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A general monotrople programming problem consists in m 1
to linear constraints, a convex functien that is presep—
ﬁrah“e, i.e. expressible as the sum of finitely 7 terms, each
of which is a linesr function composed with a convex [uncrion of
2 single variable,
Any such problem can be reduced co the canonical form:
minimize Fi{z) = Ly} subject to
[EI ) 3
xe £ and =x. e Ci For Fi= Leasnalla
T i S | i
C is a lincar subspace of R {describable by a homogencous system of
equalions), each £y ig 2 nonemply interval in K, and I: s a finite
vex function on C. . The interval C: 1s not required to be closed, but
the following technical assumption is imposed: under the convention that
f;(xi) = 3w for x. € C-1 1)
the function fj is ceontinuous relative to the closure of C€:; .  (This ensures
that <f:, intet siz (1) as a proper convex funetion on”8ll of R, is
1
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inear programmi {convex) quadratic programming are special cases of mono—
tropie programming Taking the f;'s to be pie se linear or plecewise
quadratic, one gets useful extensibns of thesc classical problem types. — Many
problems in network programming £it directly inco the form (T') toe. In that
context, x: 1s the flow in the jth arc of a certain directed graph, and ( 1
the space ol all flows x = (®1s....x,) which are circulations in the graph, i.e.
conserved at every node. See [2] for more on such examples.
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An important characteristic of monotropiec programming problems, which distinguishes
them from convex programming problems in general and shows a cleose kinship with
linear and network progra g problems, Is the fact that they can be sol »cc by
descent methods where the descent directions can be determined combis
e,g, by piveting., We have explained this in [2], [3]. and demomnstrated that
directicns yielding descent by more than a pre-gesigned amount ¢ can actually
be gensrated in such a way, The purpose of the present article is to provid
step size rule which effects this guaranteed amount of descent automatically,
without the need for any line gearch in the direction in gquestion. This property
is particularly desirable as a2 means of implementing the dual approach to solving
{F}, where descent techniques are applied to a certain dual monotropic programm—
ing problem (D), This will he discussed at the end of the article.
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Fix any & > 0 and consider for any feasible solution % to (F) the closed
intervals

L + N ’
Aa{Ea) AL (x, = Iy, & RIE (k. 3 . .5-¢ ¥ = R
[ 4 (X_]), ¥ (XJ)J v | : (XJ+S) = (X)J THgsiEy ¥isel) (2)

where “ } and A, (x.) represent extremal slope values depending on ¢, as
lﬂdlCat“é in Figure 1% Note that ome just has

:A;(xj) = (fj):—(xj) amd K (k) = (l’j):(xjj when & =0 (3)

the latter case it could happen that AZ ('\. Y= (._) += or AJ (x.) =
Mi(%.) = == for some j, so the interval (& (X‘]),J1 {3 )] is efpty; then =
i§ s3id not to be regularly feasible, There =re no” such wo'}1 ies when >0,
since then T(x.) » == and A% (x:) < +=, Of course, one has ?«_; {x:) +oo if
and only if X, ‘]is the right endpeint of CJ (the interval where ¥. is finite),
and A%

I m ‘«:‘J_-

-{*{]) = 2= if and only if - is the leLt endpoint of C.. More will be
said later about how the wvalues ""-&x Y and (x } might be determined. TFor
the time being, we simply assume tley are r.:acl'ily available.

Let D denote the linear subspace of r? orthogonally complementary to O,
(This can be described by a homogenecus system of linear eguaticns dual to the
system used to describe &, see [3].) For any x e { such that the "rectangle"

n = iy
Ay = I [A.(x.),0Ah {x)] (&)
2 | i gt
]
iz nonempty (this being true for any feasible = when & > 0, but only for reg-
ularly feasible = when © = 0), one will have either that A(x) N D # @ or

that M(x) can be separated strongly from [I. In other words, either

Ive D satisfving A, (x.) 2w, o2 P\T(:\:.) for all j (3)
or else 1 ! 3
z e satisfying | AL(x )z, + 7 f":(xj)z_: <0 (6)
_]:Z_;-"O jiz.=0 1 R
o J

Indead, there exist combinatorial algorithms which in finitely many steps can

resolve the question comstructively, by producing either a v as in (5) or a2 =
as in (6), see [2]. Moreover, this can be accomplished in such a manner that in
the case of (6), the vector z which iz obtained points in one of the finitely

many so-called glamentary directioms of £,

For our purposes here, we need not go into the nature of such algorithms nor into
the properties of "elementary'" vectors. We wish merely to take for granted that a
routine can be called forth, whevever required, to determine constructively whether
(5} or (6) holds. The following result, which we proved im [3], indicates how such
a toutine can be made on the basis of a descent algorithm for (P).

THEOREM 1 [3]

Let x be any feasible golution to (P) (regularly fegeible if the case €& =0
te under comsideration), IFf (5) holds, then = <e gpprowximately optimal Ffor (P)

in the sense that
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F(x) < inf(P) + & Jor &= ne (7)

If (6) 7#olde, on the other hand, the vector =z gives a direciion of e-descent in
the senee that

3t > 0 with =x + tz again feasible for (P) and @
F(x % tz) < F(x)} =c¢

In the case of £ = 0, condition (7) means that x 1is an optimzl solution to
(P), while (8) means that x can be improved in the directicm of 2z, Tt can be
shown that the improved feasible solution x+tz will again be regularly feasible
in this case, Wnen e > 0, however, the conclusions are streonger: if x  is not
already é-optimal, an improvement by more than =, through line seuarch in the
direction of z, is guaranteed. Here, of course, & > 0 could be the number
specified in advance, and ¢ would then be taken equal to &/n.

It follows Shat for arbitrary e > 0 and o € R, we can start with any feasible
solution x- to (P) and determine in finitely many steps an x which is either
f—oprimal for (P), or feasible for (P) with F(x) < o, In the kch iteration,
if it is not already true that the current feasible solution xK7! sarisfies
F(xk_‘) < ¢, we apply a combinatorial routine of the sort mentioned above in order
to deeide constructively whether (5) or (6) holds for x = x*7', 1I[ (5) holds, we
terminate, because (7) is true for x = x*'. TIf (6) holds, we get a vector =z¥,
and by a line zearch in rhe direcction of 2%, if necessary, we can find a tye
such that the vector =k = xK~ 4tz is again feasible and satisfies

F(xk) < F(x*"1) = 2, Ve then proceed with iteration k+!, Note that the number
of iterationg before termination cannct exceed the ¢ pric»? bound

1+ (nfé)[F(xo) - maxia, inf (P)}]

Obvicusly, when termination does come, the algerithm can be restarted with lower
values of g, &, and a, if so desired.

We speak of the preceding method, with ¢ > 0, as fortified deecent in monotropic
programming, The corresaonding method with = = 0 geunerates an improving sequence
of Feasible solutions =x%, but apart from special situarions there is no assurance
even that F(xK) =+ inf(P), much less that termination will come in a finite number
of iterations, regardless how many.

Automatic Step Size Rule

Let us now look more clesely at the task of determining a step size t which meets
the prescription in (8). What we know in general is that =e ©, F(x) <= (this
means x: € C; for all j, accerding to the convention in (1)), and z is a

vector in { " such that

inf Flxttz) =< F(x) - ¢
£>0

Since F(x+tz) is convex as a function of t, the approximate minimization of
F{x+tz) with respect to t > 0 could be carried out relatively easily, at least
in principle, so as to get a value of t with F(x+tz) < F(x). Then x+tz would
be another vecror in €, in faet a feasible solution to (P) (because
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F{x+tz) < =), and cur task would be finished.

There are reasons, however, [or wishing to avoid a line search for £, of the
described., sr one thing, F{zx+tz) is the sum of a possibly larg
terms f'(x]?tzg). 411 these would have to be dealt with explicicly
v search method, and could be tedious., Ancther potential drawback is
tain situations which will be discussed lacer, the funecions £: Lo
ch the algeorithm iz applied may only ba known in a somewhat indirect fin

making their values troublesome to compute, even though the slopes AT (x:) and
h?(x;} may themselwves be available,

J‘.T| Cer

Sy L+ " ] ;
We may suppose that along with  A:(x.} and A:(x.) ws have ac our disposa I
tain numbers st and =7 (no% néaessatily unigue) as indicated in Figure 1,
Specifically, with the assumption henceforch that < » 0, let us note that

Ao(my) = dinf [f.fx.+s) — f.(x.) = el/s
5+0 3 d
d (9
(.} - el/s
anc
+ : .
a. ¢ argmin[f. (x.+s) - [.(x.) = a]/s
1 Lo 4t a 153
(o)
s. € argminlf, (x.+
Sl e
using the ventions to extend those [ormulas:
+ s :
. =0 if f.(x.+s) = » for all 5 >0 (i.e. (x.) = ==}
J 14 J
(11)
s. =0 f.(x.+8) = = for all s = 0 l.a lt(x. = -«
i 35 - ( 595 7
and
+ . = i
5. 1s allowed Lo be += 1f
| (12)

a5 B 4w

[fi{Xj+9) ~ f.(x:) = Elfs 2

iz allowed to be -=

d8 e

The latter conventioms are engendered by the circumstance that the differen
quotient [f-(Xj+s) - £.{x:) - ¢]l/s iz unimodal in s, in fact as z function of
r=1/8 it {s convex “for r » 0 and concave for r < 0. In wminimizing s con-
vex funetion of r owver 0 < ¢ < =, it is perfectly natural to consider r =0
as a possible solution in the cbvious limicing case, and this explains (12); sim-
ilarly for (13)., (The reader may n wish to refer to Figure 1 to see that wo
are alluding here to cases where tj(Xi) and l?(xi) turn out, one or the other,
to be limiting slopes for the graph of” fj.) =
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any rate, i¢ clear that with Lhe stated conventions Chere alwavs st
3 E : yto . |
bera s- corresponding Lo A X1] and “j(xj} as described and
ying h
+ .
0« 5. == when
: (14)
0> s, » -= when
i -
Vcrecvcr, can, at worst, be calculared along with A and A {xi) by

es in (9), and if necesszry these sia can bi]a executed

elementa and accessible conmvex functions of a single war-
is 1 for instance, when f. {u pie
are virtually in "closed form'" can

o

! G
»m, see [2, Chap, 4]. L
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t which can be usad
algorilhm. This
more complicated kind

i now that such numbers s and %T Turnish a wal
! further ado as the step Zize in the fortitied desc
mckes it possible teo avoid a line sear o0f the potentiallw
suggestad by (8B).

THEQR 2
o p z
i
= .'ibp d Z‘j =0
£ = ] (15
1 ] my el
] 3 :
0t <= and
Flxttz) < Fix) — o 4F ¢ <= (163
case t =, Flxitz) s noninareasing a8 a
lim F(x+tz) < F(z) - e

T

Proof:

Observe at the out inequality in (6) implies ’r (x:) = = for indices
i with z: > 0, an P-T(x-) » —m  for j with 2. 8, * 9 Peom (14), then,
it is clear that the number s: or s. involved in (15) can be 0, and
thereiore t > 0 (-.ane each of the ratios has” the same sign in both pumerator
end denominator). Next note Lhat for each j with zj * 0 (hence Q’J = 0) one
has by the choice of sj

+ \ + + ®
To{xets.) = £.(x.) = elfs. = 2A%rx, if 5, < m
[J\ 5 J) J( ]) 1/ < J(*{JJ i E 5
. = £ — e '|+' n _,+ =
_%J;E [;j (xj+s) = : (xl) - zlis = ,-\3, txj) T, 5y = @
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The first of the cases (18) yields

+ +
L.(x.+tz.) - £.(x)]/t = A.(x.)z. - (g} £ t =a8a./lz.
[ J(AJ z;) "XJ)] J(xJ)zJ (e/E) ar JKZJ

and hence by the monotonicity of the difference quotient of the convex Sunction fi:

+ +
T.(x,+tz,) - f.(x.)]/t < A.(x.)z. - e(z./5.) 19
Erplartag) ~Epmlin o Ry e TR R ) Y
. + <
for 0 <t < s./z. when z. * 0.
i

The second case in (18) yields the same inequality, provided only Lhat we interpret
zifsi as 0 when s% == (and correspondingly interpret the difference quotisnt

ior 't == as z limit). By a parallel argument, we have

fo(xa+tzn) — E(x )1/t < A (x)z. - e(z.fa.) (2
[atpeensd = L5 = @05 Ry (20)
for 0 <t < s,/z. when z. < 0w
=g ;|

Adding up the inequalities in (19) for indices j with z3 * 0 and the ones in
(20) for indices j with z. < 0 in {6)), we obrain

- + +
Eawtel) =R it % ' Aiolx.dz, = elz./s1)]
i5) jEFeRg) = A Gl j_;_,,OI 59574 B
J
+ ¥ [T (Y, = etzita.y]
e _1( A2 (Jf :)J

This holds for 0 < ¢ i_z by the choice (15) of ¢. Thus, invoking the insqualicy
in (6), we get

[Flerrz) - B/t < =l [ (/s + [ (z/80)] (21)
jiz.=n 3 3 JRzegl ¥ %
| ]
for 0 < c £, x

In the degenerate case whare t = =, the ratios in (15) must all be +%,  and each
term in the sum on the righr side of (21) must be 0. Then

[Fix+ez) - ¥(x) ]/t < 0 for 0 <t < =

and since F{x+tz) is a convex function of t 1t must actually be a nonincreasing
function of t e (0,=). Then (17) is correct, becausc the fact that z satisfies
(6) impliez by Theorem 1 that (8) holds.

In the remaining case, where 0 < f <=, t 1{is equal toc one of the positive ratios
in (15) (the reciprocals of which appear in the sum of the right side of {213y, =o
that
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(z./sT) + (z./s)] > 1/t>0 (22)
| 33 =

I
jiz,<0
]
Then

[F(e+tz) - F(x)}l/e < -eft < 0 for 0 <t = t

Again this tells us that T(x+tz) 1is nonincreasing in t for 0 < ¢ =, and
in particular, by setting t = T, that (16) is correct. The proof of Theorem 2
is thereby completed.

Note that the degenerate case where ¢t might be = 1is impossible if the set of
feasible solutions to (P} 1is bounded, or indeed even if the set of oprimal sol-
utions te (P) iz nonempty and bounded. This is true becauge T is a closed,
proper convex function on R, For any such functiom, if £ 1is 2 wector such
that, for seme x & R' with F(x) < =, F(ux+tz) is nomincreasing as a funecion
of te (0,%), then the latter must actually hold for = x ¢ R" (cf. [1,88]).

i

Application te Dual Descent

For each of the funmctions £, with associated finiteness interval C., there is
2 so-called conjugate convexr’ funetion g: on R with an associated’ finiteness

interval D.. We shall not go into the details of the symmetric relationship
between the” pair Ej’cj and the pair g:,D:, and how one can casily be deter-

mined from the other, This is explaine in [3], [4) and [1.524].

The monotropie pregramming problem dual to  (P) is

n
maximize =G{w) = = E gi(vi) subject to (o)
j= H
vel? and v. e D1 for 3 = 1,...,0
i o~

This hag exactly the same character as (P) (one could just as well minimize G

as maximize =G}, The role of problem (D) has not been mentioned here before,
but in fact it underlies the theory of the descent algorithms for () as devel-
oped in [3]., In particular, as shown in [3], the following assertion can be added

to our Theorem | abowe: (5) holda, tF v an (& approximately opti-
mal for (D) in the sense that
=G{v) > sup (D) - & for & = nz (23)

This extended version of Theorem | leads to a constructive proof [3] of the follow-
ing duality thecrem for monotropic programming.

THEOREM 3 [4)

(P} or (D) has a feasible solution, then inf (B) = sup (D).

Trom a practical point of view, one of the most interesting features of the dual-
ity is that it provides an alternative method of solving (P), where descent is
applied to (D). To see how this can work, consider any feasible solution v to
(D} and (for our fixed &) the asscciated intervals
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[1: (\u};u- (vj)] = [xj ¢ Rlg; (vj+r} 2 gj(vj)+ viF - s, ¥reRh (24)

Assuming that none of these is empty (as is true if € > 0 or if v is regularly
feagible for (D)), we can determine constructively (hy the sort of combinutorial
algorithm mentioned earlier) whather

¥e ' &a 1sIyin Ua Vs < K. R T for all 25
or instead

aw e [ satisfying T Wy, + I ”T(vl)w' < 0 (26)
20 ey jivs<0 Tl e

In the Zirsc casc we conclude [rom the extended version of Theorem 1, with ()
and (D) in reversed roles, not only that v is é-optimzl for (D), but alac x
e §-oplimal For (2). In the second case¢, on the other hand, w gives a gireo-
tron of s=aseent For (D):

2t » 0 with v+ry again feasible for (D) (27)
but -G(ww) > -C(v) + &
Se it is that, in general, che monotropic descent algerithms already discussed can
be applied to the dual problem (D) (actually in terms of ascent, or eguivalently

in terms of minimizing G rather than maximizing =C), and, upon termination, can
produce a ¢-optimal solution to the primal problem (P).

The catch is that for =0 (=£=0), termination cannot be guarantesd, Without
termination, it iz not clear what, if anything, has been learned about (P), even
though an optimizing sccuence may have been generated for (D). This is whers the
fortified version of the algorithm with § » 0 (g »0) takes on an obvious impor-
tance, since for it, termination is net only guaranteed, but the number of itera-
tiocnz obeys an a pricri bound,

Even with the fortified algorithm applied in (D), however, there may in some
situations be difficulcy nr inconvenience in having to deal with the conjugate func—

tions g: and intervals : For instance, we may not wish to go through the
exercise”of constructing th&QE functions and intervals from the given £.:'s and
g:* and storing them in sufficien:t detail on a computer. Our aim now "is to show

that th:s is not really necessary, by virtue of the automatic step size rule in
Theorem 2. In faet, the Fortilied deacent algeorithm, ag appiiad to (), can be

3 c 3 >
srecuted enitrely in terms of the original problem (P).

The automatie step size rule, as invoked for the dual problem, requires not only
the values ut (v )} and vy {vj), but 2lso certain associared values

l‘; € arg i‘ig [8J (Vj"'r} = S] CVJ) = glft

& (28)
r. € arg min [g.{v.+r) — g.(v.) = el/r

j g s R

(these formulas being extended by conventions parallel to (11), (12) and (13)).
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Having deLermined a o in (26}, we ¢

get impr
Iy by passing to  w+lw

in the feasible solution v

v
+ o, o
T, for such that w. = 0
B Gn o : (28
| . fw for

tical issue is just this, then
and alse rT and ., direct
there is no need ovoer

The answer ia Illustrated in Figure 2

the endpoints ol a certain level set of

= (303
The values 1? and T
(31)

= +
to cover cases where U, (v.)}

( U.f{w:) = =2, These
of the theory J o

ubgradienzs of convesx
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