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1. VARIATIONAL PRINCIPLES AND CONSTRAINTS.

Fundamental in many applications of mathematics is the idea of modeling a situa-
tion by first describing a set S of possible "states" that need to be considered and
then introducing additional criteria that single out from S some particular state
x . For example, S could represent all the configurations that might be taken on by
a certain physical system, and x could be an “"equilibrium" state, perhaps expressing
a balance of forces or giving an extremal value to some energy function. Economic mo-
dels often follow a similar pattern, except that instead of an energy function it may
be a cost or utility function, say, whose minimum or maximum puts the spotlight on a
particular x in S . Such models too can concern an x which is an equilibrium re-
sulting from interactive maximization or minimization of various functions by numerous
individual agents.

Modern applications in statistics, engineering, and operations research have
especially focused attention on situations where a physical or economic system can be
affected or controlled by outside decisions, and these decisions should be taken in
the "best" possible manner. The notion of an optim{zation probfem has proved very use-
ful. In abstract terms, such a problem consists of a set S whose elements, called
the feasibfe sofutficns to the problem, represent the alternatives that are open to a
decision maker. Examples of S 1include the set of acceptable estimators for a statis-
tical parameter, the set of feasible designs in a structural engineering problem, the
possible control policies for an inventory process, and so on. The aim is to minimize
over S a certain function f , the objective function. The elements x of S where
the minimum is attained are called the optimaf sofutions to the problem. Of course
minimization could be replaced by maximization.
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In all such cases where an x 1is singled out from an underlying set S on the ) inequality constraints, possibly very many of them, and the frequent lack of
basis of some kind of minimization or maximization, it is common to speak of x as \ "smoothness” of the functions f, and set X . In elementary models for physical
being characterized by a variationaf principfe. This terminology also carries over to systems, it is frequently the case that S is completely characterized by several
many situations where x does not necessarily give a true extremum but merely satis- equations involving the variables x;,...,x
fies conditions that generalize, or form part of, various conditions known ta be
associated with an extremum over S . , {1.2) S=Ixex| fi(xl,....xn} =0 for i=1,...,m},

The question of variational principles and their role in science and technology
js closely connected, therefore, with understanding and characterizing extremals of a ._ where X is an open set in R" and the functions fi are smooth, i.e. continuously
function f over a set S . This in turn depends on the nature of f and S , and differentiable. Furthermore, the equations are independent in the sense that in a
here it is that a great amount of mathematical innovation has become necessary in re- neighborhood of any point of S they can be solved for some m variables as smooth
cent decades. The older view of variational principles was too Timited. Traditional functions of the other n-m variables, although just which ones might depend on the
methods are simply not adequate to treat the kind of functions f and sets S that ' point in question. Then S 1is a "smooth" curve, surface, or hypersurface in R" of
that nowadays are deemed important in such a context. We speak here not just of spe- dimension n-m , the kind of object which finds its abstraction in the important ma-
cial techniques but of the entire cutlook of classical amalysis. thematical concept of a differentiable manifold. We refer to such an S as a amooth

To begin with, some words about the sets 5 that may be encountered will make mani fold.
this clearer. In this introduction, we shall be concerned in the main with situations ! When inequality constraints are encountered in classical analysis, they are
that can be described by a finite number of real variables, or in other words, which usually of an elementary sort and few in number. An example of a set S that can be
display "riﬂitely many degrees of freedom". Denoting the variables by x;,....x, , we described in terms of such constraints is a closed annulus : a region in r? 1ying
can 1dentify the possible “states" which correspond to a situation at hand with ele- ; between two concentric circles and including the circles themselves. This corresponds
ments  {x,...,X ) = x of the :pace R". Thus the state set S can be thought of ! to two quadratic inequalities. Another example is a solid cube in R? or its bounda-
simply as a certain subset of R'. The exact definition of S in a particular case ' ry. Such a cube can be determined by a system of six linear inequalities. Note that
depends of course on various circumstances, but it typically involves a number of ’ when S s such a cube, its boundary is not a smooth manifold, but its structure is
Fenctional relationships among the variables x;,...x . It may also involve restric- simple enough not to pose much trouble. The open faces and edges of S are smooth
FTUnS on the values that may be taken on by these variables. In economic models, for manifolds that can be investigated individually. In general, one might say that the
instance, it is common to have variables that are intrinsically nonnegative ; in ' kind of sets S seen in traditional applications are, if not smooth manifolds them-
structural design pT0b1e?s, bounded variables are the rule. selves at least the union of a modest number of smooth manifolds that are nicely

A great many situations are covered by the following kind of description : i juxtaposed to each other and easily listed in an explicit manner.

' In contrast, many contemporary problems in economics, chemical equilibrium, phy-

; sical variational principles, and other areas, concern sets S of the form (1.1)

O for 4 = Livess 54 where the number of inequality constraints is in the hundreds or thousands, far lar-
ger than the number of variables X s which nevertheless can be huge too. Then the

! notions and technical tools appropriate for smooth manifolds no longer suffice. At
any given point x of S some of the inequality constraints can be active (satis-

. fied as equations), while others can be inactive (satisfied with strict inequality).
Quite apart from the large numbers involved, there is usually no easy way to determine
which combinations of active and inactive constraints actually do occur; cf. Figure 1.

| Furthermore, the consideration of such combinations does not necessarily lead to a

decomposition of S into smooth manifolds, not to speak of one having a simple, di-

rect description. Even the equality constraints appearing in (1.1) can cause diffi-

(1.1) S :=set of all x = (x;,...,x) ER" such that

X €% and fi(x}
=0 for i =s+1,....m,

where X is some given subset of R" {usually rather simple in character, perhaps the
. n
entire space R ) and each f; s a real valued function on R" . The conditions
*lt Ko filx) <0 or f{x) = 0 are called constraints on the state x . The inclu-
sion of the abstract condition xe X allows an open-ended flexibility in the des-
cription of the constraints.
What most distinguishes the applications for which classical analysis was deve-

Toped from the modern ones, as far as sets S of type (1.1) are concerned, are the '



Figure 1. S the set of acceptable states.

culties by not being "independent" at critical points of S, and the set X may
have complicated boundaries that need to be taken into account.

The study of evolutionary systems in the context of viability theory, cf.
Aubin, 1984, obTliges us to confront, in a dynamical setting, all the questions that
were raised in connection with the mathematical structure of the set of acceptable
states as defined by (1.1). The motivation comes from biological, ecological and
macro-economics models that fit the following general evolutionary format : a closed

subset S of R" identifies the acceptable states of the system, the dynamics of the
system are described by the relations

{1.3) x(t) € r(t) and x(ty) = x4,
where x denotes the derivatives of the state x with respect to t (the time
parameter), and T(t) is the set of feasible dynamics at time t . In the study of
the evolution of the state x{t) as a function of t , we must make provisions for
the behaviour of the system at its frontier of viability, i.e. when x{t) belongs to
the boundary of S . Because precisely these critical periods are the ones of inte-
rest in the modeling process, we cannot resort to the "smooth" case studied in clas-
sical dynamics, i.e. when the system is to evolve in an open domain or on a smooth
manifold with open boundaries.

Another difficulty is that the differentiability assumptions or differential
dependence of the solution on the parameters of the problem which seem (or at least

used to seem) so natural in classical physics lose their luster in other subjects.

Mathematical models derived from biology, economic theory or the theory of extremals

in statistics, for example, often have a convex set X and inequalities involving

i ; X
nvex functions f; « These particular mathematical properties are of interest

because they have an axiomatic significance in economic models or extremal statistics

which smoothness properties do not. This turns out to be no impass for analysis, if
certain generalizations of differential calculus are pursued.

The importance of being able to work with nonsmooth functions comes from more
reasons than just this. In some way, inequality constraints in themselves force the
considerations of nonsmoothness. We have already observed this in the example of a
solid cube in RJ having a nonsmooth boundary. More generally, any constraint sys-
tem of the form 9, (x) < 0, for k=1,...,9 , can be Tumped together as a single

inequality g(x) =0 where

(1.4) g{x) =  max 9, (x)
k=]‘--- »1

The price to be paid, of course, is that g will not inherit the differentiability
properties of the functions g, » see Figure 2.

Figure 2. Tha max-function g.

Nevertheless the idea of lumping constraints together this way has its value, and we
must be prepared to cope with it. For example any convex function g : R" -+ R can
be represented by a 1imiting version of (1.4) in which infinitely many (linear) func-
tions are allowed.

The classical approach to a nonsmooth function g as in (1.4) would be to treat
it as a piecewdise amooth, or in other words to decompose the domain of g into fini-
tely many smooth manifolds relative to which g is continuously differentiable. But
this may be impossible without imposing painful and practically unverifiable condition
on the functions g, and how they interact with each other.

Nonsmoothness enters the study of variational problems through the analysis of



constraint systems, as we have been discussing, but also through the objective func-
tion and various consequences of optimization itself. In a problem of the form :

(1.5) find x €5 CR" such that fo(x) is minimized,
where fB is a real-valued function on " , there is no reason to 1imit the atten-

tion to the case fD smooth, and indeed there are many applications where f
not smooth. Examples may be found even in classical approximation theory :

D'IS

(1.6) find x € R"  that minimizes fU{x) = max |h(t) - i(t.x)] ,
D=t<1

where h is given continuous function on [0,1] which is to be approximated {in the
Chebyshey sense) by one of a given family of functions j( ,x) .
tions f, can be a max-function as in (1.4).

In other applica-

An extremely valuable concept which opens up further sources of nonsmoothness
is that of a peaturbed or parameterized optimization problem. To take a relatively
simple case, leL us imagine a minimization problem (in variables X s+e=ak, ) which
depends on finitely many other variables Ups--ally & More specifically, suppose that
for each u = (ul.....udj in a certain set U< R we want to consider the

problem :

(1.7) find x € S(u) that minimizes Fo{x.u} '

|
where

(1.8) S(u) = (x EXCRY [Fi(xau) 0, 1 = L,...,85 Fy(x,u) = 0,i = s+1,...,m}.
For each u €U , let

(1.9} p{u) := infxEES(u} FD(x,u}

denate the infimal value of problem {1.7), i.e. the lowest value attained by Folx,u)
as x ranges over S(u)} , assuming for the moment that this does exist. It is a

fact of Tife that the infimat function p is unlikely to be differentiable in the
classical sense, however nice the functions and the set X may be;
often it is not even continuous. Yet in many contexts we would like very much to have
some understanding of the way p{u) changes with u , and there are strong motiva-
tions for studying rates of change. OFf course this needs to be expressed in terms of
generalized derivatives of some sort. In fact there are some important applications,

FG' Fl...., Fm

both theoretical and numerical, where an infimal (value) function like p can enter
into still another optimization problem as the objective or one of the constraint
functions.

The parameterized problem (1.7) serves also to bring up other matter that must
be dealt with squarely by a modern theory of analysis. Even if the minimum in the
problem is attained for some x for each choice of wu €U , which is usually not too
difficult to guarantee, there may well be more than one such x .
tions to (1.7) thus form a set A(u) depending on u .
neral lack of uniqueness without making restrictions that in many applications would

The optimal solu-
There is no escaping this ge-

be out of character with the underlying physical, biological, or economic model, and
futhermore impossible to check.

This phenomenon certainly provides sharp contrast with what is regarded as nor-
mal in classical physical systems. The common view there is that a model is not well
formulated unless it leads to both an existence theorem and a uniqueness theorem. In
other words, the state set S 1in such a system is supposed to be supplied with some
mechanism which sigles out ¢ne and onfy one special state x . This notion has to be
abandoned in many other contexts. In its absence there is the challenge that in pla-
ces where one is accustomed to dealing with functions (single-valued), one often has
to deal with so-called mufiifunctions (multivalued or set valued functions, as will
be discussed in Section 2)

Thus in models with parameters, instead of a unique special state which depends
on u one has a set A(u) . There is every incentive for developing a theory of how
A{u) can vary with u : generalized properties of measurability, continuity, smooth-
ness, and so forth. Of course, the same holds also for other kinds of sets that de-
pend on parameters such as S{u) in (1.8), for example. In particular it is necessa-
ry to investigate ways in which a sequence of sets in R" can converge to a set. The
answers are helpful not only in treating multifunctions by for setting up numerical
methods. A problem of minimizing some function f over a set S , for instance, can
presumably be approximated by minimizing the same function over a "nearby" set S ,
but the sense of such an approximation has to be made exact. Such questions are best
handled in the framework provided by the study of variational systems that we intro-
duce in Section 3. It is the dependence on the parameters u of the optimization
problem (1.7) as a whole, that is now of interest. The properties of the infimal
function p or multifunction A of optimal solutions are to be studied in terms of
the properties of the class of optimization problems that engender them. To do this
we must create a mathematical object that corresponds to an optimization problem,
that incorporates both the objective function and the constraints. This brings us
to giving the lead role in our analysis to extended-real-vafued functions , i.e.
functions which can take on not only real numbers as values but also e and -oo .,

Extended-real-valued functions are nothing new in mathematics, but they have



e to enjoy quite a new range of usefulness based on an attitude that many mathe-
ilicians would have balked at in the past : o and - do not have to be treated
i symmetric fashion, and indeed in other aspects of theory as well, one should not
wry so much about maintaining symmetry with respect to multiplication by -1 . It
easy to appreciate how this changed attitude has come about. When a function f
ppears in an inequality constraint f{x] =0 in some application, we usually have
i interest at all in the opposite direction f(x) =0 . Thus in studying such a
mstraint, there is no need to 1imit our attention to properties that are formulated
mmetrical ly with respect to f and -f . Similarly in the context of variational
inciples : when a function f is to be minimized in certain selting, our interest
uatly steps there, and we do not wish to determine also the points that maximize
v 1.e. the points that minimize -f . Other illustrations could be given, but in
ort, there are many situations in which a function that is to be investigated can
viewed as having a particular "orientalion".

Let us consider the optimization problem
1.10) find x € R" that minimizes f{x) ,

where £ is an extended-real-valued function. If there is a point x where

[(x} = = (a circumstance where this may happen is when £ is an infimal function
0l a parameterized optimization problem, cf. {1.9)), then we know at once that x
provides the minimum. Points x  where F(x) == , on the other hand, have almost
the opposite significance; they are not even worth contemplating as candidates for
providing the minimum, except in the degenerate case when f is identically e . In
essence the constraint f{x} <eo is implicit in such a minimization problem. This
heing so, we arrive at the possibility of using < constructively to designate the
points that are not of interest in a given situation. Lach minimization problem of
type {(1.5) is equivalent to minimizing a certain other function f , called the
easential obfective function over all of R" , namely

(111} f(x) = [fa{x) if x€5

oo if x &S.
o in more detail when S s given the representation (1.1) :

(112} £ = [fo(x) i fix) <0, 1=1,...,s,

|
o
-
-
n
7]
i
—
3

£ =

XEX

N
=
3

+ o« otherwise.

Thus for theoretical purposes, the study of optimization problems, their general
properties as well as their classification, can be undertaken in the framework pro-
vided by that of extended-real-valued functions defined on R" .

However, the traditional approach to function analysis is no longer quite appro-
priate for this class of functions. The concept of continuity must he replaced thatl
of semicontinuity, and so on. This break with classical analysis
is underscored by the new geometrical viewpoint which must accompany the analysis.
The traditional way of applying genmetric ideas to functions has been through the
geometry of graphs. Such an approach continues to hold much potential in current work
on nontraditional topics, but for the treatment of extended-real-valued functions
f:R" > R® there is a newer concept of "epigraphs" that has proved to be more fruit-
ful than graphs. It opens a "bridge" between sets and functions that plays such a
pivotal role in the mathematical principles, definitions and tools that structure
this analysis that we could refer to it as the epigtaphical viopoint .

For f: R" >R we define the epighaph of  f to be the set

(1.13) epi f:={{x,m) €ER" xR | a2 f(x)} ,

nkl

see Figure 3. The epigraph consists of all points in R that lie "on or above"

Figure 3. The epigraph of f.

the graph of f , but note : the graph of f is not well defined as a subset of

R because f(x) may be e or -e=. The graph of f is really a subset of

R" x T . The epigraph, on the other hand, does 1ie entirely in Rn+l by definition,

and yet it serves to represent the real-extended-valued function f completely :



{1.14) f(x) = inf [a|{x,a) € epi f] for all «x .

Turning to epigraphs does condition our view of f . It directs our interest to
properties of f that are naturally associated with such subsets of R"H ; also for |
example to those of sets like

(1.15) lev f:={(x€R" | f(x) Sa

called the a - fevel set of f , instead of the properties of the set

{ x| f{x) =a ) onwhich a traditional "two-sided" approach would focus. The ievel
set (1.15) has, of course, a simple geometric meaning in terms of epi T . It corres-
ponds to the horizontal cross-section of epi f at height « . This interplay
between the properties of extended-real-valued functions, epigraphs and level sets is
nicely illustrated by the following result. Recall that a function f : R" =W s
fower semicontinious at x  if

(1.16) lim inf f(x') = f(x) .
X' ey

It is Power semicontimeous [£.5.c.) if this holds for all x €Rr",

1.17. THEOREM. The fellowing properties of a funetion i
f:R" =R are equivalent )
{a) T 48 Cower semicontinuous
(b) the set epi f {8 cfosed
{c) the set Ievaf is closed fon all a €ER .

PROOF (a) = (b). Suppose (x”,a") € epi f and {x",a") = (x,a); then x¥ -

g ) x and
a “a with o'

= f(x”) . We must show that o > f(x) . so that (x,a) € epi f . The
seqﬁense {f{x“).vzl....} has least one cluster peint in R . Replacing the sequence
l{X“,c: Jov=l,...} by a subsequence if necessary, we can actually suppose that

f(x'}) ~a' for some o' €ER . Then o =>4 > but on the other hand

a' = Tim inf f(x").

Y =+ oa

Since we are arquing from =3 >
g from (a), we have (1.16); henc 5
o ) { ) e a f(x) , and so o = f(x)

(b) = {c). lev_ f s then the i i
L e intersection of two closed sets, namel i
and the hyperplane {{x,n) € Rn”‘jn = al. i

{c) = (a). Fix any x € R" and let

g : = Tim inf f(x').
i

Then B = f(x) . We must demonstrate that (1.16) holds, and to do this it will suffice
to prove that f(x) <n when B <o -Ze ., Thus for an arbitrary «a satisfying
B <a <o we need only show that x € levaf . We begin by exhibiting a sequence
x” = x such that actually f(x") ~8 . There is nothing to prove if £ = , so let
us suppose # < e . Consider the seguences BULB and ﬁulﬂ . We know that for all v

g > inf f(x').
¥ [x'-x] <6

For every v , therefore we can select an x” such that [x” - x| < §, and
B, > r(x“} . For this sequence we do have ¥ =+ x and f(xu} —+ A , because

B = lim By * Thus for this sequence and for v sufficiently large f(x') <a ,
since f <a . Hence x"€ lev f is closed under hypothesis (c), so that X" = x
yields the desired relation x € 1evaf v B

Now seems to be a good time to reiterate that although we have been relying
heavily on minimization problems as a source of motivation, there are many applica-
tions of the same ideas to problems that are only vaguely related to minimization, if
at all. The study of inequality conétraints. e.g. f{x) =<0 or in the form they
appear in Viability Theory, has already been mentioned. Convex functiens furnish
another prime example : such a function f given on a convex set S C R" and then
extended to R" with the value * remains a coﬁvex function. Also, every result in
this one-sided approach involving epigraphs, lower semicontinuity, and convexity, for
example, has its counterpart in terms of hypographs ({x,u) € R"+l|a = f(x)} , upper
semicontinuity, and concavity.

If the epigraphical viewpoint is the appropriate approach to the conceptualiza-
tion of optimization problems as mathematical entities, in terms of extended-real-
valued functions, then the study of their dependence on parameters should also follow
the same quidelines. And as we shall see in some detail in Section 3, such an
approach is indeed the correct one, as confirmed by the wealth of tools and results
that reward it. Much more could be said, but at this point let us just introduce the
main idea in terms of the parametrized minimization problem (1.7). For each u &R ,
the essential objective function is defined by

(1.18) f(x,u) = | Fy(x,u) if UEU and x € S(u) .

e ptherwise.
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d,but

| we have only very limited interest in the properties of f jointly in x and u .
The properties that we are looking for : continuity, convexity or measurability, to
name a few, of the infimal function p and of the multifunction A of optimal
solutions, are all conditioned by the properties the epigraphical mulfiifunction

We have thus an extended-real-valued bivariate function defined on R" x R

Rn+1 ,

dz

(1.19) u=epi f{",u) : R

as is demenstrated later on. Thus it is in those terms that we shall proceed, totally
in accordance with the observations we have made about "single" optimization
problems.

As indicated earlier, Section 2 and 3 are devoted to the study of the parametric
dependence of sets {multifunctions) and functions (variational systems). We touch on
the key questions of continuity and measurability that are part of this Extended Real
Analysis, altough only in a very cursory manner. We also raise some integrability
questions. But this picture is not complete; indeed we have often suggested that the-
re is also a need for an appropriate subdifferential calculus that will allow us to
manipulate and give meaning in the nonsmooth case to the notion of "derivative". This
. theary of subdifferentiation, whose earlier development, cf. for example the recent

survey Rockafellar, 1983, or the books by Clarke, 1983, or Aubin and Fkeland, 1984,
may appear to have only limited intersection with the questions broached here. In
:fact it is intimately related to the limit notions that surface in the subsequent

?sections. This, however, is beyond the scope of this introduction and cannot find
| place here.
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2. MULTIFUNCTIONS : CONTINUITY AND MEASURABILITY.

According to strict definition, a gunction T : U= X , where U and X are
arbitrary sets, is nothing more than a subset of U x X having the property that it
contains for each u € U a wnique pair (u,x) . Be that as it may, no one really
thinks in such terms when going about his everyday business, or we would be accusto-
med to seeing {u,x) € T written at least as often as x =T (u) . In truth there is
a very strong feeling for functions as having a more dynamic quality. This is empha-
sized by the common notation

(2.1) urr{u) ,

which expresses operationally the assignment of a certain T{u) to u . The subset
of U x X that is supposed to be the function itself is usually referred to instead
as its graph. There is no logical distinction between a function and its graphs, yet
the use of term "graph" is nevertheless helpful in signaling when a more geometric
rather than operational point of view is intended. These observations may help to put
the definitions we are to make in a better perspective.

Following the pattern adopted for functions, we define a mufidfunction
r:usx technically as just a subset of U x X . Any subset will do, and no extra
conditions 1ike those in the case or a "function" are imposed. Even so, we typically
refer to the subset in question as the graph of I and denote it by gph I' rather
than just I' . For each u €U , we let I(u}) stand for the set of all x such that
(u,x) belongs to the graph of I , cf. Figure 4.

Figure 4. The graph of the multifunction ™.



Thus
(2.2) gph T = {{u,x) | x© fu)l.

A1l of this may seem natural enough, but there are some features of the termino-
logy that might be confusing if not made sufficiently explicit. The notation
P :U=X dnplace of [ : Ul =>X is used to indicate that single-valuedness is met
neguined, although it might be present anyway. The possibility that I s a function
is not excluded. Unfortunately if T does happen to be a function, there is a con-
flict in the way we have defined [I(u) to be a set : do we have TI{u) = {x] or
T{u) = x 7 The difference does not make much difference in practice, because the
suitable interpretation is usually clear from the context. Coming up with an intrica-
te symbolism to resolve the ambiguity therefore does not seem worth the effort.

A rore interesting question is whether a multifunction T might not be a true
function in a different sense. From the operational point of view we see the symbo-
lism u P T(u) as appropriate : to each u assian a certain point ©fu) . Since T(u)
is a subset of X , it appears then that we are dealing with a function T : U — ? s
where

27 : = the collection of all subsets of X .

Without denying the usefulness of this approach in many situations, we must
observe if such were the total picture, the "graph" of T would have to be regarded
as a subset of U x 2% rather than U x X . Then, it would no Tonger be accurate to
identify functions T : U - X as special cases of multifunctions T : U > ¥ . This
would undermine our framework for generalizing from functions to multifunctions.
Whenever the need does arise, we shall associate with the multifunction T T
a function vy : U=2" such that the element y{u) € X identifies the set T(u) .

Let us proceed now with some basic definitions. We have not insisted that a
muTtifunction T should have T{u) nonempty for every wu . When T(u) =@ , is said
to be empty-valued at u . The effective domain of T is the set

(2.3) dom T := (u|T(u) # P} ,
and the range of T is

(2.8) rge T := {x] u with x € r(u)}.

The invense of a multifunction | e X is the multifunction r'l x5 U

obtained by reversing all the ordered pairs in the graph of T :

(2.5) gph I = {(x,u}|{u,x) € gph T} .
Evidently

u€ r'I(xJ if and only if x € I'(u) ,
and

(2.6) domr Y- rger ,rger l=domr .

Let us note again that these notions are perfectely consistent with our idea of T
as corresponding to a subset of U x X , but they do not fit the competing picture
sometimes put forward of a set-valued function from U to 2! , whose inverse would
be something quite different.

The «mage of a set € C U under T s

(2.7) T(C} = U, rw) = (x] Iy e spy .

In like fashion, the {nverse <mage of a set D C X under T s
ey “1,. .

{(2.8) T (D) = UepT (x) = fu] [(u) N0 £ 0} .

In particular

(2.9) T(U) =rgeT and T N(X)=domT .

We will mostly be concerned in this article with the case when U CR" and
XCR" for some d and n . An extra economy of notation is then possible : any
multifunction T' : U= X is in particular a multifunction T : Rd ZR" . Incidental-
ly, we are not just saying here that T : U= X can be extended to T : Rd'z RN,
multifunctions have been identified in our set-up with subsets, and any subset of
Ux X isa subset of Rd x R" . It follows that, whenever we are in this setting, we
will be safe in limiting theoretical discussions of multifunctions to the case
r.rd3gt .

Section 1 contains four examples of multifunctions from R® to R" that illus-
trate somewhat different themes but are excellent in providing motivation for the
properties that we are going to look at next. The first is the multifunction u** S{u)
defined by (1.8). It associates with each parameter u the set of points satisfying
a certain system of constraints; its domain is the set of all u for which the

d
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system is consistent. There is little hope for this multifunction S : Rd 2 R1

being
single-valued except in very special cases. Nonetheless we are not satisfied with
Jooking at the sets S{u) in isolation. We want to know something about the relation-

ship between S{u') and S(u) when u' and u are near to each other.

The second example is the multifunction t*T(t) of admissible dynamics which
appears in the generic model of viability theory. This multifunction r : R=R" , is
generally not single-valued unless the system being modeled is such that it is irreme-
diably condemned to die whenever the trajectory hils the boundary of the set of
acceptable states S,a rather uninteresting case. If the system is to survive even
when it hits the frontier of viability, the setl uf feasible dynamics must be rich
enough to allow for adaptation in critical situations, cf. Aubin, 1984. Of course, we
are interested in the measurability of T with respect to t , so that at Teast the
differential inclusion x{t) € r(t) is meaningful, but also the "derivatives" of T
with respect to t are of interest : they enable vus to characterise the changing Te-
vels of adaptability of the system under investigation.

The third example is the multifunction wu ™ A{u) , where A{u) is the set of all
optimal solutions of the minimization problem (1.7) . In this case we are definitely
interested in single-valuedness but have Lo contend with the fact that it cannot
usually be counted on for every choice of u . The way that A(u) varies with u is
again a prime topic, but the nature of the situation is such that sudden changes are
very possible.

The last, and fourth, example is the epigraphical multifonction
utepi 7{ ,u) = Ef{u) as defined by (1.19). The multifunction Ef : Rd Zg" is
never single-valued; in fact if u € dom [f , then [r(u] is always an unbounded set.
Like for the multifunction u ™ S{u} we are interested in the relationship between
Ef(u'} and Ef{u} when u and u' are near to each other. Or course, we expect to
see a strong relationship between the multifunctions wut S(u) and ut Ef(u) , the
latter having possibly a slightly more sedate behavior, due to the dampening effect of
the objective function whose dependence on parameters is usually Tess erratic than
that generated by the intersections of sets that depend on parameters, since

S{u) = “11 S;{v) DX,

where Si(u) = 1ev0 Fitu) for i =1,....5, and Si(u) = {x]Fi{x.u) =0} for
io=os+l,. .. ,m.

In meeting the challenge raised by such examples we will need to pin down the
various ideas of how a sequence of sets in " might be said to converge to set in
R" . Because the sets we encounter are frequently unbounded, in order to study their
convergence behavior adequately in the large we shall need to adjoin to the space R"
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a kind of "boundary at infinity" consisting of ideal points which represent possible
directions of divergence. Here this will be done in the simplest possible way, namely
by relying on a l-point compactification of R" . This is not the only way, and not
always the best way of dealing with directions of divergence, but it is all we can
cover in this Introduction, and it does provide us with the results that we need in
our study of variational systems in Section 3.

Although there are many instances when results about arbitrary multifunctions are
of interest, all the examples that we have dealt with suggest that the bread-and-
butter case is when the multifunction I 1is ctosed-vafued, i.e. for all u , the set

" We shall restrict ourselves to that case, not just

'"(u) is closed subset of R
because all examples mentioned are of that type, but also because it allow us to
escape a number of technicalities that would overburden this presentation. This means
that henceforth we may restrict ourselves to Timiting properties of sequences of
closed sets.

Let (SY, v = 1...) be such a sequence of closed subsets of R" . Then its fimit

infeadon is the set

(2.10) Tim inf S¥ ¢ = {x = Tim x’|x" € 5¥ for v =1,...]
U"-FCI'J U-—bm
-n el (u s
{uk}C N

where by {vk} CM ={1,2,...} we mean that the intersection is with respect to all
subsequences contained in IN. By ¢l , of course, we refer to the closwie gperation.
Similarly, the Limit superior of the sequence is the set

2.11) Vim sup S : = {x = Tim x*|x€ € s for some (v, } C N}
k

y ~roo k —+oo

o0

" - I

LW cl (l.luz\]I el |

Since the limit inferior consists of the 1imit points of all possible sequences
(xY, v=1,...) with x"€sY forall v, and the limit superior consist of the
cluster points of the same sequences, we necessarily have

(2.12) lim inf S” C Tim sup S¥ .

N iad-1 oo

The £imit 1im S is said to exist, if actually equality holds in (2.12), in which

Y oo



case we set

(2.13) 1im S¥ : = lim inf SV = Tim sup SV .

y=roa W —ron 3 —hoa

Of course, we do not need to restrict the definition of limits to sequences of
sets, and for our purpose a somewhat more general definition serves us better later
on. Let X be a f«ftexr on an index space N , i.e. a collection of nonempty subsets
W of N closed under inclusion and finite intersections. We deal only with two types
of filters, namely neighborhood systems N(u) of points u in Rd and the Fréchet
filter on W (which can be viewed as the neighborhood system N{e=) of the point =
at infinity in IN), but it is convenient to deal with both cases at once. The gnife
H of a filter W is defined by '

(2.18) K := (HRCN | HOR £@ forall H' €X)
There is a natural duality between a filter and its grill since, we have that
(2.15) H={HCN | HNH #p for all H' €13}

as can easily be verified. For the filter N{(x) and the Fréchet filter N(=) which
are of primary interest to us, we have that H € N(=) if and only if H contains
all execpt possibly a finite number of the elements of M = {1,2,...} , whereas

HE N{= if and only if HC IN is not finite, i.e. HN(=) corresponds to all
subsequences of IN ; also for u € Rd, N{u) = collection of all sets having u in
their interior, whereas N{u) = collection of all sets having u in their closure.

Extending the notion of limits of sets to that of filtered families
(5%, v € (N, )} , we get for the Limit injerion

{2.16) H“rne;"nf s Oye g MU

W
\JQHS}

and for the Limdit supenion

(2.17) Tim sup S¥ =
vEN

W
Mex Mlen ) -
Since I € ¥ , it is again true that

(2.18) Vim inf ¥ < 1im sup ¥ .
weEN vEN
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The Lemif is said to exist if equality holds, and as before it is then denoted by

1im S¥ and defined to be the common Tlimit.
vEN

We are now in a position to introduce continuity concepts for multifunctions. A
multifunction T : RE3R" s Cower semicontinuous {1.sc.) at u if for the
filtered family

{rqu') , u' € (Rd , N(u)) o,
we have

(2.19) Tim inf r{u') 2 r{u) ;
u' -y

the notation u' = u suagests the filtering process by the neighborhood system of
v (in the same way that v - = suggests the filtering process by the neighborhood
system of the point at infinity). Similary, T is upper semccontinuous (u.sc.} at

u if

(2.20) Tim sup T'{u') © T(u} .
u' =y

Finally, T is contaomious at u if_ it is both Tower and upper semicontinuous, or
equivalently if

(2.21) Tim r{u') = I'(u) .
u'—*u

The multifunction T is said to be fower or upper semicontinuous, or continuous, if
the corresponding property holds at all u in Rd

Because of the topological properties of Rd , in particular the fact that
neighborhood systems have a countable base, the definitions of lower and upper semi-
continuity for multifunctions can also be rephrased in terms of sequences. This yields
the following, which brings the definitions of Tower and upper semicontinuity in Tine
with the sequential definitions of lower and upper limits of sequences of sets that we
gave first.

2.22 PROPOSITION. A cfoded-valued mubicfunction | = Rd TRM s fower semicontoneous

at u if and only (f for every sequence {(x”, v =1,...} conveaqing to U and every
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x € T(u) , there exisis a Sequence {XU, v o= l?...} econverging to  x  such that
X" € F{u“) for all v except possibfy for a finite number of v .

1t {4 upper semicontinuous at u Lf and only {f for alf the sequences
sooo b ronverging Lo u , the clusfern points of all possiblfe seguences

L) with XY e F(uv] befong to T{u) .

2.23. THEOREM. A cfeosed-vafued multigunction T : Rd z R" £8 uppen semicontinuous i
and onfy <4 gph [0 C Rd x R" i closed, on afsg, {4 and only Lf its inverse

-1 nrod o y .
[ R R 44 upper AemLconTOaunous.

PROOF. Note simply that gph I is closed if and only if every cluster point {u,x)
of a sequence [[u“.x“),u = 1,...} in gph T also belongs to gph I' , or equiva-
lently, if and only if any cluster point x of a sequence {xv, v=1,...} , with
' €r(u’y and u” = u, belongs to T(u) . This is the characterization of upper
semicontinuity provided by Proposition 2.22 .

The second assertion involving the inverse r'l follows simply from the first

one via {2.5); the graph of Tul is just the subset of R" x Rd obtained by rever-
sing the order of all the pairs (u,x) in the graph of I . D

As an illustration of this idea, the constraint multifunction u® S{u) defined
by {1.B} is u.sc. if the sets U and X are closed and the functions
{x,u) F.{x,u) are continuous relative to X x U . Indeed, the graph of the inverse
of this multifunction is the intersection of several subsets of U x X of the form
{(x,u}|Fi(x.u) =0} ;

graph in question.

these sets are closed under our assuptions, and hence so is the

Short of continuity of the multifunction u'* A(u) of optimal solutions to (1.7)
which is difficult to guarantee, it is in the upper semicontinuity of this multi-
function that we are interested in. Indeed, it is precisely this property which
allows us to assert that whenever x¥ i< an optimal solution of (1.7) for
v=1,..., with v in place of u , and the u" converge to a certain u , then
any cluster point x of the sequence [{x", v = 1,...} is an optimal solution of
{1.7) with u =10 .
problem.

In this sense the x” are approximate solutions of the limit

The following characterization of upper and lower limits of filtered collection
of sets leads to the construction of a topology on the thypen) space F  of closed
subsets of R" , the subspace of 2X which is of interest here, and which allows us
to relate the continuity of a multifunction T : Rd SR" to that of the associated
function + : Rd = F . 1t is convenient in what follows to rely on the following
notation.

F i = the hyperspace of closed subsets of R"

£l

1

€ : = the hyperspace of open subsets of " &

K the hyperspace of compact subsets of r"

2.24. THEOREM. Let (S”, v € (N,3)) be a fiftored family of closed subsets of R ,
and S a closed subset of R" . Then

5 C 1im inf SV

f and onfy £f for afl G &6

W

{2.25) SOGFR= for some HE I , S NGER for afl wEH.,
Afso

S 2 lim sup S”
W

f and onfy if fon all KEK
(2.26) SNK=0= forsome HE K ,S¥NK=0 fonxall vEH,

PROOF. 5 C 1imuinf Y if and only if for all G &€ €& such that SMNG £ P we
have that for all HE ¥ '

W
6N Sy 4D,

as follows from (2.16) and the fact that an open set G meets ¢l D if and only if
GMD#P . Now to say that the relation holds for all H € JE means that for some
He ¥ , G must meet every set SY with weEH » as follows from the duality
between  and # , in particular (2.15). And this now yields (2.25).

To prove the second half of the theorem, we observe that 5§ 2 lim suvaU if and
only if for every compact K € K such that S O9K £ @ , we have for some HE ¥

W

n
KNell oy $)
as follows from (2.17) and the fact that X is closed under inclusion. This clearly
implies (2.26). On the other hand, if (2.26) holds but there is some points y in
K C](UvGEH Sv) » then this y belong to KNI, as follos from the structure of
W, and hence KNS # P, contradicting our assumption. [

We are now in a position to build on the hyperspace F a topology T consis-
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tent with the convergence of closed sets introduced here. A subbase of € consists
of the families of sets

(5, »6€6) and (7, K€K},

where for any subset Q C R"
= (FEF|Fngsm
and

U ifFeriFng=g .

-
I

A base of open sets in € is thus all sets of the type

(2.27) Fé e rK NF, N...NFe with p finite, where K€ K  and for
P 1 p

i=1l,..,p, GEE , (this s the collection of finite intersections of elements of
the subbase); note that for any finite collection of compact sets K ,o«:K_, one has

Ky Kq K L
FINLNF = 5 | where K is the compact set U? 1 Ki . Of course we have :
2.28. COROLLARY. Let {SY, v & (N, X)) a filtoned family in F . Then

S=T - I@m s¥ Af and onfy £f fon the corresponding family of closed subseta of
R" , 5= lims” .

PROOF. In view of the structural properties of the basis of € , one has
_ . v " Py P
5=70 - I@m 537 if and only if conditions (2.25) and (2.26) are satisfied for the
corresponding collection of sets {5: SU vEN} . O
Translating all of this into the terminology of multifunctions, it becomes :

2.29. COROLLARY. Lot T : RS 3 R" be a cfosed-vatued meLti function.

Then T is £.4c. at wu A4 and onby if to every open det G that meets T(u)
thene cornesponds a neighborhood V € N{u) such that F(u') NG is nonempty gon
all y' ey,

I is u.sc. at u if and only if to eveny compact set K  that "misses”

T{u) , i.e. with C{u) NK = B ; there coaresponds a neighborhood VY € B(u) such
that T(u') NK=1p for al? u' €y .

0f counse, it is continwous at U £f and onby if the two preceding conditions

ahe datisfied, on equivatently if the map v : RY > ¥ associated with T , is con-
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tinnous at u with respect fo the topofogy T on F .

There are number of properties of the topological space (F ,T) that turn out
to be useful in the sequel. First, it is separated (Hausdorff), as can easily be veri-
fied.

Second, it admits a countable base. Consider the base generated by the open and
closed balls with rational center (in 0"} and rational radius :

)30 BUB,...UB,
(2.30) ¢ with p and q finite,
B,- .87

where Bi denotes a closed ball, and B? an open ball (not necessarily related to
B; ). Clearly it is a countable base for a topology on F ; all what needs to be
verified is that it actually generates € . Since the sets generated by the finite
union of closed balls form a subclass of € , and the open balls are in & , the
topology generated by the base of open sets of type {2.30) is possibly coarser than
T . That it is actually as fine as T can be arqgued as follows. Consider F in

F and FE G in the fundamental ¥ - neighborhood system of F ; we need to
L2y

exhibit a neighborhood of F of type (2.30) contained in ré G We obtain this

from the topological properties of R" , namely (i) that if K 1is compact set sepa-
rated from F , then there is a finite cover of K by closed rational balls whose
union altso fails to meet F , say B'....,Bq , and (ii) if G, is an open set that
meets F , then it contains an open rational ball, say B? , that also meets F .
Third, (F,t) 1is a compact space. We deriye this by relying on Alexander's

characterization of compactness, see Kelley, 1955. Observe that the family of sets

(F, ., KEK} and (#C Geoy

is a subbase of closed sets for the topology T ; they are the complements of the
open sets used in our original comstruction of € . We need to show that any arbi-
trary collection of elements of this subbase with empty intersection contains a fini-
te subcollection with the same property. Let {Ki » 1 €1} be compact and
{[1‘j , €3} open subsets of R" such that
B
@ )0 Ogey Flr=0,

X F
i€l Q

where [ and J are arbitrary index sets. With G : = IG €l Gj » the above can be

rewritten as
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Gy _
Nerheg ™ xlte

which holds if and only if for some K in {K; , 1€ 1}

or also, if and only if KC G = UjE.l Gj . Since K is. compact, t‘:hen?, is a cover n?f
K by a finite number of elements Gl""Gp of [GJ , J € J} . This yields the desi-
red finite collection, since
G 6
RO(FLoL0 5P =9,

Symmarizing our results, we have

2.31. THEOREM, (F,t) {4 a separated, compact topofogical space with countable base,

and hence afso metrizable.

Metrizability is a direct consequence of the preeceding properties; consult
Kelley, 1955, for example. We shall actually exhibit a metric consistent with T ,
but before we do this, let us record one of the main implications of this theorem.

2.32. COROLLARY. Given ang 4iftered family 1S°, v € (N,H)) of closed subsets of
RY , there afways exists a subfamily (s¥, v € (N',3)} that convenges, i.e. such

that Vim SV exists, possibly the empty set.
wEN'

Before we begin with the constructien of a metric on F it is useful to re-
cord the following special case of the second part of theorem 2.24 that characterizes
convergence to the empty set.

2.33. LEMMA. Suppose (5¥, v € (N, X)) is a giltencd family of subsets of R" . Then

the condition

Timsup SY = lim SV =9
vEN vEN

holds (f and onfy {§ to eveny ¢ >0 , there conresponds H €K such that

elBnsY-p fonatl ven,
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whehe t:—lB i85 the cfosed baff of nadius r,hl and centen at 0 .

The Hausdonff distance between two nonempty sets C and D of a metric space
is defined as follows :

haus (C,D) : = inf (¢ | €2 C 2D, e D2C)
where €° Q is for ¢ >0 , the e-enfangement of the set Q , i.e.
e® @ : = {y|dist (x,Q) <=} .
Here dist is the distance function on the underlying metric space. The Hausdorff

distance is nonnegative; haus (C,D) = 0 if and only if C =D . The triangle inequa-

lity follows directly from the fact that for any set E , €1 >0 and €5 >0

€] C2E and e E20D implies (t1+t:2)°CDU.

whereas

E'iEDD and €3 D OE implies (cl§c2)"[}3c.

In order to express the convergence of sets in terms of a metric, we resort to a one
point compactification of R" , which we render concrete by means of the stereogra-
phic projection of R" on the sphere s"c R"'+1 , see Figure 5. The aterecghaphic

Figure 5. Stereographic projection of x, v on 8",
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distance between two points x and y of R" s
dist® (x,y) = haus ({x') UNP , {y'} U NP)

where x' and y' are the stereographic projection of x and y on s" and NP
is the north pole of S" ; haus is the Hausdorff distance in R™! | Between x and

P , one has
dist® (x,@) = haus ({x') UNP , NP)

0f course, we have identified the north pole NP of s" with the empty subset of
" . The stercographic Hausdong§ distance between two arbitrary subsets C , D of
R" is given by.

haus®(C,D) = haus(C'UNP, D'UNP)

where €' and D' are the sterepgraphic projections of C and D on s" LI ¢
and D are closed, then so are C' and D' ; in fact C'UNP and D'UNP are then
nonempty compact subsets of the compact sphere s" . The sterengraphic Hausdorff
distance haus® is thus a metric on F which is bounded above by the diameter of
s" . It remains to show that this metric is consistent with the topology of set

convergence.

2.35. THEOREM. Consider (SY, v € (N, )} , a §éftened family of closed subsets of

R" . Then 1imSY =5 if and only if
wEN

Tim haus® (sV,5) = 0 .
vEN

PROOF. As a direct consequence of the definition of lower and upper limits and
Lenma 2.33 we have that Tlim 5" = & if and only if 1lim (S U NP) = S'U NP ,

vEN vEN
where SY and S' are the stereographic projections of S and S respectively. To
complete the proof it suffices to use the definition of "haus™ and apply the follo-
wing lemma. O

2.36. LEMMA. Considen 1SV, v € (N,¥)) , a filtened family of nonempty closed sub-

sots of a compact set D CR" . Then the SV converge to the nonempty set S CD 4f
and only 44
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haus (5,8} =+ 0 .

PRODF. We begin by showing that S C cl(U ., S¥) for all He K if and only if for
all ¢ >0 there exists H € ¥ such that for all v€H, SCe”SY . The "if" part
is self evident. The "only if" part is argued by contradiction. Suppose that there
exists an e > 0 such that for all H € X there always is some v €H such that
sZe®sY, or equivalently that there exists H' € I --using here (2.14)-- such that
for all veEH , SEe° Y. This means that S ¢ C]{"uE?H' SU} and consequently

SE Nyegr MU ey s¥) = 1im inf §Y ,
- v vEN

contradicting the hypothesis.

Next we show that SY O lim sup S if and only if for all ¢ >0 there exists
vERN

H € J such that, for all v &H , one has SY C ¢°S . For the "if" part, note simply
that

S=clS=05,eSCN 4 cl(U sy cn

v
ben, wea (Wyey ) »
where Hr denotes a member of ¥ so that SY C¢°S for all v € Hr . For the anly

if part we appeal to Theorem 2.24 which implies that if 5 2 lim sup.SU, then to every
vwEN

£ >0 there corresponds H € I such that (D\ e® S} N sV =P, since D\ €S s
compacl and clearly (D\ £” S) NS = @ . But this is the same as the assertion that
Y C kTS forall vEH.,

So far we have shown that

S = Tim SV = lim inf $¥ = Tim sup S¥
vwEN vEN wEN

if and only if to every = >0 , there corresponds H € ¥ such that
£°SY 2S5 and ° 5 DOSY forall wEH.

{ He used the fact that X is closed under finite intersections). [quivalently in
view of the definition of the Hausdorff distance, the latter condition means that

haus (SY,5) <¢ for all vEH .
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Hence S° converges to S if and only if haus (57,5} *0 . O
For muTtifunctions we have the following version of Theorem 2.35 and Lerma 2.36.

d

. | . i
7.37. COROLLARY. A ctosed-vafued multdfunction [ 2 R R

(3 condinuous at U Af

and onfu {4

1im haus>(F(u'). T(u}) = 0 .

u'u
14 I compac.d-nenematy- vabied on a neighborthood of u on which i1 44 undformby
bounded, <t 44 continous at U if and onfy 4§

1im haus (U{uv'), rfuyy = 0.

u'—u

Let us make a couple of observations about continuity of multifunctions before we
proceed any further. When the multifunction is uniformly bounded, or in a.nunber of
other related cases, the definition of continuity introduced here is consistent with
what is expected. However, if T is not uniformly bounded then continuity may very
well not be all what we expect from such a concept. Consider for example the multi-

function T : R >R with

{|uu1ll

1] if u=0.

['(u) = if uf0,

[t is easy to verify that multifunction is continuous, in particular at u =0 , see
Figure 6. So is the multifunction T' with

1

Tu)=| (u"} if uto,

) if u=0;

see Figure 6. The difference is that T and ' do not tend to the compactification
point "eo" in the same fashion. (In order to avoid an example in which T and T

are empty at 0, simply condiser [, =T up and ri =T'UQ , where 0 is the

constant multifunction which takes on the value {0} everywhere). Naturally the
stereographic projections of the graphs of these multifunctions on S1 restores ouvr
sense of propriety, the projected graph of r' is "continuous™ at 0 . But nonethe-
less, we are still confronted with the fact that for wu sufficiently close to 0 .
I'{uy and T'{-u) and T{-u') are

very close to each, and no distinction is made as far as continuity at O

the sets are very "far" apart, whereas T{u}

is concer-

Mo = {u "}
i

¥ —

Tlwd= {lu™"1}

|

u

Figure 6. Continuous multifunctions.

ned between T and I'' . In many applications, it is imperative to distinguish
between the directions of recession, i.e. the asymptotic behavior at e of the va-
lues of the multifunction. This leads us to a more stringent notion of continuity for
multifunctions requiring in addition "continuity" of the directions of recession;
this is elaborated in Rockafellar and Wets, 1985.

Continuity of the function y : R* = F , associated to the multifunction
- Rd = R" , has been defined in terms of the topology ¢ . In view of what pre-
cedes, in particular Theorem 2.24, it is easy to see that lower semicontinuity of T

corresponds to continuity of y with respect to the topology Ty .

with base { FG , GEE} , and upper semicontinuity of T corresponds to continuity

of y with respect to € generated by the base | L Kex) .

We now leave the subset of continuity per se aﬁd turn to measurability. As in
the case of functions, measurability for multifunctions is a way of qualifying the
dependence of the values on a certain parameter. The basic difference between measu-
rability and continuity is that the underlying structure is that of a measure space
instead of a topological space, which in a sense is coarser. Again we shall Timit
ourselves to multifunctions whose values are closed subsets of R" , but we allow the
domain to be an arbitrary set @ equipped with a sigmafield A. . Of course (2, A)
could be Rd , equipped with the Borel field, in particular with d = 1 when the
parameter in question is time. Or it could be a sample space with
field of events, and so on.

A the sigma-

It will not be possible here to review all that is known about measurable multi-
functions; for that the reader should consult for example Rockafellar, 1976, Castaing
and Valadier, 1977, and the bibliography of Wagner, 1977, supplemented by Ioffe, 1978.
We shall restrict ourselves to bringing out the connections between the concept of
measurability and that of continuity for multifunctions. It is standard procedure to
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begin with a definition of measurability for closed-valued mu]tffunctions and then
study its implications, in particular what measurabi]iFy means 1n.terms of th? asso-
ciated function with values in F . Here we go about it exact?y in the 0pp051?e way .
Since (F, hauss} . or equivalently { F, T) , is a metric space, there is a
natural concept of measurability for functions vy defined on a measure space (0,4)
and having values in ¥ . Namely, let B be the Borel fie]d‘generated ?y the class
of €- open sets on F . From the construction of ¢ and its properties
{Theorem 2.31), the following classes of sets :

s ke, (5, 6€0),
(F B, B a closed ball } , {F e B° an open ball } ,
{F B, 8 a closed rational ball } ,

{F ge B® an open rational ball } ,

and their complements are all generators of B {taking complements and forming
countable unions). Consequently we have that v : (Q,A) = (F ,B) 1is measurable if

and only if

-1
(i) forall GEG , ¥y (FHEA ,

<A
(i) forall ke k , ylr)en,

]
(iii) for all FEF , Yy (F)ER ,

4 -1
{iv) for all closed rational balls B , vy °{ FB) €A , and so on.

Since each function v : @+ F 1is associated with a closed-valued multifunc-
tion T : o —+R" , we say that T is measunable if v s measurable. Since for any
set D CR"

1

YR = wealvm € Fo) = i) no £ 91 = 171(D)

the preceding characterizations of measurability of v yield :

2.39. PROPOSITION. The following are equivalent :
(i) T .5 measunable;
(1) for eveny open set 6 CR™ , 17 1(G) is measurable;
(i11)  fon every compact set K CR" , F_l(K) £5 measunable;
{(iv) for every closed set F CR" | r_l(F) is measurable;

=1 .
(v) for every closed rational batf B , T {(B) {4 measunable.

3

Of course this Tist could be continued at infinitum, all that is needed is to identif
a class of sets (D ED )} such that the sets [ F
generate B

D DED } |, or their complements,

However, there is more to measurable multifunctions than the characterizations
obtained as a direct consequence of the measurability of the associated functions

{with values in the hyperspace F ). A countable {possibly finite) collection of
measurable functions

% s domr R, y=1,...)

is said to be a Castaing nepresentation of the multifunction 1 : g > g¢ if dom r
is measurable ( € A ) and for all w € dom r

W) =1 U x"(w) ,

i.e. the set {xu(w), vw=1,...1 is dense in C{w) . It is remarkable that measurabi-
lity of T can be expressed in terms of the existence of Castaing representations.

Indeed we have :

2.40. THEOREM. A cfosed-valued muitifunction T : o 3" 44 measurable if and only if
Lt admits a Castaing representation.

PROOF. See Rockafellar, 1976. Theorem 1B, for example, O

2.41. COROLLARY. (Theorem of Measurable Selections). § r:a>g" 15 a closed-
valued measurahle muliifunction, then thene is at feast one measwrabie Aefecton, i.e.

a measurable function x : dom T - R" such that fon aff w € dom x(w) € I'fw) .
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3. VARIATIONAL SYSTEMS : EPICOH&INUITY AND NORMAL INTEGRANDS

Problems rarely occur in isolation. In almost every situation modeled in applied
rathematics, there are various sets and functions that describe any particular ins-
tance of the model, but these depend on certain parameters. When the parameters are
varied, a whole family of problems having the same structure is generated. The inte-
resting thing is that parametrization in this sense is not useful merely for the sake
of giving treatment to <imilar situations. The parameters often have a fundamental
role in the analysis. This is all the more true fn applications involving time,
random variables, or numerical approximations, where exact values may not be availa-
ble for the parameters. It is inescapable then that the study of one instance of a
problem entails the study of other possible instances.

We have seen in Section 2 how the notion of a set that depends on parameters can
be investigated in terms of multifunctions. In this section we take up in parallel
fashion the notion of a function that depends on parameters, the goal being to develop
the epigraphical approach explained in Section 1.

Minimization problems are again good reference point for motivation. Such pro
blems often depend on parameters and can be modeled abstractly as in Section 1, for

instance as
(3.1) find x € R" that minimizes f(x,u) ,

where f : R" X Rd ~+T is the essential objective function of a certain parameterized

optimization problem, say

F{x,u) = Fa(x,u) if Fi[x.u} S0 7= liaaaSs

"
w
+
—
3
-

Fi(x.u} =0, i
xe€Xcr”, wveucr®,

+ o0 otherwise.

where the F, are real-valued functions on the product X x U of closed sets X
and U, as in (1.8).

Generalizations are immediate. There is no reason why we cannot start with an
arbitrary function f : R" x Rd -+ R and consider (3.1) as parameterized by v
ranging over Rd . The beauty is that although constraints do not have to appear ex-
plicitly, they are present nonetheless. Likewise, although no restriction on the
parameter u has to be menticned, we implicitly need u€ U C Rd . The specification
of f thus embodies at the same time the specification of a constraint system depen-
ding on parameters, and it does so in a very flexible manner whose virtues should be

easy to appreciate by now.

If a minimization problem can be described by a single function, then a problem
that depends on a parameter vector u € Rd must correspond to a function that
depends on u . As already suggested in Section 1, a function f : R" x RI -k does
not tell quite the right story. What we have in mind is rather a correspondence that
assigns to each u a function f(",u) on R" | i.e. a function-valued mapping
u~f(",u) , and we want to study how certain objects associated with f{ ,u) --its
epigraph, its infimum, etc.-- depend on u . Mappings which assign to each u € Rd
a function on R" have been called bifunctions in convex analysis, but here we are
going to adopt a different terminology that appears more appropriate to the general
setting that we deal with,

By a variational sysfem on R" with parameter space Rd we shall mean a para-
meterized family of extended-real-valued functions :

(3.2) Fo=qf, =R =R |uerdy.

{There should be no confusion between the use of the symbol F  to denote here a
variational system and in Section 2 the class of closed subsets of R" ). The defini-
tion could obviously be generalized, and it will be when we consider normal inte-

d

grands, to an arbitrary measure space instead of R . The function fu is called

the vatuate of the system F  corresponding to u . We speak of the function

(3.3) f(xu) = f,(x) on R" x &Y

as the conjuctive function associated with F
In principle, of course, the parameterized family (3.2) is identical to a map-
ping u+ fu . the first stage of a two-stage correspondence

urs f{,u) = fx,u) .

This is reflected in an alternative notation that we shall sometimes use to indicate
a variational system F on R" parameterized by R4 , nameiy

d

(3.4) F: QR rn".rm}:ru.

{The symbol 7 s intended as a reminder that F assigns to each u € rY a
function on R" ).

This terminology and notation is designed to give us flexibility emphasizing
distinctly different roles for u and x in treating a quantity f{x,u) that
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depends both on X and u but not quite in the same manner. In the context of the
variational system F , properties of f(x,u} with respect to x will typically be
properties of the individual valuates f , while properties with respect to u will
typically involve the way function fu as a whofe depends on u , not just the way
f (x) depends on u for fixed x .
u . . :

In some situations, for example, we may wish fu to be a continuous function on
" for each fixed u . Then we talk about a variational sustem F with confinuous
valuates. On the other hand, we may wish the entire function Fu to depend conti-

+ varying continuously with wu .

nuously on u in the sense of its epigraphs in R"
Then we talk instead about an epieentinuous varniational sgatem F 5 this concept
will only be defined later on, but the reader can easily get the picture. In the
classical setting the distinction does not take on such proportions, because, for
instance, continuous dependence of fu on u can often be expressed adequateﬁy‘in
the pointwise sense of fu(x} depending continuously on u for each x . That is
wot true here, due to the way © is being used to represent constraints, as well as
for other reasons. ~

The situations where in dealing with f(x,u) we prefer to think of a varia-
tional system F are largely the ones where properties of the epigraphical multi-

function
utrepi fu,”)

assume importance. It should be clear that this is not limited to situations where
minimization in x is at issue. In any framework where the epigraphical approach to
analysis is natural, and several have been mentioned in Section 1, the jdea of a
variational system is likewise natural. The word "variation' is intended to refer
primarily to the dependence of a function f" on a parameter vector u , but the
suggestion of a relationship to variational problems is a welcome coincidence.

We shall denote by epi F the epigraphical multdfuncteon utrepi f —asso-
ciated with a variational system F= {f : R" = Rju € Rd] i+ thus

(3.5) epiF Rd B Rn+l , (epi F)(u) = epi fu .
The graph of epi F is the set

(3.6) hyper F g

((uxsa) € R x KMo 100)

which is called the hypergraph of F . It is identical to the epigraph of the
conjuctive function f of F

35
(3.7) hyper F = gph (epi ¥ ) =epi .

Other useful multifunctions associated with F are the domain muftifunction

d

T 3.
(3.8) dom F : R R, (dom F)(u) : = dom f ,

and the fevef set mulidfunctfion

d:2> .n -
R, {!evu F)(u) @ = Yeva fu A

{3.9) !eﬂl F : R

We shall restrict our analysis to vardiational Aystem with lower semicontimuous
{€.5¢.] valuates, i.e. such that for all u € rd » the function x & f (x) is l.sc.
or equivalently (Theorem 1.17) such that the epigraphical multifunction
u—{epi F)(u) is closed-valued. This is in keeping with the case considered in
Section 2, and for practical purposes it covers all the applications of interest,
certainly all those mentioned in Section 1.

In parallel to the development in Section 2, we begin with the concept of epi-
limits for sequences of {1.sc.) functions. Let [f;fu,u = 1,...]1 be a collection of
extended-real-valued function defined on R" . We say that the f“ epi-convenge Lo
f at x if

(3.10) Tim inf f (x) > f(x) for all sequences x> x
y—+oo

and

(3.11) Tim sup fu{xv} < f{x) for some sequence x' = x .
W e

The functions {fu v = 1,...) epi-converge to f , equivalently

f = epi-lim fw

W ~kea

if the conditions (3.10) and (3.11) hold for all x € R" . Although closely connected
to the notion of pointwise convergence it is neither stronger nor weaker. In fact,

certain sequences of functions have different pointwise and epi-1imits. Consider the
sequence

fv(x) = |0 Hif x=wn",
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that pointwise converges to the function
f'{x) =1 for all ¥
and epi-converges to

f{x) =0 if x=0 |,
! if x#£0

The epi-Timit takes into accounL the bhehavior of the f in the neighborhood of 0 .
whereas the peintwise Timit restricts attention to what happens with the fU at the
point 0 .

Following the same pattern as that for the limits of sequences of sets, we can
associate with any sequence of functions {Fv v = 1,...1 @ lower and upper epi-
limit, and declare that the Timit exists if both are equal (at x ). This approach
will allow us to transpose our results about sequences of closed sets and multifunc-
Lion to this new context : sequences of 1.sc. functions and variational systems. We
may as well work directly with filtered families of functions {Fv WE (NI re-
calling naturally that the case of sequences is just N =N with ¥ the Fréchet
filter, cf. Section 2.

The upper epc-Limit at x of a filtered family (F, W E (NK)) s

(3.12)  (epi=lim sup f )(x) : = sup lim sup inf fo{x'y ,
VEN v YE N(x) vEN xtey ¥

and its Lowern epi-Limit at x is

(3.13)  (epi-Tim inf f )(x) : = sup Tim inf inf f {x")
VEN i VE N{x) vEN xtey VY

Clearly

(3.14)  (epi-lim inf £ )(x) < (epi-lim sup f )(x} .
vEN v vERN Y

The epi-fimit |

i-Tim f :
oy

is said to exist if equality holds in (3.14). Thus a function f 1is the epi-Limit
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of the filtered family {fv o € (N,I0) 1 9F for all o«

epi-lim sup f )(x) = (epi-Tim inf f )(x)
(3-12) {quN b veEN v

which we more simply write as

f = epi-lim f .
p\JEN Y

It is an easy exercise to verify that in the sequential case (3,12) and (3.13) can

he expressed in the following terms :

a v
1im sup fv{x Y s

oy oy oo

{enlzlam sup f“}(x} = info

and

Tim inf £ (x)
LR k o0 k
{vk]f‘m

{epi-lim inf f ){x) = inf
vEN b

These allow us to recognize immediately in this case the equivalence between the
original definition, (3.10) and (3.11), and that via limit functions.
The terminology "epi-convergence", "epi-limit", etc. find its justification in

the following result.

3.16. THEOREM. Suppose [f\J WE (N,IOYE s a filterned famify of E.sc. exfended-
neal-valued functions defined on 8" . Then :

{3.17) epi (epi-lim sup fu] = 1im inf epi fu
veN

vEN
and

(3.18) epi (epi-l1im inf £ ) = Tim sup epi F .
vEN vEN

PROOF. Recall that for a collection of filtered extended-reals {a ,v € (N,¥()} we

have
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lim inf « = sup inf @
ven v HEX  vEH
and
13;;up a, ianCJrsupUEHuv
Thus
Epi(epldc]:lm s fy) = trindle® Sque N{x),HEH infueu,yev oY

"

((x,a)|¥(H € X,V € N(x),e >0) (v EHy EV) with f(y} <o+ el

C (L) [Y(H € IV E N(x) e > 0), [VX(mat )l N (U gy epi £) £ B)

(x,a) [V HE X, (x,m) € WU ¢\ epi )

"

=N . cl{u epi £ ) = lim inf epi f
HExH vEH v vEH v

The last equality comes from the definition of the upper limit of the‘fi1tered family
of closed sets (2.17). The proof of (3.17) is identical except that ¥ needs to be

replaced by the filter ¥ . [

This theorem implies that the limit functions are necessarily lower semiconti-
nuous and means that continuity questions can be addressed in the framework provided
by the theory of multifunctions. A variational system F = [FquEERd] ! Rd 7 gD
with 1.sc. valuates is upper epi-semicontinuous at u if for the filtered family

(Foe v € (R, Nu)))

we have

(3.19) (epi-Tim sup f ) =,
u'-*u U

or equivalently

]::El_::f epi fu' O epi fu 3
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as in Section 2, the notation u' — u suggests the filtering process by the neigh-
borhood system N(u) . Similary F= lfulu erd : pd
tinuous at u if

# R" s towen epi-semicon-
(3.20) (epi-lim inf f ) =f ,

u'—u u u
or equivalently

1im sup epi f , Cepi f
u' =y u u

Finally, F is epicontinuous at u if is both lower and upper epi-semicontinuous at
u, i.e. if

(3.21) epi-limsup f , =f =epi-lim inf f
. u u i u
u'~u u' ~*u

The variational system F s fower or upper epi-semicontimwous or epicontimous if
the corresponding property holds for all u in R

Every result of Section 2, in particular every characterization of semiconti-
nuity for multifunctions, can now be translated in terms of variational systems. We
do not intend to do so except in one particular instance which is of direct interest
in the description of the dependence on u of the infima and the optimal solutions
of variational systems.

3.22. THEOREM. Suppose f and {fv WE (N, Y)Y , a filtered famify, are £, sc.
extended-neal-vafued functions defined on R" . Then

f =epi limsup f
VEN Y

if and only if for alf open G C R"

{3.23) 1im sup (1nfG fU} =inf. f .
vEN

M,dn,

f <epi-lim inf
vEN v
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n
i and only § fox alf compact K CR

(3.24) lim inf {ian f,) = inf, f
vEN

PROOF. We apply Theorem 2.24 to epi f and the filtered family ({epi fv W E (N3},

We have

f = epi-lim sup F_ if and only if epi f C lim inf epi fy
pEN ¥ vEN

by (3.17), or if and only if for all open 6' € R™! the condition epi f (1G' / p
implies that for some H € H one has epi i’\j G £ 9 forall we€H, as follows

f n+l
from (2.25). Since these are epigraphs, and the open sets G' CR
by the open sets G X (a',a) with 6 an open subset of R" , we can reexpress the

can be generated

preceding implication as :

[infrf")al | for some HE’J(,infE; f‘.__.‘ﬁd for all v € H]

But this holds if and only if (3.23) holds.

The proof of {3.24) is identical, except this time we rely on (3.18) and (2.26).0"

There are numerous corollaries to this theorem, in particular about the conver-
qence of infima. We shall come to these, but first let us rework this result in the
£Erminn1ngy of variational systems and study its implications for the construction of
an epi-topology on the space of lTower semicontinuous functions.

fFor a function f : R" =R , we define

inf I : = inf f(x) .
xeR"

For an arbitrary subset D of R" |, we write

inf, f : = inf fix) .
» x€DCR"

The infinimum of f on D, infID f , may be a real number, or -= (if f is not
bounded below) or even < (if D MNdom f = P). The set of points that minimize F i

denoted by

argmin f : = {x € R"[f{x) <inf f <) ;

a
thus in particular
argmin £ = @ if dom f =9 .

This convention is dictated by the desire to have argmin f be the set of optimat
solutions in the minimization for which dom f is the set of feasible solution. We
do not want to consider as “feasible" the points at x with f(x) = e and certain-
Ty do not want the possibility of a point being "optimal™ without even being
"feasible™. The points that are neatfy optimal or e-cptimal for some ¢ > 0 belong
to the set

e-argmin f : = [x € Rnlf(x} < inf f + ¢ < =

By the way, it is customary in optimization theory to write "min f" in place
of "inf " , and speak of minimmm in place of infimum, as an indication that the
infimum is actually attained at some point x . We shall also have recourse to this
convention if we want to insist on the existence of a minimum.

3.25. COROLLARY. Consider a variational system F : Rd
miows at u  if and only if

PRY . Then F s epiconti-

lim sup (inf. f .} <inf, f * gor af? open G CR" ,
til =g G u G u

and

i - 5 " n
l;y_::i (1nfk fu.} = lan f" for aff compact K CR" .

Theorem 3.22 , in particular its proof, suggests the use of the following sets
as an (open) base for the epi-topalogy "epi" on SC(Rn} » the space of atf £.sc.

extended-neal-vafued functions on R" :

(3.26) {f e SC(R") | inf. f<a', 6 CR" open, a' €R)

G

and

(3.27) (fesc(R") | inf, f>a , KCR" compact, a € R} .
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[ndeed in the apace of epghaphs £ these open sets correspond to

(e E [E0(6X(-=,a')) # @, Gopen, a' €R)

and

(€ E [EN(KX(-=,al) = @, K compact, a € R} .

This topology "epi" is nothing other than the topology ¥ on the closed subsets of
Al __cee Section 2-- relative to E . It is easy to verifylthat E isa

e o
T -clased subset of the hyperspace of closed subsets of R . Thus as a consequence

of Theorem 2.31 we obtain :

3.28. THULOREM. (SC(R"}). epi) & a mednizable, compact fopofogical space with

countahle base.

) n i i
3.29. COROLLARY. Givew any 4ibtened family {F < SC(R), U.L (N, 3031 there alwais
cxints @ subfamify (Fu € (N', )] that epé-cenvenges, <.e. such fhat
: | ' -

epi-lim f

wEN' W

exiats,

Theorem 3.22 suggests still another way of generating the epi-topology, namely
n
as the coarsest topology on SC(R") such that

(3.30) for all open G CR", Frinf f is u.sc.

and
(3.31) for all compact K CR" , frinf, f is l.sc.

The resemblance of this characterization of the epi-topology to that of the so-called
vague topolagy has Ted Vervaat, 1982, to refer to the epi-topology as the inf-vague

topology.
We can of course, as in Section 2, exhibit a metric on SE(R") compatible with
the epi-topology, in fact

epi-dist (f,q) = haus®(epi f, epi q)

13

will do. Convergence rates can then be considered. And if we think of f and g as
the essential objective functions of two optimization problems, this metric gives us
a concrete way of measuring the goodness of fit when q approximates f . However,
at this time there is no operational calculus which allows us to work easily with the
epi-distance as defined above.

From the foregoing it may appear that the epiqgraphical approach to variational
systems is to be justified on the grounds of esthetics. In fact it is because of its
applications, some of which we detail next, that it is gaining its key role in
Extended Real Analysis. For more about this, consult the articles in this Volume by
Attouch, 1984, and De Giorgi, 1984, and the references given there.

3.32. COROLLARY. Suppcse f and IF“ wE (N,H)E , a fcltened family, are £.ac.
extended-reaf-valfued funetions defined on R and  suwch that

f = epi-lim sup f
weN v

Then

{3.33) 1im sup (inf F ) =inf f
]
VEN

Moreoven, if actualfy

f =epi-lim F
ven VY

and thene exist W E X and a compact set K CR" such that for att v €N
dom fv C K, then

(3.34) Yim (inf £ ) = inf f .
VEN v

PROOF. The first inequality (3.33) follows from {3.23) with G = R" . From this and
(3.24) we get (3.34), since the assumptions imply that inf f, = ian fv .0

To rephrase this in terms of variational systems, let us introduce the infimaf
functoon

ut (inf ¥ }(u) : = inf € : Rd R

associated with a variational system
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3.35. COROLLARY. Swppose  F = {f R = Rlu € RY) s a variational system with

Foae. vafuates. T 41 {8 uppen ppi-semicontinnons at U then the {nfimal function

yinf F(u) i uppen semicontinuoes at 1 . Moxeoven £f the vaniational system i3

ppicontinmons at U,
the demain muftifunction u - dom F{u)

and f there exists a necghborhoed ¥ of u such that on ¥
i5 und fermly bounded, then the {nfimal

function &5 continucis at u .

Corollary 3.32, and its version Corollary 3.35 for variational systems, which
already cover a wide variety of applications can he refined in a number of ways. What
is hothersome is that the equality (3.34), or equivalently the continuity of the in-
fimal function, is obtained under uniform boundedness of the effective domains of the
functions near f or Fﬁ * If we think of these functions as the essential objective
functions of optimization problems, this would mean that the corresponding sets of

feasible solutions are not only bounded but all are contained in the same bounded set.

There are many ways of improving on these results; in fact it is possible to obtain
conditions that are both necessary and sufficient for the convergence of the infima.
for a detailed analysis, we refer to Salinetti and Wets, 1984. Here we content our-
selves with suggesting how such conditions can be obtained. Suppose that the collec-
tian {Fu W E (NI epi-converges Lo f . In view of (3.33) all that is needed is

to show that

inf £ = lim inf (inf f )
wEN ?

We know that this inequality holds if the infima are taken with respect to a compact
set instead of all of R" . In particular we have that for any compact K € R" .

inf £ <inf, f=Tim inf (ian fu)
weEN

and the question would be settled if we could assert : that for every e >0 there

exists a compact K auch that

lim inf {ian f.)=Tim inf (inf f _+¢} .
WEN M vEN v

This is clearly a sufficient condition for the convergence of the infima. That it is
also necessary --excluding the cases when the infima are not finite-- requires a 1it-
tle bit more work. The meaning here is clear : what we need is that up to an arbitra-
ry & , the minimization could as well take place on a bounded region, which may

depend on e . In the terminology of variational systems we have shown :
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3.36. PROPOSITION, Considen a vatiational sestem Fo: R{! PR" it plsc. vafuates

which is epieontinucns af u | Suppose that for alt ¢ >0, thewe oxisf VE N{u)
r . o | R TR =

and K C R such that

'“'HK FU = inf fu + &

. 2 A ; ;
aor alf uw =V | Then the thiimal function (inf 7)) (a continucus at U -

%p?—continuity does not just garantee continuity properties for the infimal
function, but also for the multifunction of optimal solutions u b (argmin F ){u)

As usual, we first state our results for filtered families of 1.sc. functions.

3.37. THE Ag SO L LY = .
EORLM. Suppose {fU : R R, v (N, HY) s a filtoned family of Lowen

semicontinuous functions epi-comiengent to f . Then

{3.38) lim sup (argmin f } © j
UEN’( qi v} argmin f .

Mioreouesn, assuming  argmin f nonempty, ore has

(3.39) argmin f = & Tim inf {e-ar
-argmin f
>0 vweN 7 \J)

A and onfy (f

Tim (inf £} = min ¥ .
vEN ¥

PR
0DF. We shall prove somewhat more than (3.38), which will be used in the sequel,
namely : for all e =0 ,

Vim sup (e-argmin f } © ¢- i
B iy p) € e-argmin f .

Suppose N' C N and

x'e £-argmin fU » v E (N, 30)}

is a filtered collection of points converging to x

. - The preceding inclusion will be
proved if we show that x € E-argmin f X

- But this follows from (3.15) and (3.33) sin-



%

ce they imply

i b
f{x) < (epi-lim f J(x) = Tim inf fU(x )
vEN v wEN

\ < Vimsup £ (x°) < Vimsup (inf f ve) <inf f4e.
| wEN Y wEN

To prove the second assertion, let us first assume that

lim (inf f“] = inf f .
vEN

| n view of the above, for all £>0

lim inf {c-argmin fv} C 1im sup {e-argmin f“] C g-argmin f .
vEN wEN

mue alse to the fact that

argmin f = N_q c-argmin f ,

there remains only to show that

argmin f € 0 1im inf (c-argmin f } .
g >0 VEN v

For any x € argmin f_, it follows from the definition of epi-convergence --combi-
v i

ning (3.13) with (3.12)-- that there exists N' € 3¢ and {x” ,v € (N',¥)} such

that

x = Tim « and lim £ (x") = f(x) .
vEN' vEN'

V) ) .
If, for some {filtered) collection pviﬁ , we have that x € av-argm1n FU , we are
done. Dtherwise, there exists H'E€M such that for some <' >0 and all v EH',

\J-.>- '
| fv(x)«1nffv+r.-

Taking limits on H' (with X restricted to H' ), we obtain
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f(x) = Tim £ (x") =e' + Vim (inf £ ) = ¢' +min f > f(x) ,
\JEHk W \JFH. v

a clear contradiction.
Let us now assume that (3.39) holds and x € argmin f . This implies that there
exist ¢ 40 and x¥ = x such that for all v €N

X, = r.U—argmin fU ;
From the definition of epi-convergence, in particular (3.12), it follows that

min f = f(x) = lim inf f (x\’) = lim inf (inf f_ + ¢ ) = Vim inf (inf f ) .
v v v v
v v vEN

This combined with (3.33) yields the convergence of the infima. LI
Although epi-convergence gives us directly the important relations {3.38) and
(3.39), to obtain the actual convergence of the argmin f“ to argmin f we need

an additional condition. Two examples illustrate some of the difficulties.

3.40. EXAMPLE  Let f(x) = max (0,]x|-1} , and for v =1,...

1 2

f(x) = max (f(x), vkt

It is easy to verify that the fv epi-converge to f with

argmin f\.- = {0} , for v=1,...

But the latter definitely do not converge to
argmin f = [-1,1]
3.41. EXAMPLL. For w = 1,..., let
= " -
fv{x} =1 , except that l‘v(O) =vw o, fu(U) =0,

and

f(x) = 1 except that (0) =0 .



epi-converge to f
Then the F - ©f Q

qletons, but

lim (argmin ) = Tim lwl = @ ¢ {0!

\) mrea 4 e

The following sufficient condition

307, PROPOSITION, Suppese £ and {F\‘I

e Bose. Awielions such thal

epi-limsup f =f , lim inf (
wEH ' wEN

aad fe every ¥ E
and HE I such that for all o ©H

X(x) with x € aramin f , fhere consesponda

43

and the sets aramin £ and  argmin fb‘r are s5in-

argmin f .

is due to Dolecki, 1983,

CRM R, e (HLIEYD, a fedtened famd Ly,

inf £) = inf > =

Vv argmin f - # infy £, = inf f 4 4

Thewn

lim inf (aramin £} 2 argmin f
wEHN N

PROOF. Letl ., [
6= R", it follows that

1im q}-a:=1nff.»—““
vEN *

Suppose

% € argmin £ but x & lim inf
wEN

Corollary 2.29 tells us that there exist V €

inf . and nole that from the assumptions, using (3.23) with

{argmin fU} .

N{x), H €I such that for all vE€H ,

¥V O argmin £ = @ . But this then means that there exist an open neighborhood

v . X 3
WE N(x) and §>0 such that inf, f Za +§ . Taksng 1im sup on both sides,
using (3.23) and the fact that x € argmin f , we obtain :

a=inf, f=1im sup (inf f )
W vEH v

28+ 1Hm o =0+«
veN Y

409
a clear contradiction. lhus

% C Him inf fargmin f ) . 17
wEHN '

The condition of Propesition 3.42 imposed a restriction on the way the fv
approach  f in the neighborhood of the points that minimize f , whenever they are
not in argmin £ they cannot "sneak up® on the latter. Following Dolecki, we shall
say that the collection PF s © N0 s of decisque growth at % if for every
V& x(x) there correspond & >0 , HEX and WE  §(x) , such that for all
w e H

(3.43) VO aramin £ =P > int f, = &4 dnf £ .

W
Eephrasing our results in terms of variational systems, we net

3.0, CORDLLARY. Suppose  F = ’fu :R" Ry e Rdf h a varsational sgsfom with

fosel vafuates, epieontinous af TRS Rd The md tidunctoen ¢f optimaf selufions

u = (argmin FY{u) = aromin ﬂ,

S uppen semecentomous at u . Mereoves, 4 fhe qu + UE (R“, x(u))b grow
decaacvely af cvery  x € argmin fﬁ and inf Fu +inf fu 2o=ee o then this mal it fune

teen (argmin F ) (5 confintons at u .

Of course, we have only been able to exhibit sewe of the consequences of epi-
continuity. Much more could be said, in particular in the convex case, There are
also corresponding concepts for hivariate functions : epi/hypo-convergence that
guarantees the convergence of saddle points, lopsided convergence connected with the
convergence of min/sup points. The definition of I - convergence , introduced by
De Giorgi, extends these concepts to multivariate functions: for further details and
references consult the forthcoming book of Attouch, 1985.

Measurability, or more precisely measurable dependence on parameters, of a
variational system is again handled in the epigraphical setting. As in the multi-
function case in Section 2, we allow the parameters w to lie in an (abstract) space
equipped with a sigma-field A . A variational system F - {f, : R" - Rlw € 0)
with 1.sc. valuates is epimeasuwrablfe if the epigraphical multifunction
W {epi F J{w) = epi fue 15 a (closed-valued) measurable multifunction. The conjuc-
tive function



(x,w}'-’{f'.\d} PR R

i then called a newmal iefegiand. [t is really nol possible to review Lo any extent
the theory of narmal integrands and their integrals; for that the reader could refer
to Rockafellar, 1976, Castaing and Valadier, 1977, who deal mostly with Fhe‘c?nvex
case, and Papageorgiou, 1983, who extends many resulls to the nonconvex 1nf1n?te—
dimensional setting. We shall 1imit ourselves to a few properties, in particular those
of the infimal function and the multifunclion of optimal solutions. We beqgin with a

general result which leads up to the construction of integral functionals.
AT - - £

; i U [Pl d pfmeasurablfe vardational sgsfem
3.45. THEOREM. et F = {fw R Tw © 2] br_. AN PREmeasn fnnr uit j_ - 1
with £.ac. vafuates. Then fhe asseciafed normal cnfegrand f 0 R x 0=+ R 4

: n T i
2" & A - measunable, whene A" s the Bonef faelfd on R L Mokeouvern, the functden

W F(x{w),w)

) O
ix mpasuaable for ang measunablfe fupction wh x{w) 3 0 =R

PROOF. For any o € R , the level set multifunction {3.9) is a closed-valued measura-

hle multifunction. Indeed
ol i PV HF x (a)
(Tev F ) “(F) = fepi g ) “(F x [al}

for any closed set F CR" . Since (epi F) is a measurable multifunction, it
follows from Proposition 2.39 that the set on the left is measurable { € A )} . This
holds for all closed sets F , hence --again by Proposition 2.39-- we have that

{lev. F } is measurable. This implies that gph{]evu F ) s a measurable subset of

L
R" % 0 . Indeed

o

o0 "'l
{3.46) r_||:;h{1|?n.rnl F )= nk:l mi:IIBik X (1ev& F ) {Bﬁk}l

where {B-k o1 €N, k€ N} is the collection of all rational balls with centers
1 - n
indexed by i and having radius k L . Because Bik € g and

(Tev, F )'1(311() € A {Proposition 2.39.v), one has
B 1 )‘1 B & Bn X A
ik ¥ (Tevy ¥ ) "(By)

and hence, in view of {3.46),

!SH}h('I-:\rI_l Flo 2" 8 a

Since this holds for all w R , 1t proves that £ ig gn B A - measurable.

Now, to see that wr f(x(w),w) is measurable whenever x(°) s measurable, all
that is needed is to abserve that the map  wt {x{w),w) from {2, A) into
(R" x n, 8" @ A} is measurable. O

3.47. THEORIM, fet F = if, ¢ R - Rlw € 2F  be an epimeasunable vas tational susiem

widh fose. vafuates. Then the tngamal function

Wk {inf Fi{w) = inf 1
: W

(s measurable, and the multcdune tion of optimed sofutions
; s
w it {argmin F)(w) : 0 >R

15 a closed-vafired wmeasunabie mu Lt fene fion.

PROOF. For g &R

{inf }'}_1(—00,[%) = IWIinf'w <@l o= {epi F )_lfR" X (-, B

These sets belong to A | since the epigraphical multifunction epi F
closed-valued measurable multifunction and R" x (=80, )

is a
is apen, cf. Proposition
2.39. Since this holds for al] R . inf F is measurable,

It is easy to verify that the function g defined by

g(x,w) = f(x,w) - inf fw

is a normal integrand; we use the convention that oo - o = o . Then w+ (epi g(*,w)

is a closed-valued measurable multifunction, and in the proof of Theorem 3.45 we have
shown that this implies

W 1ev0 q{".w) = {argmin F }(w)

is a closed-valued measurable multifunction.D
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. = . n - 3 [—
3 48, COROLLARY. (Existence of Measurable Solutions). Let ¥ = (f, : R Rlw € q)

fe an epimeasurable vaniational systom with £.sc. vafuates. Then there exdsts a
L3 S J

measwrabfe funcioon
% o 5 e gh
wt o (w) ¢ dom(argmin ¥ )

such that x’(w) M nime.zes fw whenevetr  aramin (w 0.

PROOF. Simply use the previous result in conjunction with Corollary 2.41 about

Measurable Selections.D

We have gone as far as this introduction allows us to, in showing that the epi-
graphical approach to variational problems is dictated by the intrinsic nature of
such problems as well as the type of properties we are interested in. OF course, this
i< not the whole story, and it would not be possible to summarize even sketchily its
many other features. To terminate, let us just suggest the theory of integration that
qoes with this approach. let denote a nonnegative, sigma-finite measure on
{(n, &) . For any normal integrand f on " x @ and any measurable function
v a~R", we have f(x(7), ")

qral

measurable (Theorem 3.45), and therefore the inte-

Le(x) = S Flx(w) w)u(dw)

is a well defined value in ® under the usual convention : if neither the positive
nor the negative part of the integrand is summable, we set If(&) = e _ We can also
think of lf as the integral functional of a variational system parameterized by w ,
and write more suggestively Ir {x) . The theory of integral functionals provides us
with the tools that are needed to study problems of the calculus of variations (there
ufdw) = dt) in its modern version optimal control theory, involving (hard) cons-
traints on the control and the state of the system, problems in stochastic optimiza-
tion (there y is a probability measure), problems in economics involving infinite
herizons (then u{dw) may correspond to a discounting coefficient), and so on. It may
appear from the definition of If that except for some manipulations involving
and == we have returne to a classical definition. This, however, is misleading. The
calculus for integral functionals shows that the key role is played by the epigraphi-
cal multifunction. For example the definition of Radon-Nikodym derivatives (condi-
tional expectations) as well as the calculation of subdifferentials all pass through
the corresponding notions for the integral of the epigraphical multifunction. This
point is very much brought home in the recent work of Giner, 1984, and Papageorgiou,
1983,
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EXTENSION OF THE CLASS OF MARKOV CONTROLS.

y.I. Arkin
central Economics and Mathematics Institute (CEMI),

Moscow, USSR.

INTRODUCTION.

In control theory, for example when deriving existence theorems or
optimality criteria, it is often necessary to extend the class of controls
without changing the value of the problem. There are a number of well-known
methods for doing this which are based on the convexity of integrals of
measurable multifunctions and which are related to randomized and relaxed
controls.

This paper is devoted to some new theorems of this kind for control
problems involving stochastic differénce equations with mixed constraints
on phase coordinates and controls.

The results presented here are generali;atlons and extensions of earlier

results obtained by the author ﬁ].

I. STATEMENT OF THE PROBLEM

Let st be a Markov process defined on a measurable space (S,F). Assume
that St has a transition function Pttst,dst+11, t =0,1,... and initial di-
stribution P_(ds ).

o 0

Consider the following problem:

z: E0t+1t 8 u) +»
st- t+1'yt' N max



