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Abstract. In an optimization problem that depends on parameters, an important issue
is the effect that perturbations of the parameters can have on solutions to the problem
and their associated multipliers. Under quite broad conditions the possibly multi-valued
mapping that gives these elements in terms of the parameters turns out to enjoy a property
of “proto-differentiability.” Generalized derivatives can then be calculated by solving an
auxiliary optimization problem with auxiliary parameters. This is constructed from the
original problem by taking second-order epi-derivatives of an essential objective function.

1. Solutions to Optimization Problems with Parameters.

From an abstract point of view, a general optimization problem relative to elements x

of a Banach space X can be seen in terms of minimizing an expression f(x) over all
x ∈ X , where f is a function on X with values in IR = IR ∪ {±∞}. The effective domain
dom f :=

{
x ∈ X

∣∣ f(x) < ∞
}

gives the “feasible” or “admissible” elements x. Under the
assumption that f is lower semicontinuous and proper (the latter meaning that f(x) < ∞
for at least one x, but f(x) > −∞ for all x), a solution x̄ to the problem must satisfy
0 ∈ ∂f(x̄), where ∂f denotes subgradients in the sense of Clarke [1] (see also Rockafellar
[2]). When f is convex, such subgradients coincide with the ones of convex analysis, and
the condition 0 ∈ ∂f(x̄) is not only necessary for optimality but sufficient.

A substantial calculus, part of a broader subject called nonsmooth analysis, has been
built up for determining the set ∂f(x̄) in the case of particular structure of f . Dual elements
such as Lagrange multipliers are often involved, and under convexity assumptions these
typically solve a dual problem of optimization.

It has long been known that in order to derive and interpret the dual elements appear-
ing in optimality conditions, it is important to study optimization problems not in isolation
but in parametrized form. Only recently, however, have the tools of analysis reached the
stage where it is possible to analyze in a general and effective manner the dependence of
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solutions and multipliers on parameters and to obtain results on generalized differentiabil-
ity with respect to parameters. Such results are the topic here. They are closely tied in
with a newly developed theory of second derivatives of nonsmooth functions.

If a single problem of optimization consists of minimizing an expression f(x) over all
x ∈ X , then a parameterized problem, depending on an element u in a Banach space U ,
consists of minimizing f(u, x) over all x ∈ X , where f is a function on U ×X . All aspects
of dependence, including variable constraints, can be represented in principle in this very
simple form. For technical reasons that will later emerge, it is advantageous however to
proceed with slightly more structure: parameterization not only by an abstract element
u ∈ U but also by a “tilting” term v ∈ X ∗, where X ∗ is the Banach space dual to X . Thus
we adopt as our basic model the parameterized problem

(
P(u, v)

)
minimize f(u, x) + 〈x, v〉 over all x ∈ X ,

where the function f : U ×X → IR is lsc and proper. To each choice of (u, v) ∈ U ×X ∗ we
assign a set M(u, v) ⊂ X ×U∗ consisting of the primal-dual pairs (x, y) associated with an
optimality condition for

(
P(u, v)

)
. We focus on the possible “differentiability” properties

of the mapping M : U × X ∗ → X × U∗ and their relationship to such properties of f .

The first task is to derive the specific form of M from the calculus of first-order
optimality conditions in terms of subgradients. This will provide a bridge between M

and the subgradient mapping ∂f : U × X → U∗ × X ∗. Next we must consider the kind
of generalized differentiation to apply to M and ∂f . This will be “proto-differentiation,”
as defined in [3] by graphical convergence of certain difference quotient mappings. The
concept requires a brief review of notions of set convergence, which are then utilized also
in defining first and second-order “epi-derivatives” of f by way of epigraphical convergence
of first and second-order difference quotient functions [4].

A fundamental connection between second-order epi-derivatives of f and proto-deriva-
tives of ∂f is the key to obtaining proto-derivatives of M . It turns out that in many im-
portant cases these derivatives can be determined by solving a “derivative problem,” which
is a parameterized optimization problem in the same mold as

(
P(u, v)

)
. Differentiation

formulas in [4] make it possible to work out the details quite explicitly for a wide range of
situations.



2. Set Convergence and Subgradients.

For a sequence {Cν}ν∈ IN of nonempty subsets of the Banach space W, the inner limit set
lim infν Cν consists of all limit points of sequences {wν}ν∈ IN selected with wν ∈ Cν , while
the outer limit set lim supν Cν consists of all cluster points of such sequences. One says
that {Cν}ν∈ IN converges if lim infν Cν = lim supν Cν , the latter set then being called the
limit and denoted by limν Cν .

This is set convergence in the Painlevé-Kuratowski sense. Set convergence in the
Mosco sense [5] means that the limit exists also with respect to the weak topology on W,
and the weak limit coincides with the strong limit. On the other hand, set convergence
in the Attouch-Wets sense [6] refers to the uniform convergence of the distance functions
w 7→ d(w,Cν) on all bounded subsets of W. When W is finite-dimensional, the three
notions are equivalent; in general, Attouch-Wets convergence implies Painlevé-Kuratowski
convergence. Mosco convergence is really appropriate only for convex sets, where it lies
between the other two. Although it has been the most studied concept of convergence in
the theory of variational problems, its good properties are limited inherently to reflexive
Banach spaces, as shown recently by Beer and Borwein [7].

A sequence {fν}ν∈ IN of functions from W to IR is said to epi-converge if the epigraphs
epi fν = {(w,α) ∈ W× IR

∣∣ α ≥ fν(w)} converge as sets. The epi-limit function f , when it
exists, is characterized by the fact that for every w ∈ W both of the following properties
hold:

∀wν → w, lim infν fν(wν) ≥ f(w),

∃wν → w, lim supν fν(wν) ≤ f(w).
(2.1)

This type of function convergence, which in general neither implies nor is implied by
pointwise convergence, it was first considered by Wijsman [8], who proved that for convex
functions in a finite-dimensional setting it made the Legendre-Fenchel transform (f 7→ f∗)
be continuous. Continuity of the Legendre-Fenchel transform holds in reflexive Banach
spaces under Mosco epi-convergence, where the epigraphs converge not just in the Painlevé
sense but the Mosco sense [9]. Without reflexivity it fails for Mosco epi-convergence [7], but
it holds in all normed linear spaces with respect to epi-convergence in the Attouch-Wets
sense, cf. [6].

In what follows, set convergence and epi-convergence are to be interpreted in the
underlying Painlevé-Kuratowski sense, unless otherwise specified.

Let C be a closed subset of W and let w̄ ∈ C. The basic tangent cone (or contingent
cone) to C at w̄ is the closed set

TC(w̄) := lim sup
τ ↘ 0

τ−1(C − w̄). (2.2)



We say that C is derivable at w̄ if the sets τ−1(C − w̄) actually converge as τ ↘0, so that
TC(w̄) is obtained not just as the outer limit but the limit. This certainly holds under the
stronger condition that

lim sup
τ ↘ 0

τ−1(C − w̄) = lim inf
w(∈C)→w̄

τ ↘ 0

τ−1(C − w̄), (2.3)

which is the Clarke regularity of C at w̄. Clarke regularity is an important property
commonly satisfied in connection with the derivation of first-order optimality conditions
but not, for instance, in the study of graphs of nonsmooth mappings. It is for the latter
purpose that we shall find derivability to be of independent interest. The property of
derivability of a set was first utilized in parametric optimizaton by Shapiro [10].

Clarke regularity holds at every point w̄ ∈ C when C is convex, or when C is defined
by smooth constraints for which a natural constraint qualification is satisfied [1, pp. 51–57].
When W is finite-dimensional, it is known to be equivalent to the condition that

TC(w̄) = lim inf
w(∈C)→w̄

TC(w). (2.4)

The Clarke normal cone to C at w̄ is the closed convex cone NC(w̄) in W∗ defined in
general as the polar of the limit set on the right side of (2.3), which is the Clarke tangent
cone to C at w̄ and is known always to be convex [1, p. 51], [2, p. 263]. Here we shall
mainly use this cone in the presence of Clarke regularity. Then NC(w̄) can be viewed as
the polar of the basic tangent cone TC(w̄), and vice versa:

NC(w̄) = {z ∈ W∗ ∣∣ 〈w′, v〉 ≤ 0 for all w′ ∈ TC(w̄)},

TC(w) = {w′ ∈ W
∣∣ 〈w′, v〉 ≤ 0 for all z ∈ NC(w̄)}.

(2.5)

Consider now a proper, lsc function f : W → IR and a point w̄ ∈ dom f . For each
τ > 0 define the difference quotient function ∆τf(w̄) : W → IR by

∆τf(w̄)(w′) = [f(w̄ + τw′)− f(w̄)]/τ. (2.6)

Define the (lower) subderivative function Df(x̄) : X → IR by

Df(w̄)(w̄′) = lim inf
w′→w̄′

τ ↘ 0

∆τf(w̄)(w′). (2.7)

If the functions ∆τf(w̄) epi-converge as τ ↘0, the limit function necessarily then being
Df(w̄), we say that f is epi-differentiable at w̄—properly if in addition Df(w̄)(0) > −∞



(which is equivalent to Df(w̄) being proper). The epi-differentiability of f at w̄ is equiv-
alent to the derivability of epi f at

(
w̄, f(w̄)

)
, because the epigraph of ∆τf(w̄) is the set

(epi f)−
(
w̄, f(w̄)

)
, while the epigraph of Df(w̄) is the cone Tepi f

(
w̄, f(w̄)

)
.

Epi-differentiability of f at w̄ is implied by Clarke regularity of f at w̄, defined as the
Clarke regularity of epi f at

(
w̄, f(w̄)

)
. This property is present at every w̄ ∈ dom f when

f is convex. A substantial calculus is available for establishing Clarke regularity in the
case of a function obtained through various constructions, cf. Clarke [1], Rockafellar [13],
Borwein and Ward [14].

The set of generalized subgradients of f at w̄ is defined in terms of the Clarke normal
cone to epi f at

(
w̄, f(w̄)

)
by

∂f(w̄) = {z ∈ W∗ ∣∣ (z,−1) ∈ Nepi f

(
w̄, f(w̄)

)
}, (2.8)

and the set of singular (or recessional) subgradients by

∂
∞
f(w̄) = {z ∈ W∗ ∣∣ (z, 0) ∈ Nepi f

(
w̄, f(w̄)

)
}, (2.9)

the latter being the same as the recession cone of ∂f(w̄) when ∂f(w̄) 6= ∅. If f is Clarke
regular at w̄, so that the cones Nepi f

(
w̄, f(w̄)

)
and Tepi f

(
w̄, f(w̄)

)
are polar to each other,

one has from (2.8) that

∂f(w̄) = {z ∈ W∗ ∣∣ 〈w′, z〉 ≤ Df(w̄)(w′) for all w′ ∈ W},

∂
∞
f(w̄) = {z ∈ W∗ ∣∣ 〈w′, z〉 ≤ 0 for all w′ ∈ dom Df(w̄)},

(2.10)

and moreover

Df(w̄)(w′) = sup
z∈∂f(w̄)

〈w′, z〉 for all w′ ∈ W when ∂f(w̄) 6= ∅, (2.11)

the latter case then being precisely the one where f is epi-differentiable at w̄. Many
formulas for calculating subgradients are provided in [1], [13], [14], [15].



3. First-Order Optimality Conditions.

Returning to our general model of parametric optimization for a function f : U × X → IR

that is lsc and proper, we now seek first-order conditions on a solution x̄ to the problem(
P(ū, v̄)

)
associated with a particular parameter choice ū. Our ultimate goal is the analysis

of the effects on such conditions of perturbations in ū. In the circumstances under which
we are able, for now, to obtain good results, f will be Clarke regular. We then are in a
context where subgradients of f can be handled in terms of formulas (2.10) and (2.11),
so the various alternative approaches to first-order conditions that might otherwise be
considered turn out to coincide with the Clarke approach, and in the convex case, with
the one of convex analysis. It will therefore suffice, for the background we require, to
record the main, general facts about first-order conditions that are obtainable by with
Clarke subgradients. The detailed development of these conditions in specific cases, such
as infinite-dimensional problems involving integral functionals, lies obviously beyond our
scope but can be found for example in [1].

A point x̄ ∈ X is said to be locally optimal for a problem
(
P(ū, v̄)

)
if x̄ furnishes

a local minimum to the objective function ϕ(x) = f(ū, x) + 〈x, v̄〉 in this problem and
ϕ(x̄) < ∞ (i.e., the objective in

(
P(ū, v̄)

)
is not identically ∞, which would indicate the

absence of any feasible or admissible points). It is globally optimal if the local minimum
is a global minimum, as must always hold for instance in the convex case.

The basic constraint qualification is said to hold for
(
P(ū, v̄)

)
at x̄ if

the only ȳ ∈ U∗ with (ȳ, 0) ∈ ∂
∞
f(ū, x̄) is ȳ = 0. (3.1)

This abstract condition on singular subgradients of f reduces in numerous special cases
to the assumptions on constraint structure that are needed in deriving “multiplier rules.”
Such is true for instance in nonlinear programming (cf. [4]) and in the theory of convex
Bolza problems in optimal control and the calculus of variations [16]. It may well hold in
other cases not yet fully studied.

It is valuable to consider along with the basic constraint qualification a related con-
dition called calmness. This is said to hold for

(
P(ū, x̄)

)
at x̄ if, for some neighborhood

X of x̄ relative to which the objective function in
(
P(ū, x̄)

)
is minimized at x̄, the local

optimal value function

pX(u, v) := inf
x∈X

{f(u, x) + 〈x, v̄〉} (3.2)

satisfies

lim inf
u→ū

[
pX(u, v̄)− pX(ū, v̄)

]
/‖u− ū‖ > −∞. (3.3)



Calmness is a minimal kind of stability property. Without it, the value pX(ū, v̄) drops off
at an infinite rate relative when ū is perturbed in certain directions.

The term “calmness” was introduced by Clarke in obtaining a Lagrange multiplier
rule for mathematical programming problems [17] and optimality conditions for variational
problems [18]. The property itself has a longer history of being used for similar purposes
in convex optimization, cf. Rockafellar [19], [20]. When f is convex, one can take X = X .
The value p(u, v) := pX (u, v) is then convex in its dependence on u, so that calmness
reduces to the existence of subgradients of p(·, v̄) at ū. Guaranteeing the existence of
such subgradients is exactly the role of the various conditions in convex optimization that
concern the intersection of effective domains, most of which reduce in our formulation
here to the existence of some x̃ ∈ X such that the function u 7→ f(u, x̃) is finite on some
neighborhood of ū. For more on this topic we refer to [21]. In the case where U and
X are finite-dimensional, the basic constraint qualification implies calmness regardless of
whether f is convex, cf. [15].

Theorem 1. If x̄ is locally optimal for problem
(
P(ū, v̄)

)
and the calmness condition

holds, or the basic constraint qualification holds with both U and X finite-dimensional,

then

∃ȳ ∈ U∗ with (ȳ,−v̄) ∈ ∂f(ū, x̄). (3.3)

Conversely, if the latter is satisfied and f is convex, then x̄ is globally optimal for
(
P(u, v)

)
and calmness holds.

Proof. Under the calmness condition there is a value ρ > 0 such that pX(u, v̄) ≥ pX(ū, v̄)−
ρ‖u − ū‖ for all u near ū. This means that f(u, x) + 〈x, v̄〉 ≥ f(ū, x̄〉 + 〈x̄, v̄〉 − ρ‖u − ū‖
for all (u, x) near (ū, x̄). Then for g(u, x) := 〈x, v̄〉 + ρ‖u − ū‖ the function f + g has
a local minimum on U × X at (ū, x̄), which implies (0, 0) ∈ ∂(f + g)(ū, x̄). Inasmuch
as g is Lipschitz continuous, we have ∂(f + g)(ū, x̄) ⊂ ∂f(ū, x̄) + ∂g(ū, x̄) [13, p. 345].
But ∂g(ū, x̄) = {(y, v̄)

∣∣ ‖y‖ ≤ ρ}. Therefore ∂f(ū, x̄) contains an element −(y, v̄) with
‖y‖ ≤ ρ. Writing y as −ȳ, we get (3.3).

In the finite-dimensional case with the constraint qualification satisfied, the validity
of (3.3) is asserted in [15, Thm. 5.1]. When f is convex, (3.3) implies

f(u, x) ≥ f(ū, x̄) + 〈(u, x)− (ū, x̄), (ȳ,−v̄)〉.

This inequality, specialized to u = ū, yields the global optimality of x̄ in
(
P(ū, v̄)

)
. It also

yields
inf
x
{f(u, x) + 〈x, v̄〉} ≥ inf

x
{f(ū, x) + 〈x, v̄〉} − ‖ȳ‖ ‖u− ū‖,



which is a strong version of the calmness condition.

On the basis of Theorem 1, we associate with the parameterization
(
P(u, v)

)
the

set-valued mapping M : U × X ∗ 7→ X × U∗ defined by

M(u, v) = {(x, y)
∣∣ (y,−v) ∈ ∂f(u, x)}. (3.4)

When f is convex, the pairs (x, y) ∈ M(u, v) give the primal and dual optimal elements
associated with

(
P(u, v)

)
, but in general, of course, they only give elements that are quasi-

optimal in the sense of satisfying first-order conditions.

An example in finite dimensions, covering a multitude of applications, will serve in
illustrating theorem 1 and other results to follow. For this we consider the parameterized
problem

(
P0(u, v, w)

)
minimize g(w, x) + 〈x, v〉+ h

(
u + G(w, x)

)
over x ∈ C ⊂ IRn

for parameter elements u ∈ IRm, v ∈ IRn and w ∈ IRd. This corresponds to

f0(u, w, x) = g(w, x) + h
(
u + G(w, x)

)
+ δC(x), (3.5)

where δC is the indicator of C, and the pair (u, w) now stands for what previously was
denoted by just u. Rather than press for the weakest viable assumptions, we take the
function g : IRp × IRn → IR and the mapping G : IRp × IRn → IRm to be of class C1.
We suppose that the set C ⊂ IRn is convex (nonempty) and closed, and that the function
h : IRm → IR is convex (proper) and lsc. We denote by D the (convex) set dom h, so that
the implicit system of constraints in

(
P(u, v, w)

)
is

x ∈ C and u + G(w, x) ∈ D. (3.6)

The vector w is a catch-all for any parameters, such as coefficients or matrix entries,
on which g and G may depend, and with respect to which we may wish to consider
perturbations. The explicit incorporation of the u and v as parameter vectors, in addition
to w, facilitates the application of various technical results.

Because of the extra structure in this example the “solution” mapping to be studied
is M0 : IRm × IRn × IRp → IRn × IRm × IRp as defined by

M0(u, v, w) = {(x, y, z)
∣∣ (y, z,−v) ∈ ∂f0(u, w, x)}. (3.7)



Theorem 2. The function f0 representing the parameterized problem
(
P0(u, v, w)

)
is

Clarke regular everywhere. In terms of L(w, x, y) := g(w, x) + 〈G(w, x), y〉 one has that

(y, z,−v) ∈ ∂f0(u, w, x) ⇐⇒
{

y ∈ ∂h
(
uG(w, x)

)
, z = ∇wL(w, x, y),

0 ∈ v +∇xL(w, x, y) + NC(x).
(3.8)

On the other hand, in terms of L∞(w, x, y) := 〈G(w, x), y〉 one has that

(y, z,−v) ∈ ∂
∞
f0(u, w, x) ⇐⇒

{
y ∈ ND

(
u + G(w, x)

)
, z = ∇wL∞(w, x, y),

0 ∈ ∇xL∞(w, x, y) + NC(x).
(3.9)

Thus the basic constraint qualification for
(
P0(ū, v̄, w̄)

)
at x̄ is the condition that

the only ȳ ∈ ND

(
ū + G(w̄, x̄)

)
with −∇xL

∞(w̄, x̄, ȳ) ∈ NC(x̄) is ȳ = 0. (3.10)

Proof. It will be helpful here and later to observe that the function f0 can be expressed
in the composite form

f0 = k ◦ F for
{

F (u, w, x) =
(
g(w, x), u + G(w, x), x

)
,

k(α, u, x) = α + h(u) + δC(x).
(3.11)

The mapping F : IRm × IRp × IRn → IR × IRm × IRn is smooth, while the function
k : IR × IRm × IRn → IR is lsc, proper and convex. The formulas asserted for ∂f and ∂∞f

follow from this representation by the calculus rules in [15], and the Clarke regularity of
f0 is then obtainable from Poliquin [22].

The version of the basic constraint qualification that emerges in (3.10) reduces to
the constraint qualification of Mangasarian-Fromovitz in the classical case of nonlinear
programming where C = IRn and h = δK for the case K = IRx

+ × {0}m−s, cf. [4, p. 94].

4. Proto-differentiation of Set-valued Mappings.

Our aim is to determine the vector pairs (x′, y′) giving the possible rates of perturbation of a
(quasi-)optimal pair (x̄, ȳ) for

(
P(ū, v̄)

)
, relative to rates of perturbation in the parameter

pair (ū, v̄) as specified by a pair (u′, v′). In other words, we wish to differentiate the
mapping M in some sense. But there is no classical guide to doing this, since M is
not necessarily single-valued, and even if it were it would not submit itself to standard
definitions of differentiability.

In analogy with the notion that a derivative should be a limit of difference quotients,
we may consider for each τ > 0 the difference quotient mapping

(u′, v′) 7→ τ−1[M(ū + τu′, v̄ + τv′)− (x̄, ȳ)]

= {(x′, y′)
∣∣ (x̄ + τx′, ȳ + τy′) ∈ M(ū + τu′, v̄ + τv′)}

(4.1)



and look for an appropriate limit as τ ↘0. It turns out that graphical limits in terms of
set convergence lead to the results we require. We proceed therefore to develop this idea
from a general perspective.

A sequence of (set-valued) mappings Sν : W →→ Z, where W and Z are Banach spaces,
is said to converge graphically to a mapping S : W →→ Z if the sets gphSν = {(w, z)

∣∣ z ∈
Sν(w)} converge in W ×Z to gphS:

gphS = lim sup
ν→∞

gph Sν = lim inf
ν→∞

gphSν . (4.2)

In contrast, the mappings Sν are said to converge pointwise to S if for each fixed u the
sets Sν(u) converge to S(u). Graphical convergence and pointwise convergence can be
seen to coincide when the effective domains dom Sν := {u

∣∣ Sν(u) 6= ∅} are identical and
the mappings uniformly enjoy some Lipschitz property, for instance, but in general neither
type of convergence implies the other.

Consider now a mapping S : W →→ Z with closed graph. For fixed w̄ and z̄ ∈ S(w̄),
define the quotient mapping ∆τS(w̄| z̄) : W →→ Z by

∆τS(w̄| z̄)(w′) = τ−1
[
S(w̄ + τw′)− z̄

]
= {z′

∣∣ z̄ + τz′ ∈ S(w̄ + τw′)}. (4.3)

Define the (outer) subderivative mapping DS(w̄| z̄) : W →→ Z by

DS(w̄| z̄)(w̄′) = lim sup
w′→w̄
τ ↘ 0

∆τS(w̄| z̄)(w′). (4.4)

If the mappings ∆τS(w̄| z̄) converge graphically as τ ↘0, the limit mapping necessarily
being DS(w̄| z̄), we say that S is proto-differentiable at w̄ relative to z̄. This holds if and
only if gph S is derivable at (w̄, z̄), inasmuch as the graph of the mapping ∆τS(w̄| z̄) is
τ−1

[
gphS − (w̄, z̄)

]
and the graph of the mapping DS(w̄| z̄) is Tgph S(w̄, z̄). A stronger

property is the semi-differentiability of S at w̄ relative to z̄, by which we mean the property
that

DS(w̄| z̄)(w̄′) = lim
w′→w̄′

τ ↘ 0

∆τS(w̄| z̄)(w′) for all w̄′. (4.5)

It should carefully be noted that the derivatives in all cases depend not only on the
choice of a point w̄ but also on the particular element z̄ selected from S(w̄), and this is
indeed essential to the geometric interpretation. When S(w̄) consists of a unique element
z̄, we of course write DS(w̄) in place of DS(w̄| z̄). When S is a single-valued differentiable
mapping in the finite-dimensional setting, one gets DS(w̄)(w′) = ∇S(w̄)w′, where ∇S(w̄)
denotes the Jacobian matrix of S at w̄.



Proto-differentiability was introduced in Rockafellar [3], although the idea of differen-
tiating a set-valued mapping by constructing an appropriate tangent cone to its graph was
first developed in detail in the book of Aubin and Ekeland [24]. Crucial to the usefulness
of proto-differentiability is the geometric fact that the graph of S is quite often derivable
at points where it may fail to be Clarke regular. For instance in the case of S : IR →→ IR

where the graph of S is a broken curve composed of finitely many smooth segments, S

is proto-differentiable everywhere even though its graph fails to be Clarke regular at the
breakpoints.

Various properties of proto-differentiability and its connection with semi-differen-
tiability are established in [3]. Semi-differentiability in special forms has been considered
by Thibault [25], Shapiro [26] [27] and Robinson [28] [29], among others.

We adopt proto-differentiability as the fundamental concept to apply in the sensitivity
analysis of the mapping M in parametric optimization. Thus we look for circumstances
in which the difference quotient mappings in (4.1), denoted by ∆τM(ū, v̄| x̄, ȳ), converge
graphically as τ ↘0 and, when they do, have as their limit DM(ū, v̄| x̄, ȳ) a mapping for
which a usable formula is available. A simple observation enables us to connect this up
with the higher-order subdifferential analysis of f .

Theorem 3. The solution mapping M is proto-differentiable at (ū, v̄) relative to (x̄, ȳ) if

and only if the subgradient mapping ∂f is proto-differentiable at (ū, x̄) relative to (ȳ,−v̄).
One has

DM(ū, v̄| x̄, ȳ)(u′, v′) = {(x′, y′)
∣∣ (y′,−v′) ∈ D(∂f)(ū, x̄| ȳ,−v̄)(u′, x′)}. (4.6)

Proof. This is immediate from the definitions via (3.4).

The issue can now be seen in terms of generalized second derivatives of f : we wish
to differentiate the mapping ∂f , which is already a type of first derivative of f . The
classical framework provides us here with some possible guidelines. For the sake of insights,
temporarily consider f simply as a function on IRn and suppose it is of class C2. The
subgradient mapping ∂f reduces then to the usual gradient mapping ∇f : IRn → IRn, and
proto-differentiation of ∂f comes down to ordinary differentiation of ∇f :

D(∇f)(w̄)(w̄′) = lim
w′→w̄′

τ ↘ 0

∇f(w̄ + τw′)−∇f(w̄)
τ

= ∇2f(w̄)w̄′, (4.7)

where ∇2f(w̄) is the matrix of second-derivatives of f at w̄. The matrix ∇2f(w̄) can also
be obtained by another route, through a limit of second-order difference quotients:

lim
w′→w̄′

τ ↘ 0

f(w̄ + τw′)− f(w̄)− τ〈w′,∇f(w̄)〉
1
2τ2

= 〈w̄′,∇2f(w̄)w̄′〉. (4.8)



A key fact is this: if the function w̄′ 7→ 〈w̄′,∇2f(w̄)w̄′〉 in (4.8) is denoted by D2f(w̄), the
gradient mapping associated with it is twice the mapping w̄′ 7→ ∇2f(w̄)w̄′ in (4.7), so that
symbolically we have

∇
(
D2f(w̄)

)
= 2D(∇f)(w̄) for all w̄. (4.9)

The task presents itself of generalizing this formula from C2 functions to more general,
possibly nonsmooth functions which, like the f in our perturbation model, may even be
extended-real-valued. The attraction is that if derivatives of ∂f can be calculated in terms
of a second-derivative function associated with f , it will be possible to give a variational
interpretation to the formula in Theorem 3. In fact the derivatives of M will then be
obtainable by solving a “derivative” optimization problem. To bring this to reality, we
must work next on the general definition of second derivatives.

5. Second-Order Epi-Derivatives.

Let f : W → IR be any lsc, proper function, and let w̄ ∈ dom f . Fix any z̄ ∈ ∂f(w̄). For
each τ > 0 define the second-order difference quotient function ∆2

τf(w̄| z̄) : W → IR by

∆2
τf(w̄| z̄)(w′) =

f(w̄ + τw′)− f(w̄)− τ〈w′, z̄〉
1
2τ2

. (5.1)

Define the (lower) second subderivative function D2f(w̄| z̄) : W → IR by

D2f(w̄| z̄)(w̄′) = lim inf
w′→w̄′

τ ↘ 0

∆2
τf(w̄| z̄)(w′). (5.2)

If the functions ∆2
τf(w̄| z̄) epi-converge as τ ↘0, the limit necessarily being the function

D2f(w̄| z̄), we say that f is twice epi-differentiable at w̄ relative to z̄—properly if, in
addition, D2f(w̄| z̄)(0) > −∞ (which is equivalent to D2f(w̄| z̄) being proper).

When z̄ is the sole element of ∂f(w̄), we can just write D2f(w̄) in place of D2f(w̄| z̄),
but since the multi-valuedness of the mapping ∂f is an inherent feature of nonsmooth
analysis, the dependence of second-order epi-derivatives at w̄ on the choice of a subgradient
z̄ ∈ ∂f(w̄) must be faced in general.

A central question is whether there are useful functions f that are twice epi-differen-
tiable and for which the second derivatives can readily be calculated. A surprisingly strong
answer can be given in finite dimensions.

Theorem 4. Suppose that a function f : IRn → IR can be represented in the form

f(w) = ϕ
(
F (w)

)
, where F : IRn → IRm is a mapping of class C2 and ϕ : IRm → IR is a



convex function that is piecewise linear-quadratic and such that the following condition is

satisfied at a given point w̃ ∈ dom f :

the only ỹ ∈ ∂
∞
ϕ
(
F (w̃)

)
satisfying ỹ∇F (w̃) = 0 is ỹ = 0. (5.3)

Then at all w̄ ∈ dom f in some neighborhood of w̃, f is Clarke regular at w̄ with ∂f(w̄) =
∂ϕ

(
F (w̄)

)
∇F (w̄), and furthermore, f is twice epi-differentiable at w̄ relative to every

z̄ ∈ ∂f(w̄).

Proof. See [4, Thm. 4.5].

A complete formula for the second-order subderivative functions D2f(w̄| z̄) in Theorem
4 is furnished in [4, Thm. 4.5] as well, but we shall not go into the details here. The class
of functions representable in this form is much broader than one might at first imagine. In
saying that the convex function ϕ is piecewise linear-quadratic we mean that the convex
set dom ϕ is a polyhedron decomposable into finitely many cells, relative to each of which
there is a quadratic—or as a special case affine—expression for ϕ(w). If the expressions are
all affine, ϕ is piecewise linear , and this is equivalent to the epigraph of ϕ being polyhedral.
Even with ϕ just piecewise linear one has large array of possibilities.

For example, a kind of function at the top of the list in most efforts at devising gen-
eralized second derivatives in nonsmooth analysis is that given as the pointwise maximum
of a finite collection of C2 functions. Let us imagine more generally the sum of such a
function and the indicator of a set described by finitely many C2 constraints: in notation,

f(w) = max{f1(w), · · · , fr(w)}+ δC(w) (5.4)

where

C = {w
∣∣ fi(w) ≤ 0 for i = r + 1, · · · , s; fi(w) = 0 for i = s + 1, · · · ,m}, (5.5)

all the functions fi being of class C2. We then have the representation f(w) = ϕ
(
F (w)

)
for the C2 mapping F : w 7→

(
f1(w), · · · , fm(w)

)
and the piecewise linear function

ϕ(α1, · · · , αm) =

{
max

i=1,···,r
αi if αi

{
≤ 0 for i = r + 1, . . . , s
= 0 for i = s + 1, . . . ,m

∞ otherwise.

Moreover, condition (5.3) then reduces to an equivalent form of the Mangasarian-Fromovitz
constraint qualification being satisfied in (5.5) at a point w̃ ∈ C. The conclusion then



is that a function of form (5.4)-(5.5) is twice epi-differentiable whenever the active con-
straints that may be involved satisfy the standard constraint qualification. Incidentally, even
if the term δC were dropped from (5.4) it would not necessarily be true that D2f(w̄| z̄) is
finite everywhere.

This example alone covers the situations most commonly treated in nonlinear pro-
gramming, but the general representation in Theorem 4 also encompasses penalty terms
on constraints, augmented Lagrangians, and more. An explanation of such possibilities is
given in [30]. It is also shown in [30] that a full theory of second-order optimality condi-
tions in nonlinear programming can be derived from second-order epi-differentiation of the
functions in Theorem 4.

A further result about second-order epi-differentiability has been provided by Do in
his recent dissertation [31]. He has shown roughly that an integral functional of the form

If (w) =
∫

Ω

f
(
ω, w(ω)

)
µ(dω) (5.6)

on Lp(Ω,A, µ; IRn), 1 < p < ∞, is everywhere twice epi-differentiable when for each ω

the function f(ω, ·) is convex and twice epi-differentiable everywhere. Here the twice epi-
differentiability is of If can be interpreted in the Mosco sense: the second-order difference
quotients epi-converge in the Mosco sense.

A general connection between second-order epi-differentiability of f and proto-differen-
tiability of ∂f may be stated next as a far-reaching generalization of the classical formula
in (4.9).

Theorem 5. Let W be a reflexive Banach space and let f : W → IR be lsc, proper and

convex. Let z̄ ∈ ∂f(w̄). Then f is twice epi-differentiable (Mosco sense) at w̄ relative to z̄

if and only if ∂f is proto-differentiable at w̄ relative to z̄, in which case

∂
[
D2f(w̄|z̄)

]
= 2D(∂f)(w̄| z̄). (5.7)

This result was obtained in finite dimensions in Rockafellar [32] and generalized to
infinite dimensions by Do [31]. Its proof is based on Attouch’s theorem [33], which connects
the epi-convergence of convex functions with the graphical convergence of their subgradient
mappings.

Although Theorem 5 is stated for convex functions only, it extends immediately to
functions representable as f = f1 + f2 where f1 is convex and f2 is of class C2. Such
functions still have convex effective domain, however, so this is not a way of managing to
handle nonconvex constraints. For nonconvex constraints in finite dimensions, however,
there is a powerful alternative.



Theorem 6 (Poliquin [34]). For functions f of the form in Theorem 4 and satisfying

condition (5.3), one likewise has formula (5.7).

6. Application to Perturbations of Solutions.

The results in Theorems 5 and 6, when applied to the framework given in Theorem 3,
provide a prescription for calculating the derivatives of the mapping M associated with
the parameterization

(
P(u, v)

)
. We content ourselves here with stating the version that

follows from Theorem 6.

Theorem 7. Let the function f describing
(
P(u, v)

)
be of the form in Theorem 4. For

particular (ū, v̄) and (x̄, ȳ) ∈ M(ū, v̄), suppose that f satisfies condition (5.3) at (ū, x̄).
Then M is proto-differentiable at (ū, v̄) relative to (x̄, ȳ). Moreover, in the notation M̂ :=
DM(ū, v̄| x̄, v̄) and f̂ = 1

2D2f(ū, x̄| ȳ,−v̄) one has

M̂(u′, v′) = {(x′, y′)
∣∣ (y′,−v′) ∈ ∂f̂(u′, x′)}. (6.1)

The interpretation of formula (6.1) is quite appealing. Because this formula has the
same structure as (3.4), except that M is replaced by M̂ and f by f̂ , it is the formula asso-
ciated with the optimality conditions for an auxiliary optimization problem in parametric
form, namely(
P̂(u′, v′)

)
minimize f̂(u′, x′) + 〈x′, v′〉 over all x′.

In other words, given (ū, v̄) and a choice of (x̄, ȳ) ∈ M(ū, v̄), we form the second-derivative
function f̂ = 1

2D2f(ū, x̄| ȳ,−v̄) and are then able to calculate the proto-derivatives of M at
(ū, v̄) relative to (x̄, ȳ) as follows. For each possible perturbation pair (u′, v′) of (ū, v̄), the
elements (x′, y′) of DM(ū, v̄| x̄, ȳ)(u′, v′), which describe the corresponding perturbations of
(x̄, ȳ), are the primal-dual pairs obtainable by solving

(
P̂(u′, v′)

)
. In the convex case, where

not only f but f̂ will be convex, the interpretation is even stronger, because primal-dual
pairs (x′, y′) are truly optimal than for the primal problem and a dual problem.

The more structured model
(
P0(u, w, v)

)
described in Section 3 satisfies all the needed

conditions as long as g and G are of class C2, h is piecewise linear-quadratic and C is
polyhedral. This provides a wide spectrum of examples. There is a great deal to say
about this, for which there is no space in these notes. Details in the setting of Theorem
7 will appear in Poliquin and Rockafellar [35]. An infinite-dimensional application to fully
convex optimal control is developed in the dissertation of Do [31]. For infinite-dimensional
problems with nonconvex constraints there are hardly any results at present, and even



when such problems are convex much needs to be done to tie the general theory to the
specifics of the integral functions and ordinary or partial differential equations that may
be involved. Potential applications exist also to the sensitivity analysis carried out by
different means in King and Rockafellar [36] and the Lagrangian form of perturbations in
Rockafellar [37].
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