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1. Introduction

The importance of linear and quadratic programming problems is well appreciated in
finite-dimensional optimization. Such problems serve as mathematical models in their
own right and as subproblems solved within the context of general numerical methods of
nonlinear programming. In optimal control only a relatively small class of linear-quadratic
problems has traditionally received much attention, however. A much more general class
has recently been explored by Rockafellar [1] with the aim of opening up a wide domain for
application of techniques of large-scale linear and quadratic programming, in particular the
finite generation method of Rockafellar and Wets [2], [3], [4] that has been implemented in
stochastic programming [5]. Central to this purpose is the development of flexible problem
formulations for which there is a strong duality theory that represents optimal trajectories
and controls in terms of saddlepoints of a “decomposable” Lagrangian.

In the present paper a discrete-time version of the deterministic models in [1] is investi-
gated and corresponding results on optimality and duality are obtained. The formulations
and results are then generalized to the stochastic case. The focus on discrete time is
motivated by the computational possibilities already mentioned, so we do not hesitate to
suppose also that the probability space for our stochastic version is discrete.

Our emphasis is on setting up a general framework for large-scale finite-dimensional
linear-quadratic programming problems that reflect the special structure of optimal con-
trol. Besides being useful for numerical experimentation, such a framework may stimu-
late new applications, for instance in areas like operations research and resource systems
management, where inequality constraints occur that jointly involve states and controls.
Although the task of clarifying the relationship between finite and infinite-dimensional
formulations is an important one, it is not the object of our efforts here.

In fact our discrete-time problems are more general than typical continuous-time prob-
lems in one respect: the dimensionality of the state and control vectors can vary with time.
This feature is important in multistage modeling, where the decision structure in one pe-
riod need not be the same as in another. The flexibility it provides allows us to show that

a much wider class of problems is covered by our format than might at first be imagined.



2. Generalized Linear-Quadratic Programming.

The control problems that will be formulated are based on a concept of generalized linear-
quadratic programming explained fully in Rockafellar [1]. A problem fits this concept if it

can be expressed in the form

(P) minimize f(u) = sup J(u,v) over all u € U,
veV
where U and V' are polyhedral convex sets in R* and ]RZ, and J is a quadratic convex-

concave function on U x V', namely
_ 1 1
(2.1) J(u,v) = pu+ 3uwPu+ qv — 3vQv — v-Du,

where P and () are symmetric and positive semidefinite (possibly 0—we do not exclude
“linear” when we say “quadratic”, as we try to underline by sometimes using the term
“linear-quadratic”). The problem dual to (P) is then

(Q) maximize g(v) = 125 J(u,v) over all v € V.

Here f(u) could be oo and g(v) could be —oco. We regard u as a feasible solution to
(P) only if u € U and f(u) < oo; likewise, we regard v as a feasible solution to (Q) only if
v eV and g(v) > —o0.

The expression of problems (P) and (Q) is facilitated by the notation

(2.2) pv,o(r) = sup{rv — Fv-Qu} for r € R,
veV

(2.3) pu.p(s) = sug{s-u — swPu} for s € R".
ue

Thus py,g is a function on R’ determined by the specification of a polyhedral convex set
V cRfand a symmetric positive semidefinite matrix ) € R, Tt is in general “piecewise
linear-quadratic” in a sense made precise in [1], and it may take on the value co. There
are many special cases deserving of mention, but for these too one should consult to [1].
Let it suffice to observe that when 0 € V, one has py,g(r) > 0 for all r, py.(0) = 0.
Then py,o(r) can be interpreted as an expression that “monitors deviations of r from 0”.
Similarly for py, p.

In this notation our general problems can be written as
(P) minimize pu + 1wPu+ py,(q — Du) over u € U,
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(Q) maximize ¢v — 20-Qu — py,p(D*v — p) over v € V

(where the asterisk * signals the transpose matrix). In (P), therefore, one has the possi-
bility of linear constraints represented by the condition v € U, and also an objective term
which “monitors deviations of Du from ¢”. This may be a penalty term that is zero for

some kinds of deviations but positive for others. For example, if V = IRﬂ_, @ = 0, one has

0 if Du>gq,
2.4) prale-Dw={ 0 fpust

so that the p term in (P) is a “sharp” representation of the constraint Du > ¢. If at the

same time one has U = ]leH P =0, then similarly

« 0 if D*v <p,
(2.5) pu.p(D7v —p) = { oo if D*v £ p.

In this case (P) and (Q) reduce to a canonical pair of linear programming problems in
duality. See [1] for discussion of the rich possibilities that such p terms provide more
generally in mathematical modeling.

The basic facts about the relationship between (P) and (Q) can be derived from the
standard theory of linear and quadratic programming, specifically the duality theorem of
Cottle [6] and the existence theorem of Frank and Wolfe [7].

Theorem 2.1 (Rockafellar and Wets [3, Theorem 2|). If either (P) or (Q) has finite
optimal value, or if both problems have feasible solutions, then both optimal values are
finite and equal, and both problems have optimal solutions. In this case a pair (u,v) is a
saddlepoint of J(u,v) relative to w € U and v € V if and only if w is an optimal solution

to (P) and v is an optimal solution to (Q).



3. Deterministic Control Model.

We want now to formulate problems in this vein that belong to optimal control. The
dynamical system we consider takes the form
xr =Arr, 1+ Bru, + b, forr=1,...,T,

(3 ro = Boug + b, where u, € U, for r=10,1,...,T.
The vectors u, € R are controls, and the vectors x, € R"™ are states (observe that
dimensions can vary with 7). We write u = (ug, u1,...,ur) and x = (xg, 1, ..., x7). Thus
x is uniquely determined by u, and the transformation u — x is affine. Note that ug serves
as a supplementary parameter vector more than as a control vector in the usual dynamical
sense.

The sets U, C IR*" are assumed to be polyhedral convex (nonempty). The matrices

A,, B; and vectors b, are of appropriate dimension:
A, e R"M=1 B e R b € R™.

(By taking ko = 0, one could eliminate ug from (3.1) and have xg = by.)
Our deterministic control problem is:
minimize subject to (3.1) the expression f(u) =

T

[PT'UT + %uT'PTu’T - CT+1'xT]
(Pdet) TZIO

T
+ Z PVr.Qr (qT - CTxT—l - DTUT) + PVT+1,QT+1 (QT—i—l - CT+1'7:T)~
T=1

Here V; is a polyhedral convex set (nonempty) in R*", and the matrices P, and Q-

are symmetric and positive semidefinite. One has
Pre R Q- e R7*7, preRY, ¢ € R,

¢y e RV-1, C.eRY7*"r-1 D_eRT¥F,

In this notation the elements A, and D, are defined only for7 =1,...,T, but B,,b,, P-, p-,
are defined for r=0,1,...,7T and C,,¢;,Qr,q, for r=1,...., T, T + 1.
For the problem that will turn out to be dual to (Pget), the dynamical system goes
backward in time:
Yr = Alyrp1 + Civr +c forr=1,...,T,

(3.2)
yr+1 = Cr 10741 + ey, where v, € V. forr=1,...,T,T + 1.

4



5

The vectors v, € R’ are the dual controls, and the vectors y, € IR"7—1 are the dual

states. We write

v = (vla s 7UT7UT+1) and Yy = (yla s 7yT7yT+1)'
The dual problem then is

maximize subject to (3.2) the expression g(v) =
T+1

[QT'UT - lUT'QTUT - bT—l'yT]
(Qdet) ; ’

T
Y " pUr P (Biyrs1 — Dive — pr) — pug.ry (Biys — po)-

=1

In this formula y is the trajectory uniquely determined from v by (3.2).

Proposition 3.1. Suppose x corresponds to u by (3.1), and y to v by (3.2). Then

T T+1
(3.3) > yrirBrur +0,] = > w1 [Cror + ).
=0 T=1

Proof. In view of the relations (3.1) the left side of (3.3) can be written as

T
Y1o + Z Yry1[Tr — Arr_1]
=1
T
=yY1xo + Y21+ -+ Y17 — Z Tr1-ALYry1.
T=1
Likewise from (3.2) the right side becomes
T
rryra + > Tr_1yr — ALy
T=1
T
= y1@o + Yot + - Yyrwr — 3 Tr 1AMy
=1
Thus the two sides are equal, as claimed. ]

Proposition 3.2. Let U =Uy x --- xUp and V =V} x --- x Vpyq, and for uw € U and
v € V define

T T+1
J(uvv) = Z(pT'uT + %UT'PTUT) + Z(QT'UT - %UT'QTUT)
(3.4) ’T:O =1

T
- ZUT-DTUT — [u,v],
T=1
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where [u,v] denotes the common value of the expression in (3.3).

Then U and V' are polyhedral convex sets, and J is a quadratic convex-concave func-

tion.

Proof. This is immediate from our assumptions and the fact the expression [u, v] is affine

in v and v separately. 0

Theorem 3.3. The deterministic optimal control problems (Pget) and (Qget) are the
primal and dual problems of generalized linear-quadratic programming associated with
the U, V, and J in Proposition 3.2. In particular, the assertions of Theorem 2.1 are valid
for (Pget) and (Qqet)-

Proof. We need only show that the expressions f(u) and g(v) in (Pget) and (Qqet) arise
according to the pattern in the general problems (P) and (Q) of §1. First using for [u,v]
in (3.4) the right hand expression in (3.3), we write

T T+1

J(u,v) = Z(pT-uT + %UT-PTUT) — Z CrTr_1
=0 T=1

T
+ Z([QT - C’7'567'—1 - DTuT]'UT - %UT'QT'UT)
=1

+ (lgr+1 — Crs107]v1041 — 5741QT410741)

The maximization of this over all v € V' reduces to a separate maximization with respect

to each of the components v, of v. Since by definition

sup {[QT - C’7':137'—1 - DTUT]'UT - %UT'QTUT} = PVr,Qr (QT - CTxT—l - DTU’T)
’UTEVT

and

1
sSup {lar+1 — Cry1zrvrys — QUT+1'QT+1UT+1} = PVpi1.Qr41 (qr+1 — Cri177),
UT4+1€VT+1

we conclude that sup, ¢y J(u,v) is the f(u) in (Pget).

Next using for [u,v] the left hand expression in (3.3), we write

T+1 T
J<u7 U) = Z(QT'UT - %Ut'QTUT) - Z bT'yT—H
T=1 7=0

(3.6)
([B:yT—Fl + D;k-'UT - pT]'uT - %UT.P’TU'T)

E

\‘
I
=

—~

[By1 — poluo — suo-Pouo).
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The minimization of this over all u € U reduces similarly to a separate minimization with

respect to each of the components u,. We know that

sup {[B:yT—i—l + DiUT - pT]'UT - %UT'PTUT} = PUr, PT(B;—kyT—i—l + DiUT - pT)

UTGUT
and
sup {[Bjy1 — poluo — suo-Pouo} = puy,ry(Byyr — po)-
uoEUO
We conclude that inf,cy J(u,v) is the g(v) in (Qget)- m|

The proof of Theorem 3.3 reveals an important simplifying feature of our minimax

representation of (Pget) and (Qqget). We state it as follows.

Theorem 3.4. For the U, V, and J in Theorem 3.3 one has the following decomposability
properties for separate minimization in u or maximization in v. Here u and v are elements
of U and V', and T and Yy the corresponding trajectories.

(a) u € argmin J(u,v) if and only if
uelU
?27— € 8pU’7’7P’T (B;k'yT—Fl + D;k'ﬁ”f' - pT)
= argmax{ [B:yT—i—l + D3, — prlu, — %UT'PTUT]}
UTEUT
fort=1,...,T, and

g € Opu,y,py(Bs¥1 — Po)
= argmax{[Bgy; — po] — 2uo-Pouo}.
ugp el

(b) v € argmax J(u,v) if and only if
veV
Uy € apUT,QT (QT - C’7'57'—1 - DTE’T)
= argmax{ [QT - CTfT—l - DTﬂT]'UT - %UT‘QTUT}
’UTGVT
fort=1,...,T, and

Ur41 € Opvp,,.Qp q (@r+1 — CriaZr)

= argmax {[¢r41 — Cr1T¢]vr41 — %UT+1'QT+1UT+1}-
v 1€V 41

Y

Proof. The formulas in terms of “argmax” are justified by the calculations in the proof

)

of Theorem 3.3. The question that remains is whether the “argmax” sets are truly the
same as the indicated subgradient sets. This is answered by the observation that in the
notation (2.2) one has py,qg = 67, 5 (convex conjugate), where

1 .
_JyvQu ifvel,
(3.7) Ov.av) { 00 ifvogV.
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Inasmuch as 6y, ¢ is a closed proper convex function, one also has 0y ¢ = py, o and

Opy.q(r) = argmax{rv — Oy g(v)}
veR?

by the basic rules of convex analysis [8, Theorem 12.2]. When this is applied to the pairs

V., Q-, and U,, P., in place of V,Q, we reach our desired conclusion. O

The significance of the formulas in Theorem 3.4 lies in their potential use in iterative

methods for solving (Pget) and (Qget) when the dimensions

T T+1
(3.9) k=) krand =
=0 T=1
of the vectors u = (ug,u1,...,ur) and v = (vy,...,vr,vr41) are large. The dimensions

may be expected to be large if T is large, as of course would happen in particular in taking
(Pdet) and (Qget) to be discrete-time approximations to continuous-time control problems
such as the ones studied in [1]. In the presence of high dimensions, it may be impossible
or inexpedient to solve (Pget) and (Qqet) directly by reducing them to ordinary quadratic
programming problems in duality and applying a typical finitely-terminating quadratic
programming code (as would be possible in principle in a manner explained in Rockafellar
and Wets [3,82]).

An alternative approach in that case is the exploration of methods that determine
approximate solutions to (Pget) and (Qget) by calculating a sequence of approximate sad-
dlepoints (@, 7") of J on U x V for v = 1,2, ..., as suggested by the characterization of

optimality in Theorem 3.4. In any such method the ability to calculate

(3.10) f(@") = max J(u”,v) and 9" € argmax J(u"”,v)
veV vEV

as well as

(3.11) g(v”) = min J(u,v") and @” € argmin J(u,7")
uelU welU

is crucial in producing primal and dual bounds that tell how far uw” and v” are from
optimality and as input to possible schemes for updating (u”,2") to (w**!,7”"1). Theorem
3.4 says that the calculations in (3.10) and (3.11) can feasibly be carried out in terms of
solving a collection of low-dimensional quadratic programming subproblems indexed by 7.
Moreover these subproblems can even be solved in “closed form”, i.e. without applying a
quadratic programming code, if the functions py, o, and py, p, have sufficiently simple

expressions that allow the use of subgradient formulas directly.
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The subgradient formulas are readily usable, for example, in the completely decom-
posable case where U, and V, are boxes (products of closed intervals, e.g. orthants) and
P, and @, are diagonal. Indeed, if P, and (), are nonsingular the subgradients reduce to

gradients given by very elementary expressions.

Theorem 3.5. Consider a control pair u,v, and the corresponding trajectories * and ¥y

determined by (3.1) and (3.2). Define
(3.12) p, =p =By, fort=0,1,...,T, and G, = ¢—C;Ty_y for T =1,...,T,T+1.

Let (P,) and (Q,) for T = 1,...,T denote the primal and dual problems of generalized

linear-quadratic programming associated with
(313) JT(UT7 UT) = ]_)T'UT + %U’T'PTUT + qT'/UT - %UT'QTUT - UT'DTUT
on U, x V., namely,

(P.) minimize p_u, + %uT-PTuT + pvr.0r (@ — Druy) over u, € Us,

—
©Ql
3

~—

.. _ 1 * _
maximize @, vr — 50-Q-vr — pu, p (Djv: —P,) over v, € Vp,
and consider also the problems

(Po) minimize pyuo + %Uo-P()U() over ug € Uy,

Y . — 1
(Q7r41) maxumize 44 1Vr+1 — QUT+1'QT+1”UT+1 over vy € Uryy.

Then a necessary and sufficient condition for uw and v to be optimal solutions to the
control problems (Pget) and (Qget ), respectively, is that i, should be an optimal solution
to the subproblem (P,) for 7 = 0,1,...,T, and v, should be an optimal solution to the
subproblem (Q,) for r =1,...,T,T + 1.

Proof. We know from Theorem 3.3 that a necessary and sufficient condition for the op-

timality of @ and 7 in (Pget) and (Qqet) is the saddlepoint relation

u € argmin J(u, ) and T € argmax J (@, v).
uelU veV
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Furthermore, this reduces to having the argmax conditions in Theorem 3.4 hold for v =w

and v = v. These conditions in turn are equivalent to

u, € argmin J(u,,0,) for r=1,...,T,
UTGUT
gy € argmin{pyug + %uo'Pouo},
un€Uy
and
v, € argmax J, (U, v,) forr=1,...,T,
vreVr
— — 1
Ury1 € argmax {qr 1vri1 — 30711 QT 10T}
vr4+1€VT4

The latter mean that uy is optimal for (Py), Ur41 is optimal for (Qry1), and (u,,v,)
is a saddlepoint of J,(u,,v;) relative to u, € U, and v, € V; for 7 = 1,...,T. This
saddlepoint condition is equivalent by Theorem 2.1 to w, and v, being optimal solutions
to the primal and dual subproblems (P,) and (Q,). O

Optimality conditions of the kind in Theorem 3.5 were developed for continuous-time
problems in Rockafellar [1]. They resemble conditions first detected in a special setting
known as “continuous linear programming” by Grinold [9].

Besides being of interest in the study of what optimality might mean in a particular
application modeled directly in terms of (Pqet) and (Qget), the conditions in Theorem 3.5,
like those in Theorem 3.4, have import for computations. Having arrived at a control pair
(u”,7") and associated trajectories (Z",7") in some iteration v of a numerical method,
one can construct a new pair (u”,v") € U x V by taking u¥ to be an optimal solution to
(f:) for 7 =0,1,...,T and v¥ an optimal solution to (@:) forv=1,...,T,T + 1, where
(P7) and (Q.) are the subproblems corresponding to @ and 7" in the sense of Theorem
3.5. Then u” and v" generate new trajectories ¥ and y* that may be compared with
z¥ and 3", and for so forth. This procedure, like the one described after Theorem 3.4,
provides another tool that might be used constructively in the generation of a sequence of

approximate saddlepoints.
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4. Stochastic Control Model.

The probability space we work with in this paper is simply a finite set €2, for reasons given
in §1. The probability associated with an element w € Q is 7, > 0; one has ) 7, = 1.
The vectors, matrices and sets introduced in the formulation of our deterministic problems
persist notationally in the stochastic problems, but all are now treated as (potentially)
random variables. Thus, for example, p, now denotes a mapping w — p,, € R*" rather
than necessarily just a single vector. Likewise P, is a matrix-valued mapping w — P,
and U, is a set-valued mapping w +— U,,,. In line with our earlier assumptions, we suppose
that P,, and Q. are positive semidefinite (symmetric), and U,, and V,,, are polyhedral

convex (nonempty). The expectation of a random variable such as p, is

E{pT} = Ew{pr} = Z TwPwr -
we

The information available to the decision-making process at time 7 is modeled by the
specification of a (finite) field G, of subsets of Q for 7 =0,1,...,7,7 + 1. The fields G-
may differ from the complete information fields F,, and no particular relation between
them is presupposed, although the case where the G,’s are increasing with G, contained
in F. is, for instance, an important one. More will be said about this after the statement

of our primal and dual problems. We assume that
(4.1) U-,Vi,pr, Pr,qr,Q-, and D, are G,-measurable,

but in general do not place this restriction on A, B,, C,, b, or c,. Trivially the latter
are measurable with respect to the underlying field F of complete information, comprised
here of all the subsets of ().

Because G, is a finite collection of subsets of €2, the notion of G,-measurability has
an especially simple representation for our purposes. Let A, denote the subcollection
of G, consisting of all G,-atoms, i.e. nonempty G,-measurable sets that do not properly
include any other nonempty G,-measurable set. Such atoms are mutually disjoint. A
set is Gr-measurable if and only if it is a union of G.-atoms. Thus there is a one-to-one
correspondence between G.-measurable sets in {2 and sets of G.-atoms, i.e. subsets of
A.. A function is G.-measurable if and only if it is constant relative to every G, -atom.
Each G.-measurable function can in this way be identified uniquely with a function on A
rather than on 2. We can indicate this notationally, when we wish to, by writing p,, for
a € A, to denote the common value that p,, has for all w € a when p is G,-measurable.

(Obviously € itself in this setting might be identified with the set of atoms of some finite
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field of information chosen within a larger, possibly “continuous” probability space by
some kind of approximation. We don’t go into this matter here.)

Conditional expectation with respect to G, is denoted by E97. This can be viewed in
the present setting as the linear transformation that takes a random variable such as B,
and redefines it to have a constant value on each G,-atom a € A, that value being, of

course, the “weighted average”

S|

The stochastic dynamical systems for our primal and dual problems are taken again

to have the forms (3.1) and (3.2), but with all elements now interpreted as (potentially)

random, and with the restriction that

(4.2) ur is G; — measurable,

(4.3) v is G, — measurable.
The condition u, € U, in (3.1) is interpreted to mean that u,, € U, for all w € Q, and
similarly for v, € V.. Our primal problem of stochastic control is

minimize subject to (3.1) and (4.2) the function f(u) =
T+1

T
Z E{pT'UT + %UT'PTUT} - Z E{CT'ITfl}
7=0 T=1
(Psto) T
+ Z E{pv:,o-(ar — E9{Crar 1} — Dru,)}
T=1

+ E{PVT+17QT+1 (qr+1 — E9T+1 {Cry1z7})}-
The corresponding dual problem is

maximize subject to (3.2) and (4.3) the function g(v) =

T+1 T
Z E{QT'UT - %UT'QTUT} - Z E{bT'yT—l—l}
(QStO) =1 =1
T
- Z E{PUT,PT(EQT{B:?JTH} + DIvr —pr)} — E{PUO,PO(EQO{BSM —po})}-
=1

Here pv,. g, and py, p, are “random functions” that depend G,-measurably on w € Q

by virtue of (4.1). The random variables
&= EgT{C’TxT_l} and 7, = EgT{BinH}
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are Gr-measurable too, of course, so the arguments to which py,. ¢, and py, p, are applied
are always G,-measurable. The p terms at time 7 thus monitor “constraint expressions”
based solely on the information available to the decision maker at time 7. Note from the
dynamics that £, depends affinely on uyo0,...,uw r—1, Whereas 7., depends affinely on
Vw7415« -y Voo, T1-

In order to appreciate the generality of problem (Pg,) it is important, especially for
readers accustomed to the traditional approach to stochastic control, to understand the
nature of the information structure that is adopted. This structure, which is typical of
the literature on stochastic programming, has sometimes been interpreted narrowly as
excluding models where the information on which decisions can be based is generated by
observations that may be influenced by previous control decisions, cf. the comments of
Bertsekas and Shreve [13, pp. 10-11]. Such is not actually the case when measurability
requirements are referred to a single underlying space, as we shall explain. Thus the
specification of the information field G, as independent of ug, u1,...,u,_1, should not be
taken to mean, for instance, that in choosing u, we are unable to respond to complete or
partial observations of the states xg,x1,...,z,_1, inasmuch as those states are generally
random variables whose distributions depend on ug, w1, ..., ur_1.

The crucial distinction is that of controls u, seen directly as functions on the space
), rather than controls represented in a feedback mode as functions of past observations
and expressible only in a secondary way, through composition, as functions on 2. The
feedback mode of representation, while conceptually very appealing, can be a handicap in
our opinion when imposed right from the beginning in the problem formulation. We prefer
to proceed at first without it and to recover feedback laws later from optimality conditions,
if desired.

Let us imagine, to make this more explicit, that at each time 7 = 0,1,..., N an
observation z, € IR™7 is made before the control decision u, is chosen. Of course z,
is a random variable whose distribution is given by a probability measure p, on R™7,
which in general might depend on the controls wg,ui,...,ur—1. Let us suppose that
the only information available for the selection of u. is the sequence zg,z1,...,2,. In
stochastic control it is common to express this requirement by taking u.. to be a function
of z9,21,...,2,, l.e. as a function of a random argument in R™0 x R™! x --- x R™7.
What we propose instead is to handle zg, 21, ..., 2, as functions defined on the underlying
probability space 2 and take u, to be a function on {2 that is measurable with respect to
the o-field generated by zg, z1, .. ., z,; it is this field that should be identified with G, in our
model. (We have assumed in this paper that 2 is a finite, discrete set, but the idea under

consideration applies more generally.) This condition is tantamount to the requirement

13



14

that u, be representable by composition of (zg, z1,...,2,) with some mapping into R~
from the probability space in IR™0 x IR™! x --- x R™7 induced by these random variables,
but it leaves the particular representation open to later investigation.

The advantage to our approach in this setting is that the field G, may well be inde-
pendent of ug,uy,...,ur_1, even though the distribution of (zg, 21, ..., zr) might not. To
this extent we are able to make use of properties of convexity and duality that otherwise
could be overlooked.

Before we return to the characterization of optimal controls and trajectories, let us
also note that because we allow the dimensionality of the state and control vectors to vary
over time, our model also includes classical multistage recourse problems. Suppose that

the equations (3.1) have the special form

mT:[I]xT_lJr{?}uT forr=1,...,T,

Lo = Uo,
where the identity matrices I and zero matrices 0 are of the appropriate dimensions. Then

Uug
u
o = Ug, 1 = [u?:| , Tog = | uy | , etc.
U2

Thus z, is the “memory” of all decisions up through time 7. Assuming that G, 1 C G,

we get ., like u,, to be G,-measurable. Then in (Pg,) the term
qr — EQT{CTxT—l} - D’TuT

represents a general affine expression in ug, uq,...,u,. When py, o, is of the type (2.4),
we can rewrite (Pgo) in terms of linear constraints and a quadratic objective involving
only the control variables ug, %1, ...,up. This problem, with its block angular structure, is
in the usual format for the multistage stochastic programs with recourse; see [11] or [12],
for example.

Problem (Psto) revolves around the choice of the random variable u = (ug, u1, ..., ur),
which can be regarded as a function from € to R*0 x - - - x R*T" and therefore as an element
of the finite-dimensional vector space consisting of all such functions. The dimension of this
space may be very large indeed just from the size of {2 and possibly T', even if kg,..., kr
are themselves relatively small, as might generally be supposed. We must therefore think
of (Psto) as inherently a “large-scale” problem for which approximate methods of solution

will be more appropriate than “exact” ones.
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Nevertheless it is well to keep in mind that the representation of u as a function from
Q to R*0 x ... x R*T tends to exaggerate the dimensionality of (Psto). The constraint
that u, be G.-measurable means, as already noted, that u, can be identified uniquely with
a certain function from A, to R*". The dimension of the space of all functions from A,

to R* is a,k;, where
ar = |Ag| (the number of atoms in Gy).

Thus the “true” dimensionality of (Pgo), in the sense of the number of real-valued decision

variables, is
(45) k* = aoko + ar1ky + -+ arkr.

By the same token, the “true ” dimensionality of (Qsto), where the random variable v =

(v1,...,v7,vp4+1) must be optimized, is
(4.6) 0 =a1ly+ - +aply + apg1lry.

Proposition 4.1. Let

U ={u=(up,u1,...,ur)| u, is G.-measurable with u, € U},

V={v=(v1,...,v7,0741)| vy is G,-measurable with v, € V. },

and define J(u,v) = E{J(u,v)}, where J(u,v) is the expression in Proposition 3.2 (re-
garded now as a random variable depending on the choice of the random variables u and v).
Then U and V are polyhedral convex sets (nonempty), and J is a quadratic convex-concave

function.

Proof. By definition i/ is a subset of the space of all functions from 2 to R*0 x ... x R*T
consisting of the functions u such that u,, € U, for all w and 7, and U,,, is constant in
w with respect to each G,-atom « € A,. These conditions can be represented by a finite
system of linear equations and inequalities, because (2 is finite and U, is by assumption
a convex polyhedron for each w and 7. (Alternatively U can be viewed as a direct product
of polyhedral convex sets U, indexed by a € A, and 7 = 0,1,...,T, inasmuch as U, is
G--measurable.) Thus U is a convex polyhedron. Similarly V is a convex polyhedron. We

have by definition

j(u,v) = Z WwJ(ouOvuwlu s UwTs Vol - - - 7vaavw,T+1)
we

15
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where the J term for each w is quadratic convex-concave function and the coefficients 7,

are nonnegative therefore J is a quadratic convex-concave function. 0

Theorem 4.2. The stochastic optimal control problems (Psto) and (Qsto) are the primal
and dual problems of generalized linear-quadratic programming associated with the U,V

and J in Proposition 4.1. In particular, the assertions of Theorem 2.1 are valid for (Psto)

and (Qsto)-

Proof. We must show that the supremum of J(u,v) over all v € V is the function f(u) in
(Psto), and the infimum of J (u,v) over all u € U is g(u) in (Qsto). Starting with J(u,v) in
the form of (3.5) (which is obtained by using the right hand expression in (3.3) for [u, v])
and taking the expectation, we get by (4.1) that

T+1

T
J(u,v) = ZE{pT-uT + %uT-PTuT} — Z E{crxr—1}
T7=0 T=1

T
+ Z E{[QT o EgT{CT‘rT—l} - DT'U/T]‘,UT - %UT'QT'UT}
T=1

+ E{lgr+1 — E9T+1{Cry1zrvrsr — 3vr41Qre1vr41}

To maximize this over all v € V, we must maximize separately in each of the v,’s subject
to v, being a G,-measurable function with v, € V.. Denote the random variable ¢, —
E97{c,x,} — D;u, temporarily by r, for 7 = 1,...,T and qry; — EgT+1{CT+1xT} by

rr+1. Then each r; is G.-measurable and

T T+1
J(u,v) = ZE{pTuT + %uT-PTuT} — Z E{crxz,_1}
7=0 T=1
T
Z sup E{TT‘UT - %UT'QTUT}a
=0 vrEVr

where V; is the set of all G,-measurable v, with v, € V.. Since G,-measurable functions

can be indexed by a € A, in place of w € €, as explained above, we can write

E{TT'UT - %UT'QT'UT} = Z T [TaT"UaT - %vaT'QaTUaT]a
OZG.AT

where 7, is the probability of the atom «;, i.e.

Mo = E Ty-

weo
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The supremum of this expression over all v, € V; is

E 1
T sup {TQT'UO{T - §vaT'QaTUaT}
acAr var €Var

- Z 71-OfpVomonm‘ (TOéT = E{pVTvQT (707')}'
acAr

Thus the supremum of J(u,v) over v € V is

T+1

T T
Z E{pru, — %uT-PTuT} - Z E{crwr 1} + Z E{pv:.q-(r:)},
=0 T=1 T=1

which from choice of the r;’s is the objective f(u) in (Pgo). The argument that the

infimum of J(u,v) over u € U is g(v) in (Qsto) follows the same lines. O

Theorem 4.3. For theld, V, and J in Theorem 4.2 one has the following decomposability
properties for separate minimization in w or maximization in v. The notation is used that
Ty = qr — B9 {C,Z,_1} — Dy, forr=1,...,T,
P11 = qry1 — BT+ {Crp77},
5, = B9 {By,.,} + Div, —p, fort=1,...,T,
50 = E9{B57;} — po,
where u and v are elements of U and V, and T and y are the corresponding trajectories.

(a) @ € argmin J (u,v) if and only if
uel

~ < = 1
Uar € aon”—,PaT (3047') = argmax {SaT'uaT - QuaT'Pa‘ruaT}
uar€Uar

forr=0,1,...,T and all « € A,.

(b) v € argmax J (4, v) if and only if
veV

faom' € apVaT,PaT (Fon—) = argmax {Forr'vom— - %UO[’T.QOCT/UOCT}
var€Var

forr=1,...,T,T+1and all « € A..

Proof. This combines the argument of Theorem 4.2 with the conjugacy facts noted in the

proof of Theorem 3.4. O

Theorem 4.4. Consider G.-measurable u, U, and the corresponding trajectories T and 7

determined by (3.1) and (3.2). Define the G,-measurable random variables
P, =p, —E9{B7%. .} forr=01,...,T,
4, =qr— E9{C.T._} forr=1,...,T,T+1.
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For each 7 = 1,...,T and o € A, let (Py,) and (Qu,) denote the primal and dual

problems of generalized linear-quadratic programming associated with
= 1 — 1
Jom' (ua7'7 voz‘r) = ParUar + §uaT'Pa7'uaT + darVoar — §UQT'Q0¢TU0¢T - Uom"Dom‘uorr
on Uyr X Vyr, namely

- e e 1 —
(Par) MINIMIZE P rUar + §uorr'Poz7'uom' + PVar,Qar (qa‘r - Dom'uom') over Uqgr € Ucm',

.. —_ 1 * —
(Qom—) maximize q o Vor — §vaT'QaTUaT — PUqr,Por (Dom—Uanon—) Oover Vor € Vom‘v

and consider also the problems

(Pao) minimize P,y Uao + %uaO'PaOuao over Uqo € Uao
for a € Ay, and

- S 1
(Qa,7+1) maximize q,, 41 %a,T+1 — 3Ua,T+1Pa,7+1 OVer ug r41 € Ua 141

fora € Ap,q.

Then a necessary and sufficient condition for u and v to be optimal solutions to the
control problems (Psto) and (Qsto), respectively, is that U, should be an optimal solution
to the subproblem (P,.) for every a € A, and 7 = 0,1,...,T, and T, should be an
optimal solution to the subproblem (Q,,) for every a« € A, and 7 =1,...,T,T + 1.

Proof. The argument imitates the one for Theorem 3.5 but uses the relations in Theorem
4.3. O
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