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Abstract. Primal and dual problems of optimal control with linear, quadratic
or piecewise linear-quadratic convex objective are considered in which a linear
dynamical system is subjected to linear inequality constraints that could jointly
involve states and controls. It is shown that when such constraints, except for
the ones on controls only, are represented by penalty terms, and a mild coercivity
condition is satisfied, the optimal controls for both problems will be essentially
bounded in time. The optimal trajectories will thus be Lipschitzian.
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1. Introduction

In problems of optimal control of ordinary differential equations, the “linear-quadratic”
case usually refers to a formulation where the dynamics are linear and the objective is
quadratic convex (or affine). A broader formulation, termed “generalized linear-quadratic”
in Rockafellar [1], allows the integrand in the objective to be piecewise linear-quadratic

(convex) in the state and control vectors. By definition, a function is piecewise linear-
quadratic if its effective domain can be expressed as the union of finitely many polyhedral
convex sets, relative to each of which the function is at most quadratic.

The introduction of piecewise linear-quadratic expressions can serve various purposes
in mathematical modeling, but one of the most important is the handling of various linear
inequality constraints by means of penalty terms. This is especially useful in the case of
state constraints or restrictions that make the current set of available controls depend on
the current state. Such restrictions, which fall outside the usual patterns of treatment in
optimal control, are essential to many applications in economic management and operations
research.

The theory of piecewise linear-quadratic optimal control, as developed in [1], empha-
sizes duality in the statement of necessary and sufficient conditions and includes results on
the existence of primal and dual solutions. In order to achieve such results, one is obliged
to work with control spaces consisting of L1 functions, at least initially, even though a re-
striction to L∞ would be more natural for most applications. The purpose of the present
paper is to demonstrate that the necessary conditions derived in this way imply, under the
supporting assumptions, that the optimal controls are L∞ functions after all. Thus the
introduction of L1 controls can be seen merely as a technical excursion leading in the end
to a solid justification for an L∞ framework.

2. Primal and Dual Problems

The basic control problem in [1] involves certain ρ expressions defined in general by

(2.1) ρV,Q(r) = sup
v∈V

{r· v − 1
2v·Qv},

where V denotes a nonempty polyhedral convex set in lR`, and Q is a symmetric, positive
semidefinite matrix in lR`×` (possibly the zero matrix!). The nature of such expressions,
the alternative formulas they satisfy, and their roles and special cases, are discussed in
detail in [1]. Suffice it to say here that ρV,Q is in general a piecewise linear-quadratic
convex function of r which depends in a convenient manner on the choice of V and Q as
“parameters”. If 0 ∈ V , then ρV,Q is nonnegative everywhere, as usually expected of a
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“penalty function”. Moreover the set of vectors r where ρV,Q actually vanishes is a certain
polyhedral convex cone KV,Q (possibly a subspace or just the zero vector itself).

The primal problem we deal with is the following, where the subscript t refers to time
in a fixed interval [t0, t1] and the subscript e designates “endpoint elements”:

subject to the dynamical system(P1)
ẋt = Atxt + Btut + bt a.e. , quadut ∈ Ut a.e. ,

xt0
= Beue + be, ue ∈ Ue,

with u : t 7→ ut an L1 function, minimize∫ t1

t0

[pt·ut + 1
2utPtut − ct·xt]dt + [pe·ue + 1

2ue·Peue − ce·xt1
]

+
∫ t1

t0

ρVt,Qt(qt − Ctxt −Dtut)dt + ρVe,Qe(qe − Cext1
−Deue).

Here we have written ut, xt and ẋt in place of U(t), x(t) and ẋ(t), with ut ∈ lRk, xt ∈ lRn.
The “endpoint control vector” ue ∈ lRke represents additions parameters supplemen-

tary to the “instantaneous control vectors” ut, but with respect to which some optimization
can also take place. The sets

Ut ⊂ lRk, Ue ⊂ lRke , Vt ⊂ lR`, Ve ⊂ lR`e

are assumed to be polyhedral convex and nonempty. The matrices Pt, Pe, Qt, Qe, are
assumed to be symmetric and positive semidefinite. Furthermore it is assumed that the
elements

(2.2)
At, Bt, Ct, Dt, bt, ct, Pt, Qt, pt, qt, Ut, Vt

all depend continuously on t ∈ [t0, t1].

Under these assumptions the choice of u and ue, where u denotes the L1 control function
t 7→ ut as indicated in the statement of (P), determines by way of the dynamical system
in (P) a unique corresponding trajectory x : t 7→ xt, which is absolutely continuous. The
associated value of the objective functional is then well defined as a real number of ∞, and
it is convex in its dependence on (u, ue); see [1, Thm. 4.2].

The ρ-expressions in (P1) can be viewed broadly as monitoring terms. They monitor
the vector Ctxt+Dtut versus a given qt, and also Cext1

+Deue versus qe. Certain directions
or amounts of deviation may be accepted without cost (namely those corresponding to
difference vectors in the polyhedral cones KQt,Vt and KQe,Ve , in the case where 0 ∈ Vt and
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0 ∈ Ve), but others may be penalized (or conceivably even rewarded, in cases other than
ones where 0 ∈ Vt and 0 ∈ Ve).

The problem proposed in [1] as dual to (P) is entirely analogous in form, but with a
reversal of roles for the various elements (* denotes transpose):

Subject to the dynamical system(Q1)
−ẏt = A∗t yt + Ctvt + ct a.e. , vt ∈ Vt a.e. ,

yt0
= C∗e ve + ce, ve ∈ Ve,

with v : t 7→ vt an L1 function of t, maximize∫ t1

t0

[qt· vt − 1
2vt·Qtvt − bt· yt]dt + [qe· ve − 1

2ve·Qeve − be· ye]

−
∫ t1

t0

ρUt,Pt(B
∗
t yt + D∗

t vt − pt)dt− ρUe,Pe(B∗eyt0
+ D∗

eve − pe).

Again, the choice of the control function v : t 7→ vt and vector ve uniquely determines the
dual state trajectory y : t 7→ yt, which is absolutely continuous. The objective functional
in (Q1) is concave in (v, ve) with values in lR ∪ {∞}.

The main results in [1] about the relationship between (P1) and (Q1) concern duality.
For present purposes we focus only on the strongest case.

Definition 2.1. One says that the primal finiteness condition is satisfied if ρVt,Qt < ∞
everywhere on lR` and ρVe,Qe < ∞ everywhere on lR`e . Likewise the dual finiteness

condition is satisfied if ρUt,Pt < ∞ everywhere on lRk and ρUe,Pe < ∞ everywhere on lRke .

These conditions mean roughly that the monitoring terms in the two control problems
do not involve any implicit constraints which are enforced through infinite penalization. It
is demonstrated in [1, Prop. 2.4] that the primal finiteness condition holds if and only if

(2.3) rc Vt ∩ nlQt = {0} for all t ∈ [t0, t1] and rc Ve ∩ nlQe = {0},

where “rc” denotes the recession cone of a convex set [2, §8] and “nl” denotes the null
space of a matrix. Similarly, the dual finiteness condition holds if and only if

(2.4) rc Ut ∩ nl Pt = {0} for all t ∈ [t0, t1] and rc Ue ∩ nlPe = {0}.

Condition (2.3) can appropriately be called the primal coercivity condition, and (2.5) the
dual coercivity condition. Thus instead of the primal and dual finiteness conditions we
could speak of imposing the primal finiteness and coercivity conditions, or equivalently of
imposing the dual finiteness and coercivity conditions.
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Theorem 2.2. Under the assumption that the primal and dual finiteness conditions both

hold, one has

−∞ < min(P1) = max(Q1) < ∞.

In other words, optimal controls exist for both problems, and the corresponding objective

values are finite and equal.

Proof. This is a special case of [1, Thm. 6.3].

When the finiteness conditions in Theorem 2.2 are invoked separately, each still guar-
antees the equality of the optimal values in (P1) and (Q1) but only yields one of the
existence assertions. See the full version of this result in [1, Thm. 6.3].

Optimality of primal and dual controls in the context of Theorem 2.2 can be expressed
as a “minimaximum” principle. To state this we introduce the quadratic convex-concave
functions

(2.5) Jt(ut, vt) = pt·ut + 1
2ut·Ptut + qt· vt − 1

2vt·Qtvt − vt·Dtut,

(2.6) Je(ue, ve) = pe·ue + 1
2ue·Peue + qe· ve − 1

2ve·Qeve − ve·Deue.

Theorem 2.3. In the case where min(P1) = max(Q1), the following conditions are both

necessary and sufficient in order that (ū, ūe) be optimal in (P1) and (v̄, v̄e) be optimal in

(Q1). In terms of the primal trajectory x̄ corresponding to (ū, ūe) and the dual trajectory

ȳ corresponding to (v̄, v̄e), one has that

(2.7)
(ūt, v̄t) is a saddle point of Jt(ut, vt)− ut·B∗t ȳt − vt·Ctxt

relative to ut ∈ Ut, vt ∈ Vt (a.e.),

(2.8)
(ūe, v̄e) is a saddle point of Je(ue, ve)− ue·B∗e ȳt0

− ve·Cex̄t1

relative to ue ∈ Ue, ve ∈ Ve ,

(where ū : t 7→ ūt and v̄ : t 7→ v̄t are L1 functions).

Proof. This combines a global saddlepoint criterion for optimality in [1, Thm. 6.2] with
a pointwise saddlepoint criterion in [1, Thm. 6.5].
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3. Reduction to Bounded Controls.

Let us denote by (P∞) and (Q∞) the modified forms of the primal problem (P1) and dual
problem (Q1) in which the control functions u : t 7→ ut and v : t → vt are required to be
L∞ rather than L1. The optimal values in these problems satisfy

(3.1) inf(P∞) ≥ inf(P1) ≥ sup(Q1) ≥ sup(Q∞)

in general (the middle inequality holds always by [1, Thm. 6.2]). This relationship indicates
that the prospect of duality between (P∞) and (Q∞) is less promising than between (P1)
and (Q1), despite the fact that (P∞) and (Q∞) are easier to work with in other respects
and more natural as problem formulations for many situations. We demonstrate now,
though, that duality between (P∞) and (Q∞) does hold nonetheless in the important case
where the primal and dual finiteness conditions are both satisfied.

Theorem 3.1. Under the primal and dual boundedness conditions, every optimal solution

(ū, ūe) to (P1) actually has ū ∈ L∞ and therefore is an optimal solution to (P∞); likewise,

every optimal solution (v̄, v̄e) to (Q1) has v̄ ∈ L∞ and therefore is an optimal solution to

(Q∞). Thus

−∞ < min(P∞) = max(Q∞) < ∞.

Proof. In view of Theorems 2.2 and 2.3, the task before us is to demonstrate that in
the presence of the primal and dual finiteness conditions, the instantaneous saddlepoint
condition (2.7) implies ū ∈ L∞, v̄ ∈ L∞. We shall do this in the framework of conjugate
convex-concave functions [2].

Define the function J̄t on lRk × lR` by

(3.2) J̄t(ut, vt) =

 Jt(ut, vt) if ut ∈ Ut, vt ∈ Vt,
−∞ if ut ∈ Ut, vt 6∈ Vt,
∞ if ut 6∈ Ut.

This is a closed saddlefunction in the terminology of [2, §34], inasmuch as Jt is a continuous
convex-concave function and the sets Ut and Vt are closed and convex. The saddlepoint
condition (2.5) is equivalent by definition to the subdifferential relation

(3.3) (B∗t ȳt, Ctx̄t) ∈ ∂J̄t(ūt, v̄t) a.e.

(see [2, p. 374]). By introducing the conjugate

(3.4)

J̄∗t (r, s) = inf
vt∈lR`

sup
ut∈lRk

{r·ut + s· vt − J̄t(ut, vt)}

= inf
vt∈Vt

sup
ut∈Ut

{r·ut + s· vt − J̄t(ut, vt)},
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which is another closed saddlefunction [2, Cor. 37.1.1], we can write this subdifferential
relation as

(3.5) (ūt, v̄t) ∈ ∂J̄∗t (B∗t ȳt, Ctx̄t), a.e.

by [2, Thm. 37.5]. To prove that this implies ū ∈ L∞ and v̄ ∈ L∞, it will suffice to show
that the multifunction

Γ : t ∈ [t0, t1] 7→ ∂J̄∗t (B∗t ȳt, Ctx̄t)

is uniformly bounded when the primal and dual finiteness conditions are satisfied, i.e. has
all of its image sets Γ(t) contained in a certain bounded subset of lRk × lR`. Because B∗t ȳt

and Ctx̄t depend continuously on t and therefore themselves remain in a bounded set as t

passes through [t0, t1], it will suffice to show that the multifunctions

∂J̄t : lRk × lR` →→ lRk × lR`

are uniformly bounded on bounded sets.
The formula specified in (3.4) tells us by way of (2.5) that

(3.6)

J̄∗t (r, s) = inf
vt∈Vt

sup
ut∈Ut

{[r − pt]·ut + [s− qt]· vt − 1
2ut·Ptut + 1

2vt·Qtvt + vt·Dtut}

= inf
vt∈Vt

{[s− qt]· vt + 1
2vt·Qtvt}+ sup

ut∈Ut

{[r − pt + D∗
t vt]·ut − 1

2ut·Ptut}

= inf
vt∈Vt

{[s− qt]· vt + 1
2vtQtvt + ρUt,Pt(r − pt + D∗

t vt)}.

The set Vt, which is nonempty, closed and convex, depends continuously on t according to
our assumption (2.2) so there exists by the selection theorem of Michael [3] a continuous

function v̄ : t 7→ v̄t with v̄ ∈ Vt for all t ∈ [t0, t1]. Then

(3.7) J̄∗t (r, s) ≤ [s− qt]· v̄t + 1
2 v̄t·Qtv̄t + ρut,Pt(r − pt + D∗

t v̄t) for all (r, s) ∈ lRk × lR`.

Using the fundamental inequality “inf sup ≥ sup inf” on the formula in (3.4), we can
obtain similarly that

(3.8) J̄∗t (r, s) ≥ [r − pt]· ūt − 1
2 ūt·Ptūt − ρVt,Qt(qt −Dtūt − s) for all (v, s) ∈ lRk × lR`,

where ū : t 7→ ūt is a continuous function having ūt ∈ Ut for all t ∈ [t0, t1]. We now invoke
the primal and dual finiteness conditions: These say that the estimates in (3.7) and (3.8)
are finite. In fact they imply by [1, Prop. 4.1] that ρUt,Pt(r) is continuous jointly in t and
r, and ρVt,Qt(s) is continuous jointly in t and s. (The continuous dependence of Pt, Qt,
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Ut and Vt on t in (2.2) comes in here.) This continuity and that of qt, Qt, pt, Pt, and Dt

in (2.2) produces continuity of the right sides of (3.7) and (3.8) with respect to (t, r, s). It
follows then that the functions J̄∗t for t ∈ [t0, t1] are uniformly bounded on any bounded
subset of lRk × lR`.

This boundedness property must be translated next into a uniform boundedness of
the subdifferentials ∂J̄∗t . The argument is just a refinement of facts already known in the
literature on convex-concave functions. From [2, Thm. 35.2] one sees that the boundedness
of the values of the functions J̄∗t implies that these functions are equi-Lipschitzian on
any bounded subset of lRk × lR`. But if J̄∗t is Lipschitzian with modulus λ on some
neighborhood of a point (r̄, s̄), the set ∂J̄∗t (r̄, s̄) must be contained in the ball of radius
λ around (r̄, s̄), as follows simply from the bounds one gets in this case on directional
derivatives. This observation leads to our desired conclusion that the sets ∂J̄∗t (r, s) for
t ∈ [t0, t1] are uniformly bounded relative to any bounded set of points (r, s).
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