consists of a unique wvector

The following kind of result in this context is classical (cf., [21): if
x 1is the unique element of X(u), y dis the unique e¢lement of Kl(u,x),
and certain second-order conditions of a strong kind are satisfied, them p

is differentiable on a neighborhood of w with
(6) Vo(u) = y.

In particular, the directional derivatives

M o (uzh) = 14 RLTERL = p)
£+0
exist and satisfy p'(u;h) = v+h for all her™,

In the convex programming case of (?u), where e is a convex

function, there are other atrong indications of a connes twaen Lagrange
multiplier vectors y and differentiability propertiss of 0. In this case

# is a convex function; itsepigraph

; m £
() E = {{u,2)eR %xR|a=pu)}
is a convex set (closed, because p is lower semicontinucus). The sets of
subgradients and singular subgradients of p at u, a point where ¢ is

finite, are then given by

Ip(u) = {yer®| (y,-1)¢ NpCu,p(u))l,

]

(9) __q :
3 pCu) = LyeR™| (v, 0)EN_ (u,0(u)) },

where NE(u,p(u)) is the normal cone to E at the point (u,p(u)) in the

sense of convex analyais [3],

THEOREM 1. 1In the convex ﬁragrammino case, one has for arbitrary

xeX(u)  that
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ap(u) = K (u,x), %) = K (w0

This is immediate from standard results (ef. [3]). It shows that at
least in the convex programming case (generalizations will come), one has
: s 0 1 ;
3p(u) nonempty and compact if and only if & p(u) ={0}, Under such circum-

stances one has furthermore that

(10) p'(uih) = max y*h = max v+h
yeop{u) yerl (u,x)
by formulas of convex analysis [3,323]. Thus here again is a case where

Lagrange multipliers associated with optimal solutlons to [Pu) tell us
something about rates of change of p, and vice versa.

Can such results be extended in some form toe nonconvex programming?
This seems essential, if we are to understand and take full advantage of the
meaning of Lagrange multipliers in the general case.

Clarke [4] has provided a concept of generalized subgradient that makes
such an extension pessible. He has defined the concept of the normal cone
to an arbitrary closed set in Euclidean space in a robust way which agrees
with previous definitions of normality for convex sets and for smooth mani-
folds. Taking Nr{u,p(u)) in (9) to be the normal cone in Clarke's sense,
we get his subgradient set 9p(u) and the corresponding singular subgradient
set aUp(u). These are well defined closed convex sets, whether or not p
happens to be a convex function; only the lower semicontinuity of p is
utilized. They agree with the subgradient sets of convex analysis when p
is convex. »

An alternative but equivalent descriptieon of the generalized subgradient

sets of Clarke is the following (cE. [3, 48 and 4T1, [6]). Call y a lower

semigradient of p at u 1if

(11) plu') 2plu) +ve (u'=u) +0f|u'~ul}.

Then, in an extended sense, odp(u) is the closed convex hull of all the limit
ks ko, . -
points vy of sequences {y !} such that ¥ iz a lower semigradient at soma

point uk, and both u -u and p(uk)-+p(uJ. The "extended sense' refars

m

to the need for allowing also certain "direction points'" of R as possible
ol ks, . z
limits of sequences {1y } that are unboundad, and to take these '"direction
q B »
poincs" inro account when forming the convex hull. (See [3, §8 and 817] for

0 . 2
more about such matters.) The cone o pf{u) 1is the closed convex hull of the

rays in R rcorresponding to the "direction pointa' realized as limlts,



106

THEOREM 2 (Rocakfellar [7]). The following conditions are equivalent

at any u where pfu) <=

(a) 5°p(u) = {0};

(b) 3p(u) is nonempry and compact;

(e) p is Lipschitzian on a neighborhood of u.

In the case deseribed in the theorem, there is a simple relacicnship

between dp{u) and certain nonclassical derivatives of p dintroduced by

1 - \ ’
(G 5] lim sup plu'4th) =p(u') _ WA n

£ ;
u'=+u yveap(u)
L0
In parcticular, ©p(u) consists of a unique ¥y if and only if
1 1
w +th)=-p 3 i calle
{12) 1im plubch) 2plu) - v+l for all HKeR
Vi =
u'+uy
t+d
The latter means that p dis strongly differentiable at u and Tp(u) = ¥;

s = i = 1 E o
it holds certainly if p dis of ¢lass (C~ on a neighborhood of u.

Even when p 1s not Lipschitzian as in Theorem 2, there is z close
relationship between +#dp(u) and certain special subderivatives of p,

defined by

(13) o ush) =
lim[ lim sup [ inf plu'teh') ~piu'y i
e+0 u'u h'=hl<e t
plu')>plu)
£+0

Difficult as this formula may seem, it has some surprising properties which
e
we demonstrated in [B]: p (u;h) dis alwavs convex as a function of h: one
has 3p(u) = & 1if and omly if p+(u:0) = -m, while otherwise
: t -
(i4) p (uz;h) = sup w+h for all heR ,
yeap(u)
; ¢ m h .
dpfu) = {veR |ysh=p (uih) for all hi.

The subderivatives (13) reduce to the ones in (11) in the Lipschitzian case
in Theorem 2.
Armed with this new concept, lei us return now to the discussion of

Lagrange multiplier vectors for (Pu} and their relationship te p. The



first person to jet results on this topic was Clarke [9]. who showed that

Kl(u,x} # ¢ if {Pu) igs globally calm in the sense that

o
(15) Lim inf PGEFERD-p(@) 5 o for a1l b
h'+h :
£40

Generalized subsradiencts of p  in the nonconvex case wars first estimated
by Gauwvin [107.

THEOREM 3 (Gauvin [107). Suppese u is such that p(u) <=

. S 1 1 o s
constraint qualification Kaiu‘x) = {0} 1is satisfied for every =eN(u}.

itz continuous on a neighborhood of wu, and

Then p

(18) Ap(u) ¢ cleot E_J Kl(u,x)].
xeX{u)

Recently we have extended this result as follows.

THEOREM & (Rockafellar [117). Suppose u is such that p(u) <= Then

(17) dn(u) < cleol L_j kl(u,x) + L_L K%(u.x)},
xeX{u} xeX(u)
2%ofu) « cfcof l_J Ké(u,x)}.

wxed{u)

This vields Gauvin's theorem by way of Theorsm 2. The clted result
of [11] is actuzlly much more powerful amd general than the formulation given

here would indicate. It deals with multipliszras for (P ] even when the

= u
functioms £, are not of class {7, just locally Lipschitzian, An abstract
zonstraint xeD(u) can also be present. (The multiplier theorems of Clatke

and Tauvin mentioned above also apoly to some of thease bdroader situations,)

Rather than discuss such generalizatioms here, we shall describe next
some rTesults in the opposite direction. These take positive advantapgs of

the limitations we have placed here on (P ). For =xeX(u}, define
” v D7 .

Wiu,x) = {weR |vfi(x}°w =0 for all deT(u,x}},
) g 1 7

5 (u,x) = set of all yeK {u,x) satisfying

4wz 0 for all weW{u,x},

2 i
Kn(u,x)= set of all yeKé(u,x} satisfving
il ” :
wel 2 v, 9E 0wz 0 for all  welilu,x).



The set Kz(u.x) gives what may be called second-order Lagrange multiplier

vectors for (PU), although other conditions have also been proposed in this

conmnection.
THEOREM 5 (Rockafeliar [12]). Suppose u 1s such that p(u) <=, Then
(18) ap(w) < cteol | P+ U wxoi,
xeX{u) xeX(u)
2 1
3%p{u) < cleof [*J Ka(u,x};.
xeX(u)

The difference between this and Theorem 4, of course, is that the sets
Kz(u.x) and Kg(u,x) are likely to be smaller than K1€u.x) and Ké(n,x).
so the estimates in (18) are sharper than the ones in (17). As a corollary
of Theorem 5 via Theorem 2, we get the following improvement over Gauvin's
theorem.

THEOREM 6 (Rockafellar [12]). Suppese u is such that p(u)<= and

the constraint gualification Kg{u.x) = {0} is satisfied for every =xeX(u).

Then p is Lipschitz continuous on a neighborhood of u, and

2
(19) aplu) = efeol | B (u.x))-
xeX(u)

Another result which can be derived f£rom Theorem 5, alchough by a
crickler method, is a new multiplier rule. We state it in terms of yet
another kind of constraint qualification, which localizes the calmmess con-
ditlon of Clarke already described: we define (Pn) to be locally calm at

k < 1
x il there do not exist sequences xk-ﬁx, u *+u, such that iz feasi-
bie for (Puk) and
k k
[fo(x ) - fﬂ(x)]f'u —u| * -=,

This is true for all xeX({u) when (Pu) is globally calm in Clarke's sense
(see [11, Prop. 12]).

THEOREM 7 (Rockafellar [12]). Let =x be a locally optimal solution to

3

(Pu). ind suppose either that (Pu) is locally calm at x or Kgylu,x)= {o}.
Then K™ (u,x) # @.

This result differs in echaracter from previous theorems on second-order

necessary conditions, and of course it has a totally different sort of proof,
since the theory of generalized subgradients of noncenvex, nondifferentiable,
functions is applied to p. The corresponding ''standard" result would in-

volve a constraint qualification in terms of the existence of cerrain kinds
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of arcs leading from x into the feasible set for (P ). Putting this
il

cation in the form of a condition which ensures that the implicit

ion theorem can be used to obtain che existence of such arcs, we would

have the following. Let x be a locally optimal solutlon to (Pu), and

1 % 1 ;
that Kﬁ(u,x} = {0} and the set K (u,x) consists of 2 unigue y.

yeK (u,x), and ¥y has some other second-order properties teo.

But in fact the moticns in this "standard" resulc imply that

KS(U,x) = {0} and = Kl(u,x) = {y}. Thersfore, we have merely the

description of a spucial case of Theovem 7 where the properties defining

a
K (u,x) automatically entail certailn other properties. Viewed in this light

Theorem 7 is =n to extend the theery of sscond-order necessarv conditions

quite

211 of the results discussed in this article apply also to problems

equality constraints, wirth the obvious medifications. We have avoided

squality constraints only in order teo keep the notation simpler.

»
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