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1. Introduction

This paper focuses on optimal control problems of convex type and the special properties
they enjoy, in particular properties of duality. A fundamental problem form, intended for
approximations of more complicated control situations as well as direct use in mathematical
modeling, is introduced in terms of linear dynamics and linear constraints that may be
represented by penalties, either finite or infinite. A duality theorem is proved and made
the basis for deriving necessary and sufficient conditions for the optimality of control
functions and state trajectories. The work extends the author’s recent results on continuous
time problems with piecewise linear-quadratic costs [1], [2]. It ties in more generally
with the theory of dual problems of Bolza in the calculus of variations, as developed
earlier by methods of convex analysis in Rockafellar [3], [4]. A bridge is thereby provided
to a conceptual framework dominated by a Hamiltonian function and its gradients or
subgradients in the expression of optimality condition.

The chief aim, besides setting up the duality, is to demonstrate that solutions to
problems in the chosen class can be characterized in two quite different, yet equivalent
ways. First there is a “minimaximum principle” which expresses the primal and dual
optimal control vectors at any time as giving a saddle point of a certain convex-concave
function. Second there is a generalized Hamiltonian differential equation in terms of primal
and dual states but no direct mention of controls.

The minimaximum principle is suggestive of computational approaches that depend on
generating sequences of control functions as in various algorithms of convex programming.
The Hamiltonian system, on the other hand, is of interest in that it can be solved like an
ordinary differential equation from any choice of initial primal and dual states. While this
may or may not be a practical tool in calculating optimal trajectories, it reveals important
information about such trajectories, for example that under our assumptions they can
be realized by optimal control functions that are essentially bounded. Knowledge of the
Hamiltonian function is crucial also to the prospects of applying Hamilton-Jacobi theory
in its latest forms to convex problems of optimal control.

The model problem we start from is not the broadest possible that would fit under
the heading of convex optimal control. It is selected rather to yield strong results while
still encompassing a wide spectrum of applications. The details of structure are designed
to facilitate dualization.

To help keep formulas compact and readable, we write xt and ut as the state and
control vectors at time t instead of x(t) and u(t). These vectors belong to lRn and lRk,
respectively. We also make use of an auxiliary control vector ue ∈ lRke which affects
endpoint costs and constraints; the subscript e is utilized also to designate data elements
connected with endpoints. See [1] for a discussion of the modeling possibilities with end-
point controls. Inner products of vectors in lRn and lRk will be expressed in the notation
〈·, ·〉 and the Euclidean norm by | · |.

We denote by U the space of all control elements u consisting of a choice of vector ue

and an essentially bounded, measurable function t 7→ ut defined over the interval [t0, t1],
which is fixed throughout the paper. We handle U as a Banach space in the norm ‖u‖ =
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max{|ue|, ess supt |ut|}. Each u ∈ U will determine a state trajectory x : t 7→ xt ∈ lRn,
which will be Lipschitz continuous over [t0, t1]. The time derivative of xt, which exists
for almost every t, will be denoted by ẋt. The space of all such Lipschitz continuous
arcs x in lRn will be denoted by A∞ = A∞n [t0, t1]. This is a Banach space in the norm
‖x‖∞ = max{|xt0

|, ess supt ẋt}. (The superscript ∞ is a reminder that the derivative
function t 7→ ẋt belongs to L∞n [t0, t1].)

The control problem we address takes the form

(P)

minimize the functional F (u) =∫ t1

t0

[〈pt, ut〉+ ϕt(ut) + ψt(qt − Ctxt −Dtut)− 〈ct, xt〉] dt

+ [〈pe, ue〉+ ϕe(ue) + ψe(qe − Cext1
−Deue)− 〈ce, xt1

〉]
over u ∈ U , where x is determined from u by

ẋt = Atxt +Btut + bt a.e., xt0
= Beue + be.

Here ϕt and ϕe are functions on lRk and lRke , while ψt and ψe are functions on certain
spaces lRl and lRle . The dimensions of the various vectors and matrices in (P) are of course
completely determined by the dimensions of these spaces. In general we assume:

(A1) ϕt, ϕe, ψt, ψe, are lower semicontinuous, proper, convex functions.
(A2) ϕt and ψt depend epi-continuously on t ∈ [t0, t1].
(A3) At, Bt, bt, Ct, ct, Dt, pt, qt, depend continuously on t ∈ [t0, t1].

By (A3) we are assured in particular that each choice of u ∈ U gives rise to a unique
trajectory x, which belongs to the space A∞ because the function t 7→ Atxt + Btut + bt
is essentially bounded. The mapping u 7→ x is continuous. The properness in (A1) asserts
that the functions ϕt, ϕe, ψt, ψe, do not take on the value −∞, although they might in
some cases take on ∞ as long as they do not have this value everywhere. The role of
∞ is to provide an infinite penalty for certain constraint violations; more about this in a
moment.

Assumption (A2) means that the epigraphs sets epiϕt and epiψt, which are closed
convex subsets of lRk+1 and lRl+1, depend continuously on t in the sense of set convergence.
This form of continuity has been studied by many authors in recent years; see Salinetti and
Wets [5], Wets [6], for properties and references. As a special case, of course, epi-continuity
is present when ϕt and ψt do not actually vary with t.

Proposition 1.1. Under (A1)–(A3), the functional F in problem (P) is well defined
on the Banach space U with values in (−∞,∞]. Furthermore, F is convex and lower
semicontinuous.

Proof. The epi-continuity of t 7→ epiϕt in (A2) entails that the function (t, w) 7→ ϕt(w)
is lower semicontinuous on [t0, t1] × lRk. This function is definitely therefore a normal
integrand in the sense of [7] and is bounded below on [t0, t1] ×W for every bounded set
W ⊂ lRk. It follows that ϕt(ut) is measurable in t when ut is measurable in t, and it is
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essentially bounded from below when ut is essentially bounded in t. For any u ∈ U , then,
the integral of ϕt(ut) has a well defined value in (−∞,∞]. Similar properties hold for ψt.
Since (A3) implies qt−Ctxt−Dtut is a bounded measurable function of t when ut is such
a function of t (here we note that xt, as determined by the dynamics, is continuous in t),
we conclude that the integral of ψt(qt − ctxt −Dtut) likewise has a well defined value in
(−∞,∞] for any u ∈ U . Thus F (u) is well defined on U with values in (−∞,∞]. The
convexity of F follows obviously from the convexity in (A1) and the fact that the dynamical
mapping u 7→ x is affine. Lower semicontinuity in the norm topology of U follows from the
lower semicontinuity in (A1) and continuity in (A3), as well as the continuity of u 7→ x,
by Fatou’s lemma, cf. [7].

Problem (P) may involve implicit constraints beyond the ones already mentioned,
due to the possiblity of ∞ values. Recall that the effective domain domF consists of the
elements u ∈ U such that F (u) <∞; similarly for domϕt and domϕe. Minimizing F over
U is the same as minimizing F over domF . Obviously the condition u ∈ domF requires
u to belong to the set

U := {u ∈ U
∣∣ ∫ t1

t0

ϕt(ut) dt <∞ and ϕe(ue) <∞} (1.1)

and satisfy

ut ∈ Ut a.e. and ue ∈ Ue, where Ut := domϕt and Ue := domϕe, (1.2)

qt − Ctxt −Dtut ∈ Rt a.e. and qe − Cext1
−Deue ∈ Re,

where Rt := domψt and Re := domψe.
(1.3)

The control problem dual to (P) involves dual states yt ∈ lRn and dual controls
vt ∈ lRl and ve ∈ lRle . Let us denote by V the set of control elements v consisting of a
choice of ve and an essentially bounded, measurable function t 7→ vt. This is a Banach
space in the same way as described above for U . The dual problem takes the form

(Q)

maximize the functional G(v) =∫ t1

t0

[〈qt, vt〉 − ψ∗t (vt)− ϕ∗t (B
∗
t yt +D∗

t vt − pt)− 〈bt, yt〉] dt

+ [〈qe, ve〉 − ψ∗e(ve)− ϕ∗e(B
∗
eyt0

+D∗
eve − pe)− 〈be, yt0

〉]
over v ∈ V, where y is determined from v by

− ẏt = A∗t yt + C∗t vt + ct a.e., yt1
= C∗e ve + ce.

The asterisk on a matrix denotes transpose, but on a convex function it indicates the
conjugate function (Legendre-Fenchel transform) in the sense of convex analysis [8]. Note
that the dual dynamical system goes backward in time and uniquely determines a Lipschitz
continuous trajectory y ∈ A∞ for each v ∈ V.
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Just as (A3) is preserved in passing to transposes, assumptions (A1) and (A2) imply
the corresponding properties for the conjugate functions:

(A1*) ϕ∗t , ϕ
∗
e, ψ

∗
t , ψ

∗
e , are lower semicontinuous, proper, convex functions.

(A2*) ϕ∗t and ψ∗t depend epi-continuously on t ∈ [t0, t1].

The equivalence between (A2) and (A2*) follows from Wijsman’s theorem [9] on the conti-
nuity of the Legendre-Fenchel transform with respect to epi-convergence. We immediately
therefore get the version of Proposition 1.1 that applies to the dual problem.

Proposition 1.2. Under (A1)–(A3), the functional G in problem (Q) is well defined
on the Banach space V with values in [−∞,∞). Furthermore, G is concave and upper
semicontinuous.

Implicit in (Q) are the constraints that v should belong to the set

V := {v ∈ V
∣∣ ∫ t1

t0

ψ∗t (vt) dt <∞ and ψ∗e(ve) <∞} (1.4)

and satisfy

vt ∈ Vt a.e. and ve ∈ Ve, where Vt := domψ∗t and Ve := domψ∗e , (1.5)

B∗
t yt +D∗

t vt − pt ∈ St a.e. and B∗
eyt0

+D∗
eve − pe ∈ Se,

where St := domϕ∗t and Se := domϕ∗e.
(1.6)

The special case of these primal and dual problems that was treated in [1] and [2] as
extended linear-quadratic optimal control is obtained by taking

ϕt(ut) = 1
2 〈ut, Ptut〉 for ut ∈ Ut, ϕt(ut) = ∞ for ut /∈ Ut,

ϕe(ue) = 1
2 〈ue, Peue〉 for ue ∈ Ue, ϕe(ue) = ∞ for ue /∈ Ue,

ψ∗t (vt) = 1
2 〈vt, Qtvt〉 for vt ∈ Vt, ψ∗t (vt) = ∞ for vt /∈ Vt,

ψ∗e(ve) = 1
2 〈ve, Qeve〉 for ve ∈ Ve, ψ∗e(ve) = ∞ for ve /∈ Ve,

(1.7)

for polyhedral sets Ut, Ue, Vt, Ve, and positive semidefinite symmetric matrices Pt, Pe, Qt, Qe.
The philosophy behind this is fully explained in [1] and will not be repeated here, except to
say that the functions ψt, ψe, ϕ

∗
t , ϕ

∗
e, are then piecewise linear-quadratic and yield a version

of linear-quadratic optimal control in which piecewise linear-quadratic penalty terms may
be present and are readily dualized.

In general, the terms involving ψt and ψe in (P) may be viewed as monitoring the
vectors st = qt−Ctxt−Dtut and se = qe−Cext1

−Deue. A simple example would be the one
where ψt vanishes on a certain set K but has the value ∞ outside of K. Then the ψt term
expresses through infinite penalties the condition that st ∈ K a.e. This condition might
represent a system of equations or inequalities. Instead ψt could have finite, positive values
outside of K, and then we would have a finite penalty representation of such a constraint
system. Similarly, ψe could play this role for constraints on the endpoint xt1

, while ϕ∗t
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and ϕ∗e could have such interpretations in the dual problem. Many examples are worked
out in [1].

Our strongest results will eventually call for a further assumption:

(A4) ϕt and ϕe are coercive, while ψt and ψe are everywhere finite.

Coercivity of ϕt means that lim|w|→∞ ϕt(w)/|w| = ∞, which is true in particular when
the control set Ut in (1.2) is bounded; similarly for ϕe and Ue. It is known from convex
analysis [8, §13] that ϕt and ϕe are coercive if and only if the conjugate functions ϕ∗t and
ϕ∗e are finite everywhere. Likewise, ψt and ψe are finite everywhere if and only if ψ∗t and
ψ∗e are coercive. Thus (A4), like the earlier assumptions, has an equivalent dual form:

(A4*) ψ∗t and ψ∗e are coercive, while ϕ∗t and ϕ∗e are everywhere finite.

The interpretation of (A4), then, is that there are effectively no exact implicit constraints
of type (1.3) and (1.6) in the primal and dual problems. In other words, this additional
assumption corresponds to the situation where all the monitoring of qt −Ctxt −Dtut and
qe −Cext1

−Deue in the primal problem and of B∗
t yt +D∗

t vt − pt and B∗
eyt0

+D∗
eve − pe

in the dual problem proceeds with finite values: no infinite penalties. Such a property
may naturally be present in a given application, or it may be achieved as a mode of
approximation for a problems one is really interested in. Anyway, one may argue that
it is vital for the development of computational methods for problems like (P) and (Q).
Conditions on x or on x and u jointly that are modeled as exact constraints can lead to
serious numerical complications, whereas such conditions on u alone, as in (1.2), present
relatively little difficulty. See [1] for more on this issue.

Proposition 1.3. Under (A4), the epi-continuity assumption (A2) is equivalent to having
ϕ∗t (r) and ψt(s) be continuous in t ∈ [t0, t1] for each r ∈ lRk and s ∈ lRl. Then in fact
ϕ∗t (r) is continuous with respect to (t, r), and ψt(s) is continuous with respect to (t, s).

Proof. For finite convex functions, epi-continuity with respect to t is equivalent to point-
wise continuity with respect to t; see Wets [5, Corollaries 4 and 5]. Further, finite convex
functions whose values depend continuously on t are jointly continuous in t and their other
variables [8, Theorem 10.7].

Proposition 1.4. Under assumptions (A1)–(A3), the sets U and V in (1.1) and (1.4) are
convex and nonempty. When (A4) holds too, U is identical to the set of feasible controls
for (P), i.e. the elements u ∈ U for which F (u) is finite, and likewise V is the set of feasible
controls for (Q). In particular, feasible controls do exist then for both problems.

Proof. The convexity of U and V is obvious from their definitions by the convexity in
(A1). Clearly F (u) = ∞ when u /∈ U , and G(v) = −∞ for v /∈ V . According to (A2),
the multifunction t 7→ epiϕt, whose values are nonempty closed convex sets by (A1), is
continuous. For such a multifunction the continuous selection theorem of Michael [10]
applies: it is possible to choose (ut, αt) ∈ epiϕt continuously with respect to t ∈ [t0, t1].
Then ϕt(ut) ≤ αt, so the integral of ϕt(ut) cannot be ∞ and therefore must be finite.
Taking any ue in Ue, a set which is nonempty by the properness of ϕe in (A1), we obtain
a control element u ∈ U . Thus U 6= ∅. Any u ∈ U , on the other hand, makes all the
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terms in the formula for F (u) in (P) be finite except perhaps for the integral of ψt(st),
where st = qt−Ctxt +Dtut. The function t 7→ st is essentially bounded in t by (A3). The
continuity of (t, s) 7→ ψt(s), which is asserted by Proposition 1.3, implies that the latter
function is bounded on [t0, t1]×W for any bounded set W ⊂ lRl. We thereby obtain the
essential boundedness of ψt(st) in t and hence the finiteness of its integral. This yields the
desired conclusion in the case of (P). The corresponding result for (Q) follows by duality.

2. Minimax representation.
The close relationship between problems (P) and (Q) that leads to their being called dual
to each other stems from a joint representation in terms of a minimax problem in U × V.
To give this, we introduce the functional

J(u, v) :=
∫ t1

t0

Jt(ut, vt) dt+ Je(ue, ve)− j(u, v) (2.1)

in the notation
Jt(ut, vt) := 〈pt, ut〉+ 〈qt, vt〉 − 〈vt, Dtut〉+ ϕt(ut)− ψ∗t (vt),

Je(ue, ve) := 〈pe, ue〉+ 〈qe, ve〉 − 〈ve, Dtut〉+ ϕe(ue)− ψ∗e(ve),
(2.2)

and with j taken to be the bi-affine functional on U ×V that corresponds to the dynamics
and is expressed in terms of the trajectories x and y associated with u and v by

j(u, v) : =
∫ t1

t0

〈yt, Btut + bt〉 dt+ 〈yt0
, Beue + be〉

=
∫ t1

t0

〈xt, C
∗
t vt + ct〉 dt+ 〈xt1

, C∗e ve + ce〉.
(2.3)

(The validity of the equation in (2.3) is proved in [1, §6].) Because some of the terms in
(2.2) can take on the value ∞ while others are −∞, a convention is necessary to ensure
that J(u, v) is well defined. The one we follow is standard in convex analysis: ∞−∞ = ∞.
This clarifies the meaning of Jt(ut, vt) and Je(ue, ve) in all cases in (2.2):

Jt(ut, vt) =

{finite value when ut ∈ Ut and vt ∈ Vt,
−∞ when ut ∈ Ut and vt /∈ Vt,
∞ when ut /∈ Ut,

Je(ue, ve) =

{finite value when ue ∈ Ue and ve ∈ Ve,
−∞ when ue ∈ Ue and ve /∈ Ve,
∞ when ue /∈ Ue,

(2.4)

where the sets Ut, Ue, Vt, Ve, are the effective domains in (1.2) and (1.5). The convention
enters into the formula for J(u, v) in resolving the integral as ∞ whenever the positive
part of the integrand (which is always measurable by the argument given in the proof of
Proposition 1.1) has integral ∞ while the negative part has integral −∞. (This amounts
to writing J(u, v) with the terms

∫ t1
t0
ϕt(ut) dt and −

∫ t1
t0
ψ∗t (vt) dt separated out and then

invoking the convention ∞−∞ = ∞ in forming the overall sum. The first of these terms
is unambiguously finite or ∞, as seen in Proposition 1.1, while the second is finite or −∞.)
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Proposition 2.1. The functional J is convex-concave on U × V with finite values on
U ×V but infinite values everywhere else. Fpr each v ∈ V , J(u, v) is lower semicontinuous
in u ∈ U , while for each u ∈ U , J(u, v) is upper semicontinuous in v ∈ V. The objective
functionals F and G in (P) and (Q) are given by

F (u) = inf
u∈U

J(u, v) = inf
u∈U

J(u, v) and G(v) = sup
v∈V

J(u, v) = sup
v∈V

J(u, v).

Proof. In view of the definitions of U and V in (1.1) and (1.4), the convention adopted
in the formula for J(u, v) entails having

J(u, v) =

{finite value when u ∈ U and v ∈ V ,
−∞ when u ∈ U and v /∈ V ,
∞ when u /∈ U .

(2.5)

The fact that J(u, v) is convex in u and concave in v relative to the product set U × V
is obvious from the convexity of the functions ϕt, ϕe, ψ

∗
t , ψ

∗
e . The semicontinuity follows

from (A1) and (A3) by Fatou’s lemma, cf. [7].
To establish the formula asserted for G(v), it suffices because of the infinities in (2.5)

to prove the first equality in the case of v ∈ V . This is done by taking the first of the
forms for j(u, v) in (2.3) and calculating

inf
u∈U

J(u, v) =
∫ t1

t0

[〈qt, vt〉 − ψt(vt)− 〈yt, vt〉] dt+ [〈qe, ve〉 − ψe(ve)− 〈yt0
, ve〉]

+ inf
u∈U

{
∫ t1

t0

[〈pt −B∗
t yt, ut〉+ ϕt(ut)] dt+ [〈pe −B∗

eyt0
, ue〉+ ϕe(ue)]}.

The infimum on the right equals −
∫ t1

t0
ϕ∗t (B

∗
t yt − pt) dt − ϕ∗e(B

∗
eyt0

− pe) through the
conjugacy formulas

ϕ∗t (r) = sup
u∈lRk

{〈r, u〉 − ϕt(u)} and ϕ∗e(r) = sup
ue∈lRke

{〈r, ue〉 − ϕe(ue)}

and the fundamental theorem on conjugates of integral functionals, cf. [7, Theorem 3C].
The proof of the formula for F (u) follows the same pattern. (The apparent lack of sym-
metry in (2.5) is restored though the observation, already made, that only the values of J
on U × V really matter.)

Theorem 2.2. Under (A1)–(A3), the optimal values in problems (P) and (Q) always
satisfy inf(P) ≥ sup(Q). A pair (ū, v̄) furnishes a saddle point of J on U × V if and only
if ū is optimal for (P), v̄ is optimal for (Q), and one actually has inf(P) = sup(Q). This
saddle point condition is equivalent to the following, where x̄ and ȳ denote the primal and
dual trajectories generated by ū and v̄:

(ūt, v̄t) is a saddle point of Jt(ut, vt)− 〈B∗
t ȳt, ut〉 − 〈Ctx̄t, vt〉 on Ut × Vt for a.e. t,

(ūe, v̄e) is a saddle point of Je(ue, ve)− 〈B∗
e ȳt0

, ue〉 − 〈Cex̄e, ve〉 on Ue × Ve.
(2.6)
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Proof. Up to the equivalence of the saddle point condition with (2.6), the assertions are
well known consequences of the relationship displayed in Proposition 2.1, where primal and
dual objectives are derived as “halves” of a minimax problem. The saddle point condition
has the means by definition that

ū ∈ argmin
u∈U

J(u, v̄) and v̄ ∈ argmax
v∈V

J(ū, v).

Due to (2.5), it requires ū ∈ U and v̄ ∈ V . Then in terms of the notation

J̄t(ut, vt) := Jt(ut, vt)− 〈B∗
t ȳt, ut〉 − 〈Ctx̄t, vt〉,

J̄e(ue, vt) := Je(ue, ve)− 〈B∗
e ȳt0

, ue〉 − 〈Cex̄t1
, ve〉,

(2.7)

it reduces by the calculation in the proof of Proposition 2.1 to

ūt ∈ argmin
ut∈lRk

J̄t(ut, v̄t) and v̄t ∈ argmax
vt∈lRl

J̄t(ūt, vt) a.e.,

ūe ∈ argmin
ue∈lRke

J̄e(ue, v̄e) and v̄e ∈ argmax
ve∈lRle

J̄e(ūe, ve).

These relations assert that (ūt, v̄t) is a saddle point of J̄t on lRk × lRl for a.e. t and (ūe, v̄e)
is a saddle point of J̄e on lRke × lRle . But J̄t and J̄e have the structure (2.4) relative to
Ut × Vt and Ue × Ve. The saddle points in question are therefore expressed equivalently
with respect to Ut × Vt and Ue × Ve. This is all that had to be proved.

The saddle point conditions in (2.6) will be referred to as the minimaximum principle
for (P) and (Q). This principle is always sufficient for optimality according to the Theo-
rem 2.2, and it is necessary for optimality in any circumstances where we happen to know
that inf(P) = sup(Q) and that both problems have solutions. We shall prove in due course
that assumption (A4) provides such a circumstance. Our method requires us to examine
an auxiliary pair of problems in which trajectories are optimized without direct mention
of controls. This will be done in the next section.

The minimaximum principle can be stated in terms of a duality between finite-
dimensional optimization problems at every instant of time. With x and y as parameter
vectors in lRn, consider the problems

(Pt(x, y)) min
u∈Ut

{〈pt −B∗
t y, u〉+ ϕt(u) + ψt(qt − Ctx−Dtu)},

(Qt(x, y)) max
v∈Vt

{〈qt − Ctx, v〉 − ψ∗t (u)− ϕt(B∗
t y +D∗

t v − pt)},

for each t ∈ [t0, t1] and also the problems

(Pe(x, y)) min
ue∈Ue

{〈pe −B∗
ey, ue〉+ ϕe(ue) + ψe(qe − Cex−Deue)},
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(Qe(x, y)) max
ve∈Ve

{〈qe − Cex, ve〉 − ψ∗e(ue)− ϕe(B∗
ey +D∗

eve − pe)}.

Proposition 2.3. The minimaximum principle (2.6) is equivalent to the following set of
conditions on the controls ū and v̄, as expressed through the corresponding trajectories x̄
and ȳ:

(a) ūt solves (Pt(x̄t, ȳt)), v̄t solves (Qt(x̄t, ȳt)), and (Pt(x̄t, ȳt)) = (Qt(x̄t, ȳt)).
(b) ūe solves (Pe(x̄t1

, ȳt0
)), v̄e solves (Qe(x̄t1

, ȳt0
)), and (Pe(x̄t1

, ȳt0
)) = (Qe(x̄t1

, ȳt0
)).

Proof. Elementary minimax theory informs us that (ūt, v̄t) has the saddle point property
in (2.6) for a given t if and only if ūt minimizes over u ∈ Ut the function

f(u)t := sup
v∈Vt

{Jt(u, v)− 〈B∗
t ȳt, u〉 − 〈Ctx̄t, v〉},

v̄t maximizes over v ∈ Vt the function

g(v)t := inf
u∈Ut

{Jt(u, v)− 〈B∗
t ȳt, u〉 − 〈Ctx̄t, v〉},

and infUt ft = supVt
gt. These functions are calculated from the reciprocal conjugacy

formulas

ψt(s) = sup
v∈Vt

{〈s, v〉 − ψ∗t (v)} and ψe(se) = sup
ve∈Ve

{〈se, ve〉 − ψ∗e(ve)}

to be the objectives in (Pt(x̄t, ȳt)) and (Qt(x̄t, ȳt)), respectively. The assertion concerning
this pair of problems is therefore valid. The one for (Pe(x̄t1

, ȳt0
)) and (Qe(x̄t1

, ȳt0
)) is

proved similarly.

3. Bolza formulations.

Generalized problems of Bolza in the calculus of variations concern trajectories as elements
of the space A1 = A1

n[t0, t1] consisting of all the absolutely continuous arcs x in lRn over
[t0, t1]. (The superscript 1 refers to the fact that the function t 7→ ẋt is an element of
L1

n[t0, t1].) Such problems have the form

(PB) minimize Φ(x) :=
∫ t1

t0

Lt(xt, ẋt) dt+ Le(xt0
, xt1

) over all x ∈ A1,

where the functions Lt and Le on lRn × lRn may be extended-real-valued. In the convex
case, where Lt and Le are convex functions on lRn × lRn, there is a dual problem

(QB) maximize Ψ(y) := −
∫ t1

t0

Mt(yt, ẏt) dt−Me(yt0
, yt1

) over all y ∈ A1,

in which Mt and Me are derived from Lt and Le by

Mt(yt, ẏt) = L∗t (ẏt, yt) and Me(yt0
, yt1

) = L∗e(yt0
,−yt1

). (3.1)
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An extensive duality theory for convex problems of Bolza was developed in [3], [4].
We intend to apply this theory to gain insights into the relationship between the control
problems (P) and (Q). For this purpose we choose to define

Lt(x,w) = inf
u∈Ut

Atx+Btu+bt=w

{〈pt, u〉+ ϕt(u) + ψt(qt − Ctx−Dtu)− 〈ct, x〉},

Le(x0, x1) = inf
ue∈Ue

Beue+be=x0

{〈pe, ue〉+ ϕe(ue) + ψe(qe − Cex1 −Deue)− 〈ce, x1〉}.
(3.2)

(Here x and u are temporarily just dummy vectors in lRn and lRk, and similarly x0 and
x1 in lRn.) Our work with these expressions will make use of the concept of the recession
function associated with a lower semicontinuous, proper, convex function f on lRn, denoted
by rc f . Many facts about such recession functions are assembled in [8, §8 and §13]. We
mention in particular that

(rc f)(z) = lim
λ→∞

[f(z̄ + λz)− f(z̄)]/λ for any z̄ ∈ dom f, (3.3)

and that coercivity of f is equivalent to rc f being the indicator function δ0 of the origin,
where

δ0(z) = ∞ for z 6= 0, δ0(0) = 0.

Proposition 3.1. Under assumptions (A1)–(A4), the Bolza functional Φ in (PB) is well
defined on A1 and is convex. The functions Lt and Le are themselves lower semicontinuous,
proper and convex on lRn× lRn, and Lt depends epi-continuously on t. The infima defining
Lt and Le are attained whenever finite, i.e. whenever the given constraints in (3.2) can be
satisfied. The recession functions are expressed by

(rcLt)(x,w) = (rcψt)(−Ctx)− 〈ct, x〉+ δ0(w −Atx),

(rcLe)(x0, x1) = (rcψe)(−Ctx1)− 〈ce, x1〉+ δ0(x0).
(3.4)

Proof. Consider the functions

Kt(x,w, u) = 〈pt, u〉+ ϕt(u) + ψt(qt − Ctx−Dtu)

− 〈ct, x〉+ δ0(w −Atx−Btu− bt)

Ke(x0, x1, ue) = 〈pe, ue〉+ ϕe(ue) + ψe(qe − Cex1 −Deue)

− 〈ce, x1〉+ δ0(x0 −Beue + be).

(3.5)

By virtue of (A1) these are lower semicontinuous, proper, convex functions on lRn×lRn×lRk

and lRn × lRn × lRke . The definitions given for Lt and Le in (3.2) are equivalent to

Lt(x,w) = inf
u∈lRk

Kt(x,w, u) and Le(x0, x1) = inf
ue∈lRke

Ke(x0, x1, ue). (3.6)

In the language of convex analysis, therefore, Lt is the image of Kt under the projection
(x,w, u) 7→ (x,w), while Le is the image of Ke under (x0, x1, ue) 7→ (x0, x1). We wish
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to apply a general theorem about such images, namely [8, Theorem 9.2]. This involves a
condition on the recession functions of Kt and Ke, which are calculated via (3.3) and the
coercivity of ϕt and ϕe in (A4) to be

(rcKt)(x,w, u) = 〈pt, u〉+ δ0(u) + (rcψt)(−Ctx−Dtu)− 〈ct, x〉+ δ0(w −Atx−Btu)

= δ0(u) + (rcψt)(−Ctx)− 〈ct, x〉+ δ0(w −Atx),

(rcKe)(x0, x1, ue) = 〈pe, ue〉+ δ0(ue) + (rcψe)(−Cex1 −Deue)− 〈ce, x1〉+ δ0(x0 −Beue)

= δ0(ue) + (rcψe)(−Cex1)− 〈ce, x1〉+ δ0(x0).
(3.7)

(We make use of the coercivity of ϕt and ϕe in replacing rcϕt and rcϕe by δ0.) The
fact that (rcKt)(0, 0, u) = 0 only for u = 0, and (rcKe)(0, 0, ue) = 0 only for ue = 0
guarantees by the theorem just cited from [8] that Lt and Le are lower semicontinuous,
proper, convex functions for which the infima in (3.6) are always attained (i.e. the ones in
(3.2) are attained when the constraints can be satisfied), and that

(rcLt)(x,w) = inf
u∈lRk

(rcKt)(x,w, u) and (rcLe)(x0, x1) = inf
ue∈lRke

(rcKe)(x0, x1, ue).

The latter formulas are the same as the ones claimed in (3.4) because of the special nature
of rcKt and reKe in (3.7).

We must verify that Lt depends epi-continuously on t. We shall do this by way of
theorems of McLinden and Bergstrom [11], showing first that Kt depends epi-continuously
on t. Let us write Kt = K1

t +K2
t +K3

t with

K1
t (x,w, u) = 〈pt, u〉+ ψt(qt − Ctx−Dtu)− 〈ct, x〉,

K2
t (x,w, u) = ϕt(u),

K3
t (x,w, u) = δ0(w −Atx−Btu).

The functions in this decomposition are lower semicontinuous, proper and convex on lRn×
lRn × lRk. We argue first that each depends epi-continuously on t. This is obvious for K2

t

because of (A2). It holds for K2
t because this is a finite convex function by (A4) whose

values depend continuously on t; cf. Proposition 1.3. (A finite convex function depends
epi-continuously on t if and only if its value at each point depends continuously on t [5,
Corollaries 4 and 5].) In the case of K3

t the epi-continuity follows from [11, Theorem 8]
because the linear transformation (x,w, u) 7→ w−Atx−Btu depends continuously on t (by
(A3)) and has all of lRn as its range. We deduce next from [11, Theorem 5] that K2

t +K3
t

depends epi-continuously on t, because the set domK2
t − domK3

t is all of lRn × lRn × lRk

and therefore certainly contains the origin in its interior. The same theorem of [11] applied
to K1

t + (K2
t + K3

t ) then yields the desired epi-continuity of Kt with respect to t, since
domK1

t − dom(K2
t +K3

t ) too is all of lRn × lRn × lRk. Recalling now that Lt is the image
of Kt under the projection (x,w, u) 7→ (x,w), and (rcKt)(0, 0, u) = 0 only for u = 0,
we obtain from [11, Theorem 7] that Lt depends continuously on t. This property of Lt

implies in particular that Lt(x,w) is lower semicontinuous with respect to (t, x, w). The
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integrand in the formula for the Bolza functional Φ is certainly measurable then. The
functional is well defined in this case under the ∞−∞ = ∞ convention explained earlier.
Its convexity follows from that of Lt and Le.

Corollary 3.2. Under assumptions (A1)–(A4), the dual Bolza functional Ψ in (QB) is well
defined on A1

n[t0, t1] and is concave. The functions Mt and Me are lower semicontinuous,
proper and convex on lRn × lRn, and Mt depends epi-continuously on t. These functions
satisfy the reciprocal conjugacy formulas

Lt(xt, ẋt) = M∗
t (ẋt, xt) and Le(xt0

, xt1
) = M∗

e (xt0
,−xt1

). (3.8)

Proof. This merely invokes the basic properties of the Legendre-Fenchel transform [8,
§12], including the fact that it preserves epi-convergence of convex functions [9].

It will be demonstrated now that the dual Bolza functional Ψ bears the same rela-
tionship to the elements of the dual control problem (Q) as the primal Bolza functional Φ
does through (3.2) to the elements of (P).

Proposition 3.3. Under (A1)–(A4), the dual functions Mt and Me are expressed by

−Mt(y, z) = sup
v∈Vt

A∗t y+C∗t v+ct=−z

{〈qt, v〉 − ψ∗t (v)− ϕ∗t (B
∗
t y +D∗

t v − pt)− 〈bt, y〉},

−Me(y0, y1) = sup
ve∈Ve

C∗e ve+ce=y1

{〈qe, ve〉 − ψ∗e(ve)− ϕ∗e(B
∗
ey0 +D∗

eue − pe)− 〈be, y0〉},
(3.9)

where the suprema are attained whenever the indicated constraints can be satisfied. The
recession functions of Mt and Me are given by

(rcMt)(y, z) = (rcϕ∗t )(−B∗
t y)− 〈bt, y〉+ δ0(z +A∗t y),

(rcMe)(y0, y1) = (rcϕ∗e)(−B∗
ey0)− 〈be, y0〉+ δ0(y1).

(3.10)

Proof. Starting toward the proof of the formula for Mt in (3.9), we observe that the
definition of Mt in (3.1), which means

Mt(y, z) = sup
x,w

{〈z, x〉+ 〈y, w〉 = Lt(x,w)},

can be combined with the specification of Lt in (3.2) to yield

Mt(y, z) = sup
x,u

{〈z, x〉+ 〈y,Atx+Btu+ bt〉 − 〈pt, u〉 − ϕt(u)− ψt(qt − Ctx−Dtu) + 〈ct, x〉}

= 〈bt, y〉 − inf
x,u
{f(x, u)− g(E(x, u))},

(3.11)
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where E is the linear transformation given by E(x, u) = Ctx +Dtu and f and g are the
convex and concave functions given by

f(x, u) = ϕt(u)− 〈z +A∗t y + ct, x〉 − 〈B∗
t y + pt, u〉,

g(s) = −ψt(qt − s).

Inasmuch as g is finite everywhere by (A4), we can apply Fenchel’s duality theorem as
stated in [8, Corollary 31.2.1] to write

inf
x,u
{f(x, u)− g(E(x, u))} = max

v
{g∗(v)− f∗(E∗(v))},

where the “max” indicates attainment. The adjoint linear transformation E∗ takes v into
the pair (C∗t v,D

∗
t v). Direct calculation of the conjugate functions f∗ and g∗ yields

f∗(s, r) = δ0(s+ z +A∗t y + ct) + ϕ∗t (r +B∗
t y − pt),

g∗(v) = 〈qt, v〉 − ψ∗t (v).

Therefore

−Mt(y, z) = −〈bt, y〉+max
v
{〈qt, v〉−ψ∗t (v)−δ0(C∗t v+z+A∗t y+ct)−ϕ∗t (D∗

t v+B∗
t y−pt)}.

This is equivalent to the formula asserted in (3.9). The argument for Me is runs parallel.
We have from (3.1) that

Me(y0, y1)− sup
x0,x1

{〈y0, x0〉+ 〈y1, x1〉 − Le(x0, x1)},

and in combining this with (3.2) we get

Me(y0, y1) = sup
x0,x1

{〈y0, Beue + be〉 − 〈y1, x1〉 − 〈pe, ue〉 − ϕe(ue)

− ψe(qe − Cex1 −Deue)− 〈ce, x1〉}
= 〈be, y0〉 − inf

x1,ue
{fe(x1, ue)− ge(Ee(x1, ue))},

where Ee(x1, ue) = Cex1 +Deue and

fe(x1, ue) = ϕe(ue) + 〈y1, x1〉 − 〈B∗
ey0 − pe, ue〉

ge(se) = −ψe(qe − se).

Fenchel’s duality theorem brings us to

−Me(y0, y1) = −〈be, y0〉+ max
ve

{g∗e(ve)− f∗( E
∗
e (ve))},
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where E∗e (ve) = (C∗e ve, D
∗
eve) and

f∗e (s, re) = δ0(y1) + ϕ∗e(re +B∗
ey0 − pe),

g∗e(ve) = 〈qe, ve〉 − ψ∗e(ve),

and this representation is equivalent to the one claimed for Me in (3.9). Because of the
symmetry between the formulas in (3.9) and (3.2), we can obtain the recession function
expressions in (3.10) by appealing to Proposition 3.1 in dual form.

These results prepare us for demonstrating that the Bolza problems (PB) and (QB)
are reduced representations of control problems quite close to, but somewhat broader
than, (P) and (Q). The extended control problems, which we denote by (P ′) and (Q′),
are obtained simply by replacing U and V by the slightly larger control spaces

U ′ := {u
∣∣ue ∈ lRke , ut ∈ lRk measurable in t with t 7→ Btut summable },

V ′ := {v
∣∣ ve ∈ lRle , vt ∈ lRl measurable in t with t 7→ C∗t vt summable }.

Thus the extended primal problem is

(P ′)

minimize the functional F (u) =∫ t1

t0

[〈pt, ut〉+ ϕt(ut) + ψt(qt − Ctxt −Dtut)− 〈ct, xt〉] dt

+ [〈pe, ue〉+ ϕe(ue) + ψe(qe − Cext1
−Deue)− 〈ce, xt1

〉]
over u ∈ U ′, where x is determined from u by

ẋt = Atxt +Btut + bt a.e., xt0
= Beue + be,

while the extended dual problem is

(Q′)

maximize the functional G(v) =∫ t1

t0

[〈qt, vt〉 − ψ∗t (vt)− ϕ∗t (B
∗
t yt +D∗

t vt − pt)− 〈bt, yt〉] dt

+ [〈qe, ve〉 − ψ∗e(ve)− ϕ∗e(B
∗
eyt0

+D∗
eve − pe)− 〈be, yt0

〉]
over v ∈ V ′, where y is determined from v by

− ẏt = A∗t yt + C∗t vt + ct a.e., yt1
= C∗e ve + ce.

Note that each u ∈ U ′ does determine a unique trajectory x ∈ A1 in (P ′), and similarly
each v ∈ V ′ determines a unique y ∈ A1 in (Q′). We shall say in this situation that x
and y are realized by the controls u and v. For the moment we think of the functionals
F and G in the extended sense of (P ′) and (Q′) as being defined with the appropriate
conventions regarding infinite values, but it will emerge from further analysis that actually
F (u) > −∞ and G(v) <∞.
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Proposition 3.4. Assume (A1)–(A4). Then the primal problems (PB) and (P ′) are
equivalent to each other in the sense that

Φ(x) = inf{F (u)
∣∣u ∈ U ′, x realized by u}, with attainment when Φ(x) <∞.

Likewise, the dual problems (QB) and (Q′) are equivalent to each other in the sense that

Ψ(y) = sup{G(v)
∣∣ v ∈ V ′, y realized by v}, with attainment when Ψ(y) > −∞.

Proof. In terms of the functions Kt and Ke in (3.5) define

Υ(x, u) =
∫ t1

t0

Kt(xt, ẋt, ut) dt+Ke(xt0
, xt1

).

The representations (3.6) lead to

Φ(x) = min{Υ(x, u)
∣∣ue ∈ lRke , ut ∈ lRk measurable in t}. (3.12)

This is justified by the fundamental result in [12, p.316] on control formulations versus
Bolza formulations. (The inf-boundedness condition in the hypothesis of that result is
fulfilled because of the recession function property of Kt established in (3.7).) Formula
(3.12) is equivalent to the assertion made in the present theorem about the primal problems.
Symmetry yields the corresponding fact about the dual problems.

4. Hamiltonian functions and duality.

Further progress in applying the theory of Bolza problems to the original control problems
(P) and (Q) will depend on study of the Hamiltonian function for problems (PB) and
(QB), which in general is defined on lRn × lRn by

Ht(x, y) = sup
w∈lRn

{〈y, w〉 − Lt(x,w)}. (4.1)

Proposition 4.1. Under assumptions (A1)–(A4), the Hamiltonian Ht(x, y) is finite ev-
erywhere, concave in x ∈ lRn, convex in y ∈ lRn, and continuous in (t, x, y).

Proof. The fact that Ht(x, y) is concave in x and convex in y follows simply from the
convexity of Lt(x,w) in (x,w), as in the theory of convex problems of Bolza more generally.
The defining equation (4.1) says that Ht(x, ·) is the function conjugate to Lt(x, ·). For
each choice of t and x, Lt(x, ·) is not only lower semicontinuous and convex but proper on
lRn. This is evident from (3.2) and the finiteness of ψt assumed in (A4). Moreover the
recession function of Lt(x, ·) is (rcLt)(0, ·) on the general basis of (3.3), and the formula in
Proposition 3.1 shows (rcLt)(0, ·) to be δ0. Thus Lt(x, ·) is coercive, so that its conjugate
must be finite everywhere. In other words, Ht(x, y) must be finite for all (t, x, y).

We claim next that for fixed x, Lt(x, ·) depends epi-continuously on t. This is equiv-
alent to the assertion that the function (z, w) 7→ (Lt + f)(z, w) depends epi-continuously
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on t when for fixed x we define f(z, w) = δ0(z−x). Such epi-continuity is justified by [11,
Theorem 5], because domLt − dom f is all of lRn × lRn. The Legendre-Fenchel transform
preserves epi-convergence [9], so in passing to the conjugate function Ht(x, ·) of Lt(x, ·)
we have Ht(x, ·) depending epi-continuously on t. Because Ht(x, ·) is finite everywhere,
its epi-continuity with respect to t is the same as the continuity of Ht(x, y) in t for fixed
(x, y) [5, Corollaries 4 and 5]. This implies the continuity of Ht(x, y) in (t, x, y) by [8,
Theorem 35.4], due to the concavity-convexity.

Theorem 4.2. Assumptions (A1)–(A4) guarantee that the Bolza problems (PB) and
(QB) both have solutions, and the same for the extended control problems (P ′) and (Q′).
Moreover,

−∞ < inf(P ′) = inf(PB) = sup(QB) = sup(Q′) >∞.

Proof. Only the part concerning the Bolza problems needs to be dealt with, because the
rest will then follow immediately from Theorem 3.4. We shall apply the main results of
the duality theory for Bolza problems in [4, Theorem 1, Theorem 3 and its Corollary 1].
The background for this application is the finiteness of the Hamiltonian as proved in
Proposition 4.1, which guarantees by [4, Corollary on p.17] that certain basic integrability
conditions, called (C0) and (D0) in that paper, are fulfilled. The duality results say then
that we have ∞ > inf(PB) = sup(QB) > ∞ with solutions existing for both problems,
provided that the following two criteria are met in terms of arcs x and y in A1 (this is a
slightly specialized case of the results in question):∫ t1

t0

(rcLt)(xt, ẋt) dt+ (rcLe)(xt0
, xt1

) ≤ 0 only for x = 0,∫ t1

t0

(rcMt)(yt, ẏt) dt+ (rcMe)(yt0
, yt1

) ≤ 0 only for y = 0.

The recession function formulas provided in Propositions 3.1 and 3.3 indicate that this is
indeed true in the present circumstances, because a linear ordinary differential equation
has no solution starting from 0 except the 0 solution.

The conversion of this duality and existence theorem into one for the original control
problems (P) and (Q) will rely on the theory of optimality conditions for convex problems
of Bolza as developed in [3], [4], [13]. In addition to a generalized Hamiltonian differential
equation involving subgradients of Ht, there is a transversality condition on endpoints that
usually is expressed through subgradients of Le or Me but will now be posed in new form.
This form involves subgradients of what we shall call the endpoint Hamiltonian:

He(x1, y0) := sup
x0∈lRn

{〈x0, y0〉 − Le(x0, x1)}. (4.2)

Proposition 4.3. Under (A1)–(A4), the endpoint Hamiltonian He is a finite concave-
convex function on lRn × lRn.

Proof. Definition (4.2) expresses He(x1, ·) as the function conjugate to Le(·, x1). The
latter function, as seen from its definition in (3.2), is not identically ∞ for any choice of
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x1 and is therefore by Proposition 3.1 a lower semicontinuous, proper, convex function
on lRn. Moreover its recession function is (rcLe)(·, 0), and this is δ0 by formula (3.4) in
Proposition 3.1. Hence Le(·, x1) is coercive. Consequently its conjugate He(x1, ·) is finite
everywhere [8, §13]. This means that He(x1, y0) is finite for every choice of (x1, y0) in
lRn× lRn. The concavity of He(x1, y0) in y0 is a general consequence of the joint convexity
of Le(x0, x1) in (x0, x1) in (4.2), cf. [8, Theorem 33.1].

Optimality conditions for the Bolza problems will be presented now in terms of sub-
gradients of the concave-convex functions Ht and He. The theory of such subgradients
may be found in [8, §§35-37].

Theorem 4.4. For arcs x̄ and ȳ to be optimal for (PB) and (QB) under (A1)–(A3), the
following pair of conditions is always sufficient, and when (A4) holds also necessary:

(− ˙̄yt, ˙̄xt) ∈ ∂Ht(x̄t, ȳt) for a.e. t ∈ [t0, t1],

(ȳt1
, x̄t0

) ∈ ∂He(x̄t1
, ȳt0

).
(4.3)

Proof. If the second condition in (4.3) were replaced by the usual transversality condition
(ȳt0

,−ȳt1
) ∈ ∂L(x̄t0

, xt1
), the general result would become a special case of [3, Theorems 5

and 6], because of the equality of optimal values in Theorem 4.2. It remains only to observe
that the stated conditions in terms of He and Le are equivalent to each other by a general
fact of subgradient theory in the case of the relationship between He and Le in (4.2),
namely [8, Theorem 37.5].

Corollary 4.5. Suppose (A1)–(A4) hold. Then for an arc x̄ to be optimal in the Bolza
problem (PB) it is necessary and sufficient that there exist an arc bary such that the
Hamiltonian conditions in (4.3) are satisfied. Any such arc y then solves the dual problem
(QB).

Proof. This combines Theorem 4.4 with the existence assertions in Theorem 4.2.

Generalized Hamiltonian differential equations formulated for convex problems of
Bolza as in (4.3) have been studied for their own sake in [13] and also, incidentally, play
a central role for Bolza problems in the nonconvex case, cf. Clarke [14]. We need next to
determine the specific form they take relative to the given data structure.

Proposition 4.6. Under (A1)–(A4) one has

Ht(x, y) = 〈y,Atx〉+ 〈bt, y〉+ 〈ct, x〉+ J∗t (B∗
t y, Ctx),

He(x1, y0) = 〈be, y0〉+ 〈ce, x1〉+ J∗e (B∗
ey0, Cex1),

(4.4)

where J∗t and J∗e are the concave-convex functions on lRn × lRn conjugate to Jt and Je in
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(2.2) and given by

J∗t (r, s) = sup
u∈Ut

inf
v∈Vt

〈r, u〉+ 〈s, v〉 − Jt(u, v)}

= inf
v∈Vt

sup
u∈Ut

〈r, u〉+ 〈s, v〉 − Jt(u, v)},

J∗e (re, se) = sup
ue∈Ue

inf
ve∈Ve

〈re, ue〉+ 〈se, ve〉 − Je(ue, ve)}

= inf
ve∈Ve

sup
ue∈Ue

〈re, ue〉+ 〈se, ve〉 − Je(ue, ve)}.

(4.5)

These functions are finite everywhere, and J∗t (r, s) depends continuously on (r, s).

Proof. The conjugacy formulas

ψt(qt − Ctx−Dtu) = sup
v∈lRl

{〈qt − Ctx−Dtu, v〉 − ψ∗t (v)}

= sup
v∈Vt

{〈qt − Ctx−Dtu, v〉 − ψ∗t (v)},

ψe(qe − Cex1 −Deue) = sup
ve∈lRle

{〈qe − Cex1 −Deue, ve〉 − ψ∗e(ve)}

= sup
ve∈Ve

{〈qe − Cex1 −Deue, ve〉 − ψ∗e(ve)},

allow us to rewrite the defining formulas (3.2) for Lt and Le in the notation (2.2) as

Lt(x,w) = inf
u∈Ut

Atx+Btu+bt=w

sup
v∈Vt

{Jt(u, v)− 〈ct, x〉 − 〈Ctx, v〉},

Le(x0, x1) = inf
u∈Ue

Beu+be=x0

sup
ve∈Ve

{Je(ue, ve)− 〈ce, x1〉 − 〈Cex1, ve〉}.

These expressions can be substituted into the definitions (4.1) of Ht and (4.2) of He to
obtain

Ht(x, y) = sup
u∈Ut

{〈y,Atx+Btu+ bt〉 − sup
v∈Vt

{Jt(u, v)− 〈ct, x〉 − 〈Ctx, v〉}}

= 〈y,Atx〉+ 〈bt, y〉+ 〈ct, x〉+ sup
u∈Ue

inf
v∈Ve

{〈Ctx, v〉+ 〈B∗
t yt, u〉 − Jt(u, v)},

He(x1, y0) = sup
ue∈Ue

{〈y0, Beue + be〉 − sup
ve∈Ve

{Je(ue, ve)− 〈ce, x1〉 − 〈Cex1, ve〉}}

= 〈be, y0〉+ 〈ct, x1〉+ sup
u∈Ue

inf
v∈Ve

{〈Ctx1, ve〉+ 〈B∗
ey0, ue〉 − Je(ue, ve)}.

In the final versions of these formulas, inf and sup can be interchanged because of the
coercivity of the functions ϕt, ϕe, ψ

∗
t , ψ

∗
t , in the definitions (2.2) of Jt and Je and the

structure (2.4). This is justified as a minimax theorem by [8, Theorem 37.3], a result
which establishes at the same time the finiteness of the expressions (4.5).
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Our last task in the proof is to demonstrate that J∗t (r, s) depends continuously on
(t, r, s). This could be carried out in detail with arguments like those that established
the continuity of Ht(x, y) in (t, x, y) in Proposition 4.1. There is a shortcut, though. The
argument for Ht made no use of any particular properties of the vectors and matrices in
(A3) other than their continuous dependence on t. The continuity property would therefore
be present in particular if Bt and Ct were identity matrices, in which case the continuity
property of Ht reduces to that of Jt. Thus Jt(r, s) must be continuous with respect to
(t, r, s) as claimed.

The next theorem establishes the equivalence between the Hamiltonian and minimax
approaches to optimality.

Theorem 4.7. Under assumptions (A1)–(A4), the Hamiltonian optimality conditions in
(4.3) are satisfied by a pair of arcs x̄ and ȳ in A1 if and only if x̄ and ȳ are trajectories in
A∞ realized by controls ū ∈ U and v̄ ∈ V that satisfy the minimaximum principle (2.5).

Proof. This result will be developed from the following formulas for the subgradients of
Ht and He, which are based on the representations of these functions in Proposition 4.6.
(Here ∂1 and ∂2 designate subgradients with respect to the first and second arguments of
a bivariate function):

∂1Ht(x, y) = A∗t y + ct + C∗t ∂2J
∗
t (B∗

t y, C
∗
t x),

∂2Ht(x, y) = Atx+ bt +Bt∂1J
∗
t (B∗

t y, C
∗
t x),

∂1He(x1, y0) = ce + C∗e∂2J
∗
e (B∗

ey0, C
∗
ex1),

∂2He(x1, y0) = be +Be∂1J
∗
e (B∗

ey0, C
∗
ex1).

These are obtained by the calculus in [8, Theorems 23.8 and 23.9] and are justified by the
finiteness of the concave-convex functions Jt and Je, which was proved in Proposition 4.6.
We combine these formulas with the fact that

∂Ht(x, y) = ∂1Ht(x, y)× ∂2Ht(x, y) and ∂He(x1, y0) = ∂1He(x1, y0)× ∂2He(x0, y0)

(cf. [8, §35]) and similarly for J∗t and J∗e to see that

∂Ht(x, y) = {(A∗t y + C∗t v + ct, Atx+Btu+ bt)
∣∣ (u, v) ∈ ∂J∗t (B∗

t y, Ctx)},
∂He(x1, y0) = {(C∗e ve + ct, Beue + be)

∣∣ (ue, ve) ∈ ∂J∗e (B∗
ey0, Cex1)}.

(4.6)

A further observation is that

∂J∗t (B∗
t y, Ctx) = [ set of all saddlepoints of Jt(u, v)− 〈B∗

t y, u〉 − 〈Ctx, v〉 on Ut × Vt],

∂J∗e (B∗
ey0, Cex1) = [ set of all saddlepoints of Je(ue, ve)− 〈B∗

ey0, ue〉 − 〈Cex1, ve〉 on Ue × Ve],
(4.7)

which is true by conjugacy [8, Theorems 37.5 and 36.6]. As far as endpoints are concerned,
we have from (4.6) and (4.7) that

(ȳt1
, x̄t0

) ∈ ∂He(x̄t1
, ȳt0

) ⇔∃(ūe, v̄e) ∈ ∂J∗e (B∗
e ȳt1

, Cex̄t1
)

with x̄t0
= Beūe + be, ȳt1

= C∗e v̄e + ce.
(4.8)
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Similarly, for any t it is true that

(− ˙̄yt, ˙̄xt) ∈ ∂Ht(x̄t, ȳt) ⇔∃(ūt, v̄t) ∈ ∂J∗t (B∗
t ȳt, Ctx̄t)

with ˙̄xt = Atx̄t +Btūt + bt, − ˙̄yt = A∗t ȳt + C∗t v̄t + ct.
(4.9)

If the minimaximum principle (2.6) holds for some choice of ū ∈ U and v̄ ∈ V, and x̄ and ȳ
are the corresponding state trajectories in the control problems (P) and (Q), we do have
(4.7) and (4.8), the latter for a.e. t. Then, according to the formulas we have arrived at,
x̄ and ȳ satisfy the Hamiltonian conditions (4.3) and belong to A∞n [t0, t1] instead of just
A1

n[t0, t1].

Conversely, suppose x̄ and ȳ are elements of A1
n[t0, t1] for which the Hamiltonian

conditions (2.6) hold. Certainly then there is a choice of ūe and v̄e for which (4.8) holds.
We know further that for almost every t we can find ut and vt satisfying (4.9). It must
be shown that these vectors can be chosen in such a way that the functions t 7→ ut and
t 7→ vt are measurable and essentially bounded. Inasmuch as J∗t is finite everywhere,
the subgradient set ∂J∗t (r, s) is always nonempty and compact (by [8, Theorem 23.4] as
applied to the separate arguments). The continuity of J∗t (r, s) in t implies further that the
multifunction (t, r, s) 7→ ∂J∗t (r, s) is locally bounded and of closed graph [8, Theorem 24.5].
Therefore the multifunction t 7→ ∂J∗t (x̄t, ȳt) is likewise locally bounded and of closed graph,
as well and nonempty-valued. A measurable selection then exists and must be essentially
bounded (cf. [7, Cor. 1C]). This selection is in the form of a function t 7→ (ūt, v̄t) with
exactly the properties we need.
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