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CHAPTER 19

A NOTE ABOUT PROJECTIONS IN THE
IMPLEMENTATION OF STOCHASTIC
QUASIGRADIENT METHODS

R.T. Rockafellar and R.J-B Wets*

Given a stochastic optimization problem find z € X € R"™ that minimizes
F(z) = E{f(r,€)} where [ : R"2E — R is a real-valued function, the quasi-
gradient algorithm generates a sequence {z',2?,.. .} of points of X (converging
to the optimal solution with probability 1) through the recursion:

mu+1 = le:j(my - Puzv)

where prjy denotes the projection on X, {g,,r = 1,...} is a sequence of positive
scalars that tend to 0, and 2¥ is a stochastic quasi-gradient of F' at z"; see
Chapter 5. -

Unless X is a simple convex set, e.g. a rectangle or a ball, the projection
operation may be too onerous to allow for a straightforward implementation of
the iterative step; one would have to find at each step

2 = argnﬁn[(list?(z” - o2 3|z € X],

which means solving a mathematical program with quadratic objective func-
tion. Therefore the implementations of the stochastic quasi-gradient method
rely nsually on various schemes to bypass this projection operation, through
penalization or primal-dual methods, for example. There are however a few
cases when it is possible to design a very effective subroutine to perform the
projection operation.

We describe a simple method for projecting a point § € RY on a convex set
X, assumed to be nonempty, that is the intersection of a rectangle ¢’ C R" and
a set determined by a single linear or more generally by a separable nonlinear
constraint of the type:

’Z,aj(:r.j)g.'}, (19.1)
=1

where the a; are convex differentiable functions such that for every j =1,...,n,
the derivative o’ of a a;() is positive and bounded away from zero on €' where

(,f':={.rER"|fJS:rJ£HJ, Fi== Dy 510} (19.2)
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with l; = —oo and uj = 400 if ; is not hounded below or above. We had to
deal with such a case in connection with the model described in Chapter 22.
(For related work, cf. 2] [8].) Since the derivative of a convex Tunction is a
monotone nondecreasing function, the preceding condition on the derivative is
satisfied il (and only if)

al(ty) > 0l £, is finite {19.3)
orif #; = —co

r--l-»il—ltx; ai(r) = rl';{f,) > 0.
Set al(u;) = 7“”1: @l {r) if u; = +oo. In the special case when a;(-} is linear, in

which case we write
a;(2;) = asz4, {19.4)

this condition boils down to having a; > 0.
The projection prjy % of ¥ on X is the optimal solution of the (convex)
nonlinear program

find ze€CcR"
n

such that Z aj(x;) <h (19.5)

=1

Lo B o oser s
and z = Edjstg{y,:r) is minimized.

Here “dist” is the Euclidean distance, i.e. the ohjective is the quadratic form

n

n n
dist? (§,2) =) "2} —2) G2+ Y50 (19.6)
= £

=1

Since the feasible region

X=0Cn hli”‘j(-ﬂj] < b} (19.7)

j=1

is a closed convex set, and the objective is an inf-compact (closed and bounded
fevel gets) strictly convex function, the projection problem {19.5) is always solv-
able and it has a unigue solution which is o)y 9.

Of course, it would be very easy to find the optimal solution of such a prob-
lem if there were no additional constraints besides » € . Our purpose is to
show that with a single additional constraint it is possible to devise an algorith-
mic procedure for solving (19.5) that requires only marginally more work. This
is achieved by constructing a (partial) dual to (19.5) whose solution gives us the
(optimal) Lagrange multiplier \* to associate to the constraint Sias(z) < b
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When this multiplier \* is known, then the theory of convex optimization allows
us to replace (19.5) by the following separable convex optimization problem:

find reC cR"

"1 s 5 19.8
such that Z[E(.r, = ;)% + Naj(z;)] is minimized. (29:8)

J=1

The solution to such a problem yields #* = prj - §, with

& il (6 —uy) + )"“;'{Bj) 20,
ef =1 u; il (u; —F5) + A d)(uy) <0, (19.9)
) x;  where 2; + ,\’a}(:c_,‘) = ¥, otherwise.

In particular if a;() is linear (19.4), then {19.9) becomes
& if (¢ — ;) + Aa; 20,
zr = uj if (u; —§5) + Aa, <0, {19.10)

¥ — Aa; otherwige.
Yy g

Thus all that is needed is an efficient procedure for finding A*. To do so let us
consider the following convex optimization problem:

1 R
fmd /\G .+ . (1911]
such that g(A) is maximized,
where .
. 1 %
g(\) =E€32E(zj—yj)"‘+Aaj{z3)]—m (19.12)
J:

In fact this problem is dual to our original problem (19.8). This claim can be
substantiated by appealing to the general duality theory for convex optimization
problems, cf. [7]; the Lagrangian generating (19.5) and (19.11) as a dual pair
of problems 1s the function:

E;__][%(:r_,-—ﬁj)2+AaJ-[mj)]—Ab Hredy20,
Bl )= 1 4o HzgC A0,
5 if A <o.

We can also argue directly as follows: define
w(n) =sup[nd +g{M)]|r € R, L

Note that (0) is then the optimal value of (19.11). From {19.12) it follows
that.

n
. .2 "
wln) = :11[(1) A Z aj(z;) —b+| + min Fdist® (r, )

J=1
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and in particular for y = 0, since X = C'N {:c]z_’;ﬂ aj{zj) < b} is nonempty,
we obtain

. PR
(0) = min o{dist? (=, )] if ;“;‘(%‘) <bh
J:

which is the optimal value of the projection problem {19.5). The equality of
the optimal values implies in turn that if 2% solves (19.5) and A? solves (19.11)
then {rom definition {19.12), we have

n
MY gl -6 ] =0 {19.13)

=1
Thus the multiplier A* that we seek, to substitute in (19.9), is the optimal
solution of (19.11), the 1-dimensional optimization problem (on R). Tor any

A € Ry, we can find an explicit expression, that yields the argmin of (19.11),
similar to {19.9), namely

g A 2zaf = (T - &)/ai(&),
. spNCh T = (1) e
2, () = U :f )\7_ up [yj uj) [ (uf), (19.14)
x; if 7 <A< n;
where z; + ,\ag-[:cj} = ¥j.
Note that we have used the facts that a;- is nonnegative and nondecreasing, so
that a}(¢;) < a’j(u;) and hence ;. < n; forall j. With

() ={iN <0 b

19.15
I ={7A=nl), 813
and
J(A) ={sln; A<nj}
we have that
1 "
g = o lgle =) +Aas(u))]
J€J7(A)
1 i
+ 3 leftlgle =) + Aa ()] (19.16)
jedt
b Ll = §)7 + Ao ()] - A
JEI(3)

The function g is concave: expression (19.12) gives us g as the sum of a linear
function (—b)\and a min-function {of a collection of linear functions in A). Thus
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the derivative, if it exists, is a monotone nonincreasing function of A. Finding

the maximum of g on R corresponds to finding A* such that g’(1*) = 0, unless
¢(0) < 0 in which case \* = 0. Here, unless a}- is pa!hological, we have that

dN= 3 ail)+ Y ai(g) b

JEI= () JEIT()
+ D0 [l () = 85025 +a;(zi(A) + Aaj (25 ()25 (V)]
JET()

and using the definition of z;()\) when j € J(A) this simplifies to

dN= Y g+ Y &)+ Do a(zi(A) -k (19.07)

JEIT(A) FEIT(N) JEI(N)

In the linear case, this becomes

g\ = Z g+ Z ail;+ Z [(LJ’E_,'*Q?/\]—}I. {19.18)

Jet (A JEJST(N) JeJ(A)

To find \* € argmax|g(A)|A € R ], we propose the following procedure:

Step 0. Order {n; 17 i =1,...,n}, say as (0,...,05,), recording for each
8; the corresponding lahel (7,=) or (s,+). (Ties correspond to an entry in the
f-vector repeated the appropriate number of times.)

Set 8 =0,0" =48, with p = min(7|8; > 0.)

Construct J (9~ = 0),J (0}, J{0)-

Compute

9'(0): Z aj(u;) + Z a;{¢;) + Z al[ﬁj)_h'

jed(0) jedt(o0) 1€J(0)

If ¢(0) <0, stop. Set A* =0 and exit.
If ¢'(0) > 0, continue.

Step 1. Compute g'(#") using (19.17) or (19.18).
If ¢(0F) <0, then find A* € [07,¢ "] such that g’'{\*) =0, exit.
If g'(87) > 0, continue.

Step 2. Setp:=p+1,8 =010 =6,
Adjust J (6 ), I (07 ), J{87)
Return to Step 1.

The algorithm clearly converges since it is a systematic search of a mono-
tone nonincreasing function that eventually must reach the interval lap, pyi]
in which ¢' takes on the value 0; the problem is known to have a solution, see
the preceding comments about duality.
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In the linear case, all operations prescribed by the algorithm are simple
and straightforward. The derivative g'(1) is given by (19.18). In Step 1, when
g'(at) € 0,)*" is given by the expression

A=A/

where
A= ajui+ D ajlj+ ) aji; — b,
Jel~ jett jed
and
_ 2
1= Z @
JjeJ

When the a;(-) are nonlinear, the evaluation of g'(}) requires firat the
evaluation of z;(\) for all y € J(A). Also in Step 1 there may be difficulties in
finding A* when g'(0") < 0. To begin with, let us consider the equationg

z; +J\a:,-(wj) = 7. (19.19)

Usually, there are many situations when it is easy to find a closed form expres-
sion for z; as a function of A. For example, if a;(z) = oz 424+ with o >0
{recall that a;(-) is convex), then

2, (A) = {§; — AB)/ (14 22)).

In general, however, even when an explicit expression for the derivative is avail-
able, we may have to resort to a numerical procedure for finding z;(\). But
here we are greatly aided hy the following observation. For A € [j ,1;;-] the

function
e (e 2 (2) ~ )

is monotone nondecreasing between £; and u; with
(8;—35) + ,\a"?(fj] <0
and
~ 1
(s — 85) + A (w;) 2 0,

as follows from the definition of n; and fr,'J-[ , see (19.14). Thus a secant method
[1], that we used in our implementation, is a very efficient procedure to find

z;(A).
We now turn to finding A* with g'{A*) =0, knowing that

g0 )>0and /(0F) <0,

where g’ is given by (19.17). The sets J (A}, /' (A} and J(A) remain fixed on

this interval. Let
A=h- Z a;{u;) — Z a; (£},

jel— jeJ+t
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and

(N =3 aslzi(N).

JET(N)

Note that from the definition of # and @1 it follows that
n; <8 <L o < ?;_;-", for all y € J.
Mareover, N — 7(A) is a decreasing function with
é7) > Fand 4(01) < 4.

We need to find A* such that v(A*) = A. Unless we have some expression for
aj{z;(\)) that can be handled easily, we again need to rely on a numerical
procedure, and in this case too the secant method suggests itself [1]. That is
what we have used in our own implementation of the procedure.

This projection method is extremely elficient in the linear case but also
produces very good results in the nonlinear case, in which case its efficiency is
that of the secant method nsed in finding A\* and x; ().

If there is more than one constraint, in addition to the upper and lower
bounds, it may still be possible to use the procedure outlined here. For example
it is possible to keep track of the active constraints, and when only one (or no)
extra constraint is violated then we could use this procedure to obtain the
projection, provided the projected point does not violate some other constraint.
We should thus be able to cope with two or three extra constraints, resorting
only once in a while to a general optimization procedure for solving (19.5).
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