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1. INTRODUCTION

Large-scale problems in quadratic programming and linear complementarity have received
much attention as mathematical models in applications of optimization to such areas as
the solution of variational inequalities, cf. [1]. A comprehensive survey of iterative methods
for solving such problems has been furnished by Lin and Pang [2]. Generally speaking,
these methods try to adapt to special structure by taking the sparsity of certain matrices
into account. It has long been recognized that without some such adaptation, there is
little hope of solving high-dimensional problems effectively. Less clear, however, is whether
quadratic programming and linear complementarity methods for sparse matrices offer a
fully satisfactory approach to special structure.

In variational inequalities derived from discretized boundary value problems with par-
tial differential operators, for instance, the large number of constraints may cause difficulties
of a kind of degeneracy if handled directly, as called for by standard quadratic program-
ming and linear complementarity formulations. Penalty terms seem desirable instead, as
well as improved treatment of the natural dual variables associated with the underlying
operators, which should not be suppressed algebraically or imagined just as additional
“multipliers.” The investigation of computational approaches based on alternative repre-
sentations of model structure, not relying solely on patterns of matrix sparsity, is therefore
worthwhile.

Problems of “extended linear-quadratic programming” have been introduced recently
in setting up various large-scale models in stochastic programming and multistage opti-
mization; see Rockafellar [3], Rockafellar and Wets [4], [5], [6]. These problems differ from
the usual ones in linear or quadratic programming in allowing for penalty terms of piecewise
linear-quadratic type along with more general expressions like those associated with aug-
mented Lagrangians. Their objective functions then are only piecewise linear-quadratic in
general. On the other hand, the exact constraints that are present, besides the constraints
formulated with penalty terms, may be quite simple. This is frequently the case at least in
the applications worked out so far, as just cited.

Such features of problems in extended linear-quadratic programming are of keen in-
terest in a large-scale context, because complicated constraints can greatly aggravate any
approach to finding solutions and, unless systematically relaxed, cause unpleasant instabili-
ties. In continuous-time optimal control, for example, the presence of pure state constraints
on the trajectories in the primal problem, if not represented by penalties, could lead in the
statement of optimality conditions to jumps in the trajectories of the adjoint state vari-
ables (the naturally associated dual variables in such a context). This would mean in the
corresponding dual problem that impulse controls have to be taken into account. From a
practical standpoint, the implication would be that in trying to approximate a continuous-
time model by a discrete-time model, serious trouble could arise. The discretization could
be quite ill-behaved. Much the same phenomenon can be expected with many applications
of variational inequalities involving PDE’s, as already indicated.



2

Whether the use of penalty representations in mathematical modeling is to be viewed
as an appealing idea in itself, on a par with other accepted simplifications like linearization
of nonlinear expressions, or just as a convenient device on a purely technical level for
getting temporary approximations that can later be improved, an important challenge is
laid down. How can one compute solutions to problems in which such penalties appear
and the dimensionality is likely to be large? The case of high-dimensional extended linear-
quadratic programming is fundamental in this respect but has not previously received
general attention.

A difficulty with this case lies in the circumstance that the objective function in an
extended linear-quadratic programming problem may only be piecewise linear-quadratic.
Its domain can in principle be decomposed into a finite collection of polyhedral convex cells,
on each of which the function is expressible by a linear or quadratic formula. An ordinary
direct approach to minimizing such a piecewise linear-quadratic function is unsuitable for
the applications we are aiming at because an explicit description of all the cells that are
involved would be prohibitive—and the dimension of the space in which the cells lie may
itself be very high. (We use the term “linear-quadratic” instead of just “quadratic” to
emphasize that extended linear programming models with bounded variables and linear
penalization are also in the range of interest.)

The primal context is essentially one of high-dimensional nonsmooth convex optimiza-
tion where the second derivatives, and sometimes the first, can be discontinuous. The high
dimensionality precludes the use of primal methods based on simplicial decomposition, say,
or the typical numerical techniques for nonsmooth optimization developed until now, such
as bundle methods (see Kiwiel [7]). As a matter of fact, no primal method at all exists at
present for such problems on the scale appropriate to them, much less a method designed
with their special features in mind.

Despite this formidable difficulty, there is a convenient way of expressing the objective
function in an extended linear-quadratic programming problem by an “envelope” formula
derived from an algebraically simple Lagrangian function—not involving a cell decomposi-
tion. In the desired applications this Lagrangian typically can be made to exhibit properties
of decomposability with respect to both the primal and the dual variables, as demonstrated
in [3], [4], [5], [6]. Line searches then become numerically feasible, and new uses of du-
ality open up in which the adjoint variables associated with the dynamics or stochastics
in a given application can be assigned a significant role. In any case, a type of structure
comes into view which has not previously been studied in its implications for solution pro-
cedures. This structure is especially suggestive of primal-dual methods, although it might
lead eventually to viable primal methods as well.

There are two goals in this paper. The first is to present in a broad way, not oriented
to only one type of algorithm or application, the features of extended linear-quadratic pro-
gramming that suggest untapped possibilities for the development of numerical methods in
large-scale optimization. The second goal is to describe, and lay a theoretical foundation
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for, a specific class of methods (by no means the only conceivable ones) which do take
advantage of envelope representations and double decomposability. These methods, called
finite-envelope methods, exploit duality very strongly and operate by generating finitely de-
termined envelope approximations which yield directions of improvement. They reduce the
task of solving a problem of high dimensionality to that of solving a sequence of ordinary
quadratic programming subproblems of low dimensionality, and they do so in a manner
that respects underlying dynamic or stochastic relationships and supports extensive paral-
lelization.

Finite-envelope methods in a much narrower conception have already been introduced
in Rockafellar and Wets [4], [5], for the special case of two-stage stochastic programming;
see also King [8] and Wagner [9]. The characteristic of this special case is that the primal
dimension is low; only the dual dimension is high. In contrast here, we allow, for the first
time, both dimensions to be high and we place the ideas in a wider framework which does
not invoke probabilistic language or ideas. This forces us to a qualitatively very different
level of theory but paves the way to applications of the kind in [3] and [6].

The chief result we obtain here about finite-envelope methods is a proof of convergence
for the case of “fully quadratic” problems, where the primal and dual quadratic terms are
nonsingular. The fully quadratic case can always be induced for computational purposes,
if desired, through an outer procedure derived from the proximal point algorithm [10], [11],
[12]. We further obtain a result about the automatic eventual identification of the active
constraints.

It must be appreciated, of course, that these results are only a first step toward the un-
derstanding of general finite-envelope methods and their practical significance. Much needs
to be investigated in the precise choice of the envelope representations, not to mention the
alternative ways of solving the low-dimensional subproblems, before a real appraisal can be
made of the efficacy of this kind of approach. Such an appraisal is difficult anyway because
of the lack of tried-and-true methods, applicable to the large-scale models in question, with
which a comparison can be made. The contributions in this paper should mainly be judged
therefore in terms of bringing new issues to the fore and attempting to make at least some
headway with them.
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2. EXTENDED LINEAR-QUADRATIC PROGRAMMING

A brief review of the central facts in [3] and [4] about extended linear-quadratic program-
ming problems, whether large-scale or small-scale, will provide a basis for the developments
in the rest of the paper. A key ingredient in the formulation of such problems is a class of
what we call monitoring functions, which serve in the modeling of constraints but can also
be used in other ways. A typical function in this class is expressible as

(2.1) ρV Q(w) = sup
v∈V

{w·v − 1
2v·Qv} for w ∈ lRm,

where V is a nonempty polyhedral convex set in lRm and Q is an m × m symmetric
positive semidefinite matrix (possibly the zero matrix). As will be explained presently,
such functions also be given other, more direct formulas in important cases.

A general problem of extended linear-quadratic programming in lRn takes the form

(P) minimize f(u) over all u ∈ U, with f(u) := p·u + 1
2u·Pu + ρV Q(q −Ru).

The set U is nonempty polyhedral convex in lRn, and the n×n matrix P is symmetric and
positive semidefinite. One has p ∈ lRn, q ∈ lRm and R ∈ lRm×n.

The polyhedral convexity of U expresses an underlying system of linear constraints
which are considered to be relatively easy to handle. All other modeling of constraints is
done through the term ρV Q(q−Ru), which responds to deviations of Ru from q. Note that
if 0 ∈ V the function ρV Q is nonnegative everywhere but vanishes at 0 (actually on a certain
polyhedral cone K which may or may not reduce to just 0). It thus assigns penalty values
the differences q−Ru (which are positive when q−Ru 6= K). For theoretical reasons that
will be clear later, as well as motivations derived from modeling in various applications (see
Rockafellar [3,SS3,5] for example), we do not insist always on having 0 ∈ V , however, so
that ρV Q may in general have negative as well as positive values. This is why we speak of
ρV Q as a monitoring function rather than a penalty function. (For instance, if V = {y} and
Q = 0, then ρV Q is the linear function w 7→ y·w and ρV Q(q−Ru) is the ordinary Lagrangian
expression y·(q −Ru); augmented Lagrangian terms can be represented similarly.)

In the absence of additional assumptions the function ρV Q could take on the value
∞ in some regions of lRm, but the set of points w with ρV Q(w) < ∞ turns out always
to be a polyhedral convex cone C [3, Proposition 2.3]. The constraint q − Ru ∈ C is
implicit then in (P) along with u ∈ U , unless C is all of lRm. On C, ρV Q is piecewise
linear-quadratic convex [3, Proposition 2.3]. Therefore, the objective function f in (P) is
piecewise linear-quadratic convex.

An important case that helps to clarify the formulation of (P) and the motivations
behind the monitoring term ρV Q(q − Ru) is the one we shall refer to in the sequel as the
box-diagonal case. Then P and Q are diagonal matrices,

(2.2) P = diag [α1, . . . , αn], Q = diag [β1, . . . , βm],
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and U and V are boxes representing upper and lower bounds (not necessarily finite) on the
components of u = (u1, . . . , un) and v = (v1, . . . , vm):

(2.3) U = [u−1 , u+
1 ]× . . .× [u−n , u+

n], V = [v−1 , v+
1 ]× . . .× [v−m, v+

m].

Then (P) specializes to the problem of minimizing

(2.4)
n∑

j=1

[pjuj + 1
2αju

2
j ] +

m∑
i=1

ρv−
i

,v+
i

,βi

qi −
n∑

j=1

rijuj


subject to u−j ≤ uj ≤ u+

j for j = 1, . . . , n, where

(2.5) ρv−
i

,v+
i

,βi
(wi) =


v+

i wi − 1
2βi(v+

i )2 if wi/βi > v+
i ,

1
2w2

i /βi if v−i ≤ wi/βi ≤ v+
i ,

v−i wi − 1
2βi(v−i )2 if wi/βi < v−i .

Geometrically, the graph of this ρ function is obtained from the graph of the function
wi 7→ 1

2w2
i /βi by extrapolating the latter linearly to the right beyond the point where wi

equals βiv
+
i , and to the left beyond the point where wi equals βiv

−
i . Thus for instance,

if v−i = 0 and v+
i > 0, the corresponding term in (2.4) vanishes when the inequality∑n

j=1 rijuj ≥ qi is satisfied, but gives a positive penalty when this inequality is violated.
The penalty grows smoothly at a quadratic rate initially, as dictated by the value of βi,
but for violations greater than a certain amount it grows only linearly at a rate specified
by v+

i . A modeling decision on what these rates should be determines V and Q and the
overall function ρV Q.

Formula (2.5) appears to require βi to be positive and v−i and v+
i to be finite, but it

is easily extended to limiting cases where possibly βi = 0, v−i = −∞, or v+
i = ∞. As an

illustration, one has

ρ0,∞,0(wi) =
{

0 if wi ≤ 0,
∞ if wi > 0.

Then the term (2.5) gives in (2.4) a strict representation of the constraint
∑n

j=1 rijuj ≥ qi

by infinite penalties. On the other hand, from the case of

ρ−∞,∞,βi(wi) = 1
2β−1

i w2
i for all wi

one would have a purely quadratic penalty representation of the equation
∑n

j=1 rijuj = qj .

Duality plays a very strong role in extended linear-quadratic programming. According
to general theory in [3,S2], the problem dual to (P) is

(Q) minimize g(v) over all v ∈ V, with g(v) := q·v − 1
2v·Qv − ρUP (RT v − p).

The matrix RT is the transpose of R, and the monitoring function ρUP is defined exactly
like ρV Q:

(2.6) ρUP (z) = sup
u∈U

{z·u− 1
2u·Pu} for z ∈ lRn.
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In the box-diagonal case, for example, (Q) is the problem of maximizing

(2.7)
m∑

i=1

[qivi − 1
2βiv

2
i ]−

n∑
j=1

ρu−
i

,u+
i

,αi

(
m∑

i=1

virij − pj

)

subject to v−i ≤ vi ≤ v+
i for i = 1, . . . ,m.

The deep connection between these problem is the following.

Theorem 2.1 [3],[4]. Unless both inf(P) = ∞ and sup(Q) = −∞, one has inf(P) =
sup(Q). Moreover, when this common optimal value is finite the two problems possess

optimal solutions.

The dual problem (Q), like (P), has its objective function only piecewise linear-
quadratic in general. The problems enjoy a common expression, though, in terms of their
Lagrangian function, which is defined by

(2.8) L(u, v) := p·u + 1
2u·Pu + q·v − 1

2v·Qv − v·Ru on U × V.

Indeed, one has from (2.1) and (2.6) that

(2.9) f(u) = sup
v∈V

L(u, v), g(v) = inf
u∈U

L(u, v).

These formulas furnish envelope representations of the primal and dual objective functions:
f is expressed as the pointwise maximum of the collection of quadratic convex functions
L(·, v) indexed by v ∈ V , while g is expressed as the pointwise minimum of the collection
of quadratic concave functions L(u, ·) indexed by u ∈ U . They have strong potential for
numerical developments, particularly in view of the following saddle point characterization
of optimality in terms of the Lagrangian.

Theorem 2.2 [3],[4]. A vector pair (ū, v̄) is a saddle point of the Lagrangian L(u, v)
relative to U × V if and only if ū is an optimal solution to the primal problem (P) and v̄

is an optimal solution to dual problem (Q).

Especially attractive for numerical purposes is the fully quadratic case of (P) and (Q),
by which we shall mean the case where both of the matrices P and Q are positive definite,
not just semidefinite. Of course, models with singular matrices P or Q are very much of
interest too for many applications. In particular, note should be taken of the situation
where P = 0 and Q = 0, while U and V are cones (for instance the nonnegative orthants
of lRn and lRm). Then (P) and (Q) are classical linear programming problems dual to
each other. A thorough analysis of the fully quadratic case is important even for such
applications, however, because fully quadratic terms can be introduced iteratively as part
of a solution scheme (see S6).
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A fundamental connection with variational inequalities and linear complementarity is
established when the saddle point optimality condition in Theorem 2.2 is written in terms
of the derivatives of L. It is equivalent to

(2.10) −∇uL(ū, v̄) ∈ NU (ū), ∇vL(ū, v̄) ∈ NV (v̄),

where NU (ū) is the normal cone to U at ū in the sense of convex analysis [13],

NU (ū) = {w ∈ lRn
∣∣w·(u− ū) ≤ 0 for all u ∈ U},

and similarly for NV (v̄). The fact that NU×V (ū, v̄) = NU (ū)×NV (v̄) gives us the following.

Theorem 2.3. In terms of the mapping

T (u, v) := (∇uL(u, v),−∇vL(u, v)) = (p + Pu−Rv,−q + RT u + Qv)

the necessary and sufficient condition for the optimality of ū and v̄ in Theorem 2.2 can be

written equivalently as the linear variational inequality −T (ū, v̄) ∈ NU×V (ū, v̄), or in other

words, the condition that

(ū, v̄) ∈ U × V, and T (ū, v̄)·
(
(u, v)− (ū, v̄)

)
≤ 0 for all (u, v) ∈ U × V.

Note that the symmetric part of the mapping T is given by diag [P,Q], which is positive
semidefinite. Thus T is a monotone mapping. In the fully quadratic case, T is strongly
monotone.

The problem of solving the variational inequality in Theorem 2.3 turns into a linear
complementarity problem in standard form precisely when U and V are the nonnegative
orthants of lRn and lRm. A conversion to this case is always possible in principle by writing
the systems of linear inequalities that define U and V explicitly with their associated
multipliers, but it could be unwise—in addition to entailing a possibly large increase in
dimensionality.

The box-diagonal case illustrates this well. In that case, in order to handle a simple
condition like u−j ≤ uj ≤ u+

j , with both bounds finite, one would presumably have first to
introduce a change of variables so as to shift u−j to 0. Then the upper inequality would
have to be incorporated into the matrix part of the problem formulation along with a new
dual variable wj ≥ 0. In parallel fashion, the condition v−i ≤ vi ≤ v+

i would require the
introduction of a new primal variable. All variables would end up merely as nonnegative
variables, and an important aspect of the problem structure, the presence of both upper
and lower bounds primally and dually, would be hidden and difficult to take advantage of.
Furthermore, such emphasis on pushing the entire representation of a problem into a single
matrix would disrupt natural relationships and forgo the use of positive features such as
the ability to calculate f(u) and g(v) readily.

This seems counter to the philosophy one ought to be following with respect to large-
scale models. Incentive is thereby added to the quest for iterative numerical methods
which, unlike the ones surveyed in Lin and Pang [2], do not start off from a standard linear
complementarity or quadratic programming formulation.
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3. FEATURES AND ASSUMPTIONS FOR USE IN COMPUTATIONS

Although the applications of extended linear-quadratic programming that we are interested
in accommodating involve cases of U ⊂ lRn and V ⊂ lRm where both n and m could be large,
we have at our disposal the capability of solving low-dimensional subproblems of extended
linear-quadratic programming by established techniques. As explained in detail in [4,S2],
such a subproblem can always be converted in a certain way to an ordinary quadratic
programming problem, which can then be solved by existing codes. (See Pang [14] for a
survey of quadratic programming methods, and form more recent developments see Ye and
Tse [15], Monteiro and Adler [16] and Goldfarb and Liu [17].) Transformation to a problem
in linear complementarity is also available as an alternative, as just discussed, and in low
dimensions, at least, this could work reasonably well. (The corresponding conversion of
high-dimensional problems is unattractive because it would greatly increase dimensionality
and obscure the given special structure.)

The possibility therefore emerges that a high-dimensional problem in extended linear-
quadratic programming might be solved by some algorithm based on solving a sequence
of low-dimensional problems. This will be amplified in S4 and made the basis of our
“finite-envelope methods” in S5. To begin with, however, we introduce and discuss for the
high-dimensional case three assumptions which will hold for the rest of this paper.

These assumptions fit a very large class of applications with dynamic or stochastic
structure, as formulated in Rockafellar and Wets [6]. They are relevant not only to the
particular algorithms developed in S5, but others that aim at exploiting such structure; see
for instance Zhu and Rockafellar [18].

Finite Monitoring Assumption. The functions ρQV and ρUP are finite everywhere;

they do not take on ∞. Thus the objective functions f in (P) and g in (Q) are finite

everywhere, and there are no (strictly enforced) constraints implicit in these problems

beyond u ∈ U and v ∈ V .

This is definitely satisfied in the fully quadratic case of problems (P) and (Q) (where
P and Q are both nonsingular). It is satisfied also, regardless of the nature of P or Q,
when the sets U and V are bounded. In finer detail, as proved in [3, Proposition 2.4], the
assumption holds if and only if

(3.1) nlQ ∩ rc V = {0}, nlP ∩ rc U = {0},

where “nl” indicates the null space (kernel) of a matrix and “rc” indicates the recession
cone of a convex set (in the sense of [12,S8]).

The Finite Monitoring Assumption merely acts as a weak normalization of the math-
ematical model being used in a given application. If it were not satisfied, we could, for one
thing, just truncate the sets U and V . Provided that the truncated sets contained a saddle
point (ū, v̄) for L relative to the original U and V , any solutions to the truncated problems
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would be solutions to the original problem [3, Theorem 2.5]. The truncation would thus be
harmless.

Another way of making sure that the Finite Monitoring Assumption is satisfied is to
add strictly quadratic “proximal terms” to L. Such a procedure can always be combined
iteratively with any other computational scheme as an “outer algorithm” for which there
is considerable theoretical backing [10], [11], [12]. This approach will be discussed in S6.

In short, the Finite Monitoring Assumption is natural for the context of large-scale
extended linear-quadratic programming and in the long run does not entail any substantial
loss of generality. It provides useful focus for a discussion of computational possibilities.

By virtue of the Finite Monitoring Assumption, we can write

(3.2) f(u) = max
v∈V

L(u, v), g(v) = min
u∈U

L(u, v),

where the “max” and “min” indicate attainment in the formulas of (2.9). Correspondingly
we have nonempty point sets

(3.3) F (u) = argmax
v∈V

L(u, v), G(v) = argmin
u∈U

L(u, v),

that depend on u and v. The set-valued mappings F : u 7→ F (u) and G : v 7→ G(v) will be
of considerable interest to us. The attainment of the inf and sup in (2.9) stems, of course,
from the fact that one is solving quadratic programming subproblems in these formulas.
Such a subproblem has an optimal solution whenever its optimal value is finite.

Because there are no constraints being represented implicitly by infinite values for
f(u) or g(v), the feasible solutions to (P) are precisely the vectors u ∈ U , and the feasible
solutions to (Q) are precisely the vectors v ∈ V . Further, we can conclude from Theorem
2.1 that

(3.4) ∞ > min(P) = max(Q) > −∞.

Contrasting with these advantageous properties of problems (P) and (Q), however, is the
noted circumstance that the objective expressions f(u) and g(v) are only piecewise linear-
quadratic. It is here that the second assumption becomes important and offers compensat-
ing opportunities.

Double Decomposability Assumption. For each u ∈ U it is readily possible to cal-

culate the value f(u) in (3.2) and at least one of the elements of the set F (u) in (3.3).

Similarly, for each v ∈ V it is readily possible to calculate the value g(v) and at least one

of the elements of G(v).

To see how this assumption may well be satisfied despite U and V being high-dimensional,
one need only look at the box-diagonal case in the notation of (2.2) and (2.3). There, for
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fixed u ∈ U , the problem of maximizing L(u, v) over v ∈ V decomposes into separate
problems in the individual coordinates: for i = 1, . . . ,m one must

(3.5) maximize

qi −
n∑

j=1

rijuj

 ·vi − 1
2βiv

2
i subject to v−i ≤ vi ≤ v+

i .

In parallel fashion, the problem of minimizing L(u, v) over u ∈ U for given v ∈ V reduces
to the separate problems

(3.6) minimize

[
pj −

m∑
i=1

virij

]
·ui + 1

2αju
2
j subject to u−j ≤ uj ≤ u+

j .

These one-dimensional subproblems have very simple closed-form solutions in the fully
quadratic case, where αj > 0 and βi > 0.

Even without complete separability such as in the box-diagonal case, it may be pos-
sible nonetheless to break down the maximization of L(u, v) in v, or its minimization in
u, into relatively small subproblems that can be solved by parallel processing. Dynami-
cal structure, for example, always gives such a breakdown into separate problems for each
instant of time, cf. [3], [6]. Thus, multistage problems of optimization in which the indi-
vidual stages are low-dimensional primally and dually can always be seen as satisfying the
Double Decomposability Assumption when viewed in the right light. This is a different
approach to taking advantage of dynamical structure than the conventional one of looking
for a “staircase” pattern in some large matrix, and it opens routes to computation that
have so far not been explored.

In specific areas of application there are additional features to the postulated decom-
posability beyond what might at first be apparent. Roughly, these have to do with the way
a fixed v is substituted into the expression L(u, v) to get a function of u, and vice versa.
In principle, this is seen to involve multiplying the matrix R on the left by the vector v,
among other things, but in the models set up in terms of finite-difference representations of
differential operators, for instance in optimal control, it is precisely at this point that “state
variables” can be brought in and traditional schemes of “integration” can be incorporated,
with much saving of effort. For more on this, see [6].

It should be noted, finally, that the Double Decomposability Assumption does not
actually presuppose that both the u-dimension and the v-dimension are large. As a special
case, if only the v-dimension is large and the u-dimension is small (which typically holds in
two-stage stochastic programming, cf. [4], [5]), one can minimize L(u, v) readily in u ∈ U

for each v even if there is no separability in u, as such.

Line Searchability Assumption. It is possible to minimize f(u) over any line segment

joining two points in U , and likewise, to maximize g(v) over any line segment joining two

points in V .

This property is already implied, more or less, by the two preceding assumptions, but
we introduce it as an assumption anyway for clarity. Observe that it is not quite the same as
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supposing we can readily perform a line search over a half-line (unbounded line segment) in
which the intersection of the half-line with the boundary of the feasible set might have to be
detected as part of the search—a potentially harder task. We shall not go into any details
here about ways of carrying out the line searches in the Line Searchability Assumption,
but certainly the special nature of f and g could have influence. Besides f being convex
and g being concave, there is the fact that both functions are piecewise linear-quadratic.

There may be some hope not only of optimizing f and g over line segments, as part
of a broader procedure, but over triangles and other low-dimensional polytopes. We shall
return to this issue at the end of S6, when more background will be available for the issues.

The Double Decomposability Assumption speaks of calculating a vector v ∈ F (u) for
any choice of u ∈ U , or a vector u ∈ G(v) for any choice of v ∈ V . Calculations need not be
limited to one such stage, however. Elements of the sets G(F (u)), F (G(v)), F (G(F (u))),
G(F (G(V ))), and so forth, can be likewise determined on the basis of the assumption, if
one wishes to do so. Such vectors all provide information about the functions f and g that
might be useful in solving (P) and (Q). The challenge is to design methods that make good
use of this kind of information. The following results provide theoretical support.

An elementary property can immediately be stated in terms of subgradients. Recall
that for the convex function f , the subgradient set ∂f(u∗) at any point u∗ consists of the
vectors w satisfying

f(u) ≥ f(u∗) + w·(u− u∗) for all u ∈ lRn,

whereas for the concave function g the set ∂g(v∗) at any point v∗ consists of the vectors z

satisfying
g(v) ≤ g(v∗) + z·(v − v∗) for all v ∈ lRm.

These sets reduce to singletons if and only if f is differentiable at u∗ and g is differentiable
at v∗, in which event the singleton elements are in fact the gradients ∇f(u∗) and ∇g(v∗);
see [13,S25].

Proposition 3.1. Let v∗∗ ∈ F (u∗) and u∗∗ ∈ G(v∗) for arbitrary vectors u∗ and v∗. Then

L(u, v∗∗) ≤ f(u) for all u, with L(u∗, v∗∗) = f(u∗) and ∇uL(u∗, v∗∗) ∈ ∂f(u∗).

Similarly,

L(u∗∗, v) ≥ g(v) for all v, with L(u∗∗, v∗) = g(v∗) and ∇vL(u∗∗, v∗) ∈ ∂g(v∗).

Proof. For any v ∈ V one would have L(u, v) ≤ f(u) for all u by (3.2). In the case
of v = v∗∗ ∈ F (u∗) this inequality holds as an equation at u = u∗ by the definition (3.3)
of F (u∗). Any subgradient of the convex function L(·, v∗∗) at u∗ is then in particular a
subgradient of f at u∗. But the unique subgradient of L(·, v∗∗) at u∗ is ∇uL(u∗, v∗∗),
because L is a differentiable function. The verification of the facts about g proceeds along
the same lines.

The fully quadratic case is particularly attractive in this respect.
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Proposition 3.2. In the fully quadratic case, the functions f and g are continuously

differentiable everywhere, and the mappings F and G are single-valued. Then

∇f(u∗) = ∇uL(u∗, F (u∗)) = p + Pu∗ −RT F (u∗) at any u∗,

whereas

∇g(v∗) = ∇vL(G(v∗), v∗) = q −RG(v∗)−Qv∗ at any v∗.

Proof. The positive definiteness of P and Q ensures that L(u, v) is strictly convex in u

and strictly concave in v, so the sets F (u) and G(v) in (3.3) are always singletons. From
the original statement of problem (P) it is clear that the continuous differentiability of f

hinges on that of the function ρV Q. The latter is seen by definition (2.1) to be the conjugate
of the closed, proper, convex function

(3.7) ϕV Q(v) =
{

1
2v·Qv if v ∈ V,
∞ if v 6∈ V,

inasmuch as

(3.8) ρV Q(w) = sup
v∈lRm

{v·w − ϕV Q(v)} =: ϕ∗V Q(w).

The function ϕV Q being strictly convex on its effective domain V , its conjugate is differ-
entiable [13, Theorem 26.3], hence by convexity continuously differentiable [13, Corollary
25.5.1]. Thus ρV Q and f are continuously differentiable. The argument for the continuous
differentiability of g is parallel.

In the fully quadratic case one has in addition, obviously, that f is strictly convex and
g is strictly concave. Then (P) and (Q) have unique optimal solutions. In face, global
Lipschitz constants can be derived in this case for the single-valued mappings F and G, as
will be seen below. In spite of the first-order smoothness in Proposition 3.2, though, there
may be jumps in the second derivatives of f and g, so one is still essentially in a context of
nonsmooth optimization.

Although these agreeable properties may fail outside the fully quadratic case of (P)
and (Q), this does not have to be an impediment in the long run, since for computational
purposes, strictly quadratic terms can be added to the objectives in (P) and (Q) as part
of an interactive process (S6) and the properties are then available.

We conclude this section by recording a fundamental property of problems (P) and
(Q) which is useful in formulating stopping criteria for approximate methods of solution.
To state it well, we use the notation

(3.9) ‖u‖P = [u·Pu]1/2, ‖v‖Q = [v·Qv]1/2.

These expressions are not actually norms, of course, except in the fully quadratic case,
where P and Q are positive definite.



13

Proposition 3.3. Let ū and v̄ be optimal solutions (not necessarily unique) to (P) and

(Q), and let u∗ and v∗ be feasible solutions (i.e., elements of U and V respectively) that

for a certain ε satisfy f(u∗)− g(v∗) ≤ ε. Then u∗ and v∗ are ε-optimal in the sense that

|f(u∗)− f(ū)| ≤ ε, |g(u∗)− g(v̄)| ≤ ε,

and furthermore

‖u∗ − ū‖P ≤ [2ε]1/2, ‖v∗ − v̄‖Q ≤ [2ε]1/2.

Proof. The inequalities for f and g are evident from the chain

f(u∗) ≥ f(ū) = min(P) = max(Q) = g(v̄) ≥ g(v∗),

which holds by Theorem 2.1. The optimality of ū and v̄ is equivalent by Theorem 2.2 to
the saddle point condition that L(u, v̄) ≥ L(ū, v̄) ≥ L(ū, v) for all u ∈ U, v ∈ V . Here
f(ū) = L(ū, v̄) = g(v̄). Then

f(u∗)− L(ū, v̄) ≥ L(u∗, v̄)− L(ū, v̄)(3.10)

= ∇uL(ū, v̄)·(u∗ − ū) + 1
2 (u∗ − ū)·P (u∗ − ū).

Inasmuch as ū minimizes L(u, v̄) over u ∈ U , we have ∇uL(ū, v̄)·(u− ū) ≥ 0 for all u ∈ U.

Applying this in (3.10) we obtain

f(u∗)− L(ū, v̄) ≥ 1
2 (u∗ − ū)·P (u∗ − ū) = 1

2‖u∗ − ū‖2
P .

By a parallel argument,

g(v∗)− L(ū, v̄) ≤ −1
2 (v∗ − v̄)·Q(v∗ − v̄) = − 1

2‖v∗ − v̄‖2
Q.

We subtract this inequality from the preceding one to get

1
2‖u∗ − ū‖2

P + 1
2‖v∗ − v̄‖2

Q ≤ f(u∗)− g(v∗) ≤ ε.

This yields the final pair of estimates in the proposition.

Proposition 3.3 underlines a valuable consequence of the fundamental symmetry be-
tween our primal and dual problems. It is possible to work on solving both problems
simultaneously and in this way not only maintain current candidates for both primal and
dual optimal solutions but also have running estimates on how far these are from true
optimality.
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4. ENVELOPE SUBPROBLEMS.

The possibility of approaching (P) and (Q) computationally in terms of some sequence of
low-dimensional subproblems has already been suggested. We now look at this more closely
to see what it might entail. The idea is that of replacing U and V by special choices of
polyhedral convex sets Uν ⊂ U and V ν ⊂ V for ν = 1, 2, . . . and solving the corresponding
primal and dual problems

minimize fν(u) over u ∈ Uν , with fν(u) = p·u + 1
2u·Pu + ρV νQ(q −Ru),(Pν)

maximize gν(v) over v ∈ V ν , with gν(v) = q·v + 1
2v·Qv + ρUνP (RT v − p).(Qν)

Solving such a pair of subproblems, which again belong to the category of extended linear-
quadratic programming as outlined in S2, corresponds to finding a saddle point of L(u, v)
relative to Uν × V ν instead of U × V .

In a moment it will be clearer how this idea might be realized in an essentially low-
dimensional manner. Let us note first a basic relationship between the objective functions
in these problems.

Proposition 4.1. For any choice of polyhedral convex sets Uν ⊂ U and V ν ⊂ V , one has

f(u) ≥ fν(u) for all u, with equality when F (u) ∩ V ν 6= ∅,
g(v) ≤ gν(v) for all v, with equality when G(v) ∩ Uν 6= ∅.

Proof. Alongside of the formulas (3.2) and (3.3) for f , g, F , and G in terms of the
Lagrangian L we have

(4.1) fν(u) = max
v∈V ν

L(u, v), gν(v) = min
u∈Uν

L(u, v).

From this and the assumption that Uν and V ν are subsets of U and V , the claims are
evident.

The inequalities in Proposition 4.1 suggest the term envelope subproblems for (Pν) and
(Qν). The objective function fν is a lower envelope replacement for f which agrees with it
at all points u for which the chosen set V ν contains an element of F (u). Likewise, gν is an
upper envelope replacement for g that agrees with it at all points v for which Uν contains
an element of G(v).

There is no simple relationship in general between the common optimal value in (Pν)
and (Qν) and the one in (P) and (Q). The replacement of f by the envelope fν would
tend to lower the optimal value from the one in (P), but the simultaneous replacement of
U in the minimization by the smaller set Uν would tend to raise it. This complicates the
analysis of any computational approach making use of a sequence of envelope subproblems,
but it is not an ultimate obstacle, as we shall demonstrate in S5.
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How actually can the envelope subproblems be solved, considering that they lie in
spaces that may intrinsically be high-dimensional? Even if the sets Uν and V ν are them-
selves low-dimensional within these spaces, doesn’t some difficulty with projections, say,
take over? This is a critical juncture where the extended linear-quadratic nature of the
given problems (P) and (Q) re-enters.

Let us suppose that Uν and V ν are polytopes, i.e., sets represented as the convex hulls
of finite collections of points:

(4.2) Uν = co{uν
k

∣∣ k = 1, . . . , nν}, V ν = co{vν
l

∣∣ l = 1, . . . ,mν}.

A general element of Uν can be represented as a convex combination

(4.3) u =
nν∑

k=1

ξkuν
k with ξ = (ξ1, . . . , ξnν ) ∈ S(nν),

where S(nν) is the unit simplex in lRnν

(consisting of the nonnegative vectors whose coor-
dinates add up to 1). Likewise, a general element of V ν has the form

(4.4) v =
mν∑
l=1

ηlv
v
l with η = (η1, . . . , ηmν ) ∈ S(mν).

This seems of little help if we think of minimizing fν(u) directly over u ∈ Uν or maximizing
gν(v) over v ∈ V ν , but in the Lagrangian framework an important simplification occurs.
There we can express

(4.5) L(u, v) = L

(
nν∑

k=1

ξkuν
k,

mν∑
l=1

ηlv
ν
l

)
= Λν(ξ, η)

for a certain quadratic form Λν with explicit coefficients in the nν + mν variables ξk and
ηl. Specifically, we have

(4.6) Λν(ξ, η) = pν·ξ + 1
2ξ·P νξ + qν·η − 1

2η·Qνη − η·Rνξ,

where pν
k = p·uν

k, P ν
ik = uν

i ·Puν
k, qν

l = q·vν
l , Qν

jl = vν
j ·Qvν

l , and Rν
lk = vν

l = vν
l ·Ruν

k. We
summarize this observation in the next proposition.

Proposition 4.2. Solving the envelope subproblems (Pν) and (Qν) in the case where Uν

and V ν are polytopes expressed as in (4.2) is equivalent to finding a saddle point (ξ̄ν , η̄ν)
of the function Λν in (4.6) relative to the simplex product S(nν)×S(mν), and then setting

ūν =
nν∑

k=1

ξ̄ν
kuν

k, v̄ν =
mν∑
l=1

η̄ν
l vν

l ,



16

to get the desired optimal solutions ūν and v̄ν . This reduced saddle point subproblem cor-

responds to a special primal-dual pair of extended linear-quadratic programming problems

in lRnν

and lRmν

. Thus it can be kept low-dimensional by restricting the numbers nν and

mν of elements in the expressions (4.6).

An additional fact about this reduction is that in applications such as to stochastic pro-
gramming and optimal control, the coefficients incorporated in the quadratic form Λν(ξ, η)
can be generated by computing certain expectations and variances or integrating dynamical
equations [4], [6]. Thus, the reduced form can have meaning appropriate to the context of
the given problem.

The reader should note that the reduced subproblems in Proposition 4.2 are examples
of extended linear-quadratic programming where the monitoring functions are definitely
not penalty functions. This is because the simplexes S(nν) and S(mν) do not contain the
origins of their respective spaces, so the functions take on negative as well as positive values.
These subproblems can be solved in a practical manner by the transformations mentioned
at the beginning of S3. Possibly they could be solved more efficiently by some specialized
method yet in the offing.

A brief inspection of the extended linear programming case where P = 0 and Q = 0
will shed more light on the envelope subproblems and show their connection to cutting-
plane methods and other well understood techniques of nonsmooth optimization. In this
case f and g are piecewise linear. The formulas in (4.1) reduce under the substitutions in
(4.3) and (4.4) to

(4.7) fν(u) = max
l=1,...,mν

L(u, vν
l ), gν(v) = min

k=1,...,nν
L(uν

k, v).

Thus, in this linear case, the envelope fν is the pointwise maximum of a finite collection of
“lower affine approximants” to f , while gν similarly involves “upper affine approximants”
to g.

In the general instance of problems (P) and (Q), of course, the envelope functions
are not just piecewise linear or expressible as a finitary max or min but have nontrivial
quadratic pieces as well. These can be viewed as affording a smoothing effect to counteract
the “corners” present in the linear case in (4.7).
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5. FINITE-ENVELOPE METHODS

There are many conceivable ways of utilizing numerically the special problem structure we
have described in (P) and (Q), but we shall focus now on a particular class of methods.
These will be called finite-envelope methods, because they proceed in terms of envelope
subproblems (Pν) and (Qν) in which the sets Uν and V ν are finitely generated as polytopes,
thereby fitting the pattern in Proposition 4.2. They can be viewed as generalizations of
cutting-plane methods through the connection noted at the end of S4 in the linear case, but
the envelope functions they work with are typically not just piecewise linear. Both primal
and dual envelopes are present at all times and are able to “communicate with each other”
in the solution process.

A basic conceptual algorithm will serve to define the class of finite-envelope methods
in general. Different implementations of the algorithm will give specific methods within the
class. The main source of flexibility in implementation is in the choice and updating of the
finite point sets whose convex hulls are taken to be the polytopes Uν and V ν in iteration
ν. Our goal at this stage is to establish minimal conditions on these sets that ensure the
algorithm’s convergence. The three assumptions introduced in S3 remain in force.

Basic Finite-Envelope Algorithm. Starting from any choice of elements ū0
0 ∈ U and

v̄0
0 ∈ V , sequences {ūν

0} ⊂ U and {v̄ν
0} ⊂ V are constructed by some implementation of the

following steps.

Step 1 (Optimality Test). Set εν = f(ūν
0)− g(v̄ν

0 ); this is the current duality gap. If

εν is sufficiently small, terminate. Otherwise proceed with Step 2.

Step 2 (Envelope Generation). For an integer l ≥ 2 (which for simplicity is taken here

to be fixed in advance), calculate elements

ūν
k ∈ G(v̄ν

k−1) and v̄ν
k ∈ F (ūν

k−1) for k = 1, . . . , l. (5.1)

Select polytopes Uν ⊂ U and V ν ⊂ V such that

(5.2) {ūν
0 , ūν

1 , . . . , ūν
l } ⊂ Uν , {v̄ν

0 , v̄ν
1 , . . . , v̄ν

l } ⊂ V ν .

Step 3 (Envelope Subproblems). Determine a saddle point (ūν , v̄ν) of L(u, v) relative

to Uν × V ν .

Step 4 (Line Search). Minimize f(u) over the line segment from ūν
0 to ūν to get ūν+1

0

and f(ūν+1
0 ). Maximize g(v) over the line segment from v̄ν

0 to v̄ν to get v̄ν+1
0 and g(v̄ν+1

0 ).
Return to Step 1.

The optimality test in Step 1 of the algorithm relies on the estimates furnished by
Proposition 3.3. One can terminate as soon as εν ≤ ε for a predetermined value of ε, for
instance, and know that the current vectors ūν

0 and v̄ν
0 will be ε-optimal. More broadly,

though, Step 1 is a reminder that the methods in question have the property of providing
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us at all times, by way of Proposition 3.3 and the value εν , with a measure of how far the
current values f(ūν

0) and g(v̄ν
0 ) and solution candidates ūν

0 and v̄ν
0 are from optimality.

In fact the duality gap εν can never increase, only decrease (or perhaps sometimes
stay the same) from one iteration to the next, because of the line searches in Step 4—
at least under the theoretical assumption, which we make here for simplicity, that the line
searches can be executed with full precision. Finite-envelope methods therefore always have
the “fail-safe” property of never making things worse. They allow their progress readily
to be measured, and in any case they never generate sequences that might diverge from
optimality.

The main task, as made apparent by these observations, is to identify schemes for
generating the envelopes in Step 2 that ensure the convergence of εν to 0 and, even better,
provide a good rate for the convergence. There is wide territory for exploration, and only
some initial results can be presented in this paper. A further issue, always to be kept in
mind, is that of finding the most efficient approach to the saddle point subproblems in Step
3. Although a couple of practical techniques are already available (via Proposition 4.2 and
the discussion at the beginning of S3), there is little reason to suppose there aren’t better
ones still waiting to be discovered. The best design of a line search routine to be used in
the context of Step 4 remains open, too.

Turning our attention now fully to the matter of envelope generation in Step 2, we
note that formula (5.1) ensures by Proposition 4.1 that

f(ūν
k) = fν(ūν

k), g(v̄ν
k) = gν(v̄ν

k) for k = 0, 1, . . . , l − 1. (5.3)

In particular then, since l ≥ 2, the primal and dual envelope representations are always
exact at the current points ūν

0 and v̄ν
0 as well as at ūν

1 and v̄ν
1 .

The points ūν
k and v̄ν

k for k = 0, 1, . . . , l do not necessarily have to be included directly
among the ones chosen for the convex hull representations (4.2) of Uν and V ν , though.
One can anticipate special cases where U , but not V , say, happens already to be a low-
dimensional polytope. Then one could apply the algorithm simply with Uν = U for all ν,
and the current values of ūν

0 , ūν
1 ,. . ., ūν

l , would play no role in envelope generation except
through their influence on the calculation of v̄ν

k ∈ F (ūν
k−1). A further possibility is that of

augmenting the points generated by (5.1) by additional ones kept or derived from previous
iterations and thereby serving as a memory bank for what has already been learned about
f and g.

In order to be sure that εν will be replaced by a strictly lower value εν+1, we need to
know that at least one of the line searches in Step 4 will yield an improvement. In other
words, we need to know either that ūν − ūν

0 gives a direction of descent for f at ūν
0 relative

to U , or that v̄ν − v̄ν
0 gives a direction of ascent for g at v̄ν

0 relative to V . Thus (Pν)
and (Qν) must operate effectively as direction-finding subproblems for improvements in
the current vectors ūν

0 and v̄ν
0 . (A vector w gives a direction of descent for f at ūν

0 relative
to U if and only if ūν

0 + tw belongs to U for all t > 0 sufficiently small, and f ′(ūν
0 ;w) < 0.
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Here f ′ denotes one-sided directional derivatives of the convex function f as in [13,S23].)
A first result is the following.

Proposition 5.1. Suppose in Step 2 of the basic algorithm that actually F (ūν
0) ⊂ V ν and

G(v̄ν
0 ) ⊂ Uν (instead of just that the sets F (ūν

0) ∩ V ν and G(v̄ν
0 ) ∩ Uν contain vectors ūν

1

and v̄ν
1 ). Then, unless ūν

0 happens already to be optimal for the subproblem (Pν) and can

thus be taken as ūν , the vector ūν − ūν
0 gives in (P) a direction of descent for f at ūν

0

relative to U . Likewise, unless v̄ν
0 happens already to be optimal for the subproblem (Qν),

the vector v̄ν − v̄ν
0 gives in (Q) a direction of ascent for g at v̄ν

0 relative to V .

Proof. We need only deal with the primal; the argument for the dual is analogous. When
ūν

0 is not already optimal for (Pν), the vector ūν − ūν
0 surely gives a direction of descent

for fν at ūν
0 relative to Uν . This is then also a direction of descent for fν at ūν

0 relative
to U , of course, because Uν ⊂ U . To establish that it is at the same time a direction
of descent for f at ūν

0 relative to U , it will suffice to show that f and fν have the same
directional derivatives at ūν

0 . This amounts to showing that the convex functions ρV Q and
ρV νQ have the same directional derivatives at the point zν = q − Rūν

0 , since it is only in
these monitoring expressions that f and fν differ.

We have seen in (3.7)-(3.8) that ρV Q is conjugate to a certain function ϕV Q; in like
manner, ρV νQ is conjugate to ϕV νQ. We know from these formulas and general rules of
convex analysis [13, Theorem 23.5] that the subgradients of these functions are given by

∂ρV Q(zν) = argmax
v∈lRm

{v·zν − ϕV Q(v)} = argmax
v∈lRm

{v·[q −Rūν
0 ]− ϕV Q(v)}

= argmax
v∈V

{v·[q −Rūν
0 ]− 1

2v·Qv} = argmax
v∈V

L(ūν
0 , v) =: F (ūν

0).

By the same token,
∂ρV νQ(zν) = argmax

v∈V ν

L(ūν
0 , v).

Inasmuch as the set F (ūν
0) is by hypothesis entirely contained in the subset V ν of V , the

“argmax” set in the second case must be the same as the one in first case, i.e., again equal
to F (ūν

0). We conclude that ∂ρV Q(zν) = ∂ρV νQ(zν). The fact that the two monitoring
functions (which are finite convex functions under the Finite Monitoring Assumption in S3)
have the same subgradients at zν implies that they have the same directional derivatives
at zν , as needed [13, Theorem 23.4].

A simple case where the hypothesis of Proposition 5.1 is fulfilled is the one where
F (ūν

0) and G(v̄ν
0 ) consist of single elements, as is true in particular in the fully quadratic

case in Proposition 3.2. Then additional conclusions can be drawn.

Theorem 5.2. Suppose that both F (ūν
0) and G(v̄ν

0 ) happen to be singletons, i.e., that

the max and min in their respective definitions are uniquely attained. Then f and fν are

differentiable at ūν
0 with ∇fν(ūν

0) = ∇f(ūν
0), and g and gν are differentiable at v̄ν

0 with
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∇gν(v̄ν
0 ) = ∇g(v̄ν

0 ). Furthermore, unless ūν
0 and v̄ν

0 are already optimal solutions to (P)
and (Q), one has then that either ūν − ūν

0 gives a direction of descent for f at ūν
0 relative

to U in (P), or v̄ν − v̄ν
0 gives a direction of ascent for g at v̄ν

0 relative to V in (Q), or both.

Thus the combination of the two line searches in Step 3 of the basic algorithm will in this

case necessarily achieve a reduction in the duality gap: one will have εν+1 < εν .

Proof. If F (ūν
0) and G(ūν

0) are singletons, their sole elements must be the vectors ūν
1

and v̄ν
1 that according to the criterion in Step 2 belong to Uν and V ν . The hypothesis of

Proposition 5.1 is clearly fulfilled in this case. The argument in the proof of Proposition
5.1 can then be continued: Both of the subgradient sets ∂ρV Q(zν) and ∂ρV νQ(zν), where
zν = q − Rūν

0 , must be singletons because both coincide with F (ūν
0). A convex function

is differentiable at any point where its subgradient set is a singleton [13, Theorem 25.1].
Therefore ρV Q and ρV νQ are both differentiable at zν with the same gradient, and this is
equivalent to f and fν both being differentiable at ūν

0 with the same gradient. The same
reasoning works for g and gν .

The main assertion of the theorem, about directions of descent and ascent, is a further
consequence of Proposition 5.1. Let µ = min(Pν) = max(Qν). Then

(5.4) µ = fν(ūν) ≤ fν(ūν
0) = f(ūν

0),

where the middle inequality holds because of the condition ūν
0 ∈ Uν in Step 2. Similarly

(5.5) µ = gν(v̄ν) ≥ gν(v̄ν
0 ) = g(v̄ν

0 ).

If ūν
0 and v̄ν

0 are not already optimal we have f(ūν
0) > g(v̄ν

0 ), and at least one of the
inequalities in (5.4) or (5.5) must be strict. This means through Proposition 5.1 that the
line searches will improve either the primal objective or the dual objective or both.

The next theorem gives our cornerstone result on convergence. To state it succinctly
we need a notation for “relative matrix norms.” For two symmetric matrices N and M of
the same dimensions, with M positive definite and N positive semidefinite, we write

(5.6) ‖N/M‖ = max
w 6=0

‖w‖N

‖w‖M
= max

w 6=0

[w·Nw]1/2

[w·Mw]1/2
.

Theorem 5.3. In the fully quadratic case, the optimality gap εν in the basic algorithm

decreases to 0 at a geometric rate. Specifically, one at least has

(5.7) εν+1 ≤ θPQR εν for ν = 0, 1, 2, . . .

where

(5.8) θPQR = 1− 1/4
1 + γ2

PQR

< 1 with γPQR = ‖RT Q−1R/P‖ = ‖RP−1RT /Q‖.
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In this case the sequences {ūν
0} and {v̄ν

0} converge to the unique optimal solutions ū and v̄

to (P) and (Q) with

(5.9) ‖ūν
0 − ū‖2

P + ‖v̄ν
0 − v̄‖2

Q ≤ 2(θPQR)νε0 for ν = 1, 2, . . . .

In fact the sequence {ūν} and all the sequences {ūν
k} for k ≤ l converge to ū, while the

sequence {v̄ν} and all the sequences {v̄ν
k} for k ≤ l converge to v̄.

Remark. Although the convergence factor θPQR provided by Theorem 5.3 may turn out
to be close to 1, a noteworthy fact is that this convergence rate is guaranteed from the
very start of the calculations. The result is therefore not of the usual sort, which would
focus only on the tail of the generated sequence. The question of what sharper rate of
convergence might ultimately be achieved in the tail is not addressed theoretically here. It
would require a different type of analysis, not to mention further specification of the way
the sets Uν and V ν are to be generated by the algorithm.

Proof. As a preliminary, we verify that the two expressions given for γPQR in (5.8) truly
are equal. By definition we have

‖RT Q−1R/P‖2 = max
w 6=0

w·RT Q−1Rw

w·Pw

= max
z 6=0

z·P−
1
2 RT Q−1RP−

1
2 z

z·z
= ‖(Q−

1
2 RP−

1
2 )T (Q−

1
2 RP−

1
2 )‖2,

and by symmetry

‖RP−1RT /Q‖2 = ‖(P−
1
2 RT Q−

1
2 )T (P−

1
2 RT Q−

1
2 )‖2.

In terms of S := Q−
1
2 RP−

1
2 the first expression is ‖ST S‖2 while the second is ‖SST ‖2.

The fact that ‖ST S‖ = ‖SST ‖ for any matrix S tells us then that ‖RT Q−1R/P‖ =
‖RP−1RT /Q‖.

Proceeding now with the main part of the proof, we note that because the Lagrangian
L is quadratic, it can be expanded as

(5.10)
L(u, v) =L(ūν

0 , v̄ν
1 ) +∇uL(ūν

0 , v̄ν
1 )·(u− ūν

0) +∇vL(ūν
0 , v̄ν

1 )·(v − v̄ν
1 )

+ 1
2 (u− ūν

0)·P (u− ūν
0)− 1

2 (v − v̄ν
1 )·Q(v − v̄ν

1 )− (v − v̄ν
1 )·R(u− ūν

0).

Here, by the definition of v̄ν
1 belonging to F (ūν

0), we have

(5.11) L(ūν
0 , v̄ν

1 ) = f(ūν
0), ∇vL(ūν

0 , v̄ν
1 )·(v − v̄ν

1 ) ≤ 0 for all v ∈ V.

Moreover the positive definiteness of P yields from Theorem 5.2 (via Proposition 3.2) that

(5.12) ∇uL(ūν
0 , v̄ν

1 )·(u− ūν
0) = f ′(ūν

0 ;u− ūν
0) = ∇f(ūν

0)·(u− ūν
0).
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Thus

L(u, v) ≤ f(ūν
0) +∇f(ūν

0)·(u− ūν
0)

+ 1
2 (u− ūν

0)·P (u− ūν
0)− 1

2 (v − v̄ν
1 )·Q(v − v̄ν

1 )− (v − v̄ν
1 )·R(u− ūν

0) for all v ∈ V,

and we obtain from the envelope formula (3.2) for f in terms of L that

f(u)− f(ūν
0)−∇f(ūν

0)·(u− ūν
0)− 1

2 (u− ūν
0)·P (u− ūν

0)

≤ max
v∈V

{−(v − v̄ν
1 )·R(u− ūν

0)− 1
2 (v − v̄ν

1 )·Q(v − v̄ν
1 )}

≤ max
w∈lRm

{−w·R(u− ūν
0)− 1

2w·Qw}

= 1
2 [R(u− ūν

0)]·Q−1[R(u− ūν
0)] = 1

2 (u− ūν
0)·RT Q−1R(u− ūν

0).

Applying this to u = ūν
0 + λ(ūν − ūν

0) for 0 ≤ λ ≤ 1, we reach the estimate that

(5.13) f(ūν
0 + λ(ūν − ūν

0))− f(ūν
0) ≤ λ∇f(ūν

0)·(ūν − ūν
0) + 1

2λ2‖ūν − ūν
0‖2

P0
,

where P0 = P + RT Q−1R. The determination of ūν+1
0 by line search over the segment

joining ūν
0 with ūν means that

f(ūν+1
0 ) = min

0≤λ≤1
f(ūν

0 + λ(ūν − ūν
0)),

and therefore

(5.14) f(ūν+1
0 )− f(ūν

0) ≤ min
0≤λ≤1

{λ∇f(ūν
0)·(ūν − ūν

0) + 1
2λ2‖ūν − ūν

0‖2
P0
}.

Invoking Theorem 5.2 again, we see that

(5.15) ∇f(ūν
0)·(ūν − ūν

0) = fν(ūν
0 ; ūν − ūν

0) ≤ fν(ūν)− fν(ūν
0),

while at the same time by (5.12)

‖ūν − ūν
0‖2

P0
= ‖ūν − ūν

0‖2
P + ‖ūν − ūν

0‖RT Q−1R(5.16)

≤ ‖ūν − ūν
0‖2

P (1 + ‖RT Q−1R/P‖2).

The fact that (ūν , v̄ν) is a saddle point of L relative to Uν × V ν gives also that fν(ūν) =
L(ūν , v̄ν) and

fν(ūν
0)− fν(ūν) ≥ L(ūν

0 , v̄ν)− L(ūν , v̄ν)

= ∇uL(ūν , v̄ν)·(ūν
0 − ūν) + 1

2 (ūν − ūν
0)·P (ūν − ūν

0)

= (fν)′(ūν ; ūν
0 − ūν) + 1

2‖ūν
0 − ūν‖2

P ,

where the derivative term is nonnegative. In combination with (5.16) this yields

1
2‖ūν − ūν

0‖2
P0
≤ (1 + γ2

PQR)[fν(ūν
0)− fν(ūν)].
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We use this inequality and the identity

fν(ūν)− fν(ūν
0) = L(ūν , v̄ν)− f(ūν

0)

together with (5.15) to estimate the right side of (5.14) and obtain

f(ūν+1
0 )− f(ūν

0) ≤ [f(ūν
0)− L(ūν , v̄ν)] min

0≤λ≤1
{−λ + (1 + γ2

PQR)λ2}(5.17)

= [f(ūν
0)− L(ūν , v̄ν)][−1/4(1 + γ2

PQR)].

By a similar argument we get

(5.18) g(v̄ν+1
0 )− g(v̄ν

0 ) ≥ [g(v̄ν
0 )− L(ūν , v̄ν)][−1/4(1 + γ2

PQR)].

We can subtract (5.17) from (5.18) and have

g(v̄ν+1
0 )− g(v̄ν

0 )− f(ūν+1
0 ) + f(ūν

0) ≥ [f(ūν
0)− g(v̄ν

0 )]/4(1 + γ2
PQR),

which can be written as εν − εν+1 ≥ εν/4(1 + γ2
PQR). This is identical to (5.7)–(5.8).

Condition (5.9) now follows from Proposition 3.3 and gives us the convergence of ūν
0

to ū and v̄ν
0 to v̄.

Because we are in the fully convex case of our problems, F is a single-valued mapping,
as we know from Proposition 3.2. As a matter of fact, F is continuous, even Lipschitz
continuous. To see this, observe that in terms of v∗ = F (u∗) we have the first-order
optimality condition ∇vL(u∗, v∗)·(v − v∗) ≤ 0 for all v ∈ V. If also v∗∗ = F (u∗∗) we have
∇vL(u∗∗, v∗∗)·(v − v∗∗) ≤ 0 for all v ∈ V as well, and the two inequalities yield

0 ≥ ∇vL(u∗, v∗)·(v∗∗, v∗) +∇vL(u∗∗, v∗∗)·(v∗ − v∗∗)

= [∇vL(u∗, v∗)−∇vL(u∗∗, v∗∗)]·(v∗∗ − v∗)

= [q −Ru∗ −Qv∗ − q + Ru∗∗ + Qv∗∗]·(v∗∗ − v∗)

= (v∗∗ − v∗)·R(u∗∗ − u∗) + (v∗∗ − v∗)·Q(v∗∗ − v∗).

Then
‖v∗∗ − v∗‖2

Q ≤ −(v∗∗ − v∗)·Q[Q−1R(u∗∗ − u∗)]

≤ ‖v∗∗ − v∗‖Q ‖Q−1R(u∗∗ − u∗)‖Q,

where
‖Q−1R(u∗∗ − u∗)‖Q = [(u∗∗ − u∗)·RT Q−1R(u∗∗ − u∗)]1/2

≤ ‖RT Q−1R/P‖ ‖u∗∗ − u∗‖P .

Thus

(5.19) ‖F (u∗∗)− F (u∗)‖Q ≤ ‖RT Q−1R/P‖ ‖u∗∗ − u∗‖P for all u∗ and u∗∗,
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and F is Lipschitz continuous as claimed. Similarly, G is a Lipschitz continuous mapping
satisfying

(5.20) ‖G(v∗∗)−G(v∗)‖P ≤ ‖RP−1RT /Q‖ ‖v∗∗ − v∗‖Q for all v∗ and v∗∗.

We have v̄ = F (ū) and v̄ν
1 = f(ūν

0) with ūν
0 → ū, so the continuity of F gives us

v̄ν
1 → v̄. Then because ū = G(v̄) and ūν

2 = G(v̄ν
1 ), the continuity of G gives us ūν

2 → ū. A
parallel argument shows that ūν

1 → ū and v̄ν
2 → v̄. This pattern can be continued to show

eventually that ūν
k → ū and v̄ν

k → v̄ for all k ≤ l.

It still must be demonstrated that ūν → ū and v̄ν → v̄. From the expansion (5.10)
with (5.11) and (5.12) we have

f(ūν
0) = fν(ūν

0) ≥ fν(ūν) ≥ L(ūν , v̄ν
1 )

= L(ūν
0 , v̄ν

1 ) +∇uL(ūν
0 , v̄ν

1 )·(ūν − ūν
0) + 1

2 (ūν − ūν
0)·P (ūν − ūν

0)

= f(ūν
0) +∇f(ūν

0)·(ūν − ūν
0) + 1

2‖ūν − ūν
0‖2

P

and therefore

(5.21) 1
2‖ūν − ūν

0‖2
P ≤ −∇f(ūν

0)·(ūν − ūν
0) for all ν.

In particular this tells us that

‖ūν − ūν
0‖2

P ≤ 2[P−1∇f(ūν
0)]·P (ūν − ūν

0) ≤ 2‖P−1∇f(ūν
0)‖P ‖ūν − ūν

0‖P

and gives us the bound

(5.22) ‖ūν − ūν
0‖P ≤ 2‖P−1∇f(ūν

0)‖P .

The gradient mapping ∇f is continuous by Proposition 3.2. Therefore the right side of
(5.21) remains bounded as ūν

0 → ū, and the sequence {ūν} must be bounded as well. Con-
sider any cluster point ũ of the sequence {ūν}. Taking limits in (5.21) for the corresponding
subsequences, we obtain

(5.23) 1
2‖ũ− ū‖2

P ≤ −∇f(ū)·(ũ− ū),

where, as we know from the optimality of ū in (P), we have ∇f(ū)·(u − ū) ≥ 0 for all
u ∈ U . We conclude from (5.23) that ũ = ū. Since ũ was any cluster point of the bounded
sequence {ūν}, this means that ūν → ū. The proof that v̄ν → v̄ is analogous.

Remark. The quadratic expansion (5.10) of L used in the proof of Theorem 5.3 yields an
interesting interpretation for the elements ūν

2 and v̄ν
2 . Using the fact that L(ūν

0 , v̄ν
1 ) = f(ūν

0)
(by the definition of the condition v̄ν

1 ∈ F (ūν
0)) and ∇uL(ūν

0 , v̄ν
1 ) = ∇f(ūν

0) (by Proposition
3.2), we see that

L(u, v̄ν
1 ) = f(ūν

0) +∇f(ūν
0)·(u− ūν

0) + 1
2 (u− ūν

0)·P (u− ūν
0).
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If we were to replace the standard euclidean structure on lRn by that corresponding to P

through the inner product 〈u, w〉P = u·Pw, we could write this as

L(u, v̄ν
1 ) = f(ūν

0) + 〈∇P f(ūν
0), u− ūν

0〉P + 1
2‖u− ūν

0‖2
P ,

where ∇P f(u) symbolizes the gradient of f relative to this other structure, namely the
vector P−1∇f(u). In minimizing this over u ∈ U , we get by definition the elements of
G(v̄ν

1 ), which in this case reduce to one, namely ūν
2 . It follows that

ūν
2 − ūν

0 = [P -projection of ∇P f(ūν
0) on U − ūν

0 ].

Thus ūν
2 − ūν

0 gives a sort of modified steepest descent direction for f at ūν
0 .

The virtue of Theorem 5.3 is that it guarantees convergence under quite minimal
conditions. It can be used as a stepping stone to other convergence results such as the
one to be presented next. For this result, which concerns the identification of the “active
constraints” in the course of the basic algorithm, we need another concept, that of the
“critical faces” of U and V relative to problems (P) and (Q).

Recall that in minimizing f(u) over u ∈ U in (P) one has as a first-order necessary
condition for the optimality of ū that 0 ∈ ∂f(ū) + NU (ū), where NU (ū) is the normal cone
to U at ū in the sense of convex analysis, cf. [13, Theorem 27.4]. This means the existence
of a vector w ∈ lRn such that w ∈ ∂f(ū) and

(5.24) ū ∈ argmin
u∈U

w·u.

The set of all such vectors w is actually independent of the particular choice of ū if (P)
happens to have more than one optimal solution. (It is the set of optimal solutions to the
Fenchel dual of (P) when (P) is interpreted in the format of minimizing f − ϕ over lRn,
where ϕ = −δU ; see [13,S31].) For each of these vectors w, the set on right of (5.24) is a
certain face of the polyhedron U , and hence so is the intersection of all such faces. The
latter is what we define to be the critical face U0 of U in (P). From (5.24), one obviously
has ū ∈ U0 when ū is optimal.

The critical face V0 of V in problem (Q) is defined analogously. One has v̄ ∈ V0

when v̄ is dual optimal. The feasible solutions to (P) and (Q) that belong to U0 and V0

rather than just to U and V can be interpreted as the ones that “satisfy as equations the
linear constraints in the expression of U and V that must be active in an essential way at
optimality.” This will be explained more fully at the end of this section.

Our actual use here of the critical face concept will be limited to the relatively simple
case where the objective functions f and g are differentiable and the optimal solutions ū

and v̄ are unique. Then the two critical faces are expressed by

U0 = argmin
u∈U

∇f(ū)·u = argmin
u∈U

∇uL(ū, v̄)·u(5.25)

V0 = argmax
v∈V

∇g(v̄)·v = argmax
v∈V

∇vL(ū, v̄)·v.(5.26)



26

Theorem 5.4. Consider the fully quadratic case. Let U0 be the critical face of U in (P)
and let V0 be the critical face of V in (Q), as just defined. Then, in any realization of the

basic algorithm, the sequences {ūν
k} for 0 < k ≤ l will eventually lie entirely in U0, while

the sequences {v̄ν
k} for 0 < k ≤ l will eventually lie entirely in V0.

Proof. Our proof will hinge on a general property of polyhedral convex sets like U : in
terms of

M(w) := argmax
u∈U

w·u = {u ∈ U
∣∣w ∈ NU (u)}

one has that M(w) ⊂ M(w̄) for all w in some neighborhood of w̄. This is true because
M(w) must be one of the finitely many faces of U , and the graph of the set-valued mapping
M : u 7→ M(u) is closed.

The application we wish to make of this general fact is to w̄ = −∇f(ū). (Recall that f

is differentiable by Proposition 3.2, because we are in the fully quadratic case.) Inasmuch
as ū minimizes f over U , we do have −∇f(ū) ∈ NU (ū), i.e., ū ∈ M(−∇f(ū)). The set
M(−∇f(ū)) is in this case exactly the critical face U0 defined in (5.25). It will be helpful
to us that the mapping ∇f is continuous, as noted in the proof of Theorem 5.3.

First we shall demonstrate that ūν
1 ∈ U0 for all ν sufficiently large. By definition, ūν

1

minimizes L(u, v̄ν
0 ) over u ∈ U , so that −∇uL(ūν

1 , v̄ν
0 ) ∈ NU (ūν

1), i.e.

(5.27) ūν
1 ∈ M(−∇uL(ūν

1 , v̄ν
0 )).

According to Theorem 5.3 we have ūν
1 → ū and v̄ν

0 → v̄, hence also ∇uL(ūν
1 , v̄ν

0 ) →
∇uL(ū, v̄). The latter vector is just ∇f(ū), because v̄ ∈ F (ū). Thus the vector wν =
−∇uL(ūν

1 , v̄ν
0 ) in (5.27) converges to w̄ = −∇f(ū) while ūν

1 → ū, and therefore, by our
basic property, we have for all ν sufficiently large that ūν

1 ∈ M(−∇f(ū)) = U0.

The argument verifying that ūν
2 ∈ U0 for all ν sufficiently large is virtually the same,

being based instead on the fact that ūν
2 minimizes L(u, v̄ν

1 ) over u ∈ U . Likewise we get
v̄ν
1 ∈ V0 and v̄ν

2 ∈ V0 for large ν. The pattern continues up to {ūν
l } and {v̄ν

l }.

6. VARIANTS AND EXTENSIONS

The main convergence results in Theorems 5.3 and 5.4 for finite-envelope methods require
the fully quadratic case, but of course not all problems of interest come with P and Q

positive definite. There is a device that can be used in such problems to create positive
definiteness. It is the general proximal point algorithm, developed by the author in [10]
(also [11], [12]).

With this device a shell of “outer” iterations is added to the “inner” iterations of the
basic finite-envelope algorithm. In outer iteration µ we have points uµ

∗ ∈ U and vµ
∗ ∈ V

and form the modified Lagrangian

(6.1) Lµ
∗ (u, v) = L(u, v) + 1

2 (u− uµ
∗ )·Pµ

∗ (u− uµ
∗ )−

1
2 (v − vµ

∗ )Qµ
∗ (v − vµ

∗ )
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for some choice of positive definite matrices Pµ
∗ and Qµ

∗ . This modified Lagrangian does, of
course, exhibit the desired positive definiteness. The finite-envelope algorithm as already
laid out in S5 can be applied to determine a saddle point (uu+1

∗ , vµ+1
∗ ) of Lµ

∗ on U ×V , and
the sequences it generates will enjoy all the properties in Theorems 5.3 and 5.4. With the
new pair (uµ+1

∗ , vµ+1
∗ ) we are able to form Lµ+1

∗ and reapply the basic algorithm to that.

It is not really necessary that (uµ+1
∗ , vµ+1

∗ ) be a true saddle point in each outer iteration
to be sure that this sequence will converge to an optimal solution pair (ū, v̄) for (P) and
(Q). The duality gap in the sequence of inner iterations just has to be brought down
sufficiently far. The details can be gleaned from the cited papers on the proximal point
algorithm, but we shall not work them out here. Convergence can be guaranteed under
quite mild conditions, and rates of convergence derived as well.

There are many issues here to be investigated further, particularly the effects of the
parameters used in the outer algorithm. It deserves notice that in the specialized context
of two-stage stochastic programming in [4], it was possible to show that a linear rate of
convergence could be guaranteed for the combined inner-outer algorithm whenever the
optimal solutions ū and v̄ to the given problems (not necessarily possessed of positive
definiteness) are unique.

Another mode of extension concerns the role of the envelope subproblems. Although
we have not mentioned it until now in order to have our notation be simple, there is no
reason why the points ūν and v̄ν used to get the directions of primal and dual line search
must be calculated from the same, joint saddle point subproblem. In principle we could
calculate a saddle point (ūν , ṽν) of L relative to Uν × Ṽ ν to get ūν and then a saddle point
(ũν , v̄ν) of L relative to Ũν × V ν to get v̄ν . We would then need to generate and maintain
finite collections of points representing Ũν and Ṽ ν in addition to Uν and V ν , but the
decoupling might possibly lead to better directions being obtained. The basic convergence
theory generalizes easily to this broader picture.

The line searches in the algorithm of S5 might be replaced by searches over triangles
and other small polytopes, if in computational developments yet to come it turns out that
problems in our category where only the primal or only the dual dimension happens to be
high can be solved relatively quickly. The minimization of f over a line segment [ūν

0 , ūν ]
can in fact be interpreted as a very special case of our model in which U is replaced by
this segment, which is in particular a one-dimensional polytope, the convex hull of two
points. It corresponds to finding a saddle point of L(u, v) relative to [ūν

0 , ūν ] × V . The
line segment could be replaced quite easily by the convex hull of three or more points to
get a subproblem that would be only a little more difficult perhaps, in principle. Such a
subproblem could be reduced by the reformulation device in Proposition 4.2, applied only
in the primal argument, to one of finding a saddle point of L(u, v) over S(r)× V for some
simplex S(r), r > 1.

Finally, we mention that some of the ideas involved in finite-generation methods could
well be extended beyond linear-quadratic problems. A general theory of finding saddle
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points by primal-dual decomposition has been worked out recently by Oettli [19].

Concluding remark. It is worth emphasizing once more that finite-envelope methods are
only one class of methods that in principle could take advantage of the special structure we
have outlined. The main point of this paper is that such previously unrecognized structure
is present, and numerical methods should try to utilize it.
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