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Differentiability Properties of the Minimum
Value in an Optimization Problem Depending
on Parameters

1. A central topic in optimization theory is the study of the optimal value
and optimal solution sct

p(w) = inf flv,x), X(v)=argminf(v,z), (1)
wed () rad(n)

in an optimization problem over s € B* which depends on a parameter
vector v e R%. Often this is a prelude to minimizing or maximizing p(v)
subject to further constraints on », as is the case for instance in decompo-
sition schemes in mathematical programming and various problems of
approximation or engineering design. The question of the possible conti-
nuity and differentiability properties of the function p is then very im-
portant. Such properties also turn out to be eritical in the derivation of
optimality conditions which characterize the points z € X (v).

Let us normalize by focusing on behavior around » = 0. Assume that
A(0) = O, the function f: R < R" iz locally Lipschitz continuous, the
set gphd = {(v, 0)| @ € A(v)} =« B* % R" is closed, and that for some & > 0
the set

{0, 2)] vl e, weA(v),f(v,2) < a}

1s bounded for every a e R, Then p is lower semicontinuous on & neigh-
borhood of v =0 with p(0) finite and X(0) nonempty and eompact.
Our aim is to clarify the circumstances under which p is actually Lipschitz
continuous in a neighborhood of » = 0 and has directional derivatives
of various sorts.
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2. Ordinary one-sided directional derivatives

p'(03 1) = lim [p(v+1h) —p ()] (2)
=0

exist only in rather special cases. One such case, among the first to be
identified, is that in which f e €1 and A (v) is a fixed set B for all . Then

p'(0; k) = min V f(v,z)-h.
xeX(0)
The result can be attributed to Danskin [5], although the form in which
we have stated it is somewhat different. If B is convex, the condition
z e X(0) is equivalent, of course, to —V . f(v,®) € Ng(x) where Ngz(z)
iz the normal cone to B in the sense of convex analysis ([16]).
An example where this applies is

f{-‘f}[_ :’r) e z‘,{‘_}gj(r)? ‘4_(.1\) = B F— {3,.': (;j}l, veey m?!:]! .?.“.j :'3 0.‘ E(T‘J — 1][.
iz =

with g; € €*. Then p(v) = min{g,(v), ..., g.(v)}

The case where f is a convex function and gph4 is a convex set has
also received attention. Then p is a convex function, so the derivatives
p'(0; ) do exist. It has been shown by Golshtein [10] (sce also Hogan [13])
that for any choice of # € X(0) one has

p'(v;h) = Int  f(v, a5k, k),
Jeg (v iesle)
where gph 4’ is the tangent cone to gph A at (v, ). In terms of the sub-
gradients of convex analysis ([16]), the equivalent formula is

ip(v) = {z € R?| (2, 0) e ¢f(0, )+ Noona(0, x)}. (4)

Generalizations of (3) to nonconvex cases have been given by Dem’janoy
et al. [6], [7], under rather stringent assumptions. Other results along
these lines are those of Hirlart-Urruty [11], the marginal value theorem
of Golshtein [10] for nonconvexly parameterized convex programming,
and certain extensions of the latter by Rockafellar [17]. [21, Theorem 4].

3. More general results of the kind just mentioned involve additional
siructure for the constraint sct 4 (v). In escaping from assumptions of
either eclassical differentiability or convexity, such results also rely on
new developments in subgradient analysis. :
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Suppose henceforth that
A(v) = {weR"| F(v,2)el, (v,2)eD},

where € = ™ and D < R?xR" are closed sets and F: R*xR"R™ is
locally Lipschitz continuous. A typical case in mathematical programming
is

0 ={Utyy wartpll L 0iore =1,....,%,
Uy = 0 for ¢ = S—I—l, ...,fm,}. (6)

For a locally Iipschitz continuous function ¢: R"—R, Clarke ([2])
introduced the directional derivatives

q°(x; k) = limsup [g(oe" k) —gla')]/t
0
and showed there was a unique, nonempty, compact convex set dg(x)
(whose elements may be called “subgradients”) such that

g%(z; k) = max k-w.
wedglr)
A detailed caleulus has grown out of this concept; see Clarke [2], [3], [4],
Hiriart-Urruty [11], and Rockafellar [15], [18], [19], [20], [21] in parti-
cular. It is known that ¢°(2; k) = ¢'(w; k) when g e 4 or g is convex;
in the first case dg(z) reduces to the gradient Vg(w), while in the second
case it is the usual subgradient set of convex analysis.

Corresponding geometrically to Clarke’s notion of “subgradient™ is
his definition of the normal cone N,(#) to an arbitrary closed sct B =« R®
at any point @ € Bj; see [2], [15].

Thesge concepts have been nsed by Clarke [1] fo derive optimality condi-
tions for mathematical programming problems with objective and con-
straint functions that are locally Lipschitz continuous, and Clarke’s
result has been sharpened by Hiriart-Urruty [12] and Rockafellar [21].
Ag background for the marginal value theorem that will be stated below,
we fivst formulate a version of this result for the more general constraint
structure in (5). Let

K(®) = {{y,2) e R™* xR?| y e Ny(F(0, 2)},

(2,0) e &(f+y F)(2)+Np(0, 2)},
Kq(x)={(y,2) e R" x R?| ye Ng(F(0, ), (% 0) € 6(z F)(z) +Np(0, x)}.
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TuporeM 1 (Multiplier Rule). Suppose ® e X(0) is such that K,(x)
contains just (0,0). Then there is a pair (y,z) e K(x), in fact K(x) is
a nonempty compact set.

The constraint qualification K (z) = {(0, 0)} reduces in the case of
fedt, Ted, " D=R%BEY (asin (6);

to the well-known one of Mangasarian and Fromovitz [14].
Theorem 1 may be derived from Theorem 1 of Rockafellar [21] by
applying the latter to the constraints

0 =Gw,s,w) =Fv,a)—w, (v,8,w)eDxC.

By the same route one obtains the following as a special case of Theorem
2 of Rockafellar [21].

THEOREM 2. Suppose that for every x e X(0), the set Ky (@) contains
just (0, 0). Then p is Lipschilz continuous in a neighborhood of 0 and

op(0) = co | {13y, (y,2)eK(2)},
zeX(0)
p°(0; h) < max z-h.
zeX (0
('L’,z)eK(]:x}

In the case of assumption (7), this result was proved by Gauvin ([8], [9]).
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