Network Flows and
Monotropic Optimization

SERIES ON OPTIMIZATION,
COMPUTATION, AND CONTROL

. Dynamic Programming and Optimal Control, Vols. I and II, by
Dimitri P. Bertsekas, 1995 (ISBN 1-886529-11-6, 704 pages, hard-
cover)

. Nonlinear Programming, by Dimitri P. Bertsekas, 1995 (ISBN
1-886529-14-0, 656 pages, hardcover)

. Neuro-Dynamic Programming, by Dimitri P. Bertsekas and John
N. Tsitsiklis, 1996 (ISBN 1-886529-10-8, 512 pages, hardcover)

. Constrained Optimization and Lagrange Multiplier Methods, by
Dimitri P. Bertsekas, 1996 (ISBN 1-886529-04-3, 410 pages, soft-
cover)

. Stochastic Optimal Control: The Discrete-Time Case by Dimitri
P. Bertsekas and Steven E. Shreve, 1996 (ISBN 1-886529-03-5,
330 pages, softcover)

. Introduction to Linear Optimization by Dimitris Bertsimas and
John N. Tsitsiklis, 1997 (ISBN 1-886529-19-1, 608 pp., hard-
cover)

. Parallel and Distributed Computation: Numerical Methods by
Dimitri P. Bertsekas and John N. Tsitsiklis, 1997 (ISBN 1-886529-
01-9, 731 pages, softcover)

. Network Optimization: Continuous and Discrete Models by Dim-
itri P. Bertsekas, 1998 (ISBN 1-886529-02-7, 608 pages, hard-
cover)

. Network Flows and Monotropic Optimization by R. Tyrrell Rock-
afellar, 1998 (ISBN 1-886529-06-X, 634 pages, hardcover)

Network Flows and
Monotropic Optimization

R. T. Rockafellar

University of Washington

WWW site for book information and orders

http://world.std.com/ athenasc/index.html

Athena Scientific, Belmont, Massachusetts

Athena Scientific

Post Office Box 391
Belmont, Mass. 02178-9998
U.S.A.

Email: athenasc@world.std.com
WWW information and orders: http://world.std.com/~athenasc/index.html

(© 1998 Athena Scientific

All rights reserved. No part of this book may be reproduced by any elec-
tronic or mechanical means (including photocopying, recording, or infor-
mation storage and retrieval) without the publisher’s permission in writing.

Originally published by John Wiley and Sons, Inc., in 1984. Corrections
listed at the end.

Publisher’s Cataloging-in-Publication Data

Rockafellar, R. Tyrrell

Network Flows and Monotropic Optimization

Includes bibliographical references and index

1. Network analysis (Planning) 2. Duality theory (Mathematics) 3. Convex
programming 4. Linear programming

I. Title. II. Series: Optimization, Computation, and Control (Athena Sci-
entific)

T57.85.R63 1998 519.7 98-72723

ISBN 1-886529-06-X

PREFACE

This book is aimed at the kinds of optimization problems in which duality is as
important a tool in computation as it is in theory and interpretation. These
problems are characterized by a very rich interplay between combinatorial
structure and convexity properties. They fill the spectrum between integer
programming, on the one hand, and general convex programming on the other.
Network programming, linear programming, and a broader subject that we call
monotropic programming all are included.

Problems concerning flows and potentials in networks start us out at one
end of the spectrum. The study of such problems abounds in results of
combinatorial nature about paths, cuts, trees, and other objects, and such
results are essential to the design of almost every algorithm. General linear
programming problems also exhibit a combinatorial substructure. This is
sometimes regarded as centering on the geometry of convex polyhedra, but
tableau representations of linear systems of variables are an even more
important part. A whole school of thought has grown up around the possible
or desirable patterns of signs among the coefficients in such tableaus and the
techniques for achieving them by a sequence of pivoting transformations.

In both network programming and linear programming, conditions for
feasibility or optimality typically concern the relationships between a primal
problem and a dual problem, and these relationships have a deep practical
significance. One is not so much involved with constraint functions and their
associated Lagrange multipliers, which are the prime focus in convex and
nonconvex programming more generally, as one is with pairs of primal and
dual variables whose values must fall into a certain pattern with respect to each
other. Such a pattern can be anything from a complementary slackness
condition to Ohm’s law.

What we have attempted to do in this book is to take these common ideas,
develop them in such a way as to illuminate the strong connections between
linear and network programming and thereby enhance both subjects, and
finally use this as a springboard in treating a much larger class of problems
where the ideas find their full realization. The larger class encompasses all

vi PREFACE

problems where a preseparable convex function is minimized subject to linear
constraints. (A convex function is preseparable if it is the sum of linear
functions composed with convex functions of a single variable, as is any
quadratic convex function, for instance.) These we call monotropic program-
ming problems, because of the characteristic relationships they require between
primal and dual variables; “monotropic” means “changing or varying in one
direction only” and is a term which we propose as pertaining to the monotonic-
ity properties of convex functions of a single variable.

Monotropic programming problems enjoy a remarkably complete and sym-
metric duality theory, almost every bit as constructively useful as the one for
linear programming problems. But they also have inherent combinatorial
properties. The latter are related to the possible tableau representations for the
underlying linear systems of variables. On an abstract level these properties are
the substance of the theory of oriented real matroids. They lead to a develop-
ment of pivoting algorithms of such a form that specialization to combinatorial
subroutines, like the generation of appropriate paths or cuts in the network
case instead of the algebraic manipulation of coefficient matrices, is readily
accomplished.

In line with our overall purpose, we emphasize the aspects of network
programming that lend themselves to generalization and, at the other end of
the spectrum, forgo discussion of topics that do not reside in the special nature
of monotropic programming. Thus we omit combinatorial results about net-
works, even ones involving duality, if they are not ultimately tied in with
network flows or useful for later purposes of analogy. On the other hand, we
ignore computational methods of general convex programming that might in
particular be applied in monotropic programming, and we never even come to
the definition of the conjugate of a convex function of several variables, despite
the fact that such functions in the case of a single variable form the foundation
for our theory of duality.

Nevertheless, in order to flesh out the book as an introduction and make it
more widely useful, we include many examples and details that would not be
truly essential. We also provide an extensive list of exercises. The exercises
serve a double purpose. They should be useful to anyone trying to learn the
subject, but they also act as a repository for numerous results and observations
that ought to be recorded somewhere and yet do not belong in the chapters
proper, because they would take too much space, obscure the main points, or
break the continuity. These exercises, in cases where they contain facts that are
important enough to be cited at various places in the text, are supplied with
extensive hints that amount to an outline of proof.

Each chapter begins with some remarks intended to orient the reader and
ends with a section of supplementary notes and references to the literature.

A few words should be said about our treatment of algorithms. Although we
try to indicate the various modes in which a procedure can be implemented,
and to suggest advantages or disadvantages associated with different options,
we hold back from stating algorithms in immediately programmable form, and

PREFACE vii

we spend little time in discussing computational complexity. Some readers may
feel this to be a serious lack; the emphasis on computers nowadays is
all-pervasive. Our approach is partly just a matter of personal inclination, but
there are some sound reasons behind it too.

Our objective is to forge theoretical links between problems and procedures
that at first might seem quite different. We want to use these links to enrich, by
way of analogy, the possible approaches that can be used in a given case, as
well as to identify seemingly different approaches as being essentially the same.
This requires us to view each algorithm first in its most basic form and only
then consider how it might be elaborated with tricks and numerical shortcuts.

We hope that readers will recognize the long-run value of this conceptual
method, as a complement to other ways of proceeding, and not be disap-
pointed that we have not simply presented a “best” way of carrying out each
computational task. In fact for much of what we discuss, there is no one “best”
algorithm, nor is there as yet a theory of computational complexity that is
capable of making meaningful comparisons. Even for the entirely combina-
torial subroutines in network programming, since we are interested in them
mainly as components in other procedures, we cannot pass judgment on them
in isolation. We must take into account various features of their structure and
behavior that might seem irrelevant to the narrow purpose at hand.

In truth, many of the coded procedures now available, such as shortest path
algorithms, schemes for executing pivoting transformations and the like, do not
seem well adapted to the intrinsic needs of our larger subject. Rather than
trying to squeeze the subject into a preconceived mold, it makes more sense to
develop it along its own natural lines. One can hope that this will provide
stimulus for further work on the algorithms in question.

Besides the development of a general framework for a branch of optimiza-
tion theory that has not hitherto been treated as a unit, this book offers some
more specific contributions. In network programming it brings out the full role
of potentials in duality with that of flows. This has long been perceived in
electrical theory, but the ideas have not yet found their way to the hearts of
economists and mathematical programmers. The book also contains the first
comprehensive treatment of network programming problems with nonlinear
costs. It presents the theory of conjugate convex functions of a single variable
in a constructive manner with numerous examples and demonstrates its
applications. This may help to popularize ideas that could be put to use much
more widely than they have been.

In the area of monotropic programming, the text expounds duality results
that have not previously been available in book form. It puts matroidal
concepts in a form that is appropriate for tracing their role and that of duality
in the design of algorithms. Among the by-products of this are extensions of
the simplex method of linear programming and the out-of-kilter algorithm of
network programming to general piecewise linear programming and beyond.

Although the first nine chapters deal with networks and only the last two
exclusively with monotropic programming, this division of space is more

viii PREFACE

apparent than real. The network chapters gradually build up the concepts to
where the transition to the broader domain is very well motivated and ripe
with analogies. Many of the proofs then carry over with little change. However,
readers interested mainly in finding out about monotropic programming
should be able to dive right into Chapter 10 and refer back to earlier material
only as needed.

For readers who wish to approach the whole subject but would appreciate
some guidance and shortcuts, we have designated with an asterisk * those
sections that can most easily be skipped over on the first round.

Any book of this length is a long time in the making, if not in the writing,
and in the present case it has been both. Many of the ideas have fascinated the
author since the early 1960s but have not previously been put into print.
Lecture notes on network programming from a course given at the University
of Grenoble in 1973-74 formed the written nucleus out of which the book
finally grew. The main job of writing extended from March 1976 to July 1979,
with gaps, of course, for other activities. A final effort in the summer of 1982
went into updating the references and expanding the material on monotropic
programming in the last two chapters in order to make it more accessible and
self-contained.

During all that time there were many students and colleagues who helped
by going through portions of the text and providing criticisms. Most notable
among these was Jonathan Spingarn, who spent months at the task. The
faithful and conscientious typist almost from the beginning has been Patricia
Monohon, and it was she also who in fine style executed all the figures. The Air
Force Office of Scientific Research, through the guidance of Dr. Joseph Bram,
provided under grants AF-AFOSR-77-3204 and F4960-82-K-0012 many
months of salary support without which this enormous project could never
have come to fruition. The Air Force Office of Scientific Research and the
University of Washington are to be commended for fostering the kind of
circumstances in which such a long-term effort can be made.

R. T. ROCKAFELLAR

Seattle, Washington
April 1984

CONTENTS

1. Networks
1A. Definition of a Network 2
1B. Examples of Networks 4
1C. Incidences 7
1D. Flows 9
1E. Divergence 10
1F. Vector Operations 12
1G. Circulations and the Augmented Network 13
1H. Dynamic Version of a Network 15
11 Potentials and Tension 16
1J.* Preview of Optimal Flows and Potentials 19
1K.* Some Generalizations 20
1L.* Exercises 21
IM.* Comments and References 23

2. Paths and Cuts

2A.
2B.
2C.
2D.
2E.
2F.
2G.*
2H.
2L.*
2J.*
2K.*
2L.*
2M.*

Paths 26

Incidences for Paths 28

Connectedness 29

Finding a Path from One Place to Another 30
Cuts 31

Painted Network Algorithm 33

Priority Rules and Multiroutings 35
Theoretical Implications of the Algorithm 38
Application to Connectedness 41

Acyclic Networks 43

Planar Networks and Duality 44

Exercises 45

Comments and References 51

26

X

CONTENTS

3. Flows and Capacities 53
3A. Capacity Intervals 53
3B. Flux across a Cut 54
3C. Max Flow Problem 56
3D. Max Flow Min Cut 58
3E. Nature of the Min Cut Problem 60
3F. Max Flow Algorithm 62
3G. Commensurability and Termination 65
3H. Feasible Flows 68
3L Feasible Distribution Algorithm 71
3J.* Multipath Implementation 76
3K.* Flow Rectification Algorithm 83
3L.* Node Capacities and Dynamic Flows 87
3M.* Exercises 90
3N.* Comments and References 97
4. Analysis of Flows 100
4A. Integral Flows 100
4B. Conformal Realization of Flows 103
4C* Realization Algorithm 104 ’
4D.* Justification of the Algorithm 107
4E. Trees 109
4F. Forests and Spanning Trees 110
4G. Tucker Representations of the Circulation Space 113
4H. Basis Theorem 117
41.* Pivoting 119
4]. Extreme Flows 122
4K.* Extremal Representation Algorithm 125
4L.* Exercises 127
4M.* Comments and References 135
5. Matching Theory and Assignment Problems 137
5A. Matching Problem 137
5B.* Matching Algorithm 140
5C. Assignments 145
5D.* Application to Partially Ordered Sets 146
S5E. Optimal Assignments 150
5F. Hungarian Assignment Algorithm 152
5G.* Matching with Multiplicities 157
SH.* Bottleneck Optimization 160
SI.* Exercises 162
5J.* Comments and References 171

CONTENTS xi
6. Potentials and Spans 173

6A. Spread Relative to a Path 173

6B. Optimal Paths 176

6C. Max Tension Min Path 180

6D. Min Path Algorithm 183

6E.* Node-Scanning Implementation 187
6F. Feasible Potentials 191

6G. Feasible Differential Algorithm 194
6H.* Refinements 200

61.* Tension Rectification Algorithm 203
6J.* Optimal Routings 206

6K.* Routing Optimization Procedure 209
6L. Integral and Extreme Differentials 215
6M.* Exercises 218

6N.* Comments and References 230

7. Networks with Linear Costs 235

7A. Linear Optimal Distribution Problem 236
7B. Examples of Optimization of Flows 240
7C. Optimal Distribution Algorithm 245

7D.* Simplex Method for Flows 251

7E. Linear Optimal Differential Problem 257
7F. Examples of Optimization of Potentials 261
7G. Optimal Differential Algorithm 264

7H.* Simplex Algorithm for Potentials 270

71. Duality and the Elementary Problems 272
77. Thrifty Adjustment Algorithm 277

7K.* Interpretations 284

7L.* Multipath Implementation 287

TM.* Out-of-Kilter Algorithm 290

TN.* Exercises 294

7P.* Comments and References 307

8. Optimal Flows and Potentials 312

8A. Convex Cost Functions 313

8B. Characteristic Curves 320

8C. Piecewise Linear or Quadratic Costs 322

8D. Optimal Distribution Problem 328

8E. Conjugate Costs 330

8F. Examples of Conjugate Functions 335

8G. Optimal Differential Problem 344

8H. Duality Theorem and Equilibrium Conditions 347
81. Equilibrium Models 350

xii

CONTENTS

8J. Improvement of Flows 353
8K. Improvement of Potentials 357
8L. Existence of Solutions 360
8M.* Boundedness of Optimizing Sequences 362
8N.* Black Boxes 366
8P.* Exercises 372
8Q.* Comments and References 385
9. Algorithms for Convex Costs 388
9A. Optimal Distribution Algorithm 389
9B. Application to Piecewise Linear Problems 391
9C. Optimal Differential Algorithm 394
9D. Thrifty Adjustment Algorithm (Piecewise Linear) 398
9E.* Application to Black Boxes 402
9F. Out-of-Kilter Algorithm (Piecewise Linear) 408
9G.* Termination and Refinements 412
9H. Fortified Algorithms and the Duality Theorem 416
91 Discretized Descent Algorithms 420
9J. Calculating e-Optimal Solutions 425
9K.* Optimizing Sequences and Piecewise Linearization 427
9L.* Convex Simplex Method 432
9M.* Exercises 435
9N.* Comments and References 441
10. Linear Systems of Variables 448
10A. Primal and Dual Variables 449
10B. Elementary Vectors and Supports 453
10C. Bases 455
10D.* Networks with Gains 458
10E.* A Generalization of Circuits and Cuts 461
10F.* Multicommodity Systems and Factorization 466
10G. Painted Index Theorem and Algorithm 473
10H.* Termination and Preprocessing 477
101 Constraints and Feasibility 480
10J. Rectification Algorithms 485
10K.* Shortcuts in Pivoting Implementation 492
10L.* Augmented and Aggregated Formats 496
10M.* Extreme Solutions 501
10N.* Exercises 504
10P.* Comments and References 512
11. Monotropic Programming 517
11A. Optimization and Equilibrium 518
11B. Examples of Monotropic Programming 521

CONTENTS

11C.
11D.
11E*
11F.*
11G.*
11H.
11L
11J.
11K.
11L.*
11IM.*
1IN.*
11P.*

Bibliography

Index

xXm
Descent by Elementary Vectors 525
Duality and the Existence of Solutions 531
Boundedness Property 534
Decomposition 537
Application to Traffic Equilibrium 542
Basic Descent Algorithms 546
Fortified and Discretized Descent 551
Simplex Methods 554
General Out-of-Kilter Algorithm 560
Other Formats and Termination 565
Parametric Programming 568
Exercises 574
Comments and References 594

602

611

1

NETWORKS

Many interesting and important problems of optimization arise in the study of
transportation networks, electrical networks, and networks representing vari-
ous kinds of interactions of a mechanical or economic nature. Other problems
arise in areas that might seem quite far afield, but abstract models based on
networks have been found to be valuable in their analysis. A celebrated case is
that of “matching” problems, where objects in one set must be paired off, as
many as possible, with “compatible” objects in another set. It turns out that
these can be solved by maximizing the amount of material flowing through a
certain transportation network.

The general theory of networks, which attempts to strengthen and unify the
conceptual framework for handling problems in such diverse contexts, con-
cerns itself with the relationship between two types of mathematical structure.
First, there is a purely combinatorial foundation provided by a “directed
graph,” with nodes joined by oriented arcs. Besides being open to exploitation
by graph-theoretical methods and algorithms, this has the valuable property of
being easy to represent schematically. Second, there is the structure of the dual
systems of variables corresponding to “flows” and “potentials” in the network.
This is developed in terms of linear algebra and elementary convex analysis. Of
particular interest for optimization are constraints and costs of the separable
convex type. Introducing these corresponds in a profound way to treating each
arc of the network as if it had a monotonic “characteristic curve,” expressing
the relationship between possible flows and potential differences in the arc
much as if it were a sort of generalized electrical “black box.” In economic
problems potentials are prices that influence flows of goods.

Duality appears at all levels and dominates much of the subject. It serves to
draw attention to many aspects of parallelism between different parts of the
theory, thereby simplifying ideas and frequently suggesting how an approach
in one context may be carried over to another. It leads to computational
techniques that, in taking advantage also of the favorable data-processing
possibilities associated with graphs, are often highly effective. In this way

1

2 Chap. 1. NETWORKS

problems of much larger scale can be solved than would be the case if they
were treated as instances of general linear or convex optimization.

There is still another feature of great importance that emphasizes the need
for special treatment of optimization for problems of the network type: often
they can be demonstrated to have solutions purely in integers (i.e., combina-
torial solutions). The tediousness of techniques such as integer programming is
then rendered unnecessary.

1A. DEFINITION OF A NETWORK

The notion of a network must be put on a firm foundation before any detailed
analysis is possible. As an aid to intuition a network is often shown pictorially
as in Figure 1.1. There are two classes of objects here: the nodes (also called
vertexes or points), which are represented as small circles, and the arcs (also
called edges, lines, branches, or links), which are represented by arrows. The
direction of the arrow furnishes the arc with an orientation, a feature that is
useful in many situations. Note from the diagram that two nodes can be joined
by more than one arc with the same orientation. It is generally convenient,
however, to exclude loops (i.e., arcs that go from a node to itself).

One is led in this way to define a network formally as a triple consisting of
two abstract sets 4 and N and a function that assigns to each j € 4 a pair
(i,i’) € N X N such that i # i’. The elements of 4 are called arcs, and those
of N nodes; it is assumed N # @. Instead of introducing a symbol for the
function in the definition, we shall just write j ~ (i, ") and call i the initial
node of j and i’ the terminal node. (The symbol ~ can be read in this context
as “corresponds to.”) The arc j is said to be incident to i and i’, whereas these
nodes, by virtue of the existence of such an arc, are said to be adjacent to each
other.

In some treatments of the subject multiple arcs in the same direction (arcs in
parallel) are excluded, that is, for each (i, i”) one allows at most one arc j with
Jj =~ (i, i’). Then one can simply write j = (i, i), and 4 can be identified with a
subset of N X N. In this case the network is called a directed graph, or a
digraph. However, terminology differs; some writers also call the more general

Figure 1.1.

Sec. 1A. DEFINITION OF A NETWORK 3

object a digraph. Others exclude parallel arcs but allow loops. (Of course then
A is an arbitrary subset of N X N, i.e., any binary relation among the elements
of N.) The term “graph,” by itself, is used for a similar structure where the arcs
are not oriented. There are also models in which some arcs of a graph are
oriented but others are not.

For present purposes it seems preferable to use the term “network” as
defined here, although in deference to the close relationship to graph theory, a
network will usually be denoted by the letter G. The choice of properties in the
definition is dictated by the desire to make as close and natural as possible the
connection with the flows and potentials to be introduced in this chapter. As
already mentioned, the emphasis on such concepts is an essential and dis-
tinguishing feature of “network theory,” in contrast to “graph theory.” A
network will typically have associated with its nodes and arcs various numbers,
intervals, functions, and so forth, related to conditions on flows and potentials.

The reason for excluding loops is that they cause a technical nuisance with
hardly anything to compensate for it. As for arcs in parallel, they cause no
theoretical harm at all and are even convenient in certain models (e.g., in
Chapter 7, where the complicated characteristics of a single arc are represented
by replacing it by a set of parallel arcs with simpler characteristics). Moreover,
in forcing one to think of arcs as fundamental objects in their own right, not
just as ordered pairs of nodes, they bring about a healthy notational freedom
that lends itself better to generalizations toward other areas of optimization, as
will be seen.

Nevertheless, parallel arcs are not strictly needed; they can usually be
avoided by the ruse indicated in Figure 1.2. This may well be desirable in many
cases when it comes to computation, for then one can apply certain highly
efficient methods that are known for storing and manipulating directed graphs
in a computer.

The fact that the arcs in a network are all “oriented” should not be taken to
mean that they necessarily all represent one-way links in some sense. Actually
some writers do adopt this interpretation of “oriented” arcs and are therefore
led also to work with “unoriented” arcs representing “two-way” links. Al-
though this point of view may be justified in some graph-theoretic contexts, it
can be a serious impediment to the full understanding of models and algo-
rithms in network optimization.

can be replaced by

Figure 1.2

4 . Chap. 1. NETWORKS

The direction of an arc should be seen mainly as a sort of sign convention.
Whether in a given situation an arc is to be regarded as one-way forward,
one-way backward, two-way, or even no-way will depend on other considera-
tions and, for example, may well change during the execution of an algorithm
from one iteration to the next. This may be true even if in the underlying
model giving rise to the network the arcs do have an intrinsic one-way
interpretation.

Problems of finding a path through a network under such changing condi-
tions are very fundamental and will be taken up in the next chapter.

Obviously, any network can be represented as in Figure 1.1, but the
appearance of the diagram depends heavily on the placement of the circles and
the particular way the arrows are drawn. (The places where arcs seem to
intersect in the diagram, other than at nodes, are of no significance.) It must be
borne in mind that it is the abstract network G which is the subject of inquiry,
not its somewhat accidental pictorial representation.

Under the general definition a network can consist of more than one
“component” (two components in Figure 1.1), as will be discussed more fully
in Chapter 2. It may even have “isolated nodes” which are not adjacent to any
other nodes. No one is really interested in these possibilities in putting models
together. But they must be allowed theoretically, since they can occur if, in the
course of some development, a number of arcs are removed from the network.

1B. EXAMPLES OF NETWORKS

The following models will help to delineate, in a preliminary way, the kinds of
things the theory of network seeks to encompass.

ExampLE 1. (Logical Connections)

The elements of N are mathematical properties of some kind, whereas the
elements of A are mathematical arguments: j ~ (i, i") means that j demon-
strates that i implies i”. This rather artificial model lies more on the combina-
torial end of things, yet one can imagine the relevance of some of the ideas
developed later. For instance, the arguments might be assigned various weights
(degrees of difficulty), and one might search for the “easiest” way to prove a
certain property by a sequence of arguments starting from another property.

EXAMPLE 2. (States of a Discrete System)

Consider a system, mechanism, or game having only a finite number of states,
which are assumed one after another, although the succession is not uniquely
determined. The set N consists of the states, and A is the subset of N X N
formed by the pairs (i, i”) such that the state i’ is one of the possible direct

Sec. 1B. EXAMPLES OF NETWORKS 5

successors of the state i. Here G is a digraph. Again, notions of “flow” or
“potential” do not on the surface seem to have much relevance, although it is
clear that the study of paths from one state to another might be valuable.

One might be tempted to allow loops in this model, on the grounds that a
state could succeed itself in the next time period. However, to some extent this
would reflect a confusion between the network just described and a certain
space-time version of it called its dynamic representation. Dynamic networks
are of great importance and will be discussed later in this chapter.

The next model is much more fertile as a source of goals and concepts in
general network optimization.

EXAMPLE 3. (Transportation Network)

The elements of N are certain “places” (cities, warehouses, factories, retail
outlets, ports, etc.), whereas the elements of 4 are transportation links (roads,
railroads, shipping routes, and services, etc.): j ~ (i, i") means that j is one of
the direct links between i and i”.

In this case it is clear why one might want to allow parallel arcs since there
may be two different means of transportation between the same locations that
may not be easily lumped together (e.g., because of different nonlinear rate
structures). On the other hand, the distinction between having j ~ (i, i’) or
Jj ~ (i, i) may not be apparent, unless there is only one direction of transport
of interest, or unless each two-way link can validly be regarded as a pair of
one-way links, one in each direction. However, an arbitrary choice of one of
the two possible orientations for each link is convenient mathematically in
representing a flow of material through the link.

Forj ~ (i, i’), a quantity of material passing through j can be denoted by a
positive number if it is moving from i to i, and by a negative number if it is
moving in the opposite direction. Such quantities may be subject to various
constraints and costs, and they may be influenced by prices prevalent at
various locations (“potentials™ at the nodes).

ExaMPLE 4. (Communications Network)

This is very similar to the preceding, except for interpretation: the nodes are
again places (telephone exchanges, transmission facilities, satellites, etc.),
whereas the arcs are links (cables, microwave relay links, etc.). The material
being transported consists of “calls” or “message units.” It must be said,
though, that many of the applications in this area lie beyond the scope of this
book because they are also “probabilistic” in their formulation. For instance,
an important concern is how to estimate how much capacity can be expected
to be available between two locations, given that the network has to cope
simultaneously with random demands (having known statistical distributions)
at other locations. Another problem is that of analyzing the “reliability” of the

6 Chap. 1. NETWORKS

network (equipment being subject to random breakdown) or its ““ vulnerability”
to disaster.

ExampLE 5. (Hydraulic Network)

Water is transported between reservoirs, cities, farms, and neighborhoods by
means of tunnels, irrigation channels, pipes, and so forth. Many of the same
features as can be found in transportation networks may be relevant, but there
may also be stochastic aspects such as those mentioned for communications
networks. Flows encounter “resistance” which requires the expenditure of
“energy” (an associated cost); this aspect relates to optimization. Of a like
nature are power transmission networks.

EXAMPLE 6. (Mechanical Network)

The nodes are “joints” between arcs representing linear mechanical elements
such as rods, beams, and springs. This time it is forces that are in some sense
transmitted, whereas the positions of the joints play the role of “potentials.”
However, both are generally vector valued.

ExaMpLE 7. (Electrical Network)

The nodes represent electrical junctions, whereas the arcs are not only “wires”
but components such as resistors, batteries, generators, and diodes. Electricity
moves in the network, subject to laws relating current to voltage (potential
difference). The networks occurring in modern electronic systems have many
features too sophisticated to fall within the bounds of the theory expounded
here. Nevertheless, this example is extremely interesting as a source of analo-

gies.

The diversity of the preceding examples makes clear the need for developing
the mathematical theory of networks in a reasonably abstract manner that
clarifies the fundamental ideas common to all the applications and places them
in an efficient and convenient frame of reference. Such has been the motivation
of many mathematicians who have worked on this subject, as has been the
story in other areas of science. Indeed, in this respect network theory can serve
students as an excellent example of the role and place of mathematics as a
discipline, the way conceptual progress depends on inputs at many different
levels. Sharp distinctions between “pure” and “applied” are impossible. Rele-
vance, simplicity, economy of thought, and flexibility of outlook are the
guidelines for all contributions of lasting value.

Sec. 1C. INCIDENCES 7
1C. INCIDENCES

Let us turn to the question of how a network G and its associated flows and
potentials may be represented numerically. The central idea is that of the
node-arc incidence function of G, which is defined by

+1 if i is the initial node of the arc j,
e(i, j) = { =1 ifiis the terminal node of the arc j,
0 in all other cases.

(A good device for remembering the signs in this definition is that “an arrow
always goes from where it is to where it isn’t.””) This function is often expressed
in terms of a node-arc incidence matrix: let the nodes and arcs be numbered in
a certain order, N = {iy, is,...,i,}, A = {1, ja,---J,}>» and construct the
array shown in Figure 1.3.

Observe that the incidence matrix E has in each column exactly one +1 and
one —1. Conversely, if E is any m X n matrix with this property, it can be
interpreted as the incidence matrix for a certain uniquely determined network
G with

INjJ=m and |4]= n.

(For a set S, we denote by |S| the cardinality of S, i.e., the number of elements
in S.) As an example, the matrix

1 1 0 0 0 0 0 0
-1 0 -1 1 o0 0 0 -1
E= 0 -1 1 0 -1 1 0 0
0 0 0 -1 1 0 1 0
0 0 0 0 o -1 -1 1
arcs
31 j2 In
i, | 11 %12 €1n
i | f21
incidence matrix E
nodes
lm eml emn

Figure 1.3

8 Chap.1. NETWORKS

Figure 1.4

corresponds to the network in Figure 1.4. Of course, if loops were permitted,
this correspondence would break down.

Many writers go so far as to denote the nodes of the network simply by
i=1,...,m and the arcs by j=1,...,n, so that one has the equivalent
notation

e(i’ J) = elj

Strictly speaking, this doesn’t make sense. (How can the number 1 be a node
and an arc as well as serve all its other functions?) But in practice such
notation rarely causes any confusion and acts merely as a shorthand for the
more formal expression in Figure 1.3. It is of obvious value for manipulations
in a computer: for such purposes nodes and arcs have to be given numerical
labels sooner or later anyway.

For purposes of theory, on the other hand, there is no reason for having to
think of nodes and arcs as indexed in some fixed order. This could even be
awkward. Suppose one wants to speak of a sequence of arcs generated in some
construction. If the arcs already have been subjected to an underlymg index
system, it will presumably be necessary to refer to the sequence as j ,....j -
The extraction of a subsequence could lead to a monstrosity like

Such nested subscripts ought to be avoided as far as possible, not only as a
kindness to humanity but because they are unjustifiably costly to set in print.
Therefore a slight broadening of outlook and terminology is desirable. After
all, what is an m X n matrix really, if not a function defined on the product of
the sets {1,2,...,m} and {1,2,...,n}? One can just as well think of the
incidence function of G as a matrix E indexed by the abstract sets N and 4. It
is then easy to pass back and forth between the “function” and “matrix”
points of view according to the dictates of a situation. For purposes of
computation a fixed order can always be introduced at the last minute.

Sec. 1D. FLOWS 9

Besides the incidence function (matrix) E it is sometimes useful to represent
a network by its adjacency function (matrix) E, which is defined on N X N by

Al 1if (i, i’) is an arc,
é(i,i’) =

0if (i, ") is not an arc.

Of course this presupposes that G is a digraph (i.e., 4 € N X N). The network
in Figure 1.4, for example, has the adjacency matrix

0110 0
~]o o 0 10
E={o 1 0 0 1
0010 1
0100 0

Clearly any m X m matrix can be the adjacency matrix of a network with m
nodes, provided only that it consist entirely of 0’s and 1’s, with just 0’s along
the diagonal.

The way networks are typically represented in a computer is not in terms of
either an incidence matrix or adjacency matrix but a “linked list structure,”
which in compressed form stores the information contained in the rows and
columns of the adjacency matrix (see Section 1L). It is the incidence represen-
tation, however, that yields the most insights in the treatment of “flows” and
“potentials” in networks, and therefore it is the most important for the
problems in this book. Of course all calculations involving incidences can
ultimately be carried out in a computer in terms of the “linked list” representa-
tion.

1D. FLOWS

By a flow in a network G, we shall in general mean nothing more than an
arbitrary function x: 4 — R. The value x(j), called the flux in the arc j, is
interpreted in most applications as the quantity of material flowing in the arc j
under the sign convention already mentioned.

The kind of material is the same for all arcs. For an initial understanding of
the concepts, it is helpful to think of j as a “canal” and x(j) as the number of
liters of water per second passing any point of j in a steady flow from the
initial node i to the terminal node i’. The amount entering at i agrees at all
times with the amount leaving at i’, but this may be positive, negative, or zero
depending on the physical direction of flow. Possibly water is being pumped in
or withdrawn from the network at the various nodes; equations of conservation
will be considered shortly.

For a fixed ordering of the arcs, 4 = { ji,...,j,}, a flow x can be regarded
as a vector (x,...,x,). Thus a flow in the network of Figure 1.4 can be

10 Chap. 1. NETWORKS

Figure 1.5

indicated as in Figure 1.5; this would correspond to x = (3,4,1,0, —1,2,1, —4).
In function terms one would have x(j,) = 4, and so forth. Of course much of
what was said about “incidence function” versus “incidence matrix” also
applies here. One could denote the arcs directly by j = 1,...,n, so that x(j) is
just an equivalent notation for x;:

x = (x(1), x(2),...,x(n)) = (x1, X35...,%,).

Or, as is more suited to present theoretical needs, one can recall that a vector
in R” is really no different from a function on the set {1,...,n} and thus treat
x as a “vector” indexed by the abstract set 4 (i.e., an element of the space R?).
In fact the two approaches are equivalent, so one can use them both with
perfect freedom.

There is another notation for flows which is kin to the representation of a
network by its adjacency matrix. Like the latter it requires that the network be
a digraph, so that each arc j can be identified with a pair of nodes (i, i”). The
idea is simply to write x(i, i’) in this case in place of x(j), taking x(i, i") to be
0 for pairs (i, i’) that do not correspond to an arc. The flows in G are then
regarded as the functions on N X N which vanish at all pairs (i, i”) having
adjacency 0. In such terms the flow shown in Figure 1.5 receives a matrix
representation:

0 3 4 0 O
0 0 0 0 O
x=10 1 0 0 2
0 0 -1 0 1
0 -4 0 0 O

This notation is less compact and to that degree less attractive, except in cases
where the network is close to being a complete digraph. (A digraph is complete
ifA=NXN)

1E. DIVERGENCE

Incidences enter the picture when we try to analyze what happens to a flow x
at a node i, particularly the question of inputs and “leakage.” The local

‘Sec. 1IE. DIVERGENCE 11

structure of G at i is represented by row i of the incidence matrix E. Quantities
of material heading away from i are associated with arcs j such that x(j) > 0
and e(i, j)=1, or such that x(j) <0 and e(i, j) = —1. Thus the total
amount physically departing from i is the sum of all terms of the form
e(i, j)x(j) that are positive.

Similarly, quantities arriving at i correspond to the cases where x(j) > 0
and e(i, j)= —1, or x(j) <0 and e(i, j) = 1. The sum of all terms of the
form e(i, j)x(j) which happen to be negative is thus the negative of the total
amount physically arriving at i. For all other arcs j, one has e(i, j)x(j) = 0.
Therefore the sum of e(i, j)x(j) over all arcs j gives us the total departing
from i minus the total arriving at i.

This quantity is the divergence of the flow at i; it will be denoted by y(i).
Thus

y(i) = Y e(i, j)x(j) = [divergence of x at i].
JEA

For example, considering the flow x in Figure 1.5 at the node i;, one sees
that four units arrive on j, ~ (i;, i3), while two units depart on j, ~ (i3, is),
and one unit each on j; ~ (i, i3) and j; ~ (i3, i,). This node thus has the
property that

[total arriving] = [total departing],

so that y(i;) = 0. At i5, however, one has y(is) = —7. In other words, seven
more units arrive at i5 than leave it, meaning that seven units are withdrawn
from the flow at this node.

In general, a node i is said to be a source for the flow x if y(i) > 0 and a sink
if y(i) < 0. If y(i) = 0, the flow is conserved at i.

One calls y the divergence function (vector) associated with x. The definition
is summarized by

y = Ex = divx.

Notice that matrix notation is convenient and appropriate here, even though
the implied summation may be over all j € 4 instead of j = 1,...,n.

In the case of the flow in Figure 1.5 one could use the incidence matrix
determined earlier for the network in question and calculate

o - OOo
-0 OO
—_ o OO
|
BAHEHNOREOF AW
Il
N O OO

Ii
|
1

12 Chap. 1. NETWORKS

Thus i, is a source, i5 is a sink, and the flow is conserved at the other nodes (i,,
i3, and i,).

The fact that the seven units created at the sole source /; in this example are
exactly matched by seven units destroyed at the sole sink i5 is no accident.
Physical intuition suggests, and algebra confirms, that the total amount created
at the sources always equals the total amount destroyed at the sinks. This is
expressed by the total divergence principle:

Y y(i)=0 for y=divx.
ieN

To verify the principle, one need only insert the formula defining y(i) and
interchange sums:

y@)=% X e(i,)x(j)=X X e(i j)x(j).

ieN iEN jed jEA iEN
The last sum vanishes because

Y e(i,j)=0 forallj < A.
ieN

Indeed, each column of the incidence matrix contains exactly one 1 and one
—1 and hence adds up to 0.

1F. VECTOR OPERATIONS

Two flows x and x” in G can be added together (“superimposed”) to produce a
resultant flow x”: x”(j) = x(j) + x’(j) for all j € A. Likewise a flow can be
multiplied by a scalar: x” = Ax means that x'(j) = Ax(j) for all j € 4. The
properties of these operations are completely obvious in vector terms, but it is
important to gain an early understanding of what they might mean physically.

As an illustration, let us add to the flow x in Figure 1.5 the flow x” depicted
in Figure 1.6, which represents one unit passing from i, to i5 by way of i, and
i5. (There is a source of one unit at i; and a sink of one unit at i, whereas for x

Figure 1.6

Sec. 1G. CIRCULATIONS AND THE AUGMENTED NETWORK 13

Figure 1.7

it was seven units in each case.) Figure 1.7 shows the flow x” = x + x’, which
has a source of eight units at /; and a sink of eight units at is.

The special thing to notice is the cancellation which takes place in the arc
Js ~ (i3, i,): this arc is “used” by both x and x’, but not by x”. In physical
terms the superposition of the two flows has entailed a “diversion” of a unit of
x, which used to go from i, to i, by way of i5, into one accomplishing the same
thing directly, and a new unit has been added going from i; to i; to is. (It is not
always the case that the superposition of two flows has a unique interpretation
along such lines; the analysis of flows will be studied in more detail in
Chapter 4.)

Obviously, the flow 2x’, say, would represent two units moving in the same
pattern as x” from i, to i, to i; to is, whereas —x’ would represent one unit
moving in the reverse pattern.

Trivially, one has the rules:

div(x + x’) = divx + divx’,
div(Ax) = Adivx.

1G. CIRCULATIONS AND THE AUGMENTED NETWORK

A special role is played by the flows x in G such that divx = 0 (ie., x is
conserved at every node). Such flows are called circulations. Sums and scalar
multiples of circulation are again circulations. Thus the set of all circulations
forms a linear subspace of R”: the circulation space €. Clearly % is the “row
null space” of the incidence matrix E, the kernel of the linear transformation
x = Ex = divx from R* to R".

One of the reasons why circulations are important is that theoretical
discussions can often be simplified in terms of them. This is due to the fact that
every flow in G can be identified with a circulation in a certain larger network.
In the case of the flow x in Figure 1.5, the idea is illustrated by Figure 1.8.

In general, one forms from G a new network G by adding a new node i (the
distribution node) and an arc j, ~ (i, i) (a distribution arc) for each of the old
nodes i. This is the augmented network; its node and arc sets are N and 4.
(Notice right here, incidently, how awkward it would be for this discussion if

14 . Chap. 1. NETWORKS

Figure 1.8

the convention had been embraced that the arcs of a network are always
numbered 1,...,n.) To each flow x in G there corresponds the flow X in G,
defined by

%(j) = x(j) for all old arcs,
%(j;) = y(i) for all distribution arcs.

The fact that X is conserved at all old nodes i, regarded as nodes of G, is
immediate from the definition of X(j;), whereas the fact that X is conserved at
the distribution node i is equivalent to the total divergence principle already
enunciated. Thus X is a circulation in G. Conversely, every circulation in G
corresponds in this way to a flow in G.

Sometimes one can pass to a setting of circulations by a simpler device,
specifically in cases where there is just a fixed pair of nodes permitted to act as
source or sink. Such cases arise very frequently. For the flow in Figure 1.5 the
corresponding representation as a circulation is in Figure 1.9. The new arc j is
called a feedback arc.

Figure 1.9

Sec. 1H. DYNAMIC VERSION OF A NETWORK 15
1H. DYNAMIC VERSION OF A NETWORK

For some models the “static” notion of a flow, which has been stressed up
until now, is not appropriate. It is necessary instead to think of the material as
starting out at various nodes and making definite progress in time through
other nodes, undergoing interactions along the way.

For example, suppose one wanted to rush a large quantity of material
through a transportation network from a certain “supply point” to a “demand
point” in the shortest time possible. The capacities of the many alternate
transportation links may be limited, and there may be potential bottlenecks at
some intermediate handling points. The flow would have to be organized in the
time scale: one would have to specify how much should be entered into each

G (with durations T(j))

16 Chap. 1. NETWORKS

transportation link and when, how much should temporarily be held over at
certain intermediate points so as not to block the progress of other crucial
parts of the flow, and so forth.

Surprisingly enough, there is a general way of reducing such complicated
dynamic situations to static ones in a “space-time” framework. This does
depend, however, on the legitimacy of regarding each arc in G as “one-way” in
the direction of its orientation.

Let each arc of G have associated with it a non-negative integer 7(j) called
its duration (the time taken to traverse it, measured in discrete units). A
network G, corresponding to any specified time interval 0 < ¢ < T, is then
constructed as follows (see Figure 1.10). The node set is

Ny =N x{0,1,...,T}.

To obtain the arc set A, form for each j € 4 with j ~ (i, i’), and each integer
t > 0 such that ¢ + 7(j) < T, the arc j, with initial node given by the pair
(i, t) € Ny and terminal node (i’, ¢ + 7(j)). This arc j, represents the fact that
one can pass via j from being at i at time ¢ to being at i” at time ¢ + 7(). Also
include in A4, for each i € N and time ¢, 0 < ¢ < T, a holdover arc with initial
node (i, ¢) and terminal node (i, ¢ + 1).

Non-negative flows in G correspond to non-negative “dynamic” flows in
G, complete with a specification of how much material enters an arc j or passes
through a node i at each time . Fluxes in the holdover arcs of G represent
material kept stationary at nodes of G during certain time periods.

The dynamic model may also be useful where flows, as such, are not
present. For instance, the network of Example 2 in Section 1B may be
extended in time by regarding each arc as having duration 1.

1I. POTENTIALS AND TENSION

Duality in the study of flows is often closely tied to the following notion. A
potential in G is an arbitrary real-valued function # on the node set N. The
value u(i) is called the potential at node i. With an arc j ~ (i,i"), one
associates the potential difference

v(j) = u(i’) — u(i) = [tension acrossj].

(The sign of the difference depends of course on the orientation of the arc.)
This defines the tension function (or vector) v on A which is the differential of
the potential u.
As example is shown in Figure 1.11 where the numbers at the nodes are
potentials and the numbers next to the arcs are the corresponding tensions.
Observe that the definition of the tension v corresponding to the potential u
can be expressed by

v(j)=— X u(i)e(i, j).

i€EN

Sec. 1I. POTENTIALS AND TENSION 17

Figure 1.11

Therefore in compact notation
v= —uE = Au.

The relationships between all the variables that have been introduced are
summarized by the tableau in Figure 1.12, which is said to define a pair of dual
linear systems. Rows correspond to relationships in the flow-divergence system,
whereas columns correspond to those in the potential-tension system.

Potentials and their corresponding tensions can be added together or
multiplied by scalars. Two different potentials can give rise to the same
tension. In particular, if u’(i) = u(i) + const. for all i € N, then Au’ = Au.
The full possibilities in this direction will be analyzed in Section 6B.

In general, one calls v a differential in G if v = Au for some potential u
(which, as we have just seen, can never be unique). The set of all differentials is
preserved under addition and scalar multiplication and thus, like the circula-
tion space ¢, forms a linear subspace of R4. It is called the differential space
and denoted by &. Thus 9 is the “row space” of the incidence matrix E, the
range of the linear transformation u —» —uE from R to R* (which is the
“negative adjoint” of the linear transformation x — Ex).

It is natural to use the following inner product notation for elements of RY

and R4:
uey= 3 u(i)-y(i), vex=Y v(j)-x(j).
iEN jed
x(3)
-u(i) e(i,3) = y(i)
= v(j)

Figure 1.12

18 Chap. 1. NETWORKS

One then has the fundamental conversion formula:
vex=—u-y ify=divx,v=Au.

The validity of this formula is seen from the fact that both sides reduce to the
expression

~ X u(i)e(i, j)x(j) = —uEx.
e

An immediate consequence of the conversion formula is the fact that

vex=0 forallve2, xe¥.

Less immediate perhaps is the stronger fact that
9=%¢={veRv-x=0 forallxe %},
¢=2*={x€Rv-x=0 forallve 2},

or in other words, that the circulation space % and differential space & are
orthogonally complementary to each other. However, this follows by elementary
linear algebra from the definitions of ¥ and £ in terms of E (see Exercises 1.7
and 1.8 at the end of the chapter). The same would hold even if £ had nothing
to do with incidences in a network.

Much as any flow in G can be regarded as part of a circulation in the
augmented network G, so can every potential in G be regarded as “part of” a
differential in G; see Figure 1.13, which demonstrates this for the potential in
Figure 1.11. Indeed, given any potential ¥ in G with associated tension v,
define the potential % in G by

. {u(i) for all old nodes i,
u(i) =

u(i) =0 for the distribution node i.
The tension & = A% in G then satisfies

o(j) =v(j) forallold arcsj,

5(j;) = u(i) for all distribution arcs j;.

Observe that the orthogonality of the circulation space % and differential space
9 for G corresponds to the conversion formula for G, written in the form
uy+v.x=0.

Sec. 1J.* PREVIEW OF OPTIMAL FLOWS AND POTENTIALS 19

Figure 1.13

1J.* PREVIEW OF OPTIMAL FLOWS AND POTENTIALS

To get some idea of the general kinds of network optimization problems to
which the developments in this book are ultimately directed, consider the
following situation. For each arc j € 4 there is an interval C(j)C R and a
function f: C(j) = R; likewise for each node i € N there is an interval
C(i) € R and a function f;: C(i) = R. The optimal flow problem in broadest
form is this:

minimize Y, f,(x(j)) + X f,(y(i)) over all flows
JEA ieEN

x € R* satisfying x(j) € C(j) for all j € 4 and

y(iye€ C(i) for all i € N, where y = divx.

In analogous terms there is also a general optimal potential problem:

minimize Y, g(u(i)) +), g;(v(}j)) over all

i€eN jEA
potentials u € R” satisfying u(i) € D(i) foralli € N
and v(j) € D(j) forallj € 4, where v = Au.

Under certain continuity and convexity assumptions about the functions
involved, these two types of problems turn out to be “dual” to each other.
They then possess joint optimality conditions of the form

(x(4),v(j)) €T(j) and (y(i),u(?)) € T(i),

20 Chap. 1. NETWORKS

where I'(j) and I'(i) are “characteristic curves” of a special kind associated
with the arcs and nodes of the network. The relation (x(j), v(j)) € I'(j) can
be viewed as a generalization of Ohm’s law (where I'(j) is merely a straight
line through the origin, the slope of the line being the “resistance” of the arc j).

The theory of optimal flows and potentials will not be handled in such
grand formulation until Chapters 8 and 9, although the case of linear and
piecewise linear cost functions will be covered in Chapter 7. Much of the
material studied along the way, however, in Chapters 2 through 6, either lays
the foundation for solving optimal flow and potential problems or works out
applications that actually correspond to special instances of such problems. In
the latter category, for example, are the results in Chapter 5 on matching
problems, which are flow problems of a very particular sort, as well as the
optimal path theory in Chapter 6, which is concerned in effect with potentials.
Chapters 3 and 6 are devoted in large measure to questions of the existence
and determination of flows or potentials that are feasible (i.e., satisfy constraint
systems of the kind specified in the problem given here). The answers to these
questions are important in themselves, but they also enter into the general
optimization algorithms developed in Chapters 7 and 9, as do results in
Chapters 2 and 4 that bear on the representations of flows and potentials in
terms of the combinatorial substructures of a network (paths, circuits, cuts,
trees, etc.).

1K.* SOME GENERALIZATIONS

One can consider flows that are vector valued rather than merely real valued.
This is natural, for instance, in the case of a transportation network serving
simultaneously for movement of several different kinds of material: then each
flux x(7) is itself a vector of components (x;(i),...,xy (7)), where x, (i) is the
flux of the kth kind of material in the arc i. Because of such an interpretation,
vector-valued flows are often referred to as multicommodity flows. However, as
already seen, they also arise in entirely different contexts where no “commodi-
ties” are present, such as in the mechanical network of Example 6 in Section
1B.

Vector-valued flows are also associated with situations where only one kind
of material is involved, but the kind of cancellation that may occur as
described earlier, when two flows are superimposed, is not appropriate. Thus in
a model of street traffic, the flow may all be in terms of a homogeneous
material (“vehicles”) moving between various points of “supply” and “de-
mand.” To make matters simple, let us suppose these points can be represented
by “north,” “south,” “east,” and “west.” A certain volume of traffic must pass
though the network from “north” to “south,” another volume from “east” to
“west,” and so forth. The trouble is that these different kinds of traffic need to
preserve their identities: the demand at “south” for traffic originating at
“nporth” cannot be met by shunting to “south” some of the traffic originating

Sec. 1L.* EXERCISES 21

at “east,” with a compensating diversion of some of the “north”-originating
vehicles to end up at “west.” These different kinds of traffic therefore need to
be treated as different “commodities” that interact by sharing the same
network. ’

Another direction of generalization concerns the notion that the flux enter-
ing an arc may be multiplied by some factor before emerging at the other end.
One then has a network with gains. (The “gain” factors need not be greater
than unity.) This corresponds to replacing the —1’s in the incidence matrix F
by arbitrary negative numbers.

Many of the important results about ordinary networks break down when
applied to vector-valued flow or flows in networks with gains. But some
valuable and interesting facts remain. In exploring what can be accomplished
in such directions, one reaches the idea of trying to mimic the theory of
network optimization, including its combinatorial features, as far as possible in
the case of a general pair of dual linear systems (i.e., two systems of real
variables related as in Figure 1.12 but with an arbitrary real matrix E. Even
“multicommodity” problems can be reduced to this case.)

Remarkably much turns out to be possible. A theory can be put together
that spans the gap between network optimization and general convex optimiza-
tion, passing by way of such subjects as linear programming which are
intermediate in computational amenability and retain an important combina-
torial flavor. The presentation of this theory is the goal of the latter part of this
book. It is what we call monotropic programming. The primal and dual
monotropic programming problems treated in Chapter 10 correspond to the
general optimal flow and optimal potential problems described in the preced-
ing section, except that the relations y = divx and v = Au are replaced by
y = Ex and v = —uE for arbitrary E, not necessarily the incidence matrix of
any network.

1L.* EXERCISES

1.1. (Incidence). Draw a network whose incidence matrix is the following:

-1 0 0 1 0 0
0 1 -1 0 1 0
E= 0 0 1 0 0 -1
0 0 0 0 0 0
1 0 0 -1 0 0
0 -1 0 0 -1 1
1.2. (Incidence). Determine the incidence matrix for the network shown in

Figure 1.14.

1.3. (Divergence). Figure 1.15 indicates a certain flow x and potential u for
the same network as in Figure 1.14. Determine the divergence y = div x
and tension v = Au. Where are the sources and sinks of the flow?

22

14.

1.5.

1.6.

1.7.

1.8.

Chap. 1. NETWORKS

3
i i
1 - 2
32
iR is
I3 i Jg
3 J
.37 8
9
14 e - 1 15
J10
Figure 1.14

(Divergence). Let x be a flow in a network G with the property that x is
conserved at every node except for a certain pair of nodes s and s’. Show
that y = div x satisfies y(s) = —y(s’), and give a physical interpretation
of this relation.

(Differentials). The values shown next to the arcs in Figure 1.16 define a
certain v € R”. Prove that v is a differential by displaying a particular
potential u such that Au = v.

(Divergence). The values shown at the nodes in Figure 1.17 define a
certain y € R". Does there exist a flow x such that divx = y?

(Circulation Space). Prove that the circulation space % and differential
space & of a network G are always related in dimension by dim % +
dim 2 = |A].

(Hint. Work with standard facts about the rank of a matrix E.)

(Circulation Space). Prove that the spaces ¥ and 2 are orthogonally
complementary: ¢* = 2 and 9* = ¥.
(Hint. Build on Exercise 1.7.)

Figure 1.15

Sec. IM.* COMMENTS AND REFERENCES 23

Figure 1.16 Figure 1.17

IM.* COMMENTS AND REFERENCES

Although electrical networks have been studied for a long time, the usefulness
of network flows and potentials in the modeling of problems in economics and
operations research was not generally recognized until the 1950s. The book of
L. R. Ford and D. R. Fulkerson [1962] has played an especially significant role
in stimulating the growth and applications of network theory in these new
areas. The notation and terminology in that book are natural for people
familiar with linear programming and have widely been accepted in operations
research. However, there are some drawbacks that need to be pointed out
because they explain why a different approach is used here.

Most noteworthy is the convention of Ford and Fulkerson that flux values
x(j) must always be non-negative, that is, that the material can only move in
the directions in which the arcs are oriented. Although this does not entail a
real loss of generality, in the sense that any problem modeled by a network can
be reformulated so as to bring it into compliance with the convention, there is
a serious effect on theoretical aspects such as duality. The simplicity and
symmetry of relationships between flows and potentials is obscured, particu-
larly in the case of problems with nonlinear costs. In the description of
algorithms, repeated reformulations are sometimes necessary in the subprob-
lems that are generated. The connections with electrical theory, where no sign
restrictions are imposed on flows, are harder to see.

In an article written earlier than the Ford and Fulkerson book but not
nearly so well known, G. J. Minty [1960] developed a framework for network
optimization that was more in harmony with the electrical viewpoint and made
clear that the conditions characterizing optimal flows and potentials could
always be interpreted as arising from generalized (possibly nonlinear) “resis-
tance” relations associated with the arcs of the network. Minty’s approach was
adopted subsequently in the book of C. Berge and A. Ghouila-Houri [1962],
and it has been used more recently by Iri [1969], although not in its full scope
in either case.

A4 Chap. 1. NETWORKS

In order to place duality in the brightest light, Minty reduced everything
about flows and potentials to circulations and differentials (i.e., to the comple-
mentary subspaces ¥ and 2). This is perfectly possible in terms of passing to
the augmented network, as has been explained in Sections 1G and 1I. But a
certain flexibility of outlook seems to be lost thereby in operations research
models, and analogies with related areas like linear and convex programming
tend to suffer. For these reasons we try in this book to proceed somewhat more
broadly in a setting that readily encompasses Minty’s as well as the one of
Ford and Fulkerson.

The insistence on every arc having an orientation is dictated by our aim of
concentrating on the features of network theory that ultimately have some
bearing on flows and potentials. Certainly there are many interesting problems
of a purely combinatorial nature where orientations are irrelevant. When
orientations are put aside, one speaks simply of a graph (undirected) instead of
a network. Of course a graph can also be viewed as a special kind of network
in which every arc occurs paired with its reverse. Among the many texts
treating graph theory and its applications, we mention Berge [1962], Bondy
and Murty [1976], Busacker and Saaty [1965], Christophides [1975], Deo
[1974], Harary [1969], and Wilson [1972].

The text of Lawler [1976] elaborates the more combinatorial aspects of the
kind of network theory in the present work, whereas that of Helgason and
Kennington [1980] fills in the connections with linear programming and recent
developments in the design of algorithms for optimization problems having a
networklike substructure. For the classical theory of electrical networks, see
Chen [1971] and Mayeda [1972]. For probabilistic communications networks
and related models, see Frank and Frisch [1971].

Computer representation of networks is covered in various books such as
Deo [1974] and Helgason and Kennington [1980], but the article of Dial,
Glover, Karney, and Klingman [1979] is particularly illuminating and accessi-
ble. This explains the use of a linked list structure and discusses the dramatic
effect that such improvements in computer implementation technology have
had on network calculations. A more complete description of some of the
network codes in question is provided by Ali, Helgason, Kennington, and Hall
[1977]. The success of this approach has been attributed to the fact that it
corresponds to specializations of the simplex method of linear programming,
that is, to a combinatorial representation of “pivoting” techniques. Pivoting
will be covered in Chapter 4 and will play an important role thereafter,
particularly in Chapters 7, 9, and 10. Although only some of the algorithms
based on pivoting have not as yet received such close attention in terms of
computer implementation as the ones just mentioned, it is good to keep in
mind that much improvement could lie in that direction.

The notion of dual linear systems of variables stems from linear program-
ming. It has been developed in many interesting directions by A. W. Tucker
[1960], [1963], and proves especially useful in making the generalization from
optimization problems in networks to other kinds of separable programming.

Sec. IM.* COMMENTS AND REFERENCES 25

The terms “flux” and “divergence” have not previously been used in
network theory as they are here and may not be entirely to the liking of
electrical engineers because of other usage in connection with magnetism.
However, they are simple, natural, and fill a definite need. The “distribution
node” in the augmented network corresponds to “ground” in electrical theory.

Flows x belonging to the circulation space ¥ are also said to satisfy
Kirchhoff’s current law, whereas tensions v in the differential space 2 satisfy
Kirchhoff’s voltage law (see the equivalent criterion in Exercise 2.12; see also
Section 6A). This terminology honors the pioneering work of G. Kirchhoff in
1847. A discussion of these conditions in the terminology of combinatorial
topology is furnished by Slepian [1968]. The fact that ¥ and & are orthogonal
is sometimes called Tellegen’s theorem.

PATHS AND CUTS

The special character of network theory, as a branch of optimization, is due to
its combinatorial foundations. Of utmost importance is the fact that certain
purely combinatorial notions, like that of a “path” from one node to another,
are intimately connected with concepts of a different order, like that of a flow
of material from one node to another. At the heart of most of the computa-
tional methods for optimizing flows and potentials, and as the guarantee of
their particular efficiency, are basic procedures involving only the manipulation
of arcs and nodes. These procedures construct, or test the existence of,
configurations such as paths with prescribed properties.

The most fundamental of the combinatorial aspects are described in this
chapter. Paths are discussed along with different kinds of connectivity of a
network. A dual notion of “cut” is introduced and used in formulating a
central result for problems concerning the existence of paths: the painted
network theorem. This theorem is proved constructively in terms of an
algorithm that serves as a conceptual or practical component in a great many
computational procedures that will be developed later.

2A. PATHS

A path P in a network G is a finite sequence iy, ji, iy, jos---5Jp i, (r > 0),
where each i, is a node, j, is an arc, and either j, ~ (i,_q, i) OF ji ~ (ig, ir_q)-
This formalizes an idea that is very natural in terms of the geometric represen-
tation of a network, that of a way of passing from one node to another through
a succession of arcs but not necessarily keeping to the directions of the arrows.
The initial node of P is iy, and the terminal node is i,. This is sometimes
indicated by the notation P: i, — i,. If i; = i, P is called a circuit; however, in
this case there is little point in distinguishing a particular node as the start and
finish, so two paths which differ only in this respect are regarded as constitut-
ing the same circuit.

The arc j, in P is said to be traversed positively or negatively according to
whether j, ~ (i,_y, i) or jp ~ (iy, i,—;). If all arcs are traversed positively, P

26

Sec. 2A. PATHS 27

is called a positive path, or positive circuit, and similarly regative path, or
negative circuit, if all arcs are traversed negatively.

In many situations merely the sequence of nodes, or the list of arcs
encountered, would be enough to describe a path unambiguously. Then one
should not hesitate to exploit the simplification. It should be understood,
though, that the full specification of the alternating sequence of nodes and arcs
is necessary sometimes to make certain just which arcs are traversed and in
which direction, as is important for our purposes.

For example, let i and i’ be distinct nodes, and let j and j’ be arcs such that
Jj~(i,i") and j’ ~ (i’,i) (see Figure 2.1). The closed path P: i, j,i’, j’,i
cannot be summarized by giving only i, i’, i, since that would equally well
describe the path P”: i, j’, i’, j, i. Nor can P be summarized by j, j’, since that
could also refer to P”: i’, j, i, j’, i’. Such ambiguities would leave us in doubt
as to whether j is traversed positively or negatively, and this is unacceptable.

An abbreviated notation that is often convenient in describing paths in G, if
G is a digraph, is based on the property that, in passing from i to an adjacent
node i’, there are at most two possibilities: a “forward” arc or a “backward”
arc. Symbolism like

Piiy—oi«iy—iz—i,

is then almost self-explanatory: the corresponding arcs are j; = (i, i}), jo =
(iy, i), J3 = (i3, i), and j, = (i3, i4). (In a computer the signs — and <«
could be replaced by + and — prefixed to the nodes, giving the sequential
representation +ig, +iy, —iy, —i3, ti4.)

A path P may traverse an arc more than once, maybe sometimes positively
and sometimes negatively. Then it is a path with multiplicities. An elementary
(or simple) path is a path without multiplicities which in fact uses no node
more than once, except of course for the initial and terminal nodes when the
path is a circuit. Figure 2.2 illustrates a path without multiplicities that is rot
elementary.

Given any path P: s — s’ (i.e,, with iy, = s and i, = 5”), one can construct a
corresponding elementary path from s to s’ simply by deleting superfluous
portions of P. In algorithmic terms one proceeds along P until a node is
encountered (other than s”) that coincides with a previous node, say, iy, , = ij.
Deleting ji 1.1 ig+15- - - s Ji+p» ix+p Still leaves a path from s to s’, so one can

Figure 2.1

28 Chap.2. PATHS AND CUTS

proceed further. This continues until s’ is reached; then everything afterward is
lopped off. The resulting path from s to s’ is clearly elementary. (If s’ = s,
there is the degenerate possibility that no arcs at all are left at termination, so
that one does not have what can be called a path. This is remote from the
typical cases where the procedure might actually be applied.)

Almost everything of interest about paths can be reduced in this fashion to
the case of elementary paths.

2B. INCIDENCES FOR PATHS

For a path P without multiplicities, the set of all arcs traversed positively (the
positive or forward arcs) is denoted by P™, and the set of all arcs traversed
negatively (the negative or backward arcs) is denoted by P~. Arc-path inci-
dences are accordingly defined by

1 ifje P+
ep(j)=e(j,P)=1{-1 ifje P,
0 otherwise.

(This could be ambiguous if P had multiplicities, since P* and P~ might
overlap, and anyway one might then want to replace +1 by other integers
indicating the number of times the arc was traversed.) It is convenient to write
j € P to mean ep(j) # 0, even though P really denotes more than just the
union of P* and P.

Observe that ep, as a function on the set of arcs, can be regarded as a
special flow. Physically it represents one unit flowing along the path P. If P is
not a circuit, the function y = div e, has the value +1 only at the initial node

Sec. 2C. CONNECTEDNESS 29

iy of P and —1 only at the terminal node i,; thus i, is the unique source for the
flow and i, the unique sink. If P is a circuit, there is no source or sink, and e is
a circulation.

An elementary path P can be completely reconstructed from its incidence
function (vector) ep. Consider, first, the case where P is not a circuit. The
initial node i, is determined as the sole node which is a source of the flow ep.
Next, there is exactly one arc j incident to i, such that e,(j) # 0; designate it
by j, and its other node by i,. Now j, can be determined as the only other arc j
besides j; which is incident to i; and has ep(j) # 0, and so forth. Almost the
same process works if P is a circuit, except that initially an arbitrary arc of P
must be designated as j; and its nodes denoted by i, and i;, with the order
chosen so that j; ~ (iy, §;) if ep(j) = 1 but j, ~ (i1, iy) if ep(j) = —1.

As a matter of fact the process just described shows that an elementary path
P can be reconstructed from knowledge of the set P*U P~ alone, except for
determining which of the two possible directions it is to have.

Circumstances are not much different for a nonelementary path P without
multiplicities. Knowing only P* and P, one could reconstruct P except for
possible ambiguities about the order in which certain side circuits, such as
shown in Figure 2.2, are to be traversed. However, this order is really of little
interest; what is important is that the directions the individual arcs are
traversed be beyond doubt.

For these reasons a path without multiplicities can almost be regarded as
just a special kind of signed set of arcs (i.e., a subset P of 4 supplied with a
partitioning into a “positive” part P* and “negative” part P, either of which
might be empty). Although the formal definition of “path” given earlier will be
maintained, both for the sake of concreteness and its closer ties to computa-
tion, the more abstract point of view will guide much of the theory.

2C. CONNECTEDNESS

A network G is said to be connected if for every pair of different nodes s and s,
there is a path P: s — s”.

If G is not connected, its node set N can be partitioned into disjoint subsets
N, such that two different nodes can be joined by a path if and only if they
belong to the same N,. The sets N, can be defined as the equivalence classes of
nodes induced by the following binary relation: s’ is connected to s if either
s’ = s or there exists a path with initial node s and terminal node s’; see
Exercise 2.6. Then there is a corresponding partition of the arc set 4 into
disjoint subsets A4,, where A, consists of the arcs whose initial node and
terminal node both lie in N,. (Since any arc, together with its initial and
terminal nodes, forms a path, these two nodes must belong to the same
equivalence class, i.e., the same set N,.)

Each pair N,, 4,, then constitutes a connected network G, called a compo-
nent of G. Obviously, G is connected if and only if there is just one component:

30 Chap. 2. PATHS AND CUTS

G itself. Note that the augmented network G is always connected, even if G is
not.

A more restrictive property than connectedness is strong connectedness. In
this case one asks that there exist, for every pair of different nodes s and s/, a
positive path P: s — s’ (as defined in Section 2A).

It is not true in general that a network that fails to be strongly connected
can be decomposed into disjoint pieces that are. Nevertheless, a useful decom-
position of sorts is possible. Again one may proceed in terms of an equivalence
relation: s’ is strongly connected to s if either s’ = s or there is both a positive
path from s to s” and a positive path from s’ to s (see Exercise 2.6). Let the
equivalence classes in N be indexed N,, and as before, let 4, be the set of all
arcs having both nodes in N,. The network G, determined by N, and 4, is
called a strong component of G. This time, however, the sets 4,, though
disjoint, do not necessarily exhaust 4 and therefore may not form a partition.
Thus there may be various arcs joining the strong components G,. But it can
be shown that all the arcs joining one strong component to another must “go
in the same direction” (Exercise 2.7).

2D. FINDING A PATH FROM ONE PLACE TO ANOTHER

How can one test efficiently whether a given network is connected or strongly
connected? More generally, if two different nodes s and s’ are given, how can
one construct a path from s to s’ that avoids certain “forbidden” arcs and
traverses certain other arcs, if at all, only in a specified direction?

In a general problem of this type, four categories of arcs may be considered
in order to gain the greatest flexibility: arcs traversible in either direction
(two-way), arcs traversible only positively (one-way forward), arcs traversible
only negatively (one-way backward), and forbidden arcs (no-way). The practi-
cal virtue of allowing all four possibilities, rather than trying to “simplify”
matters by some sort of modification of the underlying network, will be
thoroughly apparent later, when the study of flows gets under way.

To formulate the problem, one should therefore specify, besides s and s/, a
partition of the arc set 4 into four disjoint subsets, some of which might be
empty. Thanks to G. Minty, there is a happy way of describing such a partition
in which, instead of referring to the four categories directly, one speaks of each
of the arcs as having been “painted” one of four possible colors. The partition
is then called a painting of A.

The colors green, white, black, and red will be used, respectively, to
correspond to the four categories mentioned. (Green and red are easily
remembered in terms of “go” and “stop,” and likewise white and black have a
natural duality which is convenient for our purposes.) In this terminology, for
instance, a “green arc” is an arc in the “two-way” category of usability with
respect to the paths in question.

Sec. 2E. CUTS 31

The fundamental problem is then stated as follows, with a slight generaliza-
tion concerning the initial and terminal nodes of the path.

Painted Path Problem. In the network G, two nonempty disjoint node sets N*
and N~ are given, as well as a painting of the arcs by the colors green, white,
black, and red. The problem is to determine a path

P:N*—> N~
(i.e., with initial node in N* and terminal node in N ™) such that every arc in P* is
green or white, whereas every arc in P~ is green or black.

Any path with the specified color properties is said to be compatible with the
given painting. Thus a solution to the problem is a compatible path P from N~
to N~. Observe that there is no real loss of generality in requiring further that
P be an elementary path, none of whose intermediate nodes belongs to N* or N™.
This follows from our discussion of elementary paths in Section 2A; the extra
properties can always be achieved through a constructive process whereby
certain segments are deleted from a path that solves the problem in the more
general sense. As a matter of fact the algorithm to be given will always furnish
a solution with these extra properties, if a solution exists at all. Therefore in
speaking of a solution to the painted path problem, one with these properties
will always be meant, unless something to the contrary is mentioned.

It deserves to be emphasized that, in a painting, each arc of the network is
given exactly one of the four colors listed, but some of the colors can remain
unused. For example, in testing for connectedness all the arcs would be
painted green, whereas for strong connectedness they would all be painted
white or black (see Section 2I).

At this stage we do not place any additional burdens on a solution to the
painted path problem, although it is easy to imagine some that might be
worthwhile. Often there will be many solutions, and one could ask for the path
among them with the fewest arcs or, given further data, the path that is
shortest, longest, quickest, cheapest, easiest, or whatever. Such refinements of
the problem will be considered in Chapter 6.

2E. CUTS

In the algorithm about to be considered, as well as in almost every branch of
the theory of networks, the concept of a “cut” is useful and plays a role dual to
that of “path.”

To formulate it, start by defining for arbitrary node sets S and S’ (not
necessarily disjoint) the arc sets

[S.81"={jedlj~(i,i’) withie S, i’ S’}.
[S,81 ={je4]j~(i’,i) withie S,i’eS’}.

n Chap.2. PATHS AND CUTS

For the present, attention is to be focused on the case where S’ = N\ S (the
complement of S in N). The sets [S, N\ S]* and [S, N\ S]~ are disjoint, and
one may therefore speak of the “signed set” of arcs having these as its positive
and negative parts, respectively; this is denoted simply by [S, N\ S]. (Recall
that a “signed set” is merely a set partitioned into two subsets, not necessarily
nonempty, one designated “positive” and the other “negative.”)

Any signed set of the form [S, N\ S] will be called a cuz in the network G.
More exactly, a cut in G is defined to be a signed arc set Q (with positive and
negative parts denoted by Q* and Q") such that, for some node set S (maybe
not unique), one has Q*=[S, N\ S]" and Q =[S, N\ S]". A cut is il-
lustrated in Figure 2.3.

The word “cut” for Q =[S, N\ S] arises from the idea that any path P
with initial node in S and terminal node in N \ S must, at some stage, traverse
one of the arcs in Q; the deletion of the arcs in Q would thus “cut” all such
paths. The fact that P must use an arc of Q is formally established as follows.
Let i be the first of the nodes of P not in S; such a node exists, because P goes
from S to N\ S. The arc of P immediately preceding i, call it j, then joins a
node of S with a node of N\ S, and hence it belongs to Q. Indeed either
jeEPNQtorje P NQ .

Some writers use “cut” in a more general sense to mean any set of arcs (not
signed) whose deletion would disrupt some class of paths or other, depending
on the context. But this usage is unsatisfactory for the treatment to be given
here.

The node set S is not always uniquely determined by the corresponding cut.
In particular both S = @ and S = N give rise to the empty cuz. But if the
network is connected and the cut Q is nonempty, there really is only one S .
such that [S, N\ S]= Q, and it can be determined by a simple construction
(Exercise 2.14). At all events the reverse of a cut Q can be defined unambigu-
ously. It consists of the same arcs, but with opposite orientations.

Incidences for arcs and cuts are defined by

1 ifjeQ”
eo(j)=e(/,Q)=1{-1 ifjeQ
0 1in all other cases.

Sec. 2F. PAINTED NETWORK ALGORITHM 33

It is interesting to observe that e, as a function on the set of all arcs, can be
regarded as a differential. Indeed, it is the tension corresponding to the
negative of the potential

N_ 1 ifie€s,
es(’)"{o ifi &S,

where S is any node set such that Q = [S, N\ S]. In symbols, e, = —Aeg =
Aey. s- The situation is analogous to that for paths (ep, for a path P, is a
certain flow), and it hints strongly at the important role paths and cuts are to
play in the analysis and synthesis of flows and tensions.

Following our earlier abuse of notation with paths (crime becomes a habit!),
we shall write j € Q to mean that the arc j belongs to either Q* or 0, or in
other words, ey (j) # 0, even though Q is more than just the union of Q* and
Q7 (i.e., a signed set). The arcs of Q™ are called the positive or forward arcs of
Q, whereas those of Q~ are the negative or backward arcs.

2F. PAINTED NETWORK ALGORITHM

A procedure will now be described that in g iterations or less, where ¢ = |[N| —
|N*| = |N~| + 1, either constructs a solution to the painted path problem or
establishes that none exist by producing a certain kind of cut (a solution to the
“painted cut problem” which will be introduced in Section 2H). This is a
conceptual algorithm, in the sense that its statement aims at clarifying funda-
mental ideas and leaving the possible modes of implementation as open and
flexible as possible. Details of implementation can of course make a big
difference in practice, but they raise other issues and are best relegated to a
separate discussion (see Section 2G). .

In the general step of the algorithm there is a node set S O N* and also a
function 6: S\ N*— A which, by labeling each node i € S\ N* with an arc
Jj € A, will serve to represent paths that have so far been constructed in order
to reach the nodes of S from N* without passing outside of S. The exact
requirements are the following; we shall call 8 a routing of S with base N* when
these are fulfilled:

1. For each i € S\ N¥, 6(i) is an arc joining / to another of the nodes
in S.

2. Whenever a sequence is generated of the form i, 6(i), i, 0(i"),i”,
0(i”),..., where i’ is the other node of 6(i), i” is the other node of
0(i"), and so forth, a node in N* is eventually reached.

A sequence as in 2 must stop when it reaches N, since 6 is only defined on
S\ N™. The reverse of the sequence is then a path from N* to i that does not
use any nodes outside of S. It will be called the path to i associated with @, or
the #-path from N™ to i.

34 Chap. 2. PATHS AND CUTS

8lig) =3, 8(i) =3y, 8(ig) =33 8(ig) =3,

Figure 2.4

Figure 2.4 illustrates a particular routing and brings out the fact that in
many situations there may be more convenient ways of indicating a routing 6
than the full description of its domain and values. In particular, if the network
has no more than one arc joining any pair of nodes, a labeling of nodes by
nodes rather than arcs would suffice. The general concept of a “routing” as
employed here is closely related to that of a “rooted tree,” which will be
discussed in Section 4E.

In the algorithm we shall be interested only in routings # which are
compatible with the given painting. This means that the arc (i) must be green
or white if i is its terminal node, whereas in the opposite case it must be green
or black. Obviously, all the paths associated with @ are then themselves
compatible with the painting: their positive arcs are all green or white, whereas
their negative arcs are all green or black.

Statement of the Algorithm

Initially, let S = N*; the routing @ is then “empty.” The general step is as
follows. Thereis a set S O N* with S N N™= & and a routing of S with base
N*. Inspecting the cut Q =[S, N \ S], determine if there is an arc in Q" that
is green or white, or an arc in Q™ that is green or black.

If there is not, the algorithm halts; in this case the painted path problem has
no solution. (Indeed, as seen in the previous discussion of cuts, if the problem
had a solution P, there would have to be at least one arc in P*N Q™ or in
P~N Q7, and this is impossible under the circumstances without violating the
color requirements.)

Sec. 2G.* PRIORITY RULES AND MULTIROUTINGS 35

Figure 2.5

On the other hand, if there is such an arc j, let 8(i) = j, where i is the node
of j not in S, and redefine S as S U {i}. The extended 6 is then still a routing
compatible with the painting. If i € N~, the algorithm halts: the f-chain P
from N* to i solves the painted path problem. If i ¢ N~, then again S N N™=
&, and the general step is repeated.

ExaMmPLE 1

A network is shown in Figure 2.5 with two distinguished nodes s and s’ and a
painting of the arcs; here N*= {s} and N™= {s’}. The notation indicates
how the corresponding painted path problem was solved by the algorithm. The
node i, is the one added to S at the kth iteration, and 6(i,) is the unique
“heavy” arc joining i, to a node of lower index. The solution is the path

Constructing a Maximal Routing

The painted network algorithm can also be applied usefully with N~ = &.
Termination then comes only with a cut (possibly the empty cut). At this point
the set S consists of all possible nodes that can be reached from N* by paths
compatible with the painting, and the routing 6 embodies a system of paths to
all these nodes. Then @ is called a maximal (compatible) routing with base N™,
relative to the given painting.

2G.* PRIORITY RULES AND MULTIROUTINGS

In some of its details the painted network algorithm could be implemented in
different ways, and this could affect its performance on a computer and its

36 Chap. 2. PATHS AND CUTS

qualities as a subroutine in other algorithms. Supplementary procedures for
handling “ties” are the chief source of flexibility. At each step a node i & S is
reached by way of an arc j from a node i’ € S, and then i is added to S. But
there may be more than one such combination meeting the requirements, so
additional criteria can be brought into play in making a choice, or several
combinations can be processed in the same iteration.

An optional rule that will later be seen to have important theoretical
consequences is the following. In selecting the arc j to be used, always prefer a
green arc if available, rather than a white or black arc. This case will be
referred to as the painted network algorithm with arc discrimination.

Another approach is to set up a “priority” ordering for nodes in S and then
look to the priority of i’ in choosing the combination to be used. There are two
common ways of defining priorities, as will be explained, but both refer to the
following pattern of implementation.

In the initial iteration (where S = N™) the priority ordering of the nodes is
introduced arbitrarily, and it is subsequently extended to new nodes as they
are added to S. As the algorithm progresses, certain of the nodes of S achieve a
special but permanent status; they are said to have been thoroughly scanned.
(Initially, no nodes are in this category.) In a general iteration with N*C § C
N\ N7, one takes i’ to be the node of highest priority among those in S that
have not yet been thoroughly scanned. The arcs incident to i’ are then
inspected one by one to see if any meets the prescription for crossing the cut
0 =[S, N\ S] to some new node i (i.e., a green or white arc j ~ (i’, i) with
i & S, or alternatively a green or black arc j ~ (i, i") with i & §). If such an
arc j is detected, one proceeds as already described (defining 8(i) = j and
adding i to S with a certain priority). Otherwise the node i’ is deemed
henceforth to have been thoroughly scanned. Then one passes to the node of
next highest priority among those in § that have not yet been thoroughly
scanned, and so on. In the case where there are no nodes in S that have not yet
been thoroughly scanned, the algorithm terminates with the cut Q, there being
no solution to the painted path problem.

To get the most out of this implementation, bookkeeping details can be
added to avoid duplication of effort from iteration to iteration in the inspec-
tion of the arcs emanating from a particular node.

The two most important ways of generating the priorities that are invoked
in this procedure are the rule of breadth-first search and the rule of depth-first
search. In breadth-first search each new node that is added to S is regarded as
having a lower priority than any of the nodes already in S. (It is sent to the end
of the scanning queue.) In depth-first search it receives a higher priority than
any of the others.

The effect of breadth-first search is to keep the arc inspection procedure
focused on a particular node i’ until i’ has been thoroughly scanned. This
simplifies some aspects of the bookkeeping. It also has the consequence that
the solution path which is obtained uses as few arcs as possible (Exercise 2.20).
Breadth-first search is closely related to the “multipath” version of the painted
network algorithm that will be explained later in this section.

Sec. 2G.* PRIORITY RULES AND MULTIROUTINGS 37

The rule of depth-first search amounts to the following. If, having arrived at
some node i’, one finds it possible to pass to a new node i (not previously
encountered), one always does so. Otherwise i’ is permanently removed from
the list of nodes worth looking at, and one backtracks (following the routing)
to the node from which i’ was reached.

Somewhat surprisingly perhaps, depth-first search can lead to dramatic
improvements in efficiency in certain graph-theoretic applications (see Section
2M for references). The success lies in taking advantage of particular ways that
networks can be represented and manipulated in a computer. But some
reservations are in order, lest one think that depth-first search should therefore
be used in all implementations of the painted network algorithm. When an
algorithm is intended, like this one, as a building block in other computational
procedures covering a wide variety of situations, its efficiency cannot always be
engineered or assessed in isolation. Certain features may take on an unantic-
ipated significance in a new context.

For example, depth-first search may well conflict with the rule of arc
discrimination mentioned earlier. It is therefore unusable in circumstances
requiring the special results produced by arc discrimination (e.g., see Exercises
4.11 and 4.42). It is also inferior in certain fundamental applications to flow
problems where breadth-first search, in effect, turns out to be crucial (see
Section 3J). For theoretical purposes, then, there is obviously wisdom in trying
to concentrate on the essence of a procedure like the painted network algo-
rithm and otherwise trying to leave it relatively flexible and open to adapta-
tion.

Last among the procedures for handling “ties” that deserve mention here is
one where a choice is not made, but instead all the tied combinations are
processed together on an equal basis. This means in particular that more than
one arc may be eligible for routing designation as 6(i) when a node i is
reached, so it is necessary to deal with a set ©(i) of such arcs.

The concept of a multirouting © of S with base N* becomes useful. This is
just like that of a routing, except that ©(i) is a set of arcs, any one of which
can be followed in tracing back from nodes of S\ N* to S. In other words, ©
is a multirouting of S with base N if it associates with each nodei € S\ N* a
nonempty arc set © (i) such that no matter what element (i) might be selected
from ©(i) for each i, the resulting mapping 8 would be a routing of S with
base N*.

Thus a multirouting ©, in contrast to an ordinary routing, generally
represents a whole family of paths from N* to each node i of S\ N*. These
are spoken of as ©-paths, and © is said to be compatible with a given painting
if all these paths are.

The multipath version of the painted network algorithm will now be de-
scribed. In the general step the data on hand are as in the basic algorithm,
except that there is a multirouting © rather than a routing §. We determine the
set consisting of all the nodes of N \ S that can be reached from S by green or
white arcs in Q7, or by green or black arcs in Q~ (where Q is the cut
[S, N\ §)), and for each such node i we denote the corresponding arc set by

38 Chap. 2. PATHS AND CUTS

©(#). All these nodes are then added to S, and unless N~ has been reached, the
step is repeated. (If no nodes can be added to S in this way, the algorithm
terminates as before with the cut Q, whose nature indicates that the painted
path problem has no solution.) Clearly this procedure constructs a multirout-
ing with base N* that is compatible with the given painting and (upon
favorable termination) yields a possible multiplicity of compatible paths P:
N*— N~. Claim: These ©-paths then constitute all the solutions to the painted
path problem that use r arcs, where r is the number of iterations (of the preceding
type) taken to reach N, and moreover r is the smallest number of arcs possible
for a solution path. Indeed, if we denote by N, the set of nodes reached on the
k™ iteration (k = 1,...,r), it is easy to see by induction that N, consists of all
nodes reachable from N* by compatible paths containing k arcs (but not
reachable by compatible paths containing fewer arcs). For each i € N, the
arcs in ©(7) give all the possible ways i can be reached from nodes in N, _,
(where N, = N*). Any compatible path P: N*— N~ that uses only r arcs must
have its consecutive nodes in N, N;,...,N, and therefore be one of the
©-paths in question.

2H. THEORETICAL IMPLICATIONS OF THE ALGORITHM

The fundamental information furnished by the painted network algorithm can
be summarized elegantly in terms of a complementary problem. Let us say that
Q is a cut that separates N* from N~ if Q is of the form [S, N\ S] for some
node set S such that S D N* and S N N™= &. The notation for this is Q:
N*|N-.

Painted Cut Problem. In the network G, two nonempty disjoint node sets N*
and N~ are given, as well as a painting of the arcs by the colors green, white,
black, and red. The problem is to determine a cut

Q:N*| N~
(i.e., separating N* from N™) such that every arc in Q™ is red or black, whereas
every arc in Q~ is red or white.

COLOR PATHS CUTS
green two-way no-way

white one-way forward one-way backward
black one-way backward one-way forward
red no-way two-way

Figure 2.6

Sec. 2H. THEORETICAL IMPLICATIONS OF THE ALGORITHM 39

A cut meeting the color requirements is said to be compatible with the
painting, and if it also separates N* and N7, it is a solution to the painted cut
problem. Note the duality between the color code for paths and the one for
cuts, as tabulated in Figure 2.6.

The painted network algorithm furnishes a constructive proof of the follow-
ing fact.

Painted Network Theorem. Let N* and N~ be two nonempty disjoint subsets of
the node set N. Then for each painting of the arcs of G by the colors green, white,
black, and red, one and only one of the following assertions is true:

1. The painted path problem has a solution P.
2. The painted cut problem has a solution Q.

Indeed, Alternatives 1 and 2 correspond to the two possible outcomes of the
algorithm when it terminates, as it ultimately must. If it terminates without a
path P: N*— N~, one has a cut Q: N* | N~ with the property that no arc in
Q™ is green or white, whereas no arc in Q™ is green or black. But then Q is a
solution to the painted cut problem. The existence of such a cut precludes the
existence of a path solving the painted path problem, so Alternatives 1 and 2
are mutually exclusive as claimed.

It is possible in Alternative 2 for Q to be the empty cut, if G is not
connected and N* and N~ are contained in different components. But this is
not a case of real interest.

There is another result closely related to the painted network theorem that
we shall often want to use in a constructive manner. To formulate it in the best
way, we need, parallel to the concept of an elementary path, that of an
“elementary cut.”

A cut Q is said to be elementary if the deletion of its arcs would increase the
number of components of the network by exactly 1. For G connected, this is
equivalent to the property that Q is of the form [S, N\ S], where @ # S # N
and every pair of nodes in S can be joined by a path using only nodes of S,
and likewise every pair of nodes in N \ S can be joined by a path using only
nodes of N \ S. Some of the possibilities for nonelementary cuts are illustrated
by Figures 2.3 and 2.7.

A fact that needs to be recorded theoretically, but for which we will not
actually have much practical use, is that every nonempty cut Q can be expressed
as the disjoint union of elementary cuts, in the special sense that there exist
elementary cuts Q,,...,Q, having no arcs in common, such that

Q"=Qf UV ---UQ; and Q7=Qr U ---UQ.

(see Exercise 2.9). This is analogous to the fact that a path without multiplici-
ties, such as illustrated in Figure 2.2, can be expressed as the (arc-)disjoint
union of a set of elementary paths.

40 Chap. 2. PATHS AND CUTS

Figure 2.7

Minty’s Lemma. Given any painting of the network G by the colors green, white,
black, and red, and any arc j that is white or black, one and only one of the
following assertions is true:

1. There exists an [elementary] circuit P such that P uses j and is compatible
with the painting.
2. There exists an [elementary] cut Q such that Q uses j and is compatible
with the painting.

The word “elementary” has been placed in brackets in both Alternatives 1
and 2 to indicate that its presence or absence has no effect on the validity of
the result. This has already been recognized in the case of paths: if there exists
a path meeting the conditions, it can be reduced to an elementary path meeting
the same conditions by a simple procedure. The corresponding fact about cuts
follows from the decomposition principle just cited: given a cut Q meeting the
conditions, it can be replaced by whichever of the “subcuts” Q, in the
decomposition is the one containing the arc j.

Minty’s lemma can be derived from the painted network theorem in the
following manner (this furnishes, of course, a constructive method, to be
referred to as Minty’s algorithm, for verifying which of Alternatives 1 and 2
holds in a given case). Designate the two nodes of a given arc j by s and s,
with the notation chosen, so that j ~ (s, s) in the case where j is white but
j ~ (s, s”) in the case where j is black. Apply the painted network algorithm
with N*= {s} and N™= {s’}. If a solution Q = [S, N\ S] to the painted cut
problem is obtained, it necessarily contains j (because s € S, s’ ¢ S) and
therefore satisfies Alternative 2 of Minty’s lemma; conversely, any cut with the
latter properties solves the painted cut problem. On the other hand, a solution

Sec. 21.* APPLICATION TO CONNECTEDNESS 41

Figure 2.8

to the painted path problem, if it is elementary (as can be supposed without
loss of generality), is a compatible path P’: s — s’ which does not use j. (The
reason why it cannot use j is that there is only one elementary path from s to s*
that does so, i.e., s, J, s’, and this does not meet the color requirements because
of the way s and s’ were chosen.) Such paths P’ correspond one-to-one with
elementary circuits P satisfying Alternative 1 of Minty’s lemma: P = P’, j, s.

A fact not as evident, but nevertheless of some theoretical interest in
motivating some generalizations to be made later, is that the painted network
theorem can in turn be derived from Minty’s lemma. The two results are
therefore equivalent from a theoretical point of view. This is seen from Figure
2.8. The setting of the painted network theorem is extended, as shown, by the
addition of certain new arcs and nodes, including a special arc j. All the new
arcs are painted white, and Minty’s lemma is applied. Alternatives 1 and 2 of
the two results are found to be in direct correspondence. (A compatible cut in
the extended network, if it contains j, cannot contain any other of the added
arcs, due to their all being white.)

2L.* APPLICATION TO CONNECTEDNESS

The painted network algorithm provides an efficient means of testing whether a
network is connected and, if not, determining its components. Such a test
sometimes plays a part in computational schemes where a number of arcs are
tentatively removed from a network.

Select an arbitrary node s, and apply the algorithm with N*= {s}, N"= &,
and all arcs painted green. On termination, there will be a maximal routing 6
with base s (i.e., base {s}) corresponding to a certain set S containing s. From
the nature of the painting it is clear that S consists of all nodes reachable by
paths starting at s (the nodes connected to s, as defined in Section 2C), and §
describes a particular system of paths accomplishing the task. If S = N, G is
connected. If not, then the nodes in S, along with the arcs incident to them,
form the component of G containing s. To determine another component,

42 Chap. 2. PATHS AND CUTS

choose any node not in S and repeat the procedure. After a finite sequence of
such calculations all the components will have been identified.

The corresponding fest for strong connectedness needs just twice the effort.
Apply the algorithm as before, starting from an arbitrarily chosen node s, but
with all arcs white. This yields a maximal compatible routing 6, associated
with a node set S,. Then repeat the application with the arcs all black,
obtaining 6, and S,. Obviously, the nodes in S,, (besides s) are those that can
be reached by a positive path from s, whereas those in S, are the ones from

-~ - - —_——-—

Figure 2.9

Sec. 2J.* ACYCLIC NETWORKS 43

which s can be reached by a positive path. Therefore the set § = S, N S, is
comprised of all the nodes strongly connected to s. If S = N, G is strongly
connected. If not, S furnishes the strong component containing s; see Figure
2.9.

Sometimes a mixed sort of connectedness may be in question. In the case of
a city street network one can paint all two-way streets green, all one-way
streets white, and all streets presently to be closed for repairs red. Will it be
possible to go from any node to any other node?

2J.* ACYCLIC NETWORKS

The property “opposite” to G being connected is presumably for G to be
completely disconnected, that is, to be a network whose components are all
isolated nodes. What then is opposite to G being strongly connected? A case
can be made for assigning this role to the property that G is acyclic, which
means G possesses no positive circuits. The duality between the two properties
is explored more fully in the exercises at the end of this chapter (see Exercises
2.26 through 2.29); for instance, G is acyclic if and only if each of its strong
components consists of a single node.

The class of acyclic networks is of great importance. Such networks often
appear in models where an arc j ~ (i, i”) represents an irreversible causal or
temporal relationship between / and i”. For example, the dynamic version of a
network is by nature acyclic if the “durations™ are all positive.

There is also a close connection between acyclic networks and strict partial
orderings. Recall that a strict partial ordering on a set is a binary relation “ < ”
satisfying the axioms:

1. Antisymmetry, that is, i < i’ precludes i’ < i.
2. Transitivity, that is, i < i’, i’ < i”, implies i < i”.

In such a setting the elements of the set can be regarded as the nodes of a
network G whose arcs are the pairs j = (i, i”) such that i < i’. Obviously, G is
acyclic, for the existence of a positive circuit, amounting to a string of
“inequalities” i < i’ <,..., <, would present a conflict between transitivity
and antisymmetry. Also G is without parallel arcs.

Conversely, any acyclic network G without parallel arcs corresponds to a
certain relation < on the node set N: i < i’ if and only if there is an arc j
(necessarily unique) such that j ~ (i, i"). Since G has no positive circuits, the
relation is antisymmetric (i < i’ <i is impossible). But without something
further it might not be transitive and therefore nor a strict partial ordering. The
“something further” consists of passing to an induced relation: i <°;i’ if and
only if there is a positive path in G from i to i’ (or equivalently, a string
I < --- <’). This relation is still antisymmetric, though also transitive, and

44 Chap. 2. PATHS AND CUTS

therefore it does represent a strict partial ordering. It is called the transitive
closure of <, and the network that is obtained by adding an arc j ~ (i, i’) for
each pair such that i < °i’, but not i < i’, is called the transitive closure of G.

A common case where G is the network associated with a strict partial
ordering is that where N is a collection of subsets of some set and i < i’ means
thati Ci"and i # i’

Testing whether a given relation <, or its transitive closure < °, is a strict
partial ordering therefore amounts to testing whether a network is acyclic. How
can this be accomplished? One way would be to check whether the strong
components of the network are just the individual nodes, but this would
involve much duplication in the calculations from node to node. A more
efficient procedure is furnished in Exercise 2.31. If part of the interest lies in
detecting some specific positive circuit that prevents the network from being
acyclic, then the algorithms of Chapter 6 can be specialized to this purpose (see
Exercise 6.30).

2K.* PLANAR NETWORKS AND DUALITY

The duality between paths and cuts is brought to its fullest realization in the
case of planar networks. These are networks that can be represented pictorially
in a plane (or equivalently, on the surface of a sphere) without any arcs
crossing each other away from the nodes.

Consider any such representation of a planar network G that is connected
and moreover cannot be disconnected by the removal of any single arc. A dual
network G* may then be constructed, following the pattern in Figure 2.10. The
nodes of G* are the regions into which the plane (or sphere) is partitioned by
the representation of G. These are called the faces of G (relative to the
particular representation). Each arc of G borders two different faces (due to the
connectedness assumptions). Each such pair of faces is joined by an arc of G*
oriented so as to cross the corresponding arc of G “from right to left.” (The
determination of which is “right” and which is “left” depends of course on
which side of the plane the network is viewed from; assume that a particular
side has been designated as part of the specification of the representation.)

Observe that G* is a network satisfying the same assumptions as G. The
faces of G* correspond to the nodes of G. If G* is thought of formally as
viewed from the other side of the plane, then its dual G** can be identified
with G (rather than just the “reverse” of G). \

Circuits in G correspond to cuts in G*, whereas cuts in G correspond to circuits
in G*. Moreover circulations in G correspond to differentials in G*, whereas
differentials in G correspond to circulations in G*.

This thorough form of duality is interesting and illuminating, but of course
it works only for special networks and depends on the particular geometric
representations of them. For this reason it does not usually serve as an
important vehicle in practical applications. In contrast, the general duality

Sec. 2L.* EXERCISES 45

ST -- VAR -
\~§~“* _—-—"’/
=3 _FIIT-
Figure 2.10

between circuits and cuts, circulations and differentials, which is valid for all
networks, is very significant in both the organization of the overall theory and
the design of algorithms for solving many problems.

2L.*

2.1.

2.2

23.

24.

EXERCISES

Is a path necessarily without multiplicities if it uses no node more than
once, except that its initial and terminal nodes might coincide? Show
that this is true except for one degenerate case.

(Minimality of Elementary Circuits). Prove that a circuit P without
multiplicities is elementary if and only if it is minimal in the sense that
there is no circuit without multiplicities that uses only arcs of P but at
least one arc fewer. In fact if P is elementary and P’ is a circuit without
multiplicities which uses only arcs of P, then P’ must be either P or the
reverse of P.

What are the facts, analogous to those in Exercise 2.2, in the case of
paths that are not circuits?

(Euler Circuits). One of the origins of graph theory was Euler’s problem
of the seven bridges of Konigsberg. The bridges are shown in Figure
2.11. Is it possible to take a walk that starts and ends at the same place,
having crossed each bridge exactly once? In general an Euler circuit in a

2.5.

2.6.

2.7.

28.

Chap. 2. PATHS AND CUTS

I
s

Figure 2.11

network G is a circuit that traverses each arc exactly once (the direction
doesn’t matter). Assuming the network is connected, prove construc-
tively that an Euler circuit exists if and only if, for every node i, the
number of arcs incident to i (called the degree of i) is even. What does
this say about Konigsberg?

(Positive Euler Circuits). A positive Euler circuit is a circuit that
traverses each arc of the network exactly once and always in the
positive direction. Assuming the network is connected (with more than
one node) prove constructively that a positive Euler circuit exists if and
only if for each node i the number of arcs with i as initial node (called
the outward demidegree of i) equals the number of arcs with i as
terminal node (called the inward demidegree of i).

(Notice that the problem of finding a circuit that traverses each arc
twice, exactly once in each direction, can be reduced to that of de-
termining a positive Euler circuit: replace each arc by a pair of
oppositely directed arcs that can be traversed only positively.)

(Connectedness). Verify that the relations “connected to” and “strongly
connected to” (for pairs of nodes, as defined in Section 2C) satisfy the
axioms of an equivalence relation—reflexivity, symmetry, and transitiv-
ity.

(Acyclic Metanetwork of Strong Components). Let us form a network G’
whose nodes are the strong components of the network G; there is an
arc in G’ from G, to G, if and only if there is an arc in G whose initial
node lies in G; and whose terminal node lies in G,. (Described a
different way, G’ is obtained by coalescing each strong component of G
into a single node and then coalescing each bundle of arcs in parallel
into a single arc.) Prove that, in G’, there are no positive circuits (i.e., G’
is acyclic as defined in Section 2J).

(Intersections of Circuits and Cuts). Prove that if P is an elementary
circuit and Q is a cut, then the number of arcs common to P and Q is

Sec. 2L.* EXERCISES 47

2.9.

2.10.

211

2.12.

2.13.

2.14.

2.15.

2.16.

even. In fact give two proofs: one based on a direct “geometric”
argument and another in terms of the inner product e, - .

(Decomposition into Elementary Cuts). Let Q be a nonempty cut. Prove
there exist elementary cuts Q,,. .., Q, (definition in Section 2H) that are
disjoint (with respect to arcs, of course) and satisfy Q*= Qf U --- U
Qf and Q"= Qf U ---U 0.

(Hint. First, write Q =[S, N\ S] and partition S into the subsets S,
corresponding to components that would be obtained if the arcs of Q
were deleted from the network. This will yield a decomposition, in
terms of the cuts Q; = [S;, N\ S,], serving as a half-way achievement.)

(Cut Criterion for Circulations). Prove that a flow x is a circulation if
and only if, for every cut Q, one has e, x = 0. (e, = incidence
function/vector for Q.)

(Hint. Observe that each row of the incidence matrix of the network is
the incidence vector for a certain cut.)

(Cut Criterion for Differentials). Prove that v € R* is a differential if
and only if v can be expressed as a linear combination of incidences e
for various cuts Q. (Invoking Exercise 2.7, one could restrict the cuts to
being elementary.)

(Circuit Criterion for Differentials). Prove that v € R4 is a differential if
and only if, for every elementary circuit P, one has e, * v = 0.

(Hint. Reduce to the case of a connected network G and argue by
induction, building G up one node at a time.)

(Circuit Criterion for Circulations). Prove that x is a circulation if and
only if x can be expressed as a linear combination of incidences e, for
various elementary circuits P.

(Hint. Use Exercises 1.8 and 2.12. A more constructive approach will
be available in Chapter 4.)

(Initial Side of a Cut). Let Q be a nonempty cut in a connected
network. Prove there is a unique node set S such that [S, N\ S]= Q.
(Hint. Let N* denote the set of all initial nodes of arcs in Q* and
terminal nodes of arcs in Q~; the set S will consist of N* and all nodes
reachable from N* by paths not meeting Q. Notice that this furnishes a
constructive method of determining S: apply the painted network
algorithm with the arcs of Q painted red and all other arcs green.)

Demonstrate by counterexample that the assertion of Exercise 2.14 can
fail to be true when the network is not connected.

(Minimality of Elementary Cuts). Prove that a nonempty cut Q is
elementary if and only if it is minimal in the sense that there is no
nonempty cut using only arcs of Q but at least one arc fewer. In fact if
0 is elementary and Q’ is a nonempty cut using only arcs of Q, then Q’
is either Q or the reverse of Q.

2.17.

2.18.

Chap. 2. PATHS AND CUTS

(Hint. Reduce to the case of a connected network and make use of the
preceding exercise.) ‘

(Problem of the Missionaries and Cannibals; Berge). A total of M
missionaries and C cannibals must cross a river using a boat that can
take only B of them at a time. The cannibals must never outnumber the
missionaries—on either bank of the river or in the boat—or disaster
will ensue (from the missionaries’ point of view!). The boat cannot cross
the river by itself. Initially the boat and all the missionaries and
cannibals are on the left bank.

Set up the problem as one of finding a path from a node s to another
node s’ in a certain network.
(Hint. Think of this as a discrete system in the manner of Example 2
in Section 1B, the states being the possible “nondisasterous” configura-
tions of missionaries, cannibals, and boat. These configurations need to
be described precisely, along with the criteria for which ones can
directly follow which others.)

(Painted Network Algorithm). Apply the painted network algorithm to
the example in Figure 2.12 with N*= {s}, N™= {s’}. Describe what
happens in the fashion of Example 1 in Section 2F.

Sec. 2L.* EXERCISES 49

2.19.

2.20.

2.21.

2.22.

2.23.

Figure 2.13

(The Knight’s Gambol; Berge). For the chessboard shown in Figure
2.13, is it possible for a knight to pass from square s to square s’ by
some succession of moves without landing on any of the crossed
squares, and if so, how? Apply the painted network algorithm.

(Hint. View the squares as the nodes of a certain network, but do not
actually draw a representation of it. Execute the algorithm in adapted
form directly on the chessboard diagram, representing the routing in a
suitable way as it is calculated.)

(Least Solution to the Painted Path Problem). Show that if the painted
network algorithm is executed with breadth-first search (see Section
2G), then the solution (if any) that is obtained to the painted path
problem is one using the fewest arcs possible. (In fact there is a close
connection with the multipath version of the painted network algorithm
and the multirouting © that it generates. Let Ny(= N™¥), Ny,...,N, be
the sets defined at the end of Section 2G. Demonstrate that under
breadth-first search the remaining nodes in S are precisely those of N,
at the stage when the last of the nodes in N, _; has been thoroughly
scanned. Moreover the routing @ satisfies (i) € (i) for all i, and the
path it yields therefore has the minimality property in question.)

Are there any cases where the painted network algorithm must take
exactly ¢ + 1 iterations (¢ = number of nodes not in N* or N7)?
What does the painted network theorem say if all arcs are painted
white? Show that this special case is actually equivalent to the general
case.

(Hint. Apply the special result to an appropriately modified network.)

(Arc Dichotomy). Prove that the arc set A of an arbitrary network G
satisfies
A=A,V 4,, ApNAy= 2,

2.24.

2.25.

2.26.

2.27.

2.28.

2.29.

2.30.

2.31.

2.32.

2.33.

Chap. 2. PATHS AND CUTS

where A, is the union of all positive circuits (i.e., the set of all arcs
belonging to positive circuits) and A, is similarly the union of all
positive cuts (or equivalently, of all negative cuts).

Can the painted network theorem be sharpened to speak only of
elementary cuts? Show that this is true when the network is connected
and N* and N~ consist of single nodes, but sometimes false otherwise.
(Existence of Circuits). An arc j is called an isthmus if, by itself,
it constitutes a positive cut. Show that this is true if and only if there
is no elementary circuit containing j. Furthermore removal of an isth-
mus always increases the number of components of the network by
exactly 1.

(Hint. Apply Minty’s lemma.)

(Acyclic Networks). Prove that a network is acychc if and only if every
arc belongs to some positive cut.

(Strong Connectedness). Prove that a connected network is strongly
connected if and only if every arc belongs to some positive circuit. Also
it is strongly connected if and only if it contains no nonempty positive
cut.

Compare Exercises 2.26 and 2.27 with Exercises 2.23 and 2.7. What are
the relationships?

(Acyclic Networks). Prove that a network is acyclic if and only if each
of its strong components consists of a single node.

(Predecessors and Successors). A node i is said to be an immediate
predecessor of a node i’ if there is an arc j ~ (i,i’) and similarly an
immediate successor in the case of j ~ (i’, i). Prove that if every node
has an immediate predecessor, then every node also has an immediate
successor. Moreover in this event the network cannot be acyclic. Must it
be strongly connected?

(Test for Acyclicity). Justify the following algorithm. Let N* denote the
set of all nodes not having an immediate predecessor (see Exercise 2.30).
If N*= g, the network is not acyclic. If N*# @, apply the painted
network algonthm with all arcs painted white (and N~ taken empty),
but with one extra condition: never consider for addition to the set S at
any iteration any node having an immediate predecessor not in S. Stop
when no further progress is possible under this restriction. If at that
point S = N, the network is acyclic, whereas if S # N, it is not.
(Finding all Paths). Modify the painted network algorithm so that the
information it generates furnishes, in some suitable sense, all solutions
to the painted path problem.

(Note. Not only with the calculation be more tedious, but very often

there will be such an enormous number of solutions that it would be
impractical to record them all.)

(Number of paths). Let M be the adjacency matrix of a network (see
Section 1C) and M* its kth power. Prove that the entry of M* in the

Sec. 2M.* COMMENTS AND REFERENCES 51

row and column corresponding to the nodes i and i’, respectively, is the
number of positive paths from 7 to i’ containing exactly k arcs.

2.34. (Planar Networks). Let G be a connected planar network that cannot be
disconnected by the removal of any one arc, and let F denote the set of
faces of G relative to a particular planar representation. For each face
k € Fand arcj € 4, let

1 if the face on the right side of j is k
e*(k, j) = —1 if the face on the left side of j is k
0 ifj is not one of the boundary arcs of k.

Associate with each flow x € R the function z = rot x on F defined by

z(k) = (rotx)(k) = X e*(k, j)x(j).

JEA

(This is the sum of the fluxes around the boundary of the face k, with
signs corresponding to the counterclockwise direction.)

Show that the array of values e*(k, j) can be identified with the
incidence matrix of the dual network G*. Moreover a flow x in G
satisfies rot x = 0 if and only if there is a potential u on N such that
x = Au. On the other hand, a flow x is a circulation in G if and only if
there is a function w on F such that

x(j)= -Xw(k)e*(k, j) forallje A.
keF

2M.* COMMENTS AND REFERENCES

The theory of graphs and networks has long suffered from a lack of standard
terminology, with various authors using different words for the same thing or
the same word in conflicting senses. In part this is due to the many areas of
application and the different viewpoints they suggest as to which concepts are
the important and fundamental ones.

In the case of “paths” and the like, it is hard to find two texts that agree,
but what is worse, none of the proposed terminologies is adequate for our
purposes. One difficulty with these terminologies lies in the tradition of
stressing a dichotomy between graphs (unoriented) and digraphs or networks
(oriented). Many authors choose a term like “path,” “chain,” “walk,” or “arc
progression” for the undirected path concept, where the arcs and even the path
have no particular orientation or direction of transversal, and a different term
for the extreme case of the corresponding directed concept, where every arc
must be traversed positively. The case that is critical for our framework, where
orientation is important but the directions in which various arcs may be
traversed can depend on various circumstances, is often ignored.

52 Chap. 2. PATHS AND CUTS

The same unsatisfactory dichotomy is seen in connection with “cuts” (more
commonly called “cut-sets”) and “circuits.” Here another difficulty arises: the
terms that are adopted are usually reserved for what we call elementary cuts
and circuits (with no words furnished for the “nonelementary” cases). Al-
though, in principle, most everything about cuts and circuits can be reduced to
the “clementary” case, this can be a nuisance in practice.

For example, the cut produced by the painted network algorithm (when the
painted path problem has no solution) will not always be elementary. To get
around this, the painted network theorem would have to be replaced systemati-
cally by Minty’s lemma, and the corresponding algorithm would have to be
augmented by a decomposition routine based on Exercise 2.9. In many
respects this would be tedious theoretically as well as unnecessarily burden-
some in computations.

The terms adopted in this book allow a simple and very flexible treatment
that in the context of orientation requirements (“paintings”) can depend on
various configurations of data and may be modified repeatedly. Such is the
natural setting for most of the algorithms of network optimization, as will be
seen in later chapters. It is also the motivation for a number of other changes
we have made in existing approaches, for instance in developing the painted
network theorem as a substitute for the original lemma of Minty [1960] and in
expressing it with sets N* and N~ instead of just a pair of nodes s and s".

Incidentally, Minty used paintings of three colors only. He did not admit
the category we refer to as “black,” preferring to appeal to a reversal of such
arcs when necessary so as to make them all “white.” However, this is a
“simplification” that can get in one’s way and actually force matters to come
out in a more complicated form than necessary.

The notion of a “routing” and its compatibility with a given painting is
dictated by the same goals. Other authors speak of “rooted trees” or “arbores-
cences” in similar circumstances where the question of orientation is not so
subtle. “Trees” will be discussed in Chapter 4.

The virtues of depth-first search in streamlining a number of graph-theoretic
computer algorithms are surveyed by Aho, Hopcroft, and Ullman [1974] and
Deo [1974]. See these texts in particular for refined tests for connectedness,
strong components, acyclicity, and planarity. For Kuratowski’s famous
characterization of when a graph (or network) is planar, see Wilson [1972,
Chap. 5] or Bondy and Murty [1975, Chap. 9].

Although the existence of an Euler circuit is easy to characterize (see
Exercise 2.4), the opposite holds for a Hamiltonian circuit, which is a circuit
that passes through each node exactly once. The theory of Hamiltonian circuits
is important for a number of applications but is not nearly so simple or
complete; see Christophides [1975, Chap. 10].

3

FLOWS AND CAPACITIES

In most problems involving flows there are restrictions in at least some of the
arcs of the possible flux values. There may also be restrictions on the diver-
gence values allowed at various nodes. A fundamental question is whether
there exists a flow meeting such requirements, and if so, how it might be
determined. The constructive answer to this question turns out to be crucial, in
more ways than might be expected, in various phases of the optimization of
both flows and potentials.

A particular optimization problem, more basic than the rest, is studied in
this chapter before the problem of existence is tackled: the celebrated max flow
problem of L. R. Ford and D. R. Fulkerson. Besides its strong intuitive appeal
and many important applications, it has the interesting feature of engendering
a dual problem which is entirely combinatorial in character: the min cut
problem. It helps prepare the way, theoretically and computationally, for the
subsequent treatment of other pairs of optimization problems in duality.

The climax of the development comes with the results on the feasible
distribution problem and the main algorithm for solving it. Everything in the
chapter up through Section 3I is crucial for what happens later in the book.

3A. CAPACITY INTERVALS

Although more general kinds of restrictions on flux values must sometimes be
considered, the basic case is that where the flux in an arc j is allowed to range
over a nonempty closed real interval C(j), called the capacity interval for j. It
is supposed in what follows that such an interval has been assigned to every arc
of the network G. A flow x in G is called feasible with respect to capacities if
x(j)e C(j)forallje A4.

To fix notation, we shall always express the capacity intervals by

C(j) =l (h)s e (N,

53

54 Chap.3. FLOWS AND CAPACITIES

where ¢¥(j) is called the upper capacity for the arc j and c¢7(j) the lower
capacity. The only conditions placed on ¢*(j) and ¢ () are those correspond-
ing to C(j) being a nonempty real interval, namely,

e (j) = ()), e (j) > —o0,¢7(j) < +o0.

In particular, ¢*(j) could be + oo and ¢7(j) could be — oo, in which case the
generic closed bracket notation for C(j) is not apt: one really has C(j)=
(=00, +), not C(j) = [— o0, + o0]. Always remember, whatever the exigen-
cies of generic notation might suggest, that C(j) is a real interval and never
contains + 0o or — oo, which are not real numbers and can never be flux values
for any flow. Nevertheless, + oo and — co will often be referred to as possible
“endpoints” of C(j), and they will enter into certain arithmetic calculations
where their presence is convenient and harmless.

The following examples of capacity intervals should especially be kept in
mind:

1. C(j)=[—c,c]with0 < ¢ < + o0; the flow x can use the arc j in either
direction, but the flux must satisfy |x(j)| < c.

2. C(j)=10,c] with 0 < ¢ < +o0; same as the preceding example, but
the arc can only be used in the positive direction.

3. C(j) =10, + o0); the arc can only be used in the positive direction, but
there is no upper bound on the flux.

4. C(j)= (—o0o, +0); in effect there is no constraint whatever on the
flux in the arc j.

5. C(j)=/[c,c] with —o0 < ¢ < +o00; there is an exact requirement,
x(j)=c

The usefulness of other types of intervals is less apparent at this stage, but
they enter the picture when certain problems are converted from one form to
another, as well as in subroutines used by a number of algorithms.

3B. FLUX ACROSS A CUT
The presence of capacity intervals places a direct constraint on the flux in each
arc, but there are other constraints on a flow which then follow indirectly. The

most important of these is associated with cuts.
For a cut Q and flow x, the quantity

egrx= 3 x(j)— X x(j)

jeQ* JEQT

(where e, is the incidence function for Q) is called, naturally enough, the flux

Sec. 3B. FLUX ACROSS A CUT S5

of x across Q. It may be interpreted as the net amount of material flowing
across Q in the direction of the orientation of Q.

To reinforce this interpretation, write Q = [S, N\ S] for a node set S, and
define the divergence of x from S by '

y(8)= Y y(i), wherey = divx.

ieS

This quantity represents the net amount of material originating in S (i.e., the
total amount of source minus the total amount of sink). It is related to the first
quantity by the fundamental divergence principle:

[divergence of x from S| = [flux of x across Q1],
or in symbols,

y(§)=eyp+x fory=divx,Q =[S, N\S].

The proof of the divergence principle is very elementary: using the defini-
tions of y and e, the two sides can be reduced to

Y Yeli,)x(j)=X Xe(i, j)x(5)

i€S jeA JEA IES

where e(i, j) gives the incidence of node i with arc j. The principle is
illustrated in Figure 3.1.

It is interesting to note that the “total divergence rule” of Section 1E,
written y(N) =0, can be construed as the special case of the divergence
principle where S = N (and Q is therefore the empty cut).

What constraint on the flux of x across a cut Q is implied by the flux
constraints for the individual arcs of Q7 For arcs j € QF, one has ¢7(j) <

~_——— Q

[S,N\S]
[flux of x across Q]

[divergence of x from S] = 2

Figure 3.1

56 Chap.3. FLOWS AND CAPACITIES

x(j) < ¢*(j), whereas for j € Q~ the corresponding limitation, expressed in
the direction of flow given by the orientation of Q, is —c*(j) < —x(j) <
—c¢7(Jj). Adding over all the arcs of Q, one gets

¢~ (Q) < [flux of x across Q] < ¢*(Q),

where

(@)= X c()- X (),

jeo* T
(@)= X ()= X ()
jeo* jeo

(In these sums, + oo and — oo are treated in the obvious way; it is impossible
for the problematical expression (+ o) + (— o) to arise.)

The number ¢*(Q) is called the upper capacity for the cut Q, and ¢~ (Q) the
lower capacity. Obviously, these are the endpoints of the nonempty closed real
interval

(@)= X c(H)- X <))

j€o* j€Q”
that is, the set of all real numbers that can be represented in the form

Y x()- T x())

jeg* j€Q”

as x(j) ranges over C(j). The latter is the capacity interval associated with Q.
The notation

c(Q) = [c7(0),c*(Q)]

will be used, subject to the same warning issued previously: always remember
that C(Q) is a real interval and never contains + co or — oo, even though these
values may appear as ¢*(Q) or ¢7(Q), respectively.

The definitions of ¢*(Q) and ¢7(Q) give occasion for mentioning a conven-
tion that will be used throughout this book, namely, that an empty sum of
numbers is to be interpreted as 0. Then cases where Q"= @ or Q"= & do not
require special treatment.

3C. MAX FLOW PROBLEM

Let G be a network with capacity intervals, and let N* and N~ be nonempty
disjoint sets of nodes of G.

Sec. 3C. MAX FLOW PROBLEM 57

Consider any flow x that is conserved at all nodes outside of N* and N~, or
in other words, has y(i) = 0 for all i € (NTU N7), where y = div x. The total
divergence rule of Section 1E says that

0= y(i)= X y()+ X »(),

ieN ieN*t iEN™
or in the notation of the preceding section,
y(N*) = —y(N").

Here y(N™) represents the net amount of source in N*, whereas — y(N ") is the
net amount of sink in N~. The common value is thus to be interpreted as the
net amount flowing from N* to N™. It will be called the flux of x from N* to
N~. Of course this notion makes sense only for a flow that is conserved at all
nodes outside of N* and N~.

The following problem is the object of the present investigation.

Max Flow Problem. Maximize the flux from N* to N~ over the set of all flows
X that are conserved at all nodes outside N* and N~ as well as feasible with
respect to capacities. .

Figure 3.2 displays a max flow problem which will be solved later in this
chapter. Capacity intervals are shown next to the arcs. ,

For the time being, the existence of at least one flow satisfying all the
constraints (i.e., the conditions of .conservation and capacity) is taken for
granted. (The question will be reopened in Section 3H.) As x ranges over the
set of such flows, a corresponding (nonempty) set of flux values from N* to
N~ is produced. The least upper bound of this set of flux values is called the
supremum in the max flow problem. Possibly it is + co. If it is finite, there is the
question of whether it is attained by some flow x. (Attainment is clearly

[—31 2]

[-2,3]

Figure 3.2

58 Chap. 3. FLOWS AND CAPACITIES

impossible if the supremum is + oo, since no flow is allowed to have infinite
flux values in any arcs.) A flow for which the supremum is attained is called a
solution to the max flow problem.

In general, in treating problems of optimization, one uses the neutral terms
supremum (least upper bound) and infimum (greatest lower bound) when
attainment may be in question—or merely if it is not convenient at the moment
to make a positive assertion in this respect. The stronger terms maximum and
minimum are definitely to be understood as implying attainment. To avoid
misunderstandings, note that these terms always refer to certain numbers, not
to the actual solutions to the problems (i.e., the flows, potentials, or whatever,
for which these values are attained). Often the four terms are abbreviated as
sup, inf, max, and min.

Some of the special character of the max flow problem may be seen from
writing out the constraint system in full:

Y e(i, j)x(j)=0 foreveryié& N*UN",

jea
x(j) <c*(j) foreveryj € A4,
x(j)=c (j) foreveryj € A.
(Inequalities where c¢*(j) = + 00 or ¢7(j) = — oo are superfluous and can be

omitted.) Subject to this, one wants to maximize the value y(N¥) = —y(N"),
or in other words, the expression

T T el Nx()= L E eGn)x(.

iENT jEA jEA ‘ieN*

This is a linear programming problem in the variables x(j), j € 4.

A linear programming problem is by definition an optimization problem
involving a finite number of real variables as unknowns, in which a linear
function is maximized or minimized subject to a constraint system comprised
of a finite number of linear equations or weak linear inequalities. (“Weak”
refers to inequalities with < or > rather than < or > .) Many readers will
already have some acquaintance with such problems, and this will provide
them with additional motivation and insights. Some reference to linear pro-
gramming will therefore be made from time to time. However, no real
knowledge of the theory is required, and indeed, all the basic facts will
ultimately be established in the natural course of the developments in this
book.

3D. MAX FLOW MIN CUT

A simple condition on the possible flux values from N* to N~ in the max flow
problem may be derived from the relations in the preceding section, as applied

Sec. 3D. MAX FLOW MIN CUT 59

£
-~
i

Figure 3.3

to the situation schematized in Figure 3.3. If x is any flow satisfying the
constraints of the problem, and Q is any cut separating N* from N~ (recall the
notation Q: N* | N7), then

[flux of x from N* to N™] < c*(Q).

Indeed, to say that Q separates N* from N~ is to say that Q is of the form
[S, N\ S], where S D N*, SN N = @. Then y(i)=0foralli € S\ N*, so
that y(N™) = y(S). But by the divergence principle, one has y(S) = g * x (the
flux of x across Q), and an upper bound for the latter quantity is ¢*(Q).

Inasmuch as each cut Q: N* | N~ furnishes an upper bound to the
supremum in the max flow problem, the least of these upper bounds is of
interest.

Min Cut Problem. Minimize c*(Q) over all cuts Q separating N* from N~.

An immediate consequence of the preceding discussion is the inequality
[sup in max flow problem] < [min in min cut problem].

Observe that the use of “min” instead of “inf” follows our general guidelines;
the minimization is over a finite set of possibilities and therefore is sure to be
attained. As a matter of fact the equation sup = min holds between the two
problems. This is the main result to be obtained in what follows.

The full statement of the result will use the notion of a path P: N*—> N~ of
unlimited capacity, which means that

c*(j)= +o0 forallje P",
¢ (j)=—oc0 forallje P,

If a path of such type exists at all, then of course there is an elementary one
which has no intermediate nodes in N* or N™.

60 Chap.3. FLOWS AND CAPACITIES

Max Flow Min Cut Theorem (Ford and Fulkerson). Assume there is at least one
flow satisfying the constraints of the max flow problem. Then

[sup in max flow problem] = [min in min cut problem].

This common value is + oo if there is an elementary path P: N*— N~ of
unlimited capacity, whereas if there is no such path, it is finite, and the max flow
problem has a solution.

A proof of the theorem will be given in Section 3G, in conjunction with the
justification of an algorithm for solving both problems simultaneously. The
algorithm is quite different from what would correspond to solving the max
flow problem by general techniques of linear programming, and it provides a
surprising theoretical bonus.

3E. NATURE OF THE MIN CUT PROBLEM

The min cut problem is interesting for several reasons, and its character merits
further discussion. Most instructively, it can be viewed as a natural refinement
of the painted cut problem, although this is not the way it was arrived at.

This interpretation is obtained by associating with the given system of
capacity intervals the following painting of the arcs j of the network:

red ifc*(j)<+o00,c(j)>—
black if ¢*(j) <+ 00,c(j)=—
white if c*(j) =+ 00, ¢ (j) > -
green if ¢*(j) = +o00,c(j)=—

Observe that a cut Q is compatible with this painting if and only if c*(Q) < + 0.
Namely both conditions are equivalent to having ¢*(j) < + oo for allj € Q%
and —c¢7(j) < +oo for allj € Q. Assuming the existence of at least one such
cut (as the problem is otherwise trivial), one sees that there is no loss of
generality in restricting the min cut problem to the class of all such cuts. Indeed,
cuts with ¢*(Q) = + oo are of no interest in the minimization if there are cuts
with ¢*(Q) < + oo0. Thus the min cut problem consists essentially of minimiz-
ing the quantity ¢*(Q) over all cuts Q: N* | N~ that are compatible with a
certain painting.

In this setting an alternative interpretation of ¢*(Q), independent of
“capacities,” is helpful. The value ¢*(j) may be thought of as the cost of
incorporating the arc j into Q in the positive direction, and —c7(j) as the cost
of using j in the negative direction. Then ¢*(Q) is the total cost of the cut Q
(refer to the formula), and the min cut problem consists of determining the
cheapest cut separating N* from N~ that is compatible with a certain painting.
Arcs j which the painting excludes from Q% have an infinite forward cost

Sec. 3E. NATURE OF THE MIN CUT PROBLEM 61

(c*(j) = +), whereas those it forbids from Q~ have an infinite backward
cost (—c7(j) = +o0); thus cuts that violate the compatibility condition are
deemed infinitely costly.

This interpretation shows that the min cut problem could well arise in its
own right. One might start with some painting and a structure of “forward”
and “backward” costs (the two quite possibly different) for incorporating an
arc into a cut Q: N* | N~ and then look for the cheapest compatible cut.

What is remarkable is that in this context one would not dream of any
connection with “flows.” Yet if the forward and backward costs are written as
¢*(j) and —c7(J), the problem falls right into the domain of the max flow
min cut theorem (assuming of course that ¢ () < ¢*(j)).

An entirely analogous situation will be faced in Chapter 6. There interest
will center on finding a “cheapest path” P: N*— N~ that is compatible with a
given painting, and the dual problem will be to find a kind of potential
function yielding the “greatest tension” from N* to N~. The idea of con-
straints being represented by infinite costs is also an important omen for future
developments.

Another thing to discuss about the min cut problem is its discrete nature.
Since the collection of all cuts separating N* from N~ is finite, the problem
may seem, to a beginner at any rate, almost trivial: all one has to do in
principle is inspect the various cuts one by one to see which gives the lowest
value of ¢*(Q).

To dispel this notion, a simple example suffices. Suppose the network is
connected and has, outside of N* and N, at least 263 nodes, which is by no
means a fantastic number for the kinds of models handled nowadays. Accord-
ing to Exercise 2.14, the cuts Q: N* | N~ are in one-to-one correspondence
with the node sets S such that S D N* and S " N"= &, and hence the
number of them is at least 22, But this is greater than the estimated total
number of all atoms in the observable universe!" Surely, to speak of minimization
“by inspection” for a set of this size is hardly different from speaking of
minimizing a function over R” by looking at all the points individually to see
which one gives the lowest value. Nevertheless, the algorithm to be given in the
next section is capable of solving such a min cut problem quite practically and
efficiently.

Of course this is not the only case where a sharp distinction between
“discrete” and “continuous” problems is unwarranted. In science one is
accustomed to treating naturally discrete systems (matter, populations, etc.) as
if they could be represented by a continuum. On the other hand, continuous
models are often discretized. What is truly essential from the mathematical
point of view is that there be enough structure to produce pleasing and

TThere are an estimated 10° grams of matter in the observable universe (Fred Hoyle, Galaxies,
Nuclei, and Quasars, Harper and Row, New York, 1965, p. 112). The approximate number of
atoms in one gram of some element is obtained by dividing Avogadro’s number, 102, by the
atomic weight. Thus an upper bound for the number of atoms in the universe is 10° x 102 =
107° = 27624 at least by this reckoning.

62 Chap.3. FLOWS AND CAPACITIES

significant insights, as well as effective numerical approaches. The max flow
min cut theorem and its associated algorithm confirm, rather dramatically, that
this is true for the min cut problem.

3F. MAX FLOW ALGORITHM

The algorithm about to be given will simultaneously solve both the max flow
problem and the min cut problem, subject to some minor qualifications needed
to ensure its termination.

The key to being able to solve the problems simultaneously lies in the
following observation. (The notation of Sections 3C and 3D is assumed.)
Suppose one has determined a flow x satisfying the constraints of the max flow
problem, along with a cut Q: N* | N~ such that

[flux of x across @] = ¢*(Q).

Then x must be a solution to the max flow problem and Q a solution to the min
cut problem (with ¢*(Q) < +). For, as noted prior to the statement of the
min cut problem in Section 3D, one has

[flux of x across Q] = [flux of x from N* to N7],

and ¢*(Q) is an upper bound for this quantity. Equality with ¢*(Q) thus
implies there cannot be a flow satisfying the constraints and yielding a higher
flux from N* to N~ than x does. Hence x is a solution to the max flow
problem. At the same time, the flux of x from N* to N~ is a lower bound to
the minimum in the min cut problem, so that equality with ¢*(Q) implies Q
must be a solution to that problem.

The algorithm is based on a simple device for improving a given flow x
(which satisfies the constraints of the max flow problem) by superimposing on
it an additional flux along some path. An elementary path P: N*— N~ having
no intermediate nodes in N* or N7, is called flow augmenting for x if

x(j)<c*(j) forallj e P™,
x(j)>c (j) forallje P.
Then there is a number a > 0 such that the flow

x(j)+a forje P™,
x'(j) = x(j) + aep(j) = { x(j) —a forje€ P,
x(j) for all other arcs,

will again satisfy the constraints of the max flow problem. As a matter of fact «

Sec. 3F. MAX FLOW ALGORITHM 63

can be any positive real number such that
a < ct(j) —x(j) forallje P+,
a<x(j)—c(j) forallje P,
and then it will be true that
c(j)=<x'(j)<c*(j) foralje 4.

Moreover x’ will be conserved, like x, at all nodes outside of N* and N~, and
one will have

[flux of x’ from N* to N~] = [flux of x from N*to N~] + a.

This is immediate from the fact that
divx’ = divx + adive,,

where the divergence function div e, vanishes except at the initial node of P in
N7 (where the divergence is +1) and the terminal node of P in N~ (where the
divergence is —1). Thus x’ will be “better” than x, from the standpoint of the
max flow problem.

Notice that a path of unlimited capacity from N* to N~, as defined in
Section 3D, turns out to be a flow-augmenting path such that a could be
chosen arbitrarily large. Then clearly the supremum in the max flow problem
would have to be + o0.

Actually a path P: N*— N~ of unlimited capacity is precisely a solution to
the painted path problem for the painting discussed in Section 3E. A solution
to the corresponding painted cut problem is, as seen in Section 3E, precisely a
cut Q such that ¢*(Q) < + oo. Therefore, by the painted network theorem, the
existence of such a cut is equivalent to the nonexistence of a path of unlimited
capacity. Moreover the state of affairs could be determined, if in doubt, by the
painted network algorithm.

Algorithm

It is assumed that there does not exist a path of unlimited capacity from N~ to
N~ (see preceding paragraph). A flow x is given that satisfies the constraints of
the max flow problem. The arcs j of the network are then painted as follows:

green if ¢ () <x(j) <c*(j)
white if ¢ 7(j) =x(j) <c*(j)
black if ¢7(j) <x(j) =c*(J)
red if c7(j) =x(j)=c*(j)

64 Chap.3. FLOWS AND CAPACITIES

The painted network algorithm is applied. If a solution Q: N* | N~ to the
painted cut problem is obtained, it satisfies

c*(j) = x(j) forallje Q~,

¢ (j)=x(j) foralljeQ",

and consequently

[flux of x across Q] = Y, x(j) — X x(j)=c*(Q).

j€Q* JEQ”

In this case x and Q are solutions to the respective problems by virtue of the
argument at the beginning of this section. The algorithm then terminates.
Otherwise a solution P: N*— N~ to the painted path problem is obtained.
This is a flow-augmenting path relative to x, and the number

N e b
x(j) =" (j) forje P,

is positive and finite (the latter because of the exclusion of paths of unlimited
capacity). The flow x’ = x + ae, satisfies the constraints of the max flow
problem and has flux from N* to N~ which is greater by the amount a. The
procedure is now repeated for x”.

ExampPLE 1

The max flow algorithm can be applied to the network in Figure 3.2 starting
with the zero flow (x(j) = 0 for all j € 4). This is possible because all the
capacity intervals contain 0. One outcome is shown in Figure 3.4; the numbers

0,0,0,0,0,0

’
~ _7Q(min cut)

Figure 3.4

Sec. 3G. COMMENSURABILITY AND TERMINATION 65

displayed next to each arc in the figure are the flux values initially and after
iterations 1 to 5. The corresponding flow-augmenting paths are

P:s—ij—iy—>isg—s, a; =3,
Pis—ij«—i,>s, a=1,
Pi:s— i, < is—>s, a; =1,
Pis—i,—>iy—>i,—> s, a, =2,

. , _
Pis—iye—ige—iz—ij<—i,—s, a;=1

Iteration 6 yields not another flow augmenting path, but the cut Q = [S, N\ §]
corresponding to S = {s, i, }. Thus the flow x at this stage solves the max flow
problem, whereas Q solves the min cut problem. The flux of x from s to s’ is 8,
and this is of course also the value of ¢*(Q).

Note the cancellation of flow that takes place in this example at iteration 5
in the arcs (i, i3) and (i3, i5), where the paths P, and P; run counter to each
other. Such cancellation corresponds to a “rerouting” of an earlier flow, and
the algorithm would not work if it were not allowed.

3G. COMMENSURABILITY AND TERMINATION

How can one generally be sure that the improvement process in the max flow
algorithm will not be repeated indefinitely without a solution being found?
Although the flux from N* to N~ is increased at every iteration, it might be by
ever-diminishing amounts. Conceivably, the supremum might never be
achieved, or even worse, the flux values might approach a limit short of the
supremum. Without some further condition the worst is indeed possible
(Exercise 3.12).

A very mild condition suffices for many purposes. Recall that a collection of
numbers is said to be commensurable if they can all be expressed as whole
multiples of a certain “quantum” & > 0. Certainly any set of integers is
commensurable (8 = 1), but more generally, any finite set of rational numbers
is commensurable, since it can be expressed in terms of a common denomina-
tor.

Suppose that the capacities ¢*(j), ¢ (j) and the flux values x(j) at the start
of the algorithm are commensurable. In this, + o0 and —oo are deemed
commensurable with all other numbers.) They are then all multiples of a
certain 6, and hence so will be the numbers a and x’(j) calculated in the
improvement process, as is readily seen from the formulas. The situation is
therefore self-perpetuating, and it follows that at every iteration the flux from

66 Chap. 3. FLOWS AND CAPACITIES

N7 to N~ is increased by at least 8. There is no danger then of it increasing by
amounts that dwindle indefinitely to zero. If there were infinitely many
iterations, this could only mean that the supremum in the max flow problem is
+o0. But the latter is excluded by the assumption at the outset of the
algorithm, which implies there is some finite upper bound ¢*(Q) to the
supremum.

Therefore the algorithm, as it has been stated, must terminate after a finite
number of iterations, if the foregoing commensurability condition is satisfied. Of
course the condition does not present much limitation in practice. For compu-
tations, numbers are always rounded off to something rational anyway.

Nevertheless, for some theoretical purposes it is helpful to know that there is
a slight refinement of the procedure which ensures termination of the algorithm
without the expense of extra assumptions on the problem, such as com-
mensurability of the data. The welcome fact in this vein is that the max flow
algorithm must terminate after a finite number of iterations, even without
“commensurability” if the painted network algorithm at each stage is executed
with arc discrimination (as defined in Section 2G).

This is seen as follows. Each time a flow-augmenting path consisting entirely
of green arcs is used, at least one of the arcs in the path turns white or black
for the next iteration (i.e., one yielding the minimum in the calculation of a),
whereas all the arcs that were already white or black remain so. Therefore a
stage must come after finitely many iterations when, to make further progress
toward a flow-augmenting path (if the algorithm has not in fact terminated),
one must resort to white or black arcs.

Due to arc discrimination the painted network subroutine at that moment
of its execution has a set S corresponding to a cut Q containing no green arcs.
This property means that in every arc j of Q, the current flow x satisfies
x(j) = ¢*(j) or x(j) = ¢7(j), or both. Hence the quantity

Y x(j)— X x(j) = [flux of x across Q] = [flux of x from N* to N~]
jeo* JjEQ”

is a certain sum of numbers +c¢*(j) and +¢~(j). There are only finitely many
sums of such a special form, since there are only finitely many arcs, so it
follows that there are only finitely many different values that can possibly be
assumed by the flux from N* to N~ at such a critical stage. None can ever be
repeated, since the flux is increased at each iteration. Consequently the
iterations must come to an end sooner or later.

Proof of the Max Flow Min Cut Theorem

From the observation made immediately before the statement of the algorithm,
it is known that the following are equivalent: (1) there is a path P: N*— N~ of
unlimited capacity, and (2) the minimum in the min cut problem is + oo.
Moreover in this event the supremum in the max flow problem is + cc.

Sec. 3G. COMMENSURABILITY AND TERMINATION 67

Suppose now that (1) and (2) are false. The max flow algorithm may be
applied, and it will terminate (at least if arc discrimination is enforced in the
painted network subroutine, as just discussed), yielding solutions x and Q to
the respective problems such that (as already seen)

[flux of x from N*to N™] = c*(Q).

In conjunction with the general “sup < min” inequality already derived for the
problems at the time the theorem was stated, this equation says that “max =
+ ”»

min
Efficient Implementation

Some labor can be saved in each cycle of the max flow algorithm by carrying
on calculations that will ultimately yield the flux augmentation value «, as the
painted network algorithm is executed. This involves generating a certain node
function a, which initially is defined only on N* and has the value + oo there
at every node. At each iteration of the painted network algorithm (as applied
in the context of the max flow algorithm), a new node i’ is reached from an old
node i by some arc j fitting one of two cases:

L j~ (G, #") and x(j) < ¢*(j).
2. j~ (& i) and ¢7(j) < x()).

In Case 1 define
a(i’) = min{a(i), c*(j) — x(j)},

whereas in Case 2
| a(i") = min{a(i), x(J) = ¢ (J)}.

When N~ is finally reached, say, at node i*, one has a(i*) = a. This is not
hard to verify.

The point of this procedure, for implementing the algorithm on a computer,
is that the differences ¢*(j)— x(j) and x(j)— ¢(j) must in effect be
calculated anyway as the painted network algorithm proceeds, in order to
determine the colors of the arcs. By “storing” them in this fashion, one saves
the trouble of recalculation when the flow-augmenting path is traced back-
ward.

However, for real efficiency in the max flow algorithm the best approach
involves using the multipath version of the painted network algorithm in a
certain way at each iteration to produce a bigger improvement than would be
possible one path at a time. This idea is explained in Section 3J in connection
with a closely related algorithm, from which the approach can readily be
adapted (see Exercise 3.31).

68 Chap.3. FLOWS AND CAPACImS
3H. FEASIBLE FLOWS

How can a flow satisfying the constraints of the max flow problem be
determined, if one is not apparent? In Example 1 in Section 3F, the zero flow
obviously met the conditions and could therefore be used to initiate the max
flow algorithm. But the situation might not always be so simple.

The problem of determining such a flow fits into a general model in which
the capacity intervals for the arcs are supplemented by intervals constraining
the divergence values at the nodes. Conservation at node i corresponds to the
interval [0, 0] at i. However, a seemingly more restricted problem will turn out
to be adequate as the cornerstone of the theory.

Feasible Distribution Problem. Given capacity intervals C(j) = [¢7(J), ¢*(J)]
for all arcs j and supply values b(i) for all nodes i, find a flow x such that

¢ (j)=x(j)=<c*(j) forallj€E A4,

y(i)=b(i) forallie N (y=divx).

Here b is called the supply function (vector). If b = 0, one has the feasible
circulation problem. The supply constraint can be written simply as divx = b.

A flow satisfying the supply and capacity constraints is called a solution to
the feasible distribution problem. Necessary and sufficient conditions for the
existence of a solution will be given later, and the obvious necessary condition,
stemming from the total divergence principle in Section 1E is

0= Y b(i) = b(N).

iEN

Although b(i) is called the “supply” at node i, a negative value of b(i)
corresponds really to a demand, since the constraint y(i) = b(i) says then that
i is to be a sink of a certain magnitude. Thus the condition b(N) = 0 can be
interpreted as asserting that the total of the positive supplies must equal the
total of the positive demands.

ExAMPLE 2. (Commercial Shipments)

A certain product must be sent from warehouses to customers by way of a
transportation network G with capacity intervals. The warehouses comprise a
node set S* with supplies b(i) > 0, whereas the customers form S~ with
demands a(i) > 0. At the rest of the nodes the flow must be conserved. Thus

Sec. 3H. FEASIBLE FLOWS 69

one seeks a flow x that is feasible with respect to capacities and satisfies
0<y(i)<b(i) forallie S*,
—y(i)=a(i) forallie S,
y(i) = 0 for all other nodes.

This does not, on the surface, fit the mold of the feasible distribution
problem, but a conversion is easily made. Let

w= Y b(i)- ¥ a(i)

ies* ieS”
= [total positive supply] — [total positive demand].

Assuming w > 0, one can express the situation equivalently as the feasible
distribution problem for the extended network G’ shown in Figure 3.5. The
possible slack in the inequality constraints is taken care of by consigning all
surplus of the product to an abstract “storage” location. Actually, if w = 0, no
“storage” is necessary, and the network need not be extended; the inequality
constraints in this case imply equality for the given supplies and demands (due
to y(N) = 0), and hence they can be written without loss of generality as
y = b, where b(i) = —a(i)fori € S"and b(i) = Ofori & (S*U S).

Even if w < 0 in this example, some sense can be made out of the situation
by construing it as the feasible distribution problem for the network in Figure
3.6. Later the question of costs of flows in such a context will be taken up
(Chapter 7). For the fluxes in the added arcs in Figure 3.5, these would be
storage costs associated with the various warehouses i € S*, whereas in the
case of Figure 3.6 they would be costs of default associated with the customers
iesS .

supplies

storage node

supplies
= b(i)

supplies
= -a(i)

supply = -w

Figure 3.5

70 Chap. 3. FLOWS AND CAPACITIES

supplies
default node

supplies
= b(i)

supplies
= -a(i)

supply = -w

Figure 3.6

General Feasible Flow Problem

Example 2 demonstrates that a supply constraint of the form divx = b is much
less restrictive in practical terms than might be imagined. It will now be shown
that even the generalized problem alluded in the preceding example may be
brought under the same model. The problem in question consists of finding a
flow x such that

x(j)e C(j) forallje A,
y(i)e C(i) forallie N (y = divx),

where C(j) is the capacity interval associated with the arc j, as before, and
C(i) is now the supply interval associated with the node i. This is called the
feasible flow problem.

Finding a flow that satisfies the constraints of the max flow problem
corresponds to solving this problem in the case of C(i) = (— o0, + o) for all
nodes in N* or N~, and C(i) = [0, 0] for all other nodes. As another example,
the feasible distribution problem is the case where C(i) = [b(i), b(i)] for all
nodes i, and the feasible circulation problem is the still more special case where
b(i) = 0. However, the feasible flow problem can in turn be represented as a
feasible circulation problem. All one has to do is pass to the usual augmented
network in the manner of Figure 3.7.

Therefore the three problems— feasible distribution, feasible circulation, and
feasible flow—are equivalent. Among them the feasible distribution problem is
the most convenient theoretically, since it is quite intuitive and just as easy to
treat as the problem for circulations, to which the facts can immediately be
specialized. At the same time it avoids various notational and algorithmic
complications that arise with the broader model. (For extensions to the case of
nonclosed intervals, see Exercises 3.13 and 3.14.)

The main theorem is stated in terms of the quantity

b(s) = X b(d),
ies

which for any node set S represents the (net) supply in S.

Sec. 31. FEASIBLE DISTRIBUTION ALGORITHM n

= C(i)

()
.

N4

distribution node e

Figure 3.7

Feasible Distribution Theorem (Gale and Hoffman). The feasible distribution
problem has a solution if and only if b(N) = 0 and

b(S)<c*(Q) forallcuts Q =[S, N\ S].

A constructive proof of the theorem will be derived from a corresponding
algorithm in the next section. But some general comments are appropriate
here.

First the elementary nature of the necessity of the condition should be
noted. The need for b(N) = 0 has already been observed. More generally, if
divx = b, then

b(S) = [divergence of x from S] = [flux of x across Q]

by the divergence rule. Feasibility of x with respect to capacities then implies

b(s) € €(Q) = [¢7(2),c"(Q)].
and hence in particular 5(S) < ¢*(Q).

Of course the inequality 5(S) > ¢(Q) is also necessary, but this condition
does not need to be listed separately for the following reason. The property
0 =b(N)=b(S)+ b(N\ S) entails b(N\ S) = —b(S). At the same time
the cut Q" = [N\ S, S], which is the reverse of Q, has ¢c*(Q") = —c¢(Q). Thus
the inequality b(S) > ¢(Q) is equivalent to b(N \ S) < ¢*(Q").

3I. FEASIBLE DISTRIBUTION ALGORITHM

The feasible distribution problem can be solved in different ways. The method
now to be described is appealing because of its resemblance to the max flow

2 Chap.3. FLOWS AND CAPACITIES

algorithm. (In fact it is equivalent to applying the max flow algorithm to a
certain modified network that depends on the initial flow; see Exercise 3.22.)
An alternative procedure will be given in Section 3K. In both cases, subject to
a minor commensurability condition (or resorting to arc discrimination, or
other restrictions such as will be described in Section 3J), either a solution to
the problem is obtained or a cut is found that violates the condition in the
feasible distribution theorem.

Algorithm

It is assumed that 5(N) = 0. A flow x is given that is feasible with respect to
the arc capacities. (Initially, one could choose x(j) to be any number in the
interval C(j), e.g., the number nearest 0.) The node sets N* and N~ are then
defined, depending on the values of y = div x, by

N={ib()) > y()}, N7={ilb(i) <y()}.

(The nodes in N* have a surplus, the supply being greater than what is used by
x, while the nodes in N~ have a deficit.) If N*= @ = N, then x is a solution
to the feasible distribution problem, and the algorithm terminates. If not, then
both N* and N~ are nonempty (because b(i) — y(i) must sum to 0 as i ranges
over all of N, due to b(N) = 0 = y(N)). The painted network algorithm is
applied with the same painting of the arcs j as in the max flow algorithm:

green if ¢7(j) <x(j) <c*(j)
white if ¢ 7(j) =x(J) <c¢™())
black if ¢7(j) <x(j) =c*(j)
red if ¢7(j) =x(j) =c*())

If the outcome is a solution Q =[S, N\ S] to the painted cut problem, then
b(S) > ¢*(Q), and it follows that the feasible distribution problem has no
solution. If the outcome is a solution P to the painted path problem, then the
quantity

¢*(j) = x(j) forje P¥,

x(j) =¢(j) forje P,

b(i) — y(i) for the initial node of P (in N*),
y(i) = b(i) for the terminal node of P (in N~),

o = min

is positive and finite. The flow x” = x + aep is formed, and the procedure is
repeated.

Obviously, the labeling refinement in the max flow algorithm can be utilized
here in slightly modified form, to save effort in the calculation of a. However,

Sec. 31. FEASIBLE DISTRIBUTION ALGORITHM 3

an even more efficient approach to implementation will be discussed in Section
3J.

Justification of the Algorithm

Much of the reasoning is almost identical to that on which the max flow
algorithm is based, and it need not be given again in detail. If Q: N* | N~
solves the painted cut problem and corresponds to the set S (where $ D N*
and SN N~ = @), then

¢*(Q) =[flux of x across Q] = [divergence of x from S| = y(S)
=b(8) = [6(S) —y(S)] = b(S) —=[6(N*) = y(N*)] < b(S),

where the fact has been used that b(i) — y(i) = 0 for i € S\ N* but b(i) —
y(i) > 0fori € N*# @. On the other hand, if P: N*— N~ solves the painted
path problem, the quantities whose minimum defines « are all positive, and the
last two, at any rate, are finite. Hence a is positive and finite. The flow
x” = x + aep again satisfies the capacity constraints. For its divergence y’, one
has b(i) — y’(i) = b(i) — y(i) for all nodes, except that

0 < b(i) —y’(i)=b(i) — y(i) — a for the initial node of P,
0> b(i) —y’(i) = b(i) — y(i) + « for the terminal node of P.

In this sense x’ is an improvement over x, since b — y’ is nearer to 0 than
b — y was.

Termination

The algorithm must terminate after a finite sequence of iterations, if the
capacity bounds c¢*(j), c7(j), the supplies b(i), and the initial flow values
x(j), are commensurable. In this case all these values, as well as all subsequent
flux and divergence values and flow alteration values a, are whole multiples of
a certain 6 > 0. Since each of the nonzero differences 5(i) — y(i) progresses
monotonically toward 0, changing by at least § if at all, and two of them are
affected by each iteration; the iterations cannot continue endlessly.

As in the case of max flow the algorithm must terminate even without
commensurability, if arc discrimination is used in the painted network sub-
routine (Exercise 3.22).

Proof of the Feasible Distribution Theorem

The necessity of the condition has already been seen in Section 3H. The
sufficiency follows from the fact that the algorithm must terminate, at least if

74 Chap.3. FLOWS AND CAPACITIES

the painted network algorithm with arc discrimination is utilized at each
iteration.

EXAMPLE 3

A feasible distribution problem is indicated in Figure 3.8, where the supplies
b(i) are shown at the nodes and the capacity intervals C(j) next to the arcs.
The sequence of paths that is generated by the feasible distribution algorithm
is not necessarily unique, of course, because of arbitrary choices in the painted
network subroutine. The following sequence gives rise to the flows shown in

Figure 3.8

Figure 3.9

Sec. 31. FEASIBLE DISTRIBUTION ALGORITHM 75

Figure 3.9, the last of which solves the problem in question:

N7 N~ P a
iy iy Is g =iy = iy 3
iy iy, is ig > i3> i, 2
iy is i =iy =i 1
iy is fg =2 i, < i) < i3> s 2
iy is g2 iy iy iy« s 1

ExAMPLE 4

Another feasible distribution problem is displayed in Figure 3.10, and the
feasible distribution algorithm is applied to it in Figure 3.11. This time,
however, the outcome is the detection of a cut Q =[S, N\ S] with 1 = ¢*(Q)

[3,6] [~2,2]

Figure 3.10

i 0,0,0,0,1 -
a1 14
0
d

0,0,2,2,2

v

i2 >
\\ P 0,3,5,5,5

Figure 3.11

76 Chap.3. FLOWS AND CAPACITIES

< b(S) = 2. The sequence of paths is as follows:

N* N- P a
iy, iy iy, ig, s iy = is 3
iy, iy iy, ig iy = is > iy 2
i i iy = i 1
i i iy« iy =0 1

3J.* MULTIPATH IMPLEMENTATION

An efficient approach to executing the feasible distribution algorithm is based
on using the multipath version of the painted network algorithm as a sub-
routine. As explained near the end of Section 2G, this subroutine yields a
multirouting © that represents all the compatible paths from N* to N~
containing r arcs, where r is the smallest number possible. Let us call these the
minimal improvement paths for x.

The multirouting is generated along with a sequence of sets Ny, Ny,...,N,,
where N, consists of all the nodes reachable from N* by compatible paths
using k arcs (but not by compatible paths using fewer arcs). For i € N, the
arcs in ©() are all those by which i can be reached (compatible) from nodes in
N, _,. Of course N*= N,, whereas N~ is disjoint from all the sets N, except N,.
This is schematized in Figure 3.12.

Since the multirouting furnishes all the minimal improvement paths for x,
any of which could serve in the flow modification procedure in the algorithm,
the idea arises of using several of them at once to make an especially big
improvement. However, matters are not quite so simple. Suppose we begin
with a particular ®~ path P;, obtained by tracing back from an arbitrary node
in NN N, to N*, with an arbitrary arc in (i) chosen in departing from each
node i that is encountered. We can make the corresponding improvement in x,
changing it to a flow £, and then without reinvoking the painted network
algorithm, look for another ®-path P, that can be used for an improvement of
£. But the fact that x has been replaced by £ means that certain arcs may now
have a different color, and the surplus or deficit at certain nodes in N™ and N~
may have been removed. Thus we cannot be sure that another arbitrarily
chosen ©-path will still be suitable, and extra precautions become necessary.

In the first place we must take note of all arcs whose colors have been
changed and regard them as henceforth unusable. Each change is in fact
always of the following type, in view of the nature of the flow improvement

Sec. 3J.* MULTIPATH IMPLEMENTATION

. D

je®(1i)

Figure 3.12

process:
a green or white arc oriented from some N, _; to N, has
become black, or alternatively, a green or black arc
oriented from N, to N,_; has become white.

1)

(Such an arc has become “saturated,” as far as sending additional flux from
N, to N, is concerned.) In “tracing back,” we must also avoid starting at a
node in N~ that is no longer a deficit node, or arriving at a node in N* that is
no longer a surplus node, or for that matter, arriving at any node / where the

arcs in ©(i) have all become unusable.

78 Chap.3. FLOWS AND CAPACITIES

The upshot is that we have to find our way from a subset of N~ back to a
subset of N* by way of ® much as if we were solving an auxiliary painted path
problem. Indeed, everything can be set up in exactly this form and imple-
mented using depth-first search and other efficient devices. A sequence of
improvement paths can thereby be generated from the same multirouting ©.
This turns out to be superior to generating one such path in each of the basic
iterations of the feasible distribution algorithm, due to the greatly reduced size
and very special structure of the “auxiliary network™ associated with ©.

In a moment an even better way to take advantage of the multirouting ©
will be described. But first it is important to observe a valuable property of the
approach just explained that will be found to carry over to the subsequent
situation.

Let x’ denote the flow on hand when all the information in ® has been
exhausted; that is, there is no longer any ©-path that happens also to be an
improvement path for x’. Claim. The minimal improvement paths for x’ (if
any) use more than r arcs (where r is the number used by the minimal
improvement paths for x). To be convinced of this, start with the fact that the
node sets N’ and N’ associated with x’ are contained, respectively, in N*
and N~ (as seen from the justification of the improvement procedure in Section
31). Since only the arcs of © have been subject to changes in color, and each
change is in the pattern of (1), any improvement path for x’ using only r arcs
would actually have to be a ©-path, and this possibility is excluded by the
assumption on x’.

Let us speak of a grand iteration of the feasible distribution algorithm as one
in which we apply the multipath version of the pointed network subroutine to
a given flow x to get a multirouting ® and then by some “grand improvement
procedure” (not necessarily the same as the one we have been sketching)
construct from the information in ® a flow x” with the properties just
exploited, namely:

1. N*c Ntand N CN".
x’ is still feasible with respect to capacities and differs from x only in
arcs used by O.

3. Each color change in the painting for x’, relative to the painting for x, is
in conformity with (1).

4. No O-path is an improvement path for x’.

Then by the argument just given, each grand iteration increases the number of
arcs (or equivalently, the number of nodes) that is used by any minimal
improvement path. The number of grand iterations that can be performed before
termination of the algorithm is therefore bounded by |[N| — 1.

This conclusion is important, because it gives us a grip on the computa-
tional complexity of the algorithm. We are about to describe a “grand
improvement procedure” based on ideas of Dinic and Karzanov, for which the

Sec. 3J.* MULTIPATH IMPLEMENTATION 79

number of arc operations in a certain sense is bounded by |[N|? + 2|A4|]. Using
this as the crucial ingredient in the recipe, one obtains what we shall refer to as
the Dinic-Karzanov implementation of the feasible distribution algorithm. This
then has an overall bound of

[IN] = 1](IN|* + 3|4))

(where an extra [|N|— 1]|4]| is included to take account of the multipath
version of the painted network subroutine, which involves looking at each arc
at most once in each “grand iteration™). In particular, the number of arc
operations in the digraph case is less than 4|N|? (since |4| < |N|?> when G is a
digraph).

Grand Improvement Procedure (Dinic-Karzanov Approach)

At intermediate stages before the improved flow x” has been produced from x,
there will be a flow £ whose divergence will be denoted by 7. (Initially,
£ = x,m =y.) The surplus nodes for £ (where b(i) > n(i)) will always be
among those in N*, but the set of deficit nodes

D= {ieNb(i) <n(i)}

will generally not be included in N, except at the very end when we will set
x’ = §. At all times ¢ will have Properties 2 and 3 which are described for x”,
and termination will come when Property 4 has been achieved too. In this way
we will obtain a flow x” meeting all the requirements.

As things progress, certain arcs will be declared “closed” (the remaining
arcs are said to be “open”), and certain nodes will be declared “blocked.”
These designations are permanent and will turn out to mean that no ©-path
using such arcs or nodes can be an improvement path for £.

The arcs in each set @ (i) are assumed to be listed in some particular order,
so that one can speak of the “first” arc of a certain type, and so forth.

The procedure for modifying £ involves two basic operations. The first will
be called transmitting demands from one of the node sets N, to N, _;. It is said
to be possible if 0 < k < r and there is a node i € N, N D such that O(i)
contains an open arc j whose other node i” (in N,_;) is not blocked. The
operation consists of taking the first of such arcs in @(i) (the choice of i, if
there is more than one such node available in &,, does not matter) and treating
it as follows, according to its orientation.

Case 1. j ~ (i, i). Calculate
a=min{c*(j) — £(),n(i) — b(i)}.

This will satisfy 0 < a < oo. Declare j closed if a = ¢*(j) — £(j). Replace
£(J) by £(J) + a

80 Chap.3. FLOWS AND CAPACITIES
CASE 2. j ~ (i, i’). Calculate
a=min{£() — ¢~ (j),n(i) - b(i)}.

This will satisfy 0 < a < oo. Declare j closed if a = £(j) — ¢7(j). Replace
§(/)byé(j) — e

Observe that in both cases an additional « units of flux are sent from i’ to i
by way of j, so that the deficit 9(i) — b(i) at i is decreased by a (possibly
removing i from D) and the deficit n(i’) — b(i’) at i’ is increased by a
(possibly adding i’ to D).

For bookkeeping purposes, since this change may later have to be undone at
least in part, we record the pair (a, j) at i’ and refer to it as a requisition. (The
records at i’ are maintained in the order of arrival, so that we can immediately
recall the “most recent” requisition when needed.)

The second operation in the procedure for modifying £ is called rejecting
demands in N, (returning an excess of transmitted demands back to N,). To
perform the operation (with 0 < k < r), take any node i” € N, N D and recall
the most recent requisition (a, j) at i’. (The other node i of j will be in N, ;.)
Calculate

B = min{a, n(i") — b(i")} > 0.

Subtract 8 from £(j) if j ~ (i, i), but add it if j ~ (4, i’). (This will decrease
the deficit n(i’) — b(i’) at i’ by B and increase the deficit n(i) — b(i) at i by B.)
Correspondingly, replace the requisition (e, j) at i’ by (a — B, j) if B < a,
but simply delete it from the records if 8 = a. If the new deficit n(i") — b(i") is
0 (ie., if B equaled the old value n(i’) — b(i")), the operation is finished;
regard the node i’ as blocked. Otherwise the requisition (e, j) will have been
deleted; repeat the step with the most recent of the remaining requisitions at i’.
(There will always be at least one, as long as the deficit at i’ remains positive.)

Algorithm

The overall procedure is composed of the two operations in the following
pattern. In the general step, a set N, is up for inspection. If demands can be
transmitted from N,, do so until the possibilities have been exhausted; then
move down to inspect N, _;. If demands cannot be transmitted from N, there
are two cases. If k = r, terminate and set x’ = £ Otherwise reject demands
from N, until this is no longer possible; then move back up to inspect N, ;.

Discussion

Some properties of the procedure are obvious from the description. At all
stages the requisition records at the nodes in N,,...,N,_; tell exactly how
much, and along which arcs, additional flux should be superimposed on x to
get the flow £. This additional flux is carried solely by arcs in the multirouting

Sec. 3J.* MULTIPATH IMPLEMENTATION 81

0, and it moves only in the “upward” direction: one has
x(j) < &(j) < c*(j) ifjgoes from some N, _; to N,
¢ (j) < &(j) < x(j) ifj goes from some N, to N, _;.

Thus ¢ always does have two of the properties slated for x’, namely,
Properties 2 and 3. Observe that an arc is declared closed as soon as it changes
color, and it keeps this designation even though it may revert to its original
color later during a “rejection” process.

For nodes in Nj,...,N,_; (such nodes having b(i) = y(i)), it is always true
that b(i) < n(i), the deficit n(i) — b(i) being equal to the total of the requisi-
tioned values a recorded at i. For nodes in N, (where b(i) > y(i)), the total of
the requisitioned values is equal instead to

[n(i) = ()] +[b() = y(D)] = () = y(i);

hence n(i) > y(i), but perhaps b(i) > (i) or b(i) < n(i). For N,, only the
nodes belonging also to N~ are ever affected; these always have b(i) < 7(i) <
(i), with b(i) < y(i). In summary, the deficit node set D = {i|n(i) > b(i)},
after starting out equal to N~, can lose or gain certain nodes in N, N N~ or
other sets N, (including N, = N*) from time to time, but the surplus node set
{i|n(i) < b(i)} is always included in N*. Therefore Property 1 will be valid
for x’ if, on termination of the procedure, D does not meet N,...,N,_;.

To establish this and Property 4 for x’, let us observe what happens when
the procedure is brought into action. At the beginning all arcs used by © are
open, and no nodes are blocked. Demands are first transmitted from N,
successively down through N,_,...,N;, N,. (Some do reach N,, because every
©-path is an improvement path for x.) Of course demands that arrive in N, are
balanced off against existing surpluses; that is, nodes i” € N, that have been
affected may not actually join D, because 1(i”) = y(i’) < b(i’) at such nodes
initially.

If any node in N, has joined D, the next step is to reject the corresponding
excess in demands back to N; and declare each such node blocked. (The
surpluses at such nodes have been exhausted.) At this point D does not meet
N,. Another attempt is made to transmit demands from N, to N, this time
avoiding arcs that have become closed and nodes that have become blocked,
and again the excess demands are rejected from N, back to »;. This continues
back and forth until, after rejecting excess demands from N, one finds there
are no more demands that can be transmitted from N,.

Any excess demands in N, represented by the presence of deficit nodes
i” € N; N D, are then rejected back to N,, the nodes in question becoming
blocked. (Note that for every such node the arcs in (i) must all be either
closed or connected to nodes in N, that became blocked earlier, for otherwise it
would have been possible to transmit some of the demands in question.) Next

82 Chap. 3. FLOWS AND CAPACITIES

one tries to retransmit demands from N, to N; and on, if possible, to N,
(avoiding closed arcs and blocked nodes). Adjustments are made as before,
and eventually one returns to the inspection of N,, at which point D does not
meet N, or N;. The same thing is repeated until no more demands can be
transmitted from N,. Then any excess demands in N, are rejected back to N,
transmission is attempted again, and so forth. Thus the procedure may move
up and down the sequence Ny, N,...,N, in a number of phases of transmis-
sion and rejection. But since the most recent requisitions are always first in the
operation of rejecting demand from a node i’ € N, there is no danger of this
operation ever creating a deficit at some node i € N, that was declared
blocked in some previous phase.

This explanation makes apparent the fact that at any stage when one passes
from N, up to N, there are no remaining deficits in Ny, N;,...,N;; that is,
these sets do not meet D. It is true therefore that in the final iteration, when
upon reaching N, (necessarily from N,_,) one finds that no more demands can
be transmitted, the sets N, Nj,...,N,_; are all disjoint from D. Hence
Property 1 is indeed achieved.

An arc of altered color cannot of course belong to any ©-path that is an
improvement path for £, because it is “saturated” in the only usable direction.
This state persists for an arc unless some of the flux is canceled later during a
rejection operation. In that event the “lower” node of the arc is declared
blocked, and nothing incident to it is ever touched again. By induction, then,
any arc in ©(i) that is closed is either of altered color or leads down to a
blocked node i’. Recalling that all blocked nodes satisfy (i) = b(i”") (the ones
in N, having reached this condition through the exhaustion of whatever surplus
they had originally been blessed with), we see that no ©-path using a closed arc
or a blocked node can be an improvement path for &.

When the procedure terminates, the arcs associated by © with the remaining
deficit nodes in N, (if any) are all either closed or lead to blocked nodes, for
otherwise demands could indeed be transmitted from N,. Hence there can be
no improvement paths left at all. We conclude from this that x” does have
Property 4.

Termination and Computational Complexity

It will now be demonstrated that the procedure does terminate eventually, and
in fact the number of flux changes is bounded by |N|*> + 2|4|. Here a “flux
change” means a change affecting a single arc j, where a quantity « or B is
added or subtracted from £().

An arc can only once undergo a flux change that causes it to be closed.
Following this, it can be affected at most once more, namely, if the latest
requisition involving it enters the demand rejection process, after which it is an
arc associated with a blocked node. (A demand rejection operation on a node
i’ € N, cannot involve two requisitions on the same arc j, for the earlier
requisition would have had to come during an earlier transmission of demands

Sec. 3K.* FLOW RECTIFICATION ALGORITHM 83

from N, ., and between the two transmissions there must have been a stage of
demand rejection in N, that would have left i’ without any deficit.) The
number of changes of these kinds is therefore bounded by 2|A4|.

For the rest of the argument we can concentrate on flux changes that occur
in an arc prior to its becoming closed (if it ever does). Such changes can only
occur during transmission of demands. We need only show that their number
is bounded by |N|2.

Let us view the pattern of execution of the algorithm as divided into
“phases,” where each phase consists of a unidirectional series of moves up or
down the sequence N, N;,...,N,. Any time a rejection phase ends and is
followed by a transmission phase, there must have been at least one node that
was handled during the rejection phase and then declared blocked, never to be
handled again. The number of transmission phases is therefore bounded by the
number of blocked nodes, hence certainly by |N|.

Now in any one operation of transmitting demands from node i, a sequence
of open arcs in ©(i) may be used, but all except possibly the last one will
become closed. Hence there can be at most one flux change of the kind we are
trying to reckon with. It follows that the number of such changes during any
transmission phase cannot exceed the number of nodes operated on. No node
is operated on more than once during a transmission phase, so this yields a
bound of | N|. Multiplying by the bound on the number of such phases, we get
the asserted bound |N|2. (This could be sharpened by a more careful argument;
see Exercise 3.32.)

3K.* FLOW RECTIFICATION ALGORITHM

The procedure to be described now solves the feasible distribution problem in
a manner complementary to the algorithm developed in the last two sections.
Instead of maintaining feasibility with respect to capacities, and improving
feasibility with respect to supplies by an application of the painted network
algorithm at each iteration, it works with flows satisfying the supply constraint
and improves feasibility with respect to capacities by involving Minty’s algo-
rithm (i.e., the painted network algorithm as applied in the context of Minty’s
lemma in Section 2H) at each iteration.

Algorithm
A flow x is given such that divx = b. Define the arc sets
AT={jix()>c* ()}, 47={Jlx(j) <7 (/)}.
These consist of the arcs that violate the capacity constraints. f A "= @ = 4™,

then x is a solution to the feasible distribution problem, and the algorithm
terminates. If not, let j denote any arc in either A™ or A~. Minty’s algorithm is

84 Chap. 3. FLOWS AND CAPACITIES

applied to j and the following painting of the arcs of the network:

green if ¢ 7(j) <x(j) < ¢7(J)
white if x(j) <c¢7(J), x(j) < ¢*(J)
black if x(j) >c7(j), x(j) = ¢*(j)
red if ¢ () =x(j) = ¢*(j)

(The arcs in A are all black, whereas those in 4~ are white; in particular, j is
either black or white.) If the outcome is a compatible cut Q =[S, N\ S]
containing j, then b(S) > ¢*(Q), (as we will see later). Thus the condition in
the feasible distribution theorem is violated, and the problem has no solution.
The algorithm then terminates. If a compatible elementary circuit P containing
j is the outcome, define

x(j) = ¢ (j) forje P,
a,

c*(j) —x(j) forje P*,
a = min

where
a = dist(x(/), [¢™ (), ¢* (J)])

_ {c-(f) —x(j) ifje4*
x(j) = c*(j) itjea.

Then 0 < a < oo. The flow x” = x + aep again satisfies the supply constraint,
divx’ = b. It is “better” than x in the sense that the capacity constraint
violations in the various arcs are not worsened, and at least one is improved or
eliminated (justification follows). The step is then repeated for the new flow.

EXAMPLE 5

Resolution of the feasible distribution problem in Figure 3.8 (Example 3) by
means of the flow rectification algorithm is summarized in Figure 3.13. The
sequence of circuits used was the following:

b P a a
(ig, i3) ig— iy < iy« i 7 2
(ig, i3) ig = iy < iy« i 5 3
(ig, i3) ig =iy 2 iy« iy« iy 2 2
(i, is) R P Pl N 2 1
(i3, is) iy > iy > i< iy 1 1

Sec. 3K.* FLOW RECTIFICATION ALGORITHM 85

0,0,0,0,-1,-1

Justification
With a cut Q =[S, N\ §] as the outcome of Minty’s algorithm, one has
x(j)=c*(j) forallje Q*
- x(j) = —c7(j) forallje Q7,
with strict inequality for at least one arc, namely, ;. It follows that

(@) < X x()- X x(J)

jeg* j€Q”
= [flux of x across Q]
= [divergence of x from S
= b(S),

so the condition in the feasible distribution theorem is violated, as claimed.
With a circuit P as the outcome, one has

¢*(j)=x(j)>0 forje P*,
x(j)—c (j)>0 forje P .

Since the arc j belongs to either 4~ or A*, the number @ is finite and positive,
and so is a.

86 Chap. 3. FLOWS AND CAPACITIES

The choice of a clearly ensures for the flow x” = x + ae, that
() zx'(j) and ¢ (j) = x"(j)=¢"(J) = x(J) —« forallje P,
(/) =x'(j) and x'(j)=c*(j)=x(j) = ¢*(j) —a forallje P,

whereas in all other arcs one has x’(j) = x(j), and the status of feasibility
with respect to the capacity interval is unchanged.

The constraint violations by the arcs that were in A*U 4~ are thus no
worse for x’ than for x, and there is definite reduction for at least the arc j.
(The definition of a is designed to yield improvement in j, without “over-
shooting.” If & turns out to equal &, the infeasibility in j will be eliminated.)
Since P is a circuit, one also has dive, = 0, and hence

divx’ = divx + adive, = divx = b.

Termination

Assume that the capacity bounds ¢*(j), ¢7(j), and initial flux values x(j) are
commensurable. (This is no less stringent than the commensurability condition
used to prove termination of the feasible distribution algorithm: since divx = b,
the supplies (i) must belong to this same class of commensurability.) By the
argument that is now quite familiar, all the flux values and flow augmentation
values generated in the course of the algorithm will be whole multiples of a
certain 8 > 0. Therefore when the capacity constraint violation corresponding
to any arc in A"U A~ is reduced, it is always reduced by at least the quantum
8. Only a finite amount of reduction is possible, and there are only finitely
many arcs having need of it. Hence the algorithm must terminate. With-
out commensurability, termination can be assured by arc discrimination
(Exercise 3.27).

Multipath Implementation

The procedures in Section 3J could be adapted to this method, since the step
using Minty’s algorithm amounts to a search for flow improvement paths from
a certain node s to a certain s’.

Comparison with the Feasible Distribution Algorithm

Which of the two algorithms for the feasible distribution problem is “best”
may depend on the context. The first algorithm has the advantage of “starting
from almost nothing”: there is no need for preliminary construction of a flow
satisfying divx = b. Furthermore there is more flexibility and perhaps greater
speed and efficiency in the application of the painted network algorithm at

Sec. 3L.* NODE CAPACITIES AND DYNAMIC FLOWS 87

each iteration, due to the fact that any compatible path from a set N* to a set
N~ is satisfactory. The flow rectification method, by employing Minty’s
algorithm, carries out this calculation only for paths from a particular node s
to a node s’.

Nevertheless, it will be seen later that when the feasible distribution
problem needs to be solved repeatedly as a subroutine in some more general
algorithm of optimization, a flow satisfying divx = b may be right at hand and
only slightly infeasible. In such cases the second algorithm might be preferable.
At any rate it is instructive as a prototype for the general “out-of-kilter
algorithm” for finding optimal flows (Chapters 7 and 9). Its use has some
theoretical ramifications that will be exposed later.

Yet, for solving a single problem, the flow rectification algorithm seems
unlikely to be really advantageous, even starting from a slightly infeasible flow
% with divX = b. It is almost as easy to start the feasible distribution algorithm
with the corresponding flow x such that x() is the element of [¢ (), c*(j)]
nearest to X(j). Then div x ought to differ only “slightly” from b.

3L.* NODE CAPACITIES AND DYNAMIC FLOWS

The model underlying the max flow problem and feasible distribution problem
can easily be extended in a couple of ways.

First of all it may be desirable to place constraints on the “amounts flowing
through” certain nodes. For instance, at certain junctions of a transportation
network there may be limited “handling capacity.” This is an idea distinct
from that of supply constraints on the divergence permitted at the nodes.

To put the concept on a firm footing, let us write the formula for the
divergence y(i) associated with a flow x as a sort of conservation equation for
all the flux “passing through” the node i,

-y(i) + X e(i, j)x(j)=0

JEA

In this equation there are in general some positive terms and some negative
terms, and the total of the positive terms must equal the absolute value of the
total of the negative terms. It is this quantity that is called the flux of x through
the node i. It can be defined succinctly by the formula

[flux of x through 1] = 3|y (D)1 + L. le(i, /)x(/))).

Figure 3.14 provides an example.
The question to be explored is how to incorporate in the max flow problem
or feasible distribution problem constraints of the form

a (i) < [flux of x through i] < a* (i).

88 Chap.3. FLOWS AND CAPACITIES

[flux of x
through i] = 7

Figure 3.14

The numbers a*(i) and a~(i) are called the upper and lower node capacities
at i.

The case where this can be accomplished most simply is the one where the
arc capacity constraints already in force imply x(j) > 0 in all the arcs incident
to the node i, and x is required to be conserved at i. Then it is simply a matter
of splitting i into an input node i* and output node i~ joined by an arc j’, the
internal arc of i, as in Figure 3.15. Conservation is required at both i* and i,
and the flux of x through i becomes the flux through j’, which is assigned
[a=(i), a*(i)] as capacity interval.

Little is changed if x is not required to be conserved at i, provided one of
the two remaining possibilities of i being a source or a sink is eliminated in
advance. If i could only be a source, conservation is enforced at i~ but not at
i*, and vice versa if i could only be a sink. ‘

If the capacity constraints do not in themselves entail x(j) > 0 in the arcs,
the treatment is more complicated and depends on reducing the model to the
non-negative case. If the constraints imply x(j) < 0, there is no real problem:
reverse the orientation of j, or more simply, attach j to i~ instead of i*.
Consider now the final possibility: an arc j with ¢7(j) < 0 < ¢*(). The trick
to use is to replace j by a pair of opposed arcs j* and j~ as indicated in Figure
3.16. Given any flow x’ in the modified network G’ such that x” is feasible with
respect to the capacities, there is a corresponding flow x in the original network
G, obtained by

x(j)=x"(j*) = x(j),
and x is feasible with respect to the original capacities. Conversely, any x with

internal arc
- in node i _

~ -

i

Figure 3.15

Sec. 3L.* NODE CAPACITIES AND DYNAMIC FLOWS 89

to,¢¥ ()

(™ (3),c (51
replaced by e Q
3

[0,-¢” (31
Figure 3.16

the latter properties corresponds in this way to some x’ (not unique). Thus the
modified network affords an equivalent formulation where the flux values are
necessarily non-negative. This makes possible the representation of node
capacities as before.

The case of nodes which can potentially be either sources or sinks is handled
by passing first to the augmented network and representing the problem in
terms of circulations.

Effect on the Min Cut Problem

The introduction in the max flow problem of internal arcs bearing node
capacities naturally corresponds to a broadened outlook for the min cut
problem. This is especially enlightening when the problem is interpreted, as in
Section 3E, as one of finding a cheapest solution to a painted cut problem.
There is no point in relating all the details here (see Exercise 3.28), but the
upshot is that nodes, as well as arcs, can be incorporated into a sort of
“generalized cut,” and the numbers a*(i), —a~(i), are the costs for such
incorporation. A dual situation, encountered in Chapter 6, is that of paths that
must “pay a toll” to go through certain nodes (Exercise 6.8).

Dynamic Models

The dynamic version of a network, described in Section 1H, is the model for
max flow problems or feasible distribution problem in which the “progress” of
the flow is important. For a “nonhorizontal” arc of the type j, (see Figure 1.10)
a capacity interval [¢7(J,), ¢*(J,)] restricts the amount of flux which at time ¢
can enter arc j of the underlying “static” network G. (Recall that the interpre-
tation of the model requires that only non-negative flows be admitted: ¢ (j,)
> 0.) Capacity intervals for the “horizontal” arcs restrict what can be held over
at a node of G from one time period to the next (e.g., because of storage space
or parking space). Supplies at the nodes of G correspond to supplies (positive
or negative) at the nodes of G which in general may vary with time.

The dynamic version of a network is a complete success conceptually but
sometimes less appealing practically because of its size. A relatively modest
network, expanded through a number of time periods, may become enormous.

90

Chap. 3. FLOWS AND CAPACITIES

3M.* EXERCISES

3.1

3.2,

33.

34.

35.

3.6.

(Divergence Principle). Show that the divergence principle is a special
case of the conversion formula: v+*x = —u-+y for v = Au, y = divx
(see Section 1I).

(Max Flow Model). Demonstrate that the max flow problem with sets
N™*, N™, is really no more general than its special case where N and
N~ consist of single nodes.

(Hint. Attach two new nodes s and s’ to the network.)

(Note. Transformation to the “simpler” case might, however, retard
computations.)

(Max Flow Model). Show that a max flow problem with general closed
capacity intervals can always be converted into an equivalent max flow
problem for which the intervals are all of the form [c, + o), c finite.
(Hint. An arc with a bounded capacity interval can be replaced by a
pair of arcs “in series,” each having a half-bounded interval. An arc
with interval (—/c0, + c0) can be replaced by two arcs with [0, +), as
explained in Settion 3L in connection with node capacities.)

(Note. Although the equivalence is of some interest theoretically, it
seems to offer no significant computational advantage.)

(Generalized Max Flow Min Cut Theorem; Minty). Suppose in the max
flow problem that there is at least one flow satisfying the constraints.
Then the set J of flux values from N* to N~ corresponding to such flows
forms an interval and

I= N <)

Q:N* N

Moreover this is true even if the capacity intervals associated with the arcs
are not necessarily closed. Derive this result from the max flow min cut
theorem as stated in Section 3D.

(Max Flow Min Cut as Linear Programming). Re-express the max flow
problem as a linear programming problem in “standard form” and write
down the corresponding dual problem. Show that a solution to the min
cut problem furnishes a solution to this dual.

(Hint. Remember the correspondence between cuts and certain poten-
tials.)

(Least Solution to Painted Cut Problem). Suppose that, in a given
painted cut problem, one wants to find a solution Q having the least
number of arcs (|Q| < |Q’| for all other solutions Q). Show how this can
be formulated as a certain min cut problem, through the right choice of
the numbers ¢ *(j), ¢7(J).

Sec. 3M.* EXERCISES 91

(Note. It follows that the max flow algorithm can be used to determine
such a Q.)

3.7. (Painted Cuts). Show that, starting from a painted cut problem, it is
possible to choose ¢*(j) and ¢7(j) so that the following is true: Q solves
the painted cut problem if and only if Q solves the min cut problem and
¢*(Q) < + 0. What does the max flow min cut theorem reduce to in
this case?

[0,=)

Figure 3.17

38. (Max Flow Algorithm). Solve the max flow problem and min cut
problem for the network shown in Figure 3.17.

39. (Max Flow Algorithm). Solve the max flow problem and min cut
problem for the network shown in Figure 3.18.

3.10. (Max Flow Algorithm). Solve the max flow problem and min cut
problem for the network shown in Figure 3.19.

AN\ Lo,51 7 0,41 /7 [-1,1]
l, 11 y ’Hly
/

[0,1]

1
1
}
!
]
' !
Cat A\ 172,41 /TN 156,21 /TN H,5] N
2 1 1 1
L //‘1
1]
\

\ ! !
v[-1,1] 1 (-2,3] [0,%) [-5,611
\ ! 1
\ ' VA
O @)

d v [-2,91 \8/ 10,1] [-1,8])

92 Chap.3. FLOWS AND CAPACITIES

Figure 3.19

3.11. (Tightened Max Flow Algorithm). Fix any € > 0, and modify the paint-
ing used in the max flow algorithm to the following:

greenif x(j) < c¢*(j)—eand x(j) = c7(j) +¢
white if merely x(j) < ¢*(j) — ¢

black if merely x(j) = ¢ (j) + ¢

red if neither is true

(Everything else in the algorithm stays the same.) Prove that termination
is then inevitable (still assuming there are no paths of unlimited capacity
from N* to N7), and when it arrives, one has a flux x and a cut Q
satisfying

c*(Q) —[flux of x from N* to N™] < ¢A4|.

Furthermore show that the latter implies x comes within &” = ¢ 4| of
furnishing the supremum in the max flow problem, whereas Q comes
within &’ of furnishing the minimum in the min cut problem.

(Note. Since ¢ can be chosen arbitrarily small, this yields another
constructive proof of the general fact that “sup = min” for the two
problems.)

3.12. (Max Flow Counterexample; Ford and Fulkerson). Verify the details of
the following example, which demonstrates the need for the com-
mensurability condition for termination of the max flow algorithm,
unless some refinement such as arc discrimination is used. The network
is shown in Figure 3.20. All capacity intervals are (— oo, + c0) except for
the four horizontal arcs, and the supremum in the max flow problem is
+ c0. Here r = (=1 + V/5)/2; this number has the property that 0 < r
<1landr* — rk*1 = rk*2 for all k.

The algorithm starts with the zero flow, and the first flow-augmenting
path it utilizes is s = u; — v; — s’. The “residual capacities” in the

Sec. 3M.* EXERCISES 93

Figure 3.20

four special arcs are then 0, r, r?, r2. Consider now more generally a
situation where the current flow has, with respect to the four special arcs
in some order or other, the “residual capacities” 0, r*, r**1, r¥*! From
the symmetry of the network it can harmlessly be supposed, for the sake
of simpler notation, that this is true for the special arcs in their original
order, jy, j,, j3» Js- On the next iteration there is a flow-augmenting path
that has both j, and j; as forward arcs but does not use j; or j,. On the
succeeding iteration there is a flow-augmenting path that has j, as a
forward arc and j; and j; as backward arcs but does not use j,. The
result of the two iterations is a situation where the special arcs, in a
different order, have residual capacities 0, 7**1, r%*2, rk*2_ This pattern
can therefore be replicated interminably. Not only will the algorithm
never come to a halt, but the flux from N* to N~ will converge to a
finite value, despite the fact that the supremum is + oo.

(Note. +oo could be replaced in this example by +M for any real
number M sufficiently large.)

94

3.13.

3.14.

3.15.

3.16.

3.17.

3.18.

3.19.

3.20.

Chap. 3. FLOWS AND CAPACITIES

(Generalized Feasible Circulation Theorem; Minty). Show that the feasi-
ble circulation problem has a solution if and only if 0 € C(Q) for every
cut Q. Moreover this remains true if the capacity intervals associated
with the arcs are not necessarily closed (cf. Exercise 3.4).

(Feasible Flow Theorem). Consider the general feasible flow theorem in
Section 3H. This is equivalent to a certain feasible flow problem with
supply intervals C(i) associated with nodes i, and for each node set S
define

c(s)=Y c(i) = {m 3b(i) e C(i) with ¥ b(i) = ,3}.
i€S i€S

Then a necessary and sufficient condition for the existence of a feasible

flow is that

C(S)NC(Q)+ @ forallcuts Q = [S, N\ S].

Moreover this remains true if the capacity intervals C(j) and supply
intervals C(i) are not necessarily closed. Derive these facts from the
feasible circulation theorem in the preceding exercise.

(Max Flow Constraints). Derive a necessary and sufficient condition, in
terms of cuts, for the existence of a flow satisfying the constraints of the
max flow problem.

(Hint. The constraints correspond to a case of the general feasible flow
theorem in Section 3H. This is equivalent to a certain feasible distribu-
tion problem in the augmented network.)

(Divergence Functions). What properties of a node function b are
necessary and sufficient for it to be the divergence of some flow x?

(Feasible Distributions). In Section 3A five special types of capacity
intervals are described. State the five special cases of the feasible
distribution theorem corresponding to all the arcs being of type 1, all of
type 2, and so on.

(Feasible Distribution). Show that the feasible distribution problem with
general closed intervals can always be restated equivalently as one in
which all the capacity intervals are of the form [0, + o). (Supplies have
to be altered too.)

(Hint. See Exercise 3.3.)

(Circulations). Show that there exists a circulation that has positive flux
in every arc if and only if there does not exist any nonempty positive
cut.

(Note. For a connected network the latter condition is equivalent to
strong connectedness; see Exercise 2.27.)

(Feasible Distribution Algorithm). Solve the feasible distribution prob-
lem in Figure 3.21. Take as the initial flux values x(j)= c¢7(Jj) if
¢ (J)> 0, x(j) = c*(j) if ¢*(j) < 0, otherwise x(j) = 0.

Sec. 3M.* EXERCISES 95

3.21.

3.22.

3.23.

Figure 3.21

(Feasible Distribution Algorithm). Show that no feasible circulation
exists for the network in Figure 3.22 by producing (algorithmically) a
cut that violates the condition in the feasible distribution theorem.
(Feasible Distribution Algorithm). Prove that the feasible distribution
algorithm must terminate, sooner or later, if arc discrimination is used
in the painted network subroutine at each iteration (see discussion in
Section 3G for the case of the max flow algorithm).

(Feasible Distribution versus Max Flow). Show that the feasible distribu-
tion algorithm with initial flow X is equivalent to the max flow algorithm
applied to a certain extended network depending on x.

(Hint. The idea is depicted roughly in Figure 3.23 where N* and N~
denote the sets corresponding to X which in general, during the course of

Figure 3.22

3.24.

3.25.

3.26.

3.27.

3.28.

3.29.

Chap. 3. FLOWS AND CAPACITIES

the feasible distribution algorithm, are denoted by N* and N~. In the
extended network shifted flux values and capacity intervals are used, so
that the flow one works with is conserved at all nodes between s and s”.)

(Feasible Flow Algorithm). Devise an algorithm that is similar to the
feasible distribution algorithm but solves a feasible flow problem with
supply intervals C(i) = [b(i), b*(i)] directly (ie., w1thout requmng
reformulation as a feasible circulation problem).

(Hint. The algorithm needs to be in two phases. The first phase
concentrates on reducing violations of the form y(i) < b7(i) without
worsening any violations of the form y(i) > b¥(i). After y(i) > b~(i)
has been achieved for all nodes, the second phase takes over with the
goal of forcing y(i) < b*(i) for all nodes.)

(Flow Rectification Algorithm). Solve the feasible distribution problem
in Figure 3.22 by means of the flow rectification algorithm (starting
from any appropriate initial flow).

(Flow Rectification Algorithm). Determine by the flow rectification
algorithm a cut Q in the network of Figure 3.22 sych that ¢*(Q) < 0.
(Flow Rectification Algorithm). Prove that the flow rectification algo-
rithm must terminate sooner or later if arc discrimination is used in the
painted network subroutine.

(Hint. Certain quantities of the form

Y dist(x(j), C(7)) = X max{0, x(j) - c*(j), c™(j) = x(j)}
JEAp JE€Ay
where A4, is some subset of A¥U 47, have a special representation at
critical stages.)
(Node Capacities). Generalize the max flow min cut theorem to the case
where there are capacity intervals [a~(i), a*(i)] associated with the
nodes i as in Section 3L, as well as capacity intervals [¢7(j), ¢* (/)]
associated with the arcs j. (Assume that ¢7(j) =0 for all j € 4. A
notion of “generalized cut” involving both arcs and nodes will be
needed.)

(Dynamic Max Flow). For the dynamic network of Figure 1.10 (see
Section 1H), what is the maximum amount that can be sent from node a
at time ¢ = 0 so as to reach node 4 by 7 = 5, assuming that at most one

(D G -6

Figure 3.23

Sec. 3N.* COMMENTS AND REFERENCES 97

unit of flux can enter any arc of G during any unit time period? All flux
values must be non-negative. There is no limit on storage, that is, on the
amounts that can be held over at a node from one time period to the
next. (After solving the problem in terms of the “space-time” represen-
tation of the network, translate the solution back into a “schedule” for
how the flow is to be organized in terms of the original network.)

3.30. (Feasible Circulations). Let G be a network with capacity intervals
[¢7(J), ¢*(J)), and let j be any fixed arc. Let I be the set of all flux
values x(j) obtained as x ranges over all feasible circulations. Prove that
Iis a closed real interval, and explain how its endpoints could be
calculated.

3.31. (Multipath Implementation). Adapt the approach in Section 3J to the
max flow algorithm. :

(Hint. Solving the max flow problem for given sets N* and N~ is like
trying to solve a feasible distribution problem in which the supplies (in
N7) and demands (in N-) are inexhaustible. Virtually the same proce-
dure can be used, except that b(i) is treated in the formulas as if it were
+oo for i€ N* and — oo for i € N™, but of course 0 for all other
nodes.)

3.32. (Multipath Implementation). Sharpen the argument at the end of Sec-
tion 3J to show that the number of “flux changes” in each application of
the “grand improvement procedure” (Dinic-Karzanov approach) cannot
exceed

s(IN| +)N+ 214 - 1.
(Hint. Only unblocked nodes in Ny,...,N, are operated on in transmit-
ting demands. In the first few rejection phases all the nodes that get
blocked may be in N,, but the number of such phases is limited, so that
after a certain point each rejection phase must block at least one new
nodein Ny U ---UN,_;.)

3N.* COMMENTS AND REFERENCES

More than any other event the discovery of the max flow min cut theorem by
Ford and Fulkerson [1956] (independently also by Elias, Fernstein, and
Shannon [1956]) marks the beginning of the era in network flow analysis when
the emphasis shifted from purely electrical or mechanical problems toward
applications in operations research and combinatorial optimization. The con-
nection between the max flow min cut theorem and the duality theory for
linear programming problems was recognized nearly from the start (Dantzig
and Fulkerson [1956]).

In the common version of the theorem all capacity intervals are taken to be
of the form [0, ¢], and single nodes appear in place of N* and N~. Such
restrictions do not represent a significant shrinkage of generality, because of

98 Chap.3. FLOWS AND CAPACITIES

the tricks that can be used to reformulate a given problem. However, direct
treatment of arbitrary intervals and multiple sources and sinks facilitates a
number of applications. It helps to bring out analogies with dual results like
the max tension min path theorem in Chapter 6, where it would not be sensible
to focus on intervals [0, ¢]. It points the way to a direct and more natural,
constructive proof of the feasible distribution theorem, a result that is essen-
tially equivalent to the max flow min cut theorem, but tends to overshadow it
in usefulness and therefore ought to be more in the center of the stage. Feasible
distribution problems, as they arise in subroutines in many algorithms in
network optimization (Chapters 7 and 9), definitely involve general capacity
intervals.

The feasible distribution theorem was first published by Gale [1957] in the
case where ¢(j) £ 0 < ¢*(Jj) and by Hoffman [1960] in the case of arbitrary
closed capacity intervals. Both results actually date from unpublished work of
the authors in 1956, and both allow for divergence constraints more general
than y(i) = b(i), namely, y(i) > b(i) in Gale’s case and b~(i) < y(i) < b*(i)
in Hoffman’s. Despite these differences the two results are equivalent to each
other and to the feasible distribution theorem as we have stated it; see Section
3H.

Minty [1962] established the versions of the max flow min cut theorem and
feasible circulation theorem that are valid for arbitrary capacity intervals, not
necessarily even closed (see Exercises 3.4 and 3.13). A generalized statement of
the max flow min cut theorem in the case of node capacities is furnished by
Lawler [1976, p. 212].

In a network with capacity intervals, one could solve the max flow problem
for all pairs of nodes s, s’, and thereby generate a matrix of size [N| X |N|.
How can this be done efficiently, and just what characterizes the matrices that
can be obtained in this manner? How could a network yielding a desired
matrix be synthesized “cheaply”? For answers, see the book of
T. C. Hu [1969] and its references.

The max flow algorithm (replete with labeling routine) was devised by Ford
and Fulkerson [1957], who in this connection were the first to point out the
theoretical importance of commensurability conditions and the like. Although
data can be assumed in practice to be commensurable, the real implication of
this termination peculiarity (and the counterexample of Ford and Fulkerson
described in Exercise 3.12) is that the algorithm in its original, broad form
could be erratic in speed and efficiency. In particular, one cannot give any
bounds, in terms of the size of the network (rather than merely the capacities
and initial flow values), on the number of steps that will be required. The same
holds true even if the algorithm is supplemented by the rule of arc discrimina-
tion (a device suggested by work of Ellis Johnson [1966]), although that does at
least guarantee finite termination for arbitrary data, and in a manner that is-
quite simple to explain and therefore useful in constructively proving the full
max flow min cut theorem and related results.

Sec. 3N.* COMMENTS AND REFERENCES 99

In recent years much effort has gone into improving this state of affairs. J.
Edmonds and R. M. Karp [1972] demonstrated, in effect, that if breadth-first
search is used in the painted network subroutine, the algorithm surely will
terminate (even without commensurability of data), and in fact the number of
steps required is of order O(|N||4|?) (hence in the digraph case, no worse than
O(|N|?)). The effect of breadth-first search is to select in each iteration a
flow-augmenting path with as few arcs as possible. The same thing could be
accomplished of course by employing the multipath version of the painted
network subroutine and any one of the paths it embodies.

The idea of getting more out of this approach by solving auxiliary painted
network problems based on a multirouting is due to E. A. Dinic [1970], but his
work, with details not available in English, remained unknown in the West for
a long time. Dinic’s method reduces the order of complexity in the digraph
case to O(|N|*), and the refinement of A. V. Karzanov [1974] brings it down to
O(|N|?). (The details of this approach are in the book of Adelson-Velsky,
Dinic, and Karzanov [1975], in Russian. An exposition in English has been
provided by S. Even [1976].) More recent work on implementing the Dinic-
Karzanov approach has brought the order of complexity down as low as
0(| 4| | N [log?|N|), which is asymptotically better than 0(|N|*) in networks that
are even slightly sparse, in the sense of 4 = O(|N|") for some r < 2. See Galil
and Naamad [1979] for such an implementation and additional references to
the subject.

Any improvement in the max flow algorithm can be adapted to the feasible
distribution algorithm, and, more easily, vice versa (see Exercises 3.23 and
3.31). We have taken this step in presenting the Dinic-Karzanov method in
Section 3J, because the feasible distribution algorithm is more important to the
procedures in later chapters. A change that has been made over the version
that would be obtained by direct emulation of Dinic-Karzanov, is to have
demands transmitted from N~ to N*. This appears to take better advantage of
the information generated by the multipath subroutine.

The flow rectification algorithm introduced in Section 3K can be regarded
essentially as a simplification of a method of Minty [1962, p. 207].

For max flow problems in stochastic networks, consult J. R. Evans [1976].
Max flow problems in dynamic networks can often be reduced to min cost flow
problems in the underlying “static” networks, as explained by Ford and
Fulkerson [1962, pp. 142-150].

See Picard and Ratliff [1975] for a class of quadratic programming problems
in 0-1 variables which can be reformulated as min cut problems for a certain
network.

4

ANALYSIS OF FLOWS

Intuitively, the feasible distribution problem involves taking a quantity of
material apportioned at various supply nodes and guiding it through the
network to the demand nodes. In this sense the concept of a solution to the
problem as a “flow” is somewhat unsatisfying, since only the flux in each arc is
specified. It is desirable to know how the flow might be represented in more
physical terms that respect the identity of the material in transit, for instance,
as a superposition of “transport plans,” each giving a path over which a
certain amount of material is to move from a supply node to a demand node.

As a matter of fact the flows constructed by the algorithms of Chapter 3 do
all appear as sums of an initial flow (perhaps identically zero) and amounts
flowing along various paths. But these sums may entail cancellation in some
arcs and thus may not furnish an appropriate realization from, say, an
economic point of view.

This chapter explores the chief ways to realize or represent a flow, as well as
properties of the special kinds of flows that are involved in such representa-
tions: integral, elementary, and extreme flows. Except for the integrality
theorem in Section 4A, the results are not crucial to an understanding of the
next two chapters and could be postponed on an initial reading. (They come
into play in Chapter 7.)

4A. INTEGRAL FLOWS

A flow x is said to be integral if x(j) is an integer for every arc j. Such flows
are closely linked to combinatorial structures (e.g., arcs, paths, and special
families of arcs and paths) particularly if the nonzero flux values are just +1.
Their existence under certain restrictions is therefore of prime importance in
applications of flow theory to a number of combinatorial problems. Several
such applications will be described in Chapter 5.

The following result about integral flows can be drawn immediately from
properties of the algorithms of Chapter 3.

100

Sec. 4A. INTEGRAL FLOWS 101

Integrality Theorem for Flows

1. If a max flow problem has all integral capacities c¢*(j), ¢™(j), and has a
solution at all, then it has at least one solution that is an integral flow. In
fact any solution calculated by the max flow algorithm, starting from an
integral flow, will be integral.

2. If a feasible distribution problem has integral supplies b(i) and integral
capacities ¢*(i), ¢~(i), and if it has a solution at all, then it has at least
one solution which is an integral flow. In fact any solution calculated by the
feasible distribution algorithm or flow rectification algorithm, starting from
an integral flow, will be integral.

(Note: + o and — oo are considered “integral” in this context.)

Proof. This is mainly a consequence of the commensurability arguments
used to prove convergence of the algorithms in question. In each case it is
known that if the initial data are all whole multiples of some § > 0, then the
same will be true of the flux values on termination—and the algorithm will
indeed terminate sooner or later with a solution to the problem. Integral flows
correspond to & = 1. To conclude that the feasible distribution problem has an
integral solution, it need only be observed further that if ¢*(j) and ¢ () are
integral for all arcs j, then there does exist an integral flow with which the
feasible distribution algorithm can be initiated. For example, the flow x having
each flux x(j) taken to be the element of [c¢ (), ¢*(/)] nearest to O fits the
requirements. ‘

For the max flow problem the task of finding a flow that is feasible with
respect to capacities and conserved at all nodes outside N* and N~ is, as
observed in Section 3H, a special case of the general feasible flow problem,
which in turn is a feasible circulation problem in the augmented network. If
¢*(j) and ¢7(j) are integral, the argument already given shows there is an
integral solution, if there is any solution at all. Thus the max flow algorithm
can be initiated with an integral flow, and the proof of the theorem is complete.

It should be noted that when an integral solution exists, then unless it is the
unique solution to the problem in question (as it well might not be), there will
exist other solutions that are not integral. For if x, and x; are both integral
solutions to the max flow problem, say, then the flow x defined by

x(j) =01 —=A)xo(j) +Ax;(j) for all arcsj,

where A € (0,1) will again satisfy the capacity constraints and will yield the
same flux from N* to N~ as x,, and x;; therefore x will also be a solution to the
problem, and generally a nonintegral one.

Application to Round-off
The integrality theorem will be seen to have many interesting consequences,

and the following fact is a fine illustration. For any circulation X in a network G,
there is an integral circulation X in G such that |%(j) — X(j)| < 1 for allj € A.

102 Chap. 4. ANALYSIS OF FLOWS

To verify this in a constructive manner, consider the feasible circulation
problem in which the capacity intervals [c¢ (), ¢ ()] are defined by

c*(j) = [lowest integer > ()],
¢~ (j) = [highest integer < %(j)].

Obviously, ¢7(j) = %(j) = ¢*(j) if X(J) is an integer, but otherwise ¢ 7(j) <
%(j) < ¢*(j), ¢*(j) — ¢7(j) = 1. The feasible circulation problem in question
has at least one solution, namely, X, and since ¢*(j) and ¢ () are integral, we
may conclude from the integrality theorem (with b(i) = 0) that there is at least
one integral solution X. Such an X clearly meets the requirements and can be
calculated by the feasible distribution algorithm.

ExaMPLE 1

For a given m X n real matrix X = [%,,], does there exist an m X n integer
matrix X = [X,,] such that

Ifk[—fk[|<l forallk, l,

n n
| %, — X Xl <1 forallk,

=1 =1

m m
I %, - X x4l <1 foralll,
k=1 k=1

Figure 4.1

Sec. 4B. CONFORMAL REALIZATION OF FLOWS 103

Yes, always. Simply associate X with the circulation shown in Figure 4.1, and
apply the round-off result just explained.

4B. CONFORMAL REALIZATION OF FLOWS

An elementary flow is a flow of the form
a ifje Pt
x(j) = aep(j)={ —a ifje P,
0 otherwise,
where P is an elementary path and a > 0. The question to be studied now is
how a general flow can be expressed as a sum of elementary flows, but in this

there is interest in restricting the class of paths to be admitted.
A path P is said to conform to a flow x if two conditions are met:

1. x(j)>O0forallje P ,and x(j)<Oforalje€ P".

2. Either P is a circuit, or the initial and terminal nodes of P are a source
and sink of x, respectively.

Condition 1 means that, as one moves along the path, one is always going
“downstream” relative to the flow. Equivalently, the path is compatible with
the painting where the arc j is as follows:

white if x(j)>0
black if x(j) <0
red if x(j)=0

This assignment of colors will be referred to as the conformal painting relative
to x.

A flow having no circuit that conforms to it is called an anticirculation. In a
sense this property is the “opposite” of being a circulation.

Proposition 1. The only flow that is both a circulation and an anticirculation is
the zero flow.

Proof. Let x be a nonzero anticirculation, and give the network the
corresponding conformal painting. No circuits are compatible with this paint-
ing, since x is an anticirculation. But there is at least one black or white arc j,
since x is nonzero. By Minty’s lemma, there must be a cut Q containing j which
is compatible with the painting and thus has

x(j)<0 forallje Q%
x(j)=0 forallje Q.

104 Chap. 4. ANALYSIS OF FLOWS

Figure 4.2

Then
[flux of xacross Q] = 2 x(j) — X x(j) < —Ix(j)I <0,

jeg* JEQ”

so x cannot be a circulation (see Exercise 2.10).

In contrast to circulations, which form a linear subspace of the space of
flows, the sum of two anticirculations need not be an anticirculation. A
counterexample is displayed in Figure 4.2.

The main result is the following.

Conformal Realization Theorem. Let x be any flow other than the zero flow.
Then there exist elementary paths P,,...,P, that conform to x and positive
numbers @, .. .,qa,, which can be chosen integral if x is integral, such that

X =aep + ---t+aep.

Moreover the paths (not necessarily unique) can be chosen so that if the
circuits among them are indexed Pi,.. q, then ayep + <<+ + aep is a
circulation whereas &,.,ep t+ -+ a eP is an antzczrculatlon Thus x is in
particular represented as the sum of a circulation and an anticirculation.

The proof of this theorem will be represented in the next two sections in
terms of a constructive procedure and its justification.

4C.* REALIZATION ALGORITHM

In constructing a decomposition of the kind just described, it is helpful to use
still another notion, that of the support of a flow x. This is the signed set
formed by the arcs j such that x(j) # 0; the positive part consists of the arcs
with x(j) > 0, and the negative part of those with x(j) < 0. (Recall that a
signed set is a set S plus a partition of S into two subsets S* and S~.) Two
signed sets are said to be in conformity with each other if no arc belongs to the
positive part of one set but to the negative part of the other.

Sec. 4C.* REALIZATION ALGORITHM 105

Starting with an arbitrary flow x # 0, a sequence of elementary paths P,
that conform to x is to be constructed, along with numbers a, > 0 such that
the flow

Xpop = X ——[ozle,,1 + -+ ake,,k]

has support strictly included in the support of x, and in conformity with it. (In
this notation, x, = x.) Since the supports are strictly decreasing, the stage must
come, say, at iteration r, when there is no support left at all, namely,

0=x,+1=x—[alepl+ +a,e,,r].

Due to the way the paths are to be chosen, this will provide the desired
representation of x.

In the first phase of the procedure only circuits are considered. The
corresponding elementary flows a,ep are therefore circulations. This phase
continues until an iteration is reached, call it g, when there does not exist a
circuit that conforms to x,,, (as must happen sooner or later, at worst when
the zero flow is attained). Then x . ; turns out to be an anticirculation, and the
equation

x = [ozle',.,1 + -+ aqepq] + X541

therefore represents x as the sum of a circulation and an anticirculation. At
that point the procedure switches over to dealing only with paths that are not
circuits. (If x is a circulation, then x,,; = 0 by Proposition 1 in Section 4B, so
no switchover is necessary, and the algorithm simply terminates.)

Path-Calculating Procedure: First Phase

In the kth iteration, the flow x, is on hand. Its support is in conformity with
that of x and included in it. There is also an arc set M C A (initially, M = @),
consisting, as will be seen, of arcs ascertained not to belong to any circuit that
conforms to x,.

Give the network the conformal painting for x, (see Section 4B), but with
the modification that all arcs in M, whatever color they would have been, are
to be painted red. If there are no black or white arcs, proceed to the second
phase (outlined in the next subsection). Otherwise choose any arc j that is
white or black, and apply Minty’s lemma (and the corresponding algorithm).

If this yields a compatible cut containing j, add all the arcs of the cut to M
and try again (with a correspondingly altered painting and a different choice of
Jj). If it yields a compatible circuit containing j, this is an elementary circuit
that conforms to x, (and hence with x). Denote it by P, and calculate

a, = minof |x,(j)| forarcsjin P,.

106 Chap. 4. ANALYSIS OF FLOWS

Then «, > 0, and the flow x, ., = x; — a,ep has support strictly included in,
and in conformity with, that of x, (and hence that of x). Repeat the step with
X+, (and the same M).

Second Phase
This begins when there are no black or white arcs as defined in the first phase.

At that point (and in all later iterations) the flow x, is an anticirculation (see
Section 4D); the set M is dropped.

3y 7 geig)

Pl: i5->124- i3->14->:|.5

3, - Gy
P2 : 114-13-»i5->i2->il
=2

+ . d .
N = {ll}r N = {15}

. ilq-i3->;|_4->15

Sec. 4D.* JUSTIFICATION OF THE ALGORITHM 107

The arcs are simply given the conformal painting x,. Let N* and N~,
respectively, denote the set of sources and set of sinks of x,. If either N* or N~
is empty, then x, must be the zero flow (see Section 4D), and the algorithm
therefore terminates; the desired representation has been achieved. If not,
apply the painted network algorithm. This necessarily vields an elementary
path that conforms to x, (and hence with x). Denote it by P, and form «, and
X, . as before. Again x, ,, has support strictly included in, and in conformity
with, that of x, (and hence that of x). Repeat the step with x, ;.

EXAMPLE 2

Figure 4.3 depicts the calculation of a conformal realization for a certain
integral flow x that is not a circulation:

x =3ep + 2ep +ep + 2ep,

where P, and P, are circuits (i.€., g = 2).

4D.* JUSTIFICATION OF THE ALGORITHM

The reason the supports of the flows x, are strictly decreasing is that at each
iteration x,,, vanishes in the arcs j for which |x,(j)| = a,, as well as in all
arcs where x, vanishes. Furthermore the choice of the painting ensures that
x(j) = o for allj € P and x,(j) < o, for all j € P, and hence x,,, can
only be positive in some of the arcs where x, is positive, and negative in some
where x, is negative. Thus the support of x, ; is again in conformity with that
of x, (and hence with that of x).

The assertion about the arcs in the set M in the first phase of the algorithm
is established by an inductive argument. Suppose that at some stage of
iteration k in the first phase all the arcs of M do have the status of not
belonging to any circuit that conforms to x, (as is true in the vacuous sense at
the start of the algorithm, where M = @). Suppose a cut Q compatible with
the painting is obtained. It must be shown that none of the arcs in Q belongs
to any elementary circuit that conforms to x,, so that when Q is added to M,
the desired property of M is maintained. (The property is inherited by x, , , in
the next iteration, since any circuit that conforms to x, . ; also conforms to x,.)
The compatibility of Q with the given painting yields

x.(j)<0 forallj € Q"\ M,
x.(j)>0 foralje O\ M.

If P is an elementary circuit that conforms to x,, then by our assumption on M

108 Chap. 4. ANALYSIS OF FLOWS

at this stage, P does not meet M. All the arcs in P* have x,(j) > 0, whereas
those in P~ have x,(j) < 0, so any arc common to P and Q would have to be
in P*n Q~ or P N Q. Therefore

erceg= 2 ep(f)eg(i)+ X ep(7)eg()

jEPTNQ~ jeEP™NQO*
= —|P*N Q7| - PN Q"]

But ep - ey = 0 (since ep is a circulation and e, a differential). Hence P*N Q~
= @ and P"N Q%= &, and it is true that none of the arcs of Q belongs to P.

Since none of the arcs of M at the end of the first phase (when all arcs have
become red) belongs to any circuit that conforms to the flow x . ; at that stage,
X,+1 1s indeed an anticirculation. (Any circuit that conforms to x,., would
have to be compatible with the current painting, but this is impossible if there
are only red arcs.) Thus the switchover to the second phase at this stage is
justified, and all subsequent flows x, are anticirculations.

In the second phase, if at any time N* or N~ is empty, then both must be
empty (by the total divergence principle), and hence x, is a circulation. But x,,
is also an anticirculation, and hence by Proposition 1 in Section 4B one has
x, = 0, as claimed.

Finally, observe that if x is integral, then so are a, and x, at every iteration;
this is evident from the formulas.

EXAMPLE 3

A flow can often be conformally realized in more than one way. Thus the flow
x in Example 2 (Figure 4.3) can also be expressed as

x =2ep + 2ep, + ep + 3ep,

where the paths are
Ppi, > i, > is—> i, i (circuit),
Pyiy— is — i, « iy (circuit),
Pyi, > is—> i, < iy;— i, (circuit)
P, i, < iy > i, = is (noncircuit).

This also shows, incidentally, that even the decomposition into a circulation
plus an anticirculation is not always unique.

S G

O ©

O

Figure 44
4E. TREES

A number of questions about algebraic properties of flows and the space of
circulations are tied to the theory of “trees” and “forests.”

A network is called a rree if it is connected and contains no elementary
circuits but has at least one arc; see Figure 4.4. The last provision simply
excludes from treehood networks that consists of a single isolated node. An
equivalent definition of a tree is that it is a network with at least two nodes,
such that for any two distinct nodes i and i’ there is a unique elementary path
P: i — i’ (Exercise 4.21). More generally, a set of arcs in a network G is said to
form a tree if the subnetwork of ‘G consisting of these arcs and the nodes
incident to them is a tree.

Test of Whether a Network is a Tree

There is a simple way to determine algorithmically whether a given network
(with |N| < 2) is a tree, and if so, to represent in convenient form the unique
elementary paths joining its nodes. Select any node s, and apply the painted
network algorithm with all arcs painted green to get a maximal routing 6 with
base N*= {s}. If this is a routing of all of N (i.e., (i) is defined for every
i # s5) and uses every arc (i.e., every arc j is designated as 8(i) for some node i,
necessarily unique according to the definition of a “routing”), then the network
is a tree, but otherwise not.

Indeed if the routing has these properties, then the network is connected,
since there is a path from s to every other node. It cannot contain any
elementary circuit, for if P were an elementary circuit, then every arc j of P
would have to be 8(i) for one of the two nodes of P adjacent to it; since an
elementary circuit has an equal number of nodes and arcs, this would imply for
every node i of P that 6(i) is defined and is an arc of P, so that the routing
could not possibly provide a path joining any node of P with s. Thus the
network is in this case a tree.

110 Chap. 4. ANALYSIS OF FLOWS

On the other hand, if the network is a tree and this procedure is applied,
every node will be reached due to connectedness. Moreover the nodes and the
arcs used by the routing will constitute a tree by the argument just given, and
hence in particular, any two distinct nodes i and i’ can be joined by an
elementary path limited to arcs used by the routing. If there were also an arc j
not used by the routing with j ~ (i, i) or j ~ (i’, i), then the network would
contain an elementary circuit, contrary to its being a tree. Therefore every arc
must be used by the routing in question, and the routing does have the
properties asserted.

The test just given shows that the notion of a routing with base s is virtually
equivalent to that of a rooted tree, a tree in which some node s has been
designated as the “root.”

A specific description of the unique elementary paths in a given tree
provided by a routing € of the node set of the tree with base s is the following.
In the case of s and another node i, the two paths in question must be the
0-path from s to i and its reverse from i to s. In the case of two different nodes
i and i’ distinct from s, the unique elementary path from i to i” must be the one
obtained by tracing the routing from i back to where it joins the §-path from s
to i/, and then proceeding along the latter to i’.

Number of Arcs in a Tree

Another characterization emerges from the test just described, namely, that a
connected network is a tree if and only if

[number of arcs| = [number of nodes] — 1 > 0.

For in a connected network a complete routing based on any node s assigns a
different arc to each node i # s and thus uses one less arc than the total
number of nodes.

4F. FORESTS AND SPANNING TREES

An arc set F C A is said to form a forest in the network G if every component
of the subnetwork comprised of the arcs of F and the nodes incident to them is
a tree. In other words, F is a forest if and only if no elementary circuits are
included in F. See Figure 4.5 where the darkened arcs are the ones in F.

The test for a tree, using the painted network algorithm as prescribed in
Section 4E, can readily be extended to a test of whether an arc set F forms a
forest. As a matter of fact F forms a forest in G if and only if it is the set of arcs
used by some routing 6 (not necessarily of all of N, with a base N*C N)
(Exercise 4.24). If the routing is based at a single node, the forest consists of a
solitary tree.

The connection between forests and flows is the following. An arc set F
forms a forest if and only if there is no nonzero circulation whose support is

Sec. 4F. FORESTS AND SPANNING TREES 111

O

O

included in F, that is, no circulation x such that x(j) = 0 for all j € F but
x(j) # 0 for at least one j € F (Exercise 4.26).

It is worthwhile to explore what the latter condition implies in terms of the
incidence matrix (function) E for the network. Circulations x are characterized
as solutions to the system

Y e(i, j)x(j)=0 foralli <€ N.
JEA

Figure 4.5

Let e/(i) = e(i, j); thus e/ denotes the “column” of E corresponding to the
arc j. The system then becomes

> x(j)e/=0.

jea

In other words, a nonzero circulation can be interpreted as a choice of
coefficients x(j) that yields a relation of linear dependence among the corre-
sponding columns of E. It follows that an arc set F forms a forest in G if and
only if the corresponding columns of the incidence matrix of G are linearly
independent.

It is natural to move from this fact to the study of sets of columns that form
a basis for the column space of E (i.e., for the linear subspace of RV generated
by all the ¢/, j € A), since, among other things, this will yield a description of
the rank of E.

A maximal forest in G is defined to be a forest that is not strictly contained
in any other forest of G. (Any forest can be extended to a maximal forest.) A
spanning tree for G is a tree meeting every node of G (see Figure 4.6).

Spanning Theorem. For any network G, the following properties of an arc set
F C A are equivalent:

1. F forms a maximal forest for G.

2. F forms a spanning tree for each component of G that is not just an
isolated node.

112 Chap. 4. ANALYSIS OF FLOWS

o

Figure 4.6

3. F forms a forest such that |F|=|N|— p, where p is the number of
components of G.

4. The columns e’ of the incidence matrix E corresponding to the arcs j € F
form a basis for the column space of E.

Proof. The equivalence of Properties 1 and 4 is clear from the preceding
observations about linear independence.

To see that Property 1 implies Property 2, note first from the maximality of
F that every component of G that is not just an isolated node must include an
arc of F and hence one of the component trees of F. Let T be such a tree, and
let S be its node set. The component of G that includes T cannot have nodes
besides those in S. If it did, the cut Q =[S, N\ S} would be nonempty, and
any arc in Q could be added to F without destroying the “forest” property.
(This is true because any elementary circuit meeting Q at all must have at least
two arcs in common with Q; see Exercise 2.8.) Thus each component tree of
the forest corresponds to a component of G having the same node set as the
tree, and every component of G that is not just an isolated node corresponds to
a tree in this way. This is Property 2. The implication from Property 2 to
Property 3 is immediate, in view of the fact, already noted in this section, that
the number of arcs in a tree is always one less than the number of nodes. The
latter generalizes to the rule that for any component G’ of G,

number of arcs number of nodes number of trees
in a forest incident to the of the forest

that belong ~ | forest that belong | ~ | that are contained
to G’ to G’ in G’

[number of nodes]
<. - 1.
L in G’
Therefore any arc set F forming a forest in G satisfies

|F| < |N| — [number of components of G].

If equality holds, F must be maximal. Thus Property 3 implies Property 1.

Sec. 4G. TUCKER REPRESENTATIONS OF THE CIRCULATION SPACE 113

Corollary. In a connected network (with at least one arc) a maximal forest is
the same thing as a spanning tree.

Those having some familiarity with linear programming will see the special
significance of Property 4. In linear programming problems involving the
constraint equation Ex = b, which may be written

2 x(j)e/ = b,

JEA

it is of interest to know which sets F C 4 are such that the elements e’ for
J € F form a basis for the column space (assumed to contain b). Each of these
determines a unique x satisfying the equation and having x(j)= 0 for all
j & F. The “simplex method” of computation depends on generating a se-
quence of such sets F. Geometrically, these sets can be identified with the
spanning trees for the network, assuming that the network is connected.

4G. TUCKER REPRESENTATIONS OF THE CIRCULATION SPACE

Spanning trees and forests are central in any discussion of how the circulation
space ¥ and differential space 2 of a network may be represented.
As already noted, ¥ consists of the elements x of R such that

‘ZAe(i, j)x(j)=0 foralli e N. (1)

This system of equations can be solved for some of the variables x(j) in terms
of the others and written equivalently, for various subsets F C A4, as

Y a(j,k)x(k)=x(j) forallj € F,where F’= A\ F. (2)
keF’

A system of the latter form is a Tucker representation of the subspace ¥. If flux
values for the arcs in F’ are chosen arbitrarily, then (2) determines the unique
flux values for the arcs in F which make the flow a circulation.

EXAMPLE 4

For the network in Figure 4.7, system (1) can be written in tableau notation as

x1) x@ x(3) x@ x5 x(6
0

1 -1 -1 0 0 =0
0 0 1 1 1 0 =0
-1 0 0 -1 0 1 =0
0 1 0 0 -1 -1 =0

114 Chap.4. ANALYSIS OF FLOWS

Je

Figure 4.7

The set F = { j,, Js, Jo} yields a Tucker representation (2) of ¢, namely,

x(1) x(4) x(5)

1 1 1 = x(2)
0 -1 -1 = x(3)
1 1 0 = x(6)

Proposition 2. An arc set F C A corresponds to a Tucker representation of the
circulation space € if and only if F forms a maximal forest for the network G.

Proof. Write the defining system (1) for € as

Y x(j)el = - X x(k)e. ©)

JEF keF’

The set F corresponds to a Tucker representation if and only if for every choice
of numbers x(k), k € F’, there exist unique numbers x(j), j € F, such that
(3) holds. This property will certainly hold if the vectors e/, j € F, form a
basis for the column space of E. On the other hand, taking x(k) = 0 for all
k € F’, one sees from the uniqueness of the associated numbers x(j) in (3)
that the vectors e/, j € F, are linearly independent. Moreover (3) implies that
every vector expressible as a linear combination of all the vectors e/, j € F,
and e*, k € F", is actually expressible as a linear combination of just e/, j € F.
Thus {e’/|j € F} is a basis for the column space.

Sec. 4G. TUCKER REPRESENTATIONS OF THE CIRCULATION SPACE 115

Dual Tucker Representations

Each Tucker representation (2) of % can immediately be translated into a
Tucker representation of the differential space &, namely,

= Y v(j)a(j, k) =v(k) forallk € F". (4)
JjEF
This follows from the fact that 2 = ¢* (see Section 1H), that is, v € 2 if and
only if
0= Y v(j)x(j) forallx € %.

JEA

In terms of a Tucker representation (2), this property characterizes & as the set
of all v € R4 satisfying

+ Y v(k)x(k)

keF’

0= % vm[T a(j, k)x(k)

JEF keF’

- x(k>{v(k)+ > v(j)a(j,k)]

keF’ JEF

for all choices of x(k), k € F’. This is obviously equivalent to (4). Conversely,
each representation (4) of 2 yields a representation (2) of %.

For instance, v is a differential for the network of Example 4 (Figure 4.7) if
and only if it satisfies the system

-v(2) 1 1 1

—-v(3) 0 -1 -1

—(6) 1 1 0
=v(1) =v(4) =v(5)

The Tucker representations of € and 2 therefore occur in dual pairs
in one-to-one correspondence with the maximal forests F of G (or spanning
trees, if G is connected). The two representations can be displayed jointly as in
Figure 4.8.

It is interesting and useful to observe that the tableau defining the relation-
ships between flows, divergences, potentials, and differentials in G (see Figure
4.9) can also be interpreted in terms of Tucker representations, namely, for the
circulation and differential spaces of the usual augmented network G with
“distribution arcs” j. This is seen by expressing the tableau in equivalent
notation as in Figure 4.10 and noting that the distribution arcs j; together
constitute a particular spanning tree for G. Tucker representations thus have a
wider applicability than may have been apparent.

116

-V(Ji)
for ieN

-u(i)

for ieN

=v(3)
for jeF

x(j) for jea

e(i,j)

=v(j) for jea
Figure 4.8

x(j) for JjeA

e(i,j)

=v(j) for jeA
Figure 4.9

x(k) for keF'

a(j, k)

=v(k) for keF'
Figure 4.10

= X(Ji)
for ieN

=y(i)

for ieN

= x(3)
for jeF

Sec. 4H.* BASIS THEOREM 117
4H.* BASIS THEOREM

The next goal is to relate the coefficients a(j, k) in a Tucker representation to
the combinatorial structure of the network. This involves associating with each
maximal forest a special set of elementary circuits whose incidence vectors
form a basis for €, as well as a set of elementary cuts whose incidence vectors
form a basis for 2.

Basis Theorem. Let F C A be a maximal forest in G, and let the numbers
a(j, k) for jE F,k € F"=A\F, be the coefficients in the corresponding
Tucker representations of the circulation space € and differential space 9:
1. For each arc k € F’ there is a unique elementary circuit P, that contains k
in its positive part and otherwise uses only arcs of F. The incidence vectors
ep, form a basis for € and are given by

a(j, k) forallj€F,
ep (/) =10 forallj € F’exceptj = k,
1 forj=k.

2. For each arc j € F there is a unique elementary cut Q ; that contains j in
its positive part and otherwise uses only arcs of F’. The incidence vectors
€y, form a basis for & and are given by

—a(j, k) forallk e F’,
er(k) =10 forallk € Fexceptk = j,
1 fork=j.

Proof. Only the argument for Part 1 will be furnished; the proof of Part 2
is left as Exercise 4.32. Let k € F’, k ~ (i, i’). Since F is a maximal forest, it
includes a spanning tree T for the component of G containing i and i’ (see the
spanning theorem in Section 4F). There is a unique elementary path in T from
i’ to i, and this, together with the arc k, forms the circuit P,. The incidence
vector ep may be regarded as a circulation having flux +1 in & but 0 in all
other arcs of F’. Hence for any choice of coefficients A, the flow

x = Z AkePk
keF’
is a circulation satisfying x(k) = A, for all X € F’ and
x(j)= X Mep(j) foralljeF.
keF’

On the other hand, it is known from the Tucker representation that there is
a unique circulation x satisfying x(k) = A, for all k € F’, namely, the one
whose other flux values are given by

x(j)= Y Aia(j, k) forallje F.
keF’

118 Chap. 4. ANALYSIS OF FLOWS

Thus each element of ¥ can be represented uniquely as a linear combination of
the vectors e P and one has

2 Ma(i k)= % Ake}’k(j)

keF’ kEF’

for all j € F and all A, € R. This shows that the vectors e, form a basis for
%, and ep (j) = a(J, k). The proof is now finished.

The circuits P, and cuts Q; in the basis theorem are called the fundamental
circuits and cuts associated with F.

Corollary. In any Tucker representation of the spaces € and 2 all the coeffi-
cients a(j, k) are +1, —1, or Q.

The property in the corollary is important, since it makes the storage and
. manipulation of Tucker representations on a computer much easier than would
be the case with similar representations of general subspaces not corresponding
to circulations or tensions in a network.

The basis theorem indicates how to determine the coefficients in a Tucker
representation combinatorially rather than by solving equations as at the begin-
ning of Section 4G. For simplicity, suppose that the network is connected, so
that the maximal forest F is a spanning tree, and let this be represented by a
routing #. As seen in Section 4E, the routing holds all the information needed
to find the unique elementary path from any node of the network to any other
node, using only arcs in the tree. It is therefore easy to generate from it a
description of the circuit formed when any arc in F’ is adjoined to F. Likewise
it is easy to determine the two “connected” node sets S and N\ S into which
the tree splits if any of its arcs is deleted. Thus the bases of elementary circuits
and cuts corresponding to F can be recovered from 6, and with them the
coefficients a(J, k).

EXAMPLE 5

In the network of Figure 4.11 the darkened arcs form a spanning tree F. The
elementary circuits P, corresponding to the arcs k € F’ = A\ F, as in the
basis theorem, are summarized as follows:

arck € F’ P} P;
B Jas J3 A
j4 jla j4 j2’ j6’ j8
Js Ju Js J2s Js
Jo Jo> Jo J1

jll j6’ j89 jll j7

Sec. 41.* PIVOTING 119

Figure 4.11

The incidences in this table yield the following Tucker representations for
circulations x and differentials v:

x(3) x@ x(5) x(9 x(11)
1 1

—o(1) [=1 0 0 | =xQ)
-0(2) 1 -1 -1 0 0 | =x@2
—(6) 0o -1 -1 1 1 | =x(6)
-v(7) 0 0 0 -1 -1 | =x(7
~0(8) 0o -1 0 0 1 | =x@®
—(10) 0 0 0 0 0 | =x(10)

=03 =v@ =v() =00 =o(l)

4L.* PIVOTING

Sometimes it is necessary to pass from one Tucker representation to another.
This can always be accomplished by a sequence of elementary transformations
called pivoting steps. The simplex method in linear programming is based on
pivoting, so the idea is obviously one of great importance for computations
and will in fact be applied in Chapter 7 to the optimization of flows and
potentials. The purpose of this section is to explain what pivoting is and how it
can be expressed in the network case in terms of operations on maximal
forests. '

Let us start with a Tucker tableau, as in Figure 4.8, and consider any pair of
arcsj € Fand k € F such that a(j, k) # 0. The equation represented by the j
row of the tableau, namely,

Y a(J, k)x(k) = x(J),

keF’

120 Chap. 4. ANALYSIS OF FLOWS

can be solved for x(k):

x(k) =

x(7) - a(j’k)x

This can then be substituted in the equations represented by the other rows so
as to obtain the expressions

oy =8k aCigey = B K)ali k) |
() 2.%) (J)+I£§_ (j, k) .5 (k)

foreachk € F,k # k. (2)

The point is that the systems (1) and (2) is equivalent to the row system in
the given tableau, and it therefore constitutes a new Tucker representation of
the circulation space. The new representation corresponds to the arc set

F=[F\j]UE. (3)

(Note: Strict usage of notation would require {j} and {k} in (3), but the
braces are omitted for simplicity.) It follows that the coefficients in (1) and (2),
when written in tableau form, yield at the same time a new Tucker representa-
tion for the differential space.

The transformation from the F tableau to the F tableau is called pivoting on
(j, k). It is summarized in Figure 4.12. It is possible if and only if a(j, k) # 0.

The following conclusion can be drawn immediately from the basis theorem
in Section 4H.

Pivoting Theorem. Let F be a maximal forest, and let J and k be arcs such that
j € Fand k & F. Then the following conditions are equivalent:

1. a(J, k) # 0 in the Tucker representation corresponding to F.
2. j lies on the circuit Py corresponding to k as in Part 1 of the basis theorem.
3. k lies on the cut Q ; corresponding to Jj as in Part 2 of the basis theorem.

When these conditions are satisfied, the set F defined by Equation (3) is again
a maximal forest.

The forests F and F are said to be adjacent, and the same for the
corresponding Tucker representations. The question now arises: Is it possible
to pass from any maximal forest F to any other maximal forest F* through a
sequence of adjacent forests? Equivalently, is it possible to pass from any
Tucker tableau to any other Tucker tableau (for the same dual linear systems)
by a sequence of pivoting transformations? That the answer is yes can easily be
seen in the following constructive manner.

Sec. 41.* PIVOTING 121

x (k) x(k)
L
'
l
- - I {
-v(3) | aG,k) a(3,k) = x(3)
1
F e e o e o e e e e e e e e e e e e o 2
|
1
. - — ' -
-V(J) a(J,k)] a(Jlk) = x(j)
|
i
1
= v(k) = v(k)
x(3) x (k)
T
' —

_ 1 1 _ afj,k) _
_V(k) a(?ri) : a(-]F,E) = x(k)

F |
|
_ . é_(_J_IE_) l alj, k) - a(jli)a(?rk) _ A
v(j) 2 (3.5 : 2 (3.5 x(3)
I
1
= v(3) = v(k)

Figure 4.12

Starting with the tableau for F, pivot on any pair (j, k) such thatj € F\ F*
and k € F*\ F, and keep repeating this step until no longer possible (i.e.,
transform column symbols corresponding to elements of F* into row symbols,
trading them for row symbols in F exclusively, until this is no longer possible).
Claim: At this stage the tableau must be the one for F*, if there is one for F* at
all (i.e., if F* is really a maximal forest).

For if this is not the tableau for F*, it must be of the form in Figure 4.13
with at least one column in F*\ F or row in F\ F*. (No elements in F can
correspond to columns except those that were moved from rows to columns by
pivoting, and none of these was in F*; similarly, no elements not in F can

122 Chap. 4. ANALYSIS OF FLOWS

F*\F A\F*

all zeros F\F*

F*

Figure 4.13

correspond to rows except those that were moved from columns to rows by
pivoting, and all of these were in F*.) If some column in Figure 4.12 belongs
to an element of F*\ F, the row system in this tableau shows that the
variables x(k) for columns not in F * can all be set equal to zero, and then one
will have x(k) = 0 for all k ¢ F* regardless of what values are assigned to the
variables x(j) belonging to column elements in F* \ F. It cannot be true then
that the values x(k) for k € F* uniquely determine the values x(j) for
j € F*, so there cannot be a Tucker representation of the circulation space
that corresponds to F*. Reasoning similarly in terms of the column system in
the tableau, one sees that if some row in Figure 4.1 belongs to an element of
F\ F*, there cannot be a Tucker tableau corresponding to F *. This proves the
claim.

The argument just given makes clear, incidentally, that all the Tucker
tableaus for a particular linear system of variables must be of the same size
(i.e., |F| = |F*|). This is obvious in the network case from what was observed
in Section 4F about maximal forests. But the reader should note that the
argument, in terms of pivoting, did not actually make use of any properties of
networks. It applies to arbitrary systems and furnishes an elementary construc-
tive method of establishing the fundamental results in linear algebra about the
dimension of a vector space.

4). EXTREME FLOWS

A feasible distribution problem as in Section 3H often has many solutions. But
they can all be represented as weighted combinations of certain “extreme”
solutions (plus elementary flows around special circuits of “unlimited
capacity”), as will be seen in this section.

Geometrically, the representation in question could be developed in terms
of the fact that the set of all solutions forms a certain convex polyhedron in
RA. The “extreme” solutions to be introduced could be shown to correspond to

Sec. 4J. EXTREME FLOWS 123

the extreme points (vertexes) of the polyhedron (see Exercise 4.38), and general
theorems familiar in linear programming could be invoked. However, the
discussion will instead be entirely algebraic and algorithmic.

Let the network G have a capacity interval [¢(j), ¢*(j)] for each arc j € 4
and a supply b(i) for each node i € N. An extreme flow, relative to the
corresponding feasible distribution problem, is defined to be a feasible flow x
such that the arc set

= {jedlc™(j) <x(j) <c™(j)} (1)

forms a forest. This condition is equivalent to the existence of a set F C 4
forming a maximal forest such that, for every arcj & F, either x(j) = ¢*(j) or
x(j) = ¢7(j). In the case of b = 0 extreme flows are called extreme circulations
relative to the given capacity intervals.

A method of calculating an extreme flow, if one exists, by a refinement of
the feasible distribution algorithm is described in Exercise 4.42.

In the statement of the main result about extreme flows, an elementary
circuit P is said to be of unlimited capacity if ¢*(j) = + oo for all j € P* and
¢ (j)= —oo for all j € P~. It is said to be of doubly unlimited capacity if P
and its reverse are both of unlimited capacity, or in other words, if every arc j
in P has capacity interval (— oo, + o).

An elementary circuit of doubly unlimited capacity exists if and only if the
arc set

{j€d|c™(j)= +owandc™(j) = —o0}

fails to be a forest. (This can be tested algorithmically; see Exercise 4.24.) Since
this set is included in F, for every x, it is clear that the existence of such a
circuit precludes the existence of any extreme flows at all. However, circuits of
(singly) unlimited capacity play a definite role along with extreme flows in the
representation now to be described.

Extremal Representation Theorem for Flows. Assume the feasible distribution
problem has at least one solution, but there are no elementary circuits of doubly
unlimited capacity. Then:
1. There are only finitely many extreme flows (at least one). They are all
integral, if the capacities ¢*(j), c™(j) and supplies b(i) are all integral.
2. A flow x is a solution to the feasible distribution problem lf and only if it
can be represented as

x = Z Apxy + Z #1er, ()
k=1 =1

where each X, is an extreme flow A, > 0,X,_ A\, =1, each P, is an
elementary circuit of unlimited capacity, and p, > 0.

124 Chap. 4. ANALYSIS OF FLOWS

(Note: The second sum in (2) may be vacuous.)
The proof of the theorem will be given in Section 4K.

ExXAMPLE 6. (Doubly Stochastic Matrices)

A doubly stochastic matrix of order n is an array of numbers x(k, /) for
k=1,...,nand [= 1,...,n such that

x(k,1) >0 forallk,!,

n

Y x(k,1)=1 forallk,
=1

n
Y x(k,l)=1 foralll,
k=1

or in other words, such that each row and column is a probability vector in R".
The set of all such matrices can be identified with the set of all flows that are
solutions to the feasible distribution problem displayed in Figure 4.14.

According to the theorem, any such flow can be represented as a convex
combination (weighted average) of extreme flows, each of which is integral.
(There are no circuits of unlimited capacity in this network.) From the nature
of the constraints, it is apparent that the integral solutions to the problem may
be identified with matrices having exactly one +1 in each row and in each
column, all other entries being 0, that is, the permutation matrices of order n.
It is also evident that each of these flows is extreme.

Thus one obtains the following fact (a theorem of G. Birkhoff): Every doubly
stochastic matrix can be expressed as a convex combination of permutation
matrices,

x=MAx;+ - +AX

reor

with \,>0,2A, = 1.

nodes k

nodes ¢

(0,11
Figure 4.14

Sec. 4K.* EXTREMAL REPRESENTATION ALGORITHM 125

Doubly stochastic matrices often arise in situations where a system has n
possible states and passes randomly between them with known probabilities.
The probability that the system, if in state & at time z, will be in state / at time
t+1, is x(k,). The extreme case where the successor state / is uniquely
determined by k corresponds to a permutation matrix. In this context Birkhoff’s
theorem says that the general case can be interpreted as the net effect of several
deterministic mechanisms operating according to certain probabilities A ,.

EXAMPLE 7.

The decomposition in the extremal representation theorem is not always
unique. This may be seen, for instance, in the special case of Example 6 where
one has the two representations:

W= W= o

W= W= W=

Wi W= W

I

(WES

Wi

W

(WIS

Wl

W=

4K.* EXTREMAL REPRESENTATION ALGORITHM

The theorem in Section 4J will now be proved. The last part of the argument
will be presented as an algorithm for expressing a given flow in the manner
described.

First consider b = 0 (extreme circulations). Then, except for the existence
assertion, Part 1 can be derived by considering the various (finitely many)
Tucker representations of the circulation space that correspond to maximal
forests. The forest F, corresponding to any extreme solution x is contained in
some maximal forest F, and therefore

x(j)= Y a(j,k)x(k) forallje F
keF

(where every a(j, k) is +1, —1, or 0). For each k & F, one has k ¢ F,, and
hence x(k) is either ¢*(k) or ¢ (k). It follows that there are only finitely many
extreme solutions x with F, C F, and these are all integral if the capacity
bounds are all integral.

These facts may be applied to the general case where b # 0 by regarding an
extreme flow in G as an extreme circulation in the augmented network G. Each

126 Chap.4. ANALYSIS OF FLOWS

distribution arc j; is assigned [b(7), b(i)] as its capacity interval. (Any forest in
G remains a forest in G.) This establishes Part 1, apart from the existence of at
least one extreme flow, which of course will follow from establishing the
necessity of the representation in Part 2.

The sufficiency of the representation in Part 2 is easy to verify. Since

c(J) = x(j) < c*(j) forallj, k,

one also has

r

¢ (J) £ L Ax(j) <c*(j) forallj,
k=1

since A, = 0,XA, = 1. Furthermore if for a particular arc j one of the circuits
P has ep(j) = 1, then ¢*(j) = + oo by the definition of P, being of unlimited
capacity, whereas if ep (j) = —1, then ¢7(j) = — co. Therefore

q
> wep(J) >0 implies ¢*(j)= +oo,
=1

q
Zl"‘lel’,(j)<0 implies ¢7(j)= —o0.
=1

It follows that ¢7(j) < x(Jj) < ¢*(j) for all j. At the same time, since each P,
is a circuit, the divergence of e, vanishes, and consequently

(divx)(7) = kz;:l}\k(divxk)(i) - kz;:l)\kb(i) — b(i).

Thus x is a solution to the problem.

It remains only to be demonstrated that an arbitrary solution x to the
feasible distribution problem can be represented as claimed. This can be
carried out in constructive fashion.

Algorithm

Starting with any solution x to the feasible distribution problem, form the arc
set F, defined in 4J(1) and test whether or not it constitutes a forest (see
Section 4F). If so, x is an extreme flow, and the desired representation in the
theorem in Section 4J is at hand. If not, one obtains an elementary circuit P
such that

¢ (j)<x(j)<c*(j) forallarcsjinP.

Sec. 4L.* EXERCISES 127

Since by hypothesis P cannot be of doubly unlimited capacity, it can be
supposed, passing to the reverse circuit if necessary, that the number

w = max{p € Rle(j) < x(j) — pep(j) < ¢*(j), Vj € 4 & (0, 0)

exists. Let x” = x — p'ep. Then x’ is another solution to the feasible distribu-
tion problem with F,. strictly contained in F,, and of course

x=x"+ pep. (1)

If P is of (singly) unlimited capacity, the procedure is next repeated for x’. If
not, then the number

p” =max{p € R|c™(j) < x(j) + pep(j) <c*(j),Vj€ 4} €(0,0)
also exists, and for x” = x + p”ep one has
x=Nx"+Xx" withN>0,N>0,XN+ X =1, (2)

where X = p” /(' + p”) and X’ = p’/(p’ + p”). Moreover x” too is a solu-
tion to the problem, with F,. strictly contained in F,. In this case the procedure
is applied to x” as well as x’.

Due to -the strict decrease in the arc set under consideration in each
iteration, every branch followed under the procedure must eventually terminate.
In other words, after a finite sequence of decompositions of the form (1) or (2),
all the remaining flows must be extreme. It is readily seen that, when these are
substituted back to get an expression for the original flow, a representation of
the desired sort is obtained.

Determining an Extreme Flow

If the aim is merely to find a solution to the feasible distribution problem that
happens to be an extreme flow, rather than to represent a given solution, this
can be accomplished in simpler fashion. The procedure is the same, except that
there is no need to branch to a pair of flows x” and x” at each iteration. Forget
about x”, and just repeat the reduction step immediately with x”.

4L.* EXERCISES

4.1. (Conformal Realization). Give a conformal realization of the flow in
Figure 4.15. (This can be done by inspection without going through the
formal details of the algorithm.)

4.2. (Conformal Realization). State the special case of the conformal realiza-
tion theorem corresponding to circulations x, and prove by way of the

128

Chap.4. ANALYSIS OF FLOWS

43.

44.

4.5.

4.6.

4.7.

4.8.

Figure 4.15

augmented network that it is actually equivalent to the general case
(except for the part about anticirculations).

(Conformal Realization). Show that for a flow x # 0 to be an integral
circulation satisfying |x(j)| <1 for all j € 4, it is necessary and
sufficient that it be of the form x = ep + --- + e, for certain elemen-
tary circuits P;,...,P. which are disjoint with respect to arcs.

(Conformal Realization). Let x be an integral anticirculation that is
conserved at all nodes except for a source s and sink s and whose flux
from s to s’ is +1. Prove that x = e, for some elementary path P:
s> s’

(Decomposition into Disjoint Circuits). Show that the arc set of a
network can be expressed as the union of a collection of elementary
circuits that are disjoint with respect to arcs, if and only if there is a
circulation x satisfying |x(j)| = 1 for all arcs j.

(Elementary Circulations). Prove that a circulation x is an elementary
flow if and only if its support is nonempty and minimal, in the sense
that there is no circulation x’ whose support is nonempty and strictly
included in the support of x.

(Elementary Circulations). Let x # 0 be an elementary circulation, and
let x” # 0 be a circulation whose support is included in that of x. Prove
that x” = Ax for some A # 0 (see the preceding exercise).
(Anticirculations). Show that if a flow x # 0 is an anticirculation, then
it can be represented as X _,a,ep,, Where a; > 0 and each path P,
conforms to x and goes from a source to a sink. But the converse is
false.

Sec. 4L.* EXERCISES 129

4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

(Max Flow). When a solution to a max flow problem is calculated by
means of the max flow algorithm, must it necessarily turn out to be an
anticirculation? Show by counterexample that this is false even in the
case where N*= {5}, N™= {is’}, all capacity intervals are of the form
[0, ¢*(j)], and the algorithm is initiated with the zero flow.

(Max Flow). Consider a max flow problem with ¢ () < 0 < ¢™(}) for
all arcs j. Show that, despite the existence of the sort of counterexample
in the preceding exercise, if there exists a solution at all, then there
exists one that is an anticirculation.

(Max Flow). Consider a max flow problem with all capacity intervals of
the form [0, ¢*(j)]. Prove that any solution calculated by the max flow
algorithm will be an anticirculation if the algorithm is initiated with the
zero flow and the following refinement (which is a complementary
version of arc discrimination) is adhered to. When the painted network
algorithm is executed as a subroutine, use white arcs only as a last
resort (i.e., prefer a green or black arc to a white one, whenever the
choice presents itself).

(Feasible Distributions). Show that the facts in the three preceding
exercises carry over to the feasible distribution problem and algorithm.

(Acyclic Networks). Prove that a network is acyclic if and only if it has
an anticirculation x such that x() > 0 for every arc j.

(Note. This is dual to the characterization of strongly connected
networks in Exercise 3.19.)

(Realization Algorithm). Formally calculate a conformal realization of
the flow in Figure 4.16 using the algorithm.

(Realization Algorithm). Prove that the elementary flows aep, calcu-
lated by the realization algorithm in representing a flow x are linearly
independent as elements of the vector space R4.

Figure 4.16

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.

4.25.

Chap. 4. ANALYSIS OF FLOWS

(Conformal Realization of Differentials). A cut Q is said to conform to a
differential v if v(j) > 0 for every j € Q* and v(j) <0 for every
j € Q7. Develop a realization algorithm for differentials that is analo-
gous to the one for circulations and leads to the result that every
differential v # 0 can be expressed in the form

v=wep t o ey,

where a, > 0 and each Q, is an elementary cut that conforms to v.
Show as part of this that the coefficients «, can be taken to be integral if
v is integral (i.e., if v(J) is an integer for all j € 4).

(Differentials). Establish the conformal realization theorem for differen-
tials in the preceding exercise nonalgorithmically, working instead with
the fact that every differential is of the form v = Au for some poten-
tial u.

(Differentials). Show that for v # 0 to be an integral differential satisfy-
ing |v(j)| < 1 for allj € 4, it is necessary and sufficient that v = e, +
-+ + eg, where Q,...,Q, are disjoint elementary cuts.

(Hint. Use the result in Exercise 4.16.)

(Elementary Differentials). A differential v is said to be elementary if it
is of the form ae,, where Q is an elementary cut and a > 0. Show that
this is true if and only if the support of v (defined in the same way as in
Section 4C for flows) is nonempty and minimal, in the sense that there
is no differential v’ whose support is nonempty and strictly included in
the support of v. (Use the result of Exercise 4.16.)

(Elementary Differentials). Let v # 0 be an elementary differential, and
let v’ be a differential whose support is included in that of v. Prove that
v’ = Av for some A (see the preceding exercise).

(Paths in a Tree). Prove directly from the original definition of a “ tree”
in Section 4E that a network is a tree if and only if it has at least two
nodes and that for every pair of distinct nodes i and i’ there is a unique
elementary path P: i — i’

(Leaves). A node i in a tree T is called a Jeaf if it is incident to only one
arc of T. Prove that every tree has at least two leaves.

(Trees). Give an example of a network that is not a tree and yet has

[number of arcs] = [number of nodes] — 1.

(Test for a Forest). Explain how the test in Section 4E for whether a
given network is a tree can be extended to one for a forest. Use this to
characterize forests in terms of routings.

(Forests). Show that a network is a forest (i.e., has only trees as
components) if and only if it has no isolated nodes and satisfies the

Sec. 4L.* EXERCISES 131

4.26.

4.27.

4.28.

4.29.

4.30.

4.31.

4.32.
4.33.

4.34.

4.35.

relation:

[number of arcs] = [number of nodes] — [number of components].

(Forests). Prove that an arc set F forms a forest in the network G if and
only if there is no circulation x # 0 whose support is included in F.
(Forests). Give an example of an anticirculation whose support is not
included in any forest.

(Coforests). An arc set F’ in a network G is said to form a coforest if the
deletion of all the arcs in F’ would not increase the number of
components of G. Show that this is true if and only if no elementary cut
of G is included in F’, or equivalently, there is no differential v # 0
whose support is included in F’ (see Exercise 4.16).

(Maximal Coforests). A coforest in a network G (see the preceding
exercise) is maximal if it is not strictly included in any other coforest in
G. Prove that F’ is a maximal coforest if and only if its complement
F = A\ F’is a maximal forest.

(Note. This says that the sets F’ appearing in the Tucker representa-
tions of the circulation and differential spaces for G are precisely the
maximal coforests for G.)

(Rows of the Incidence Matrix). For each node i € N, let e; be the row
of the incidence matrix E corresponding to i: e;,(j) = e(i, j) for all
J € A. Develop a necessary and sufficient condition on a set S C N in
order that the rows e;, i € S, be linearly independent as elements of R“.
When will they form a basis for the differential space 2?

(Cyclomatic Number). Show that for a connected network G the dimen-
sions of the circulation space ¢ and differential space & are given by

dm%=|4]—|N|+1, dim2=|N|-1.

(The first of these is called the cyclomatic number of G.) How does this
generalize to a network with p components?

(Basis Theorem). Prove Part 2 of the basis theorem in Section 4H.
(Basis Theorem). For the network shown in Figure 4.17 calculate as in
Example 5 in Section 4H the Tucker representations of ¥ and 2
corresponding to the spanning tree F formed by the darkened arcs.
(Pivoting). For the network in Figure 4.11 obtain, by pivoting in the
Tucker tableau at the end of Section 4H, the Tucker tableau that
corresponds to the spanning tree

F= {jp jza j4 'j77 j8’ jIO}'

(Pivoting). The pivoting transformation in a connected network takes
us from one spanning tree F and its associated basis of fundamental

132

4.36.

4.37.

4.38.

4.39.

Chap. 4. ANALYSIS OF FLOWS

Figure 4.17 -

circuits P, (as in Part 1 of the basis theorem in Section 4H) to an
adjacent spanning tree F and its circuits P,. The new circuits can be
read from the columns of coefficients in the transformed tableau
(according to the basis theorem), but explain in more direct terms what
happens. How are the new fundamental circuits constructed from the
old ones?

(Pivoting). Let F and F be adjacent maximal forests with F = [F\ j] U
k. Letj € F and k € F be such that both j and j belong to both of the
circuits P; and P; in the basis associated with F (where j # j, k # k).
Prove that Jj cannot belong to the circuit P; in the basis associated
with F.

(Hint. Translate this into an assertion about coefficients in the Tucker
tableaus corresponding to F and F, and use the fact that these coeffi-
cients can have no values other than +1, —1 or 0.)

(Extreme Flows). Let x be a solution to a given feasible distribution
problem. Prove that x is an extreme flow if and only if (there are no
circuits of doubly infinite capacity and) the arc set F, (see 4J(1)) is
minimal, in the sense that there is no solution x’ different from x and
having F,. C F,.

(Extreme Flows as Extreme Points). Let x be a solution to a given
feasible distribution problem. Prove that x is an extreme flow if and
only if it cannot be expressed as (1 — A)x’ + Ax”, where x’ and x” are
also solutions to the problem (not both identical to x) and 0 < A < 1.

(Note. This says that x is an extreme point of the convex polyhedron
formed by all the solutions to the problem.)

(Extreme Flows as Non-Negative Basic Solutions). Consider a feasible
distribution problem in which all the capacity intervals are [0, +).
Show that x is an extreme flow if and only if x is a solution whose
support forms a forest. Moreover the latter is equivalent to x being a
non-negative basic solution to the system

Y x(j)e/=b

jea

Sec. 4L.* EXERCISES 133

4.40.

441.

442,

where e’ is the “column” of the incidence matrix corresponding to the
arc j. (A basic solution to such a system is one obtained as follows.
Select a set F C A such that {e/|j € F} is a basis for the column space
of the incidence matrix. For j € F the values x(j) are the unique
coefficients such that

Y x(j)e/=b,

JEF

whereas for j & F they are all 0. This is a fundamental concept in the
theory of the simplex method in linear programming,.)

(Circuits of Doubly Infinite Capacity). Let x be a solution to a given
feasible distribution problem. Let L be the set of all flows x’ such that,
for all A € R, x + Ax’ is also a solution to the problem. Prove that
x’ € L if and only if x’ is a circulation whose support consists entirely
of arcs with capacity interval (— oo, c0). Moreover x” € L if and only if

/= .o
X' =aep + + a.ep

for certain coefficients o, > 0 and elementary circuits P, of doubly
infinite capacity.

(Extremal Representation). Calculate an extremal representation for the
flow and distribution problem depicted in Figure 4.18.

(Feasible Distribution Algorithm). Suppose the feasible distribution
algorithm is initiated with a flow x such that the set F, in 4J(1) is a
forest. Prove that if arc discrimination is used in the painted network
subroutine, then all the flows in the sequence generated by the algo-

[0,4]

1

-2
o, 'S
{-2,2]

Figure 4.18

134

4.43.

4.44.

4.45.

4.46.

447.

Chap. 4. ANALYSIS OF FLOWS

rithm will have this same property, and hence that when a solution is
attained, it will be an extreme flow. How might an initial flow with the
desired property be determined?

(Generalized Extreme Flows). Extend the concept of an “extreme flow”
from the feasible distribution problem to the superficially more general
“feasible flow problem” in Section 3H, where instead of a fixed value
b(i) at each node there is an interval [¢7(i), ¢*(i)]. State the corre-
sponding generalization of the extremal representation theorem.

(0-1 Matrices). Let m be the set of all m X n matrices X whose entries
x(k,) are either 0° or 1 and whose rows and columns have certain
prescribed sums:

n
Y x(k,1)=r(k) fork=1,...,m,
=1

m

Y x(k,I)=s(l) forl=1,...,n,
k=1

where r(k) and s(/) are non-negative integers. Show that M can be
identified with the set of all extreme flows in a certain feasible distribu-
tion problem. What does the extremal representation theorem say in
this case?

(0-1 Matrices). Derive a necessary and sufficient condition for the
nonemptiness of the set M in Exercise 4.44 by applying the feasible
distribution theorem to the problem in question.

(0-1 Matrices). Extend Exercise 4.44 to the case of constraints of the
form

r (k)< Y, x(k,l)<r*(k) fork=1,...,m,
=1

m
sT(1) < Y x(k, 1) <s*(I) forl=1,...,n,
k=1

where the bounds are all non-negative integers (or + o).

(Optimal Spanning Trees; Kruskal’s Algorithm). Let G be a connected
network with at least one arc. Suppose a real number () is given for
each arc j of G, and associate with each spanning tree F the number

r(F) = ¥ r()).

JEF

Prove that the following algorithm determines a spanning tree F for

Sec. 4M.* COMMENTS AND REFERENCES 135

which r(F) is maximal. Index the arcs of G so that
r(i)zr(R)z -+ 2r(j,), wheren=|4|.

Initially, set F; = { j;}. In iteration k for k > 1, a forest F,_; is on
hand; let F, = F,_; U {j,} if F;, would then still be a forest, but
otherwise just set F; = F, _,. The desired spanning tree is F = F,.
(Remark. A commonly cited example of the optimal spanning tree
problem is the following. The nodes of the network represent localities,
and the arcs are roads joining them. Transmission cables must be laid
along various roads in such a way that every locality can communicate
with every other locality. The problem then is to find an optimal
spanning tree under the interpretation that —r() is the cost of laying
the cable along road j.)

4M.* COMMENTS AND REFERENCES

The conformal realization theorem embodies facts that have been recognized
by many authors for their usefulness but have been expressed with varying
degrees of completeness and constructivity. For instance, Ford and Fulkerson
[1962, pp. 6-—8] treat only the case of a flow having a single source and sink and
are content to throw away the circulation component; however, they give an
algorithm for determining the anticirculation component. Busacker and Saaty
[1965, p. 243] state of version of the theorem that corresponds almost exactly
to the one in Section 4B (except that the concept of an anticirculation is
missing), but their proof is rather indirect and not so readily translated into an
algorithm for obtaining the desired realization. The constructive approach in
Section 4C in terms of the painted network theorem (and Minty’s lemma) is
very simple in comparison.

Trees and their associated fundamental circuits have long been of impor-
tance in electrical circuit analysis. It was G. Kirchhoff [1847] who introduced
them and proved the basis theorem. For a computer-oriented discussion of
trees and algorithms involving trees, see Christophides [1975, Chap. 7].

Tucker representations are a modern invention spawned by linear program-
ming (see Tucker [1963] for the theory). Two matrices are said to be combina-
torially equivalent if they can be obtained, one from the other, by a sequence of
pivoting transformations and permutations of rows and columns. The corollary
to the basis theorem in Section 4H asserts then that a matrix of the kind
appearing in a Tucker tableau for the circulation and differential spaces of a
network G has the special property that all the matrices in its combinatorial
equivalence class have as entries only 0, +1, or —1. It can be shown that this
holds if and only if every square submatrix of the given matrix has determinant
0, +1, or —1. The latter property is called total unimodularity. Note that the
corollary gives not only the total unimodularity of the matrices in the Tucker

136 Chap. 4. ANALYSIS OF FLOWS

tableaus for G but also the total unimodularity of the incidence matrix E, since
E corresponds to a Tucker tableau for the augmented network G, as explained
at the end of Section 4G.

This business of total unimodularity is very closely tied in with the integral-
ity results in Sections 4A, 4B, and 4J. The theorem of G. Birkhoff [1946] in
Section 4J (see also Frobenius [1912]) is perhaps the earliest result of the
integrality of extreme points of a convex polyhedron associated with a flow
problem, although it was not originally conceived in terms of flows. This
theorem is equivalent to an observation of Dantzig [1951] that did explicitly
concern flows, namely, the integrality of basic solutions to the classical
transportation problem (Hitchcock problem) in the case of integral supplies
and demands. Hoffman and Kruskal [1956] showed that for the extreme points
of the convex polyhedron {x|c”"< x < ¢*, b”< Ex < b™} all to be integral for
every choice of integral ¢~, ¢*, b™, b™, it is necessary and sufficient that E be
totally unimodular. This applies to the case where E is the incidence matrix of
a network and b*= b~, and one then gets the external representation theorem
in Section 4J. Consult Lawler [1976, pp. 160-165] for more on unimodularity
and Rockafellar [1970, Sec. 18] for extreme points of general convex polyhedra.

The fact that in the network context a representation in terms of extreme
flows can be obtained so quickly and constructively by means of Minty’s
lemma, as in Section 4J, does not seem to have been noticed before.

In the linear programming approach to optimization problems in networks,
Tucker representations of the spaces € and & are fundamental. The role of
such representations in finding solutions by means of the simplex method and
its extensions will be discussed in Chapter 7. The fact that pivoting can be
carried out combinatorially in terms of operations on trees, as explained in
Section 41, is extremely important to this approach. Clever ways of dealing
with trees in a computer lead to tremendous improvement in algorithmic
efficiency. See Ali, Helgason, Kennington, and Hall [1977] for a description of
such techniques.

The optimal spanning tree algorithm of Kruskal [1956] (see Exercise 4.47)
has been of great interest in combinatorial optimization. This subject is treated
at length by Lawler [1976, Chap. 7].

The round-off result of Example 1 in Section 4A comes from an article of
Baranyai [1973]. He credits it to an observation by Lovasz (unpublished).

5

MATCHING THEORY
AND ASSIGNMENT
PROBLEMS

The remarkable facts about integral solutions to the max flow and feasible
distribution problems lead to a number of applications of network optimiza-
tion theory to combinatorial problems. One of the characteristic features of
such problems is the powerful and constructive role of duality. This role has
already been observed in the min cut problem—a combinatorial optimization
problem with a surprisingly efficient method of solution. It will also be seen in
the corresponding min path problem, to be studied in Chapter 6.

The basic notion of a “match” relative to a compatibility relation is
developed. Several applications are described that involve the existence or
optimality of special matches called “assignments.”

The results should be viewed more as a matter of reaping a harvest than of
sowing a crop. Although they are not needed for subsequent chapters, they are
intriguing and useful in themselves and provide added motivation for some of
the earlier and later theory. Our real goal is still the study of optimal flows and
potentials along with the insights they provide for monotropic programming.
In keeping with this goal, we do not attempt here to treat matching and
assignment problems in full generality but concentrate on those aspects that
best illustrate the usefulness of network flow theory.

The sections deserving the most attention are 5A, 5C, 5E, and 5F. The main
requirement for understanding the material is familiarity with the max flow
problem and algorithm and the integrality theorem in Section 4A.

5A. MATCHING PROBLEM

Imagine that a government wants to select from a certain list of diplomats its
ambassadors for a certain group of countries. For various reasons not every

137

138 Chap. 5. MATCHING THEORY AND ASSIGNMENT PROBLEMS

diplomat is eligible or willing to serve in every country. How many of the posts
can be filled under such a restriction?

In the abstract version of the problem, there are two nonempty finite sets K
and L and a subset H C K X L. The pairs (k, /) € H are said to be compati-
ble, whereas those not in H are incompatible. A match M is a collection of
compatible pairs (k;, ,;),...,(k,, [,) such that the elements k,,...,k, are all
different, as well as the elements /,,... ,Ip. In other words, a match is a subset
of H that defines a one-to-one correspondence between a subset of K and a
subset of L.

Matching Problem. Determine a match M that maximizes |M|.

Of course, |M| denotes as usual the cardinality of the set M, that is, the
number of pairs in the match. Note that maximizing |M| is harder than just
finding a match M that is maximal in the sense of not being properly included
in any other match. Initially, it may be easy to pair off a number of compatible
elements, but later an impass will be reached when no more compatible pairs
are available among the elements still unused. At this stage the match M is
“maximal,” but it may not have maximum cardinality |M| due to unfortunate
choices at the beginning of the process that tied up especially “versatile”
elements too soon. A substantial reorganization of the early pairings might
open the way to a match with greater cardinality.

Some generalizations of the problem where certain pairings are more
valuable than others or where the one-to-oneness of the match is relaxed will
be discussed in Section 5G.

The matching problem can be solved efficiently using the max flow algo-
rithm. The trick is to consider the network in Figure 5.1, whose node set is

Figure 5.1

Sec. 5SA. MATCHING PROBLEM 139

formed by K, L, and two extra elements s and s’. Arcs with capacity interval
[0,1] correspond to all the pairs (s, k) and (/,s’) with k€ K and /€ L,
whereas arcs with capacity interval [0, o0) correspond to all the compatible
pairs (k, /) € H. (It would be possible to use [0, 1] for the latter arcs too, but
the choice of [0, co) simplifies the proof of a theorem to be stated here.)

The corresponding max flow problem with N*= {s} and N™= {5’} has a
solution, according to the max flow min cut theorem. Since the capacity
bounds are all integral, it even has an integral solution (by the integrality
theorem for flows in Section 4A). Observe now that an integral flow x that
satisfies the constraints of the max flow problem corresponds exactly to a
match M such that the flux of x from s to s’ is |M|. Indeed, arcs of the type
(s, k) and (/, s”) can only have flux 0 or 1. If an arc of the type (k, /) € H has
flux different from O, then the non-negativity and integrality of x and the
conservation conditions at the nodes k£ and / imply that it is the only such arc
incident to k or /, and that the arcs (s, k), (k, /), and (/, s”) all have flux 1.
Thus the arcs of type (k, /) having nonzero flux constitute the pairs of a match
M, and the number of pairs equals the flux of x from s to s’. Conversely, of
course, every match M corresponds to a flow x. Figure 5.2 shows the flow
corresponding to a match M = {(ky, [,), (k3, Is), (K4, 1;)}. (Darkened arcs
have flux 1, all others flux 0. The letters g, w, b, correspond to a painting that
will play a role in Section 5B.)

In this way the solutions to the matching problem are identified with the
integral solutions to the max flow problem. The max flow algorithm, initiated
with the zero flow, will terminate in finitely many iterations with an integral
flow (see Sections 4A and 3G), thereby yielding a solution to the matching
problem. As a matter of fact, if the algorithm is initiated with any integral flow
satisfying the constraints, it will generate a sequence of such flows ending in an
integral solution. With each iteration the flux from s to s’ is increased by one
unit. In view of the correspondence just outlined, this means that the algorithm
can be initiated with any match and will generate a sequence of matches of
increasing cardinality until one of maximum cardinality is attained. This
suggests the possibility of translating the procedure into some sort of direct
manipulation of matches in which flows are not mentioned explicitly. This will
be explored in Section 5B.

The max flow problem corresponding to the matching problem is dual to a
certain min cut problem, and this in turn can be identified with a combina-
torial problem in the matching context. A duality theorem for the matching
problem is thereby obtained. To formulate it, call a subset B of K U L a block
relative to the compatibility relation H, if for every (k, /) € H either k € B or
I € B (or both).

Blocking Problem. Determine a block B that minimizes |B|.

Incidentally, it must be understood here that K and L are separate sets with
no elements in common, as is already implicit in the network set up of Figure

140 Chap. 5. MATCHING THEORY AND ASSIGNMENT PROBLEMS

5.1. In the circumstances where a model with K = L is tempting, L should be
thought of instead as a “second copy” of K.

Konig-Egervary Theorem

[max M in the]

min B in the
matching problem

blocking problem |

Proof. 1t suffices to establish an equivalence between the blocking problem
and the min cut problem for the network of Figure 5.1, showing that both have
the same minimum. Attention can be restricted in the min cut problem to cuts
Q: s | s’ such that ¢*(Q) < + oo (since there is at least one such cut). However,
the cuts with this property are those of the form Q = [S, N\ S], where s € S,
s’ & S, and there is no pair (k,/) € H with k € S and / & S, in which event

ct(Q)=|K\S|+|LNS|

Thus they correspond one to one with blocks B under the rule B = (K\ S) U
(L N S), c*(Q)=|B|, and the equivalence of the two problems is evident.

Matrix Representation

The matching and blocking problems can be visualized in terms of the
compatibility matrix for the relation H, whose entries h(k,/) are 1 or O,
depending on whether (k, /) is compatible or not. In this setting a match M
corresponds to a set of 1’s in the matrix, no two of which are in any single line
(a line being either a row or a column). A block B, on the other hand,
corresponds to a set of lines that covers all the 1’s in the matrix. The
Konig-Egervary theorem says that the maximum number of “noncollinear” 1’s
equals the minimum number of lines capable of covering all the 1’s.

5B.* MATCHING ALGORITHM

When the max flow algorithm is applied to the matching problem as for-
mulated in terms of the network in Figure 5.1, the pattern of execution has a
number of special features. These lead to shortcuts in the calculations. In this
way the algorithm can be refined into a procedure that solves the matching
problem directly, that is, without any mention of networks or flows. We now
work through the main features of such a refinement in order to illustrate how
the max flow algorithm can serve as the generator of special combinatorial
algorithms that might seem totally unrelated to it.

The first thing to observe is the nature of the flow-augmenting paths in this
context. The painting corresponding to a match M is illustrated in Figure 5.2.
The pairs in M are represented by green “intermediate” arcs that are con-

Sec. 5B.* MATCHING ALGORITHM 141

nected to s and to s’ by black arcs; all other arcs are white. The simplest kind
of flow-augmenting path would be of the form P: s —» k — [— s’, where (k, /)
is a compatible pair having neither k nor / already used by M. The general case
is represented by a path P from s to s’ that alternates between K and L,
crossing each time from L back to K through some green arc, but otherwise
using only white arcs.

In describing such paths, it is convenient to adopt function notation for the
match M: for each pair (k,/) € M, the element / is denoted by M(k).
Furthermore

domain M = {k € K|3/ € Lwith (k,/) e M},
range M = {/ € L|3k € Kwith (k,l) € M}.
For example, in Figure 5.2 one has
M(k,) = 1, M(k;) =I5, M(k,) = 1,
domain M = {k,, k3, k,},
range M = {1, 1,,15}.

Let K, be the set of all kK € K such that there exists / € L\ (range M) with
(k, 1) compatible. The simplest kind of flow-augmenting path is obtained as
soon as one has located an element k € K\ (domain M) that belongs to K.
To construct a general flow-augmenting path, however, what one needs is a
finite alternating sequence

k, M(k’), k', M(k”), k", M(k™), k" ,... (1)

142 Chap. 5. MATCHING THEORY AND ASSIGNMENT PROBLEMS

beginning in K\ (domain M) and ending in K,,, and having its consecutive
pairs of the form

(k, M(k?), k', M(E™)), (k”, M(k ™)), ...

all compatible. These pairs correspond to white arcs by means of which the
path P crosses from K to L; the reverse crossings are through the green arcs
given by the pairs

(k*, M(k")), (k”, M(k")), (k™ , M(k™")),...
Thus in Figﬁre 5.2 one has the alternating sequence
k,, M(ky), k5, M(k,), kg,
and this yields the flow-augmenting path
Pis—k,o ks>l <ky— 1,5

(Here /, could be replaced by /,. Note also that the path is unnecessarily long:
in fact k; € K, and one could have gone immediately from &, to s’ by way of
;3)

Because the flow-augmenting paths have this special structure, the painted
network algorithm for determining them can be streamlined in certain respects.
For instance, the routing can be represented entirely in terms of elements of K.
Indeed, to reconstruct the sequence (1) we simply need to know that k’ was
reached from k, k” from k’, and so forth, and a labeling function of the type
o(k’) = k, p(k”) = k’, therefore suffices.

At a general stage of the painted network algorithm where S is the set of
nodes that has been reached, we can select any £ € S N K and check whether
k € K,,. If so, a flow-augmenting path is obtained. If not, we look for every
element k’ € (domain M)\ S such that the pair (k, M(k")) is compatible;
then k’ and M(k’) can be added to S with k’ labeled by ¢(k") = k. Having
inspected k in this fashion, we may regard it as “thoroughly scanned” and
never look at it again.

As for the node set S, we can replace it in our description of this procedure
by the associated set B = (K\ S) U (L N S). This is more appropriate be-
cause it will give the solution to the blocking problem when Q =[S, N\ S]is
the solution to the min cut problem (see the proof of the Konig-Egervary
theorem in Section 5A).

With these observations we arrive at a method adapted completely to the
framework of the matching and blocking problems. This takes a match M and
either verifies that it solves the matching problem (in which event a solution B
to the blocking problem is produced too) or constructs a match M’ with
|[M’| = |M]|+ 1. The computations involve a variable set B C K U L with
B N K c domain M and a labeling function ¢ from (domain M)\ (B N K) to

Sec. 5B.* MATCHING ALGORITHM 143

K. There is also a variable set W (corresponding in the painted network
subroutine of the max flow algorithm to the nodes of K that have been reached
but not yet “thoroughly scanned” in the sense of the implementation in
Section 2G).

Multipath implementation along the lines of the Dinic-Karzanov approach
to the max flow algorithm in Section 3J could also be incorporated into the
procedure that follows. This would greatly increase the efficiency; see Exercise
5.49. We forgo giving the details here, since the ideas already covered serve
adequately for our purpose of illustration.

Step 0. A match M is at hand. Let B = domain M and W = K\ (domain
M). (The function ¢ is vacuous.) Go to Step 1.

Step 1. Is W= @?If yes, then M solves the matching problem, and B solves
the blocking problem. If no, go to Step 2.

STep 2. Select any k € W. Does there exist an / € L\ (range M) with
(k,1) € H? If yes, go to Step 4. If no, go to Step 3.

Step 3. For each k’ € BN K with (k, M(k")) € H, add M(k’) to B and
transfer k£’ from B to W, defining ¢(k”) = k. Delete k from W, and return to
Step 1.

STEP 4. Generate the sequence k = k°, k',... k", where k' = ¢(k'~!) for
i=1,...,rand k" is not in the domain of ¢. (If k itself is not in the domain of
¢, the sequence consists of just k = k%) Delete the pairs (k°, M(k?)),...,
(k™™ ', M(k"™"1')) from M, and replace them by the pairs
(k°, D), (K, M(K®)),...,(k", M(k""")). The altered set M is then another
match with cardinality greater by 1. Return to Step 0.

The justification of the claims in Step 4 of the algorithm is left for the reader
as Exercise 5.10.

For purposes of illustration the calculations can be carried out in terms of
the compatibility matrix representation described at the end of Section 5A.

ExamPLE 1

The first tableau in Figure 5.3 displays a compatibility matrix and an initial
match (the entries with solid circles). Application of the algorithm leads
immediately (by the “yes” branch in Step 2) to the addition of another element
(entry with dashed circle) to the match.

On the next iteration, still in the first tableau, an improvement is not
immediate, and the construction of B and ¢ proceeds through several stages,
indicated along the right margin. Thus ¢(ks;) = k;, and so on. The rows
labeled with * are the initial elements of W, whereas those with two labels are
the ones that have been selected and processed in Step 2; the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>