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OPTIMAL CONTROL OF

UNBOUNDED DIFFERENTIAL INCLUSIONS *

PHILIP D. LOEWEN† AND R. T. ROCKAFELLAR‡

Abstract. We consider a Mayer problem of optimal control, whose dynamic constraint is given by a

convex-valued differential inclusion. Both state and endpoint constraints are involved. We prove necessary
conditions incorporating the Hamiltonian inclusion, the Euler-Lagrange inclusion, and the Weierstrass-

Pontryagin maximum condition. Our results weaken the hypotheses and strengthen the conclusions of

earlier works. Their main focus is to allow the admissible velocity sets to be unbounded, provided they
satisfy a certain continuity hypothesis. They also sharpen the assertion of the Euler-Lagrange inclusion by

replacing Clarke’s subgradient of the essential Lagrangian with a subset formed by partial convexification
of limiting subgradients. In cases where the velocity sets are compact, the traditional Lipschitz condition

implies the continuity hypothesis mentioned above, the assumption of “integrable boundedness” is shown

to be superfluous, and our refinement of the Euler-Lagrange inclusion remains a strict improvement on
previous forms of this condition.
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nonsmooth analysis
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This paper describes necessary conditions for optimality in the following Mayer prob-
lem of optimal control: choose an arc (i.e., an absolutely continuous function) x: [a, b] →
IRn in order to

(P )




minimize `(x(a), x(b))

subject to ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],

(x(a), x(b)) ∈ S,

x(t) ∈ X(t) ∀t ∈ [a, b].

Experts will recognize the endpoint constraint (x(a), x(b)) ∈ S and the state constraint
x(t) ∈ X(t) ∀t ∈ [a, b] as aspects of the model which are indispensable for applications, but
which account for considerable complexity in the statement and derivation of necessary
conditions. Clarke [2, Chap. III] gives an excellent introduction to this problem and
describes several applications. Our main result can be viewed as a generalization of Clarke’s
necessary conditions in [2, Thm. 3.5.2]; however, the calculus described by Ioffe [6] and
Rockafellar [29], and the careful Hamiltonian analysis of Loewen and Rockafellar [13] are
important steps along the way from the cited result to the work at hand. The first two
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sections of [13] describe our reasons for choosing the formulation (P ), and the relationship
between this version of the problem and others current in the literature.

The results presented here improve upon those in [2] and [13] in three important ways.
First, the problem is more general than any considered before, since we do not require
the sets F (t, x) of admissible velocities to be bounded. (We insist throughout, however,
that these sets be convex.) Second, our necessary conditions are more precise than any
previously published, since they involve sharper forms of the transversality condition and
the Euler-Lagrange inclusion than those in [2] and [13]. Finally, our method of proof allows
a simpler approach to the main result of [13], which is recovered as a corollary. We expect
all of these improvements to serve in future developments of the theory.

Several sets of necessary conditions for optimal control problems without boundedness
assumptions already exist in the literature. For example, Clarke proves necessary condi-
tions analogous to the Euler-Lagrange equation for such a differential inclusion problem
in [1] (see equation (5.1) below). Although his result does not require the velocity sets
to be bounded, it does involve a Lipschitz hypothesis on the state dependence of F—an
unacceptably strong condition when the velocity sets are actually unbounded. Polovinkin
and Smirnov [19, 20] prove a form of the Euler-Lagrange inclusion which is sharper than
Clarke’s, using a truncation argument to weaken the Lipschitz hypothesis considerably.
Their results also dispense with the convexity condition on the values of the multifunction
F (t, x). Kaskosz and  Lojasiewicz [10] consider a Mayer problem whose dynamic constraint
is a controlled differential equation in which both the control sets and the resulting velocity
sets are allowed to be unbounded. However, their adjoint inclusions involve Carathéodory
selections of the resulting multifunction F , and are not directly comparable to those of
our main theorem. (A simple connection in the bounded case is indicated by Loewen and
Vinter [14].) Also, Lipschitz conditions enter [10] at several points, making direct compar-
ison with our main result difficult. The current paper breaks new ground in presenting
Hamiltonian necessary conditions for optimality in problem (P ) without assuming either
that the velocity sets are bounded, or that they display full Lipschitz dependence on the
state. Like our previous paper [13], it asserts the Hamiltonian and Eulerian forms of the
necessary conditions simultaneously.

Two simple themes underlie our approach: truncation and strict convexity. Let us
explain these ideas before pursuing the details. Suppose x solves problem (P ). In the case
where the optimal solution x is Lipschitzian, i.e., ẋ ∈ L∞([a, b], IRn), we observe that for
any R > 0, the arc x also solves the version of problem (P ) in which the given multifunction

F is truncated to produce the bounded multifunction F̃ (t, x) := F (t, x) ∩
(
ẋ(t) + R cl IB

)
.

Therefore x must fulfill the known necessary conditions for bounded differential inclusions,
provided that F̃ satisfies a suitable Lipschitz condition. Identifying hypotheses on F which
ensure this is one of this paper’s main contributions. Then, of course, there is the question
of relating the necessary conditions derived using F̃ to those one might expect for F . This is
not trivial either: Section 3 contains the detailed arguments. Finally, when x is absolutely
continuous but not Lipschitzian, we must allow the truncation radius R to vary with time.
Our presentation treats this case in parallel with the Lipschitz case. By coordinating the
hypotheses on the multifunction F with the regularity of the solution, we derive the same
necessary conditions in both instances. If F is “integrably sub-Lipschitzian in the large”
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(see Definition 2.3(b)) at every point (t, x(t)) of gph x, the necessary conditions are satisfied
without any regularity hypothesis on x; when x is known to be Lipschitzian, we require
only that F be “sub-Lipschitzian” (see Definition 2.3(a)) at every point (t, x(t)) of gph x.

Strict convexity has a unifying effect on the necessary conditions of nonsmooth optimal
control, as noted in our previous work [13]. Continuing to assume that x solves (P ), we note
that x remains optimal for the problem (P) in which the objective function `(x(a), x(b))
is augmented by an integral term to become

`(x(a), x(b)) +

∫ b

a

[√
1 +

∣∣ẋ(t) − ẋ(t)
∣∣2 − 1

]
dt.

Hence the Hamiltonian necessary conditions for optimality in (P) must apply to x. In
the bounded case, the analysis of [13] shows that the Hamiltonian inclusion for x in the
convexified problem (P) implies the Hamiltonian inclusion, the sharpened Euler-Lagrange
inclusion, and the Weierstrass-Pontryagin maximum condition we ultimately intend to
assert for the original problem (P ). (This analysis hinges upon the strict convexity of
the integrand above as a function of the velocity variable ẋ.) To make the results of [13]
applicable here, we first truncate the problem as described in the previous paragraph, and
then introduce strict convexity.

The small right-hand side in our transversality inclusion will surprise no one working
in the field. Similar transversality conditions appeared first in the work of Mordukhovich
[15], who has applied similar ideas to a range of problems in recent years—see [17]. The
new condition is obtained by replacing Clarke’s normal cone and subgradient set with
their (possibly nonconvex) subsets consisting of limits of proximal normals and proximal
subgradients. Clarke actually uses limiting proximal normals to prove his transversality
conditions in [2, Thm. 3.5.2], and his proof requires only the slightest modifications to
obtain the transversality conditions used here. (This is noted explicitly in [4, Thm. 4.1,
footnote].) The sharpened transversality condition also figures in Rowland and Vinter’s
recent work [31] on necessary conditions for controlled differential equations with free time.
We take pains to incorporate it here in order that Theorem 4.3 below can legitimately
claim to have the weakest hypotheses and the strongest conclusions of any set of necessary
conditions for the optimal control of differential inclusions on a fixed time interval.

The refinement of the Euler-Lagrange inclusion used here is also obtained by using
the cone of limiting proximal normals in place of its convex hull (Clarke’s normal cone)
on the right-hand side in [2] and [13]. Some convexification is still required, but it now
pertains only to the components involving derivatives of the adjoint function instead of to
all components at once. A related inclusion has recently been given under considerably
stronger hypotheses by Mordukhovich [18]: our inclusion implies Mordukhovich’s, and can
be strictly better in certain cases. The key to our refined formulation is the introduction
of strict convexity through a suitable integral cost term, as outlined above. A description
of Mordukhovich’s condition and a detailed comparison with ours appears in Section 5.

The paper’s first section describes the starting point for this work—the well known
Hamiltonian necessary conditions of Clarke [2] as formulated by Loewen and Rockafel-
lar [13]. It outlines the minor modifications to existing arguments required to sharpen
the transversality inclusions as described above. The next two sections concern trunca-
tion: Section 2 introduces the truncated multifunction F̃ and describes hypotheses under
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which it satisfies a suitable Lipschitz condition, while Section 3 elucidates the relation-
ship between the subgradients of the two Hamiltonians corresponding to the original and
truncated multifunctions. Section 4 draws its antecedents together to produce a set of
Hamiltonian necessary conditions for unbounded differential inclusion problems (Theo-
rem 4.1). It then brings in strict convexity as outlined above. The methods of Sections 2
and 3 (together with Loewen and Rockafellar [13]) then allow the simultaneous derivation
of the Hamiltonian inclusion, the refined Euler-Lagrange inclusion, and the Weierstrass-
Pontryagin maximum condition. This effort culminates in Theorem 4.3, the main result
of this paper. The concluding Section 5 offers a comparison between Theorem 4.3 and
other published work, and gives some examples which clarify the distinctions between the
various adjoint inclusions appearing here and elsewhere in the literature.

Readers interested in a quick overview of the work should observe that the nota-
tion for generalized derivatives and normals introduced in Section 1 differs from that in
such standard works as Clarke [2]. Clarke subgradients and normals are indicated by the
“barred” symbols ∂f(x) and NC (x), while proximal subgradients and normals wear a

double hat: ̂̂∂f(x) and ̂̂NC (x). The unadorned notation ∂f(x) and NC (x) is reserved for
sets of limiting proximal subgradients and limiting proximal normals.

1. Hypotheses and Preliminary Results. In this section we establish the tech-
nical foundation on which our later results will rest. We state the hypotheses under which
we will later analyse the given problem (P ), and review the constraint qualification we
must impose when the state constraint is active along the optimal arc. We also review the
necessary conditions for bounded differential inclusions due to Clarke [2, Thm. 3.5.2], and
observe that they remain valid with a somewhat sharper transversality condition. Since
our formulation of the state constraint differs from Clarke’s, we will use the form of his
result appearing in our previous work [13, Thm. 2.8]. (The relationship between these two
modes of presentation is clearly spelled out in [13]: while it is almost true to say that a sim-
ple change of variable makes them equivalent, the extra analysis appearing in Lemma 2.4
of [13] makes the nontriviality assertion of [13, Thm. 2.8] stronger than Clarke’s.) We
sharpen the transversality condition in the known result by replacing its right-hand side
with a smaller set. Instead of the Clarke subgradient and normal cone, we use the limiting
subgradient and the limiting normal cone. These are the fundamental objects in the theory
of proximal analysis, which is described in Rockafellar [27], [29], and Clarke [2, Sect. 2.5],
for example; see also the book by Mordukhovich [17].

Proximal Analysis. Consider a closed set C ⊆ IRm containing some point c. A vector

ζ ∈ IRm is called a proximal normal to C at c, written ζ ∈ ̂̂NC (c), if there is some M > 0
so large that

(1.1) 〈ζ , c′ − c〉 ≤ M |c′ − c|2 for all c′ ∈ C.

Theorem 1.2 below refers to the cone of limiting normals to C at c, namely,

(1.2)
NC (c) :=

{
ζ ∈ IRm : ζ = lim

k→∞
ζk for some sequences

ζk ∈ ̂̂NC (ck) and ck−→C c
}
.
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(Here ck−→C c means that ck → c and ck ∈ C for all k.) The important properties of the
limiting normal cone (easily deduced, for example, from [2, Section 2.5]) are
(a) If c ∈ bdry C, then NC (c) contains nonzero elements;
(b) The multifunction c′ 7→7→NC (c′) has closed graph; and
(c) Clarke’s normal cone NC (c) is given by

(1.3) NC (c) = cl co NC (c) .

When the object of study is not a set but a locally Lipschitzian function f : IRm → IR, we
apply the previous notions to the set C := epi f = {(x, r) ∈ IRm × IR : r ≥ f(x)}. This
leads to the following definition: Given a point x, a vector ζ is called a proximal subgradient

of f at x, written ζ ∈ ̂̂∂f(x), if there is some M > 0 so large that, on some neighbourhood
U of x, one has

(1.4) f(x′) ≥ f(x) + 〈ζ , x′ − x〉 − M |x′ − x|2 ∀x′ ∈ U.

The set of limiting subgradients of f at x is defined by

(1.5)
∂f(x) =

{
ζ ∈ IRm : ζ = lim

k→∞
ζk for some sequences

ζk ∈ ̂̂∂f(xk), xk → x
}
.

For locally Lipschitzian functions f , the set ∂f(x) is nonempty and compact-valued every-
where, and the multifunction x′ 7→7→ ∂f(x′) has closed graph. Moreover, Clarke’s generalized
gradient ∂f(x) may be obtained from the set of limiting subgradients as follows:

(1.6) ∂f(x) = co ∂f(x).

(A relationship somewhat more complicated than (1.6) gives ∂f(x) in the case where f is
assumed only to be lower semicontinuous and extended real valued.) Boris Mordukhovich
has used the limiting normal cone in the formulation of necessary conditions since 1976
[15], [16], [17]. In collaboration with his student A. Y. Kruger [11], he has extended
certain aspects of the theory to infinite-dimensional spaces. More recently, Ioffe [6] has
studied the limiting normal cone and limiting subgradient set described here under the
names “approximate normal cone” and “approximate subdifferential”, and given a more
comprehensive extension to the infinite-dimensional case [7], [8], [9].

Hypotheses. Throughout the paper we confine our attention to a relatively open subset
Ω of [a, b] × IRn having nonempty sections

∅ 6= Ωt = {x ∈ IRn : (t, x) ∈ Ω} ∀t ∈ [a, b].

In order to treat a local solution x, we assume that F (t, x) is empty-valued for (t, x) 6∈ Ω.
This makes the requirement that x(t) ∈ Ωt for all t implicit for admissibility in problem (P ).
(Notice that for any continuous function x: [a, b] → IRn whose graph lies in Ω, a simple
compactness argument implies the existence of some ε > 0 so small that x(t) + εIB ⊆ Ωt
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for all t ∈ [a, b]. Here, and throughout the paper, IB denotes the open unit ball in IRn.)
Furthermore, we assume

(H1) The endpoint cost functional ` is locally Lipschitz on the closed set S0 := (cl Ω0)×
(cl Ω1), and the localized endpoint constraint set S ∩ S0 is closed;

(H2) The sets F (t, x) are nonempty, closed, and convex for each (t, x) in Ω;
(H3) The multifunction F is measurable with respect to the σ-field L × B generated

by products of Lebesgue subsets of [a, b] with Borel subsets of IRn;
(H4) The state constraint multifunction X has closed values X(t) and is lower semi-

continuous, in the sense that for every point (t0, x0) ∈ Ω∩ (gph X), and for every
sequence tk → t0 in [a, b], there exists a sequence xk → x0 satisfying xk ∈ X(tk)
for all k.

Jump Directions. It is well known that the action of state constraints on an optimal
trajectory manifests itself in the necessary conditions by producing discontinuities in the
corresponding adjoint arc. Roughly speaking, the adjoint vector is allowed to jump in an
outward normal direction to the constraint set at an instant when the constraint is active.
In the general setting proposed here, the possible jump directions lie in the closed convex
cone defined as follows for each (t, x) in Ω ∩ (gph X):

(1.7)
NX(t, x) = cl co

{
ν ∈ IRn : ν = lim

k→∞
νk for some sequences

νk ∈ ̂̂NX(tk) (xk) , (tk, xk)−−−−−→
gph X

(t, x)
}
.

A discussion of this cone and its relation to other formulations of the state constraint is
given in Section 2 of our previous paper [13]. (In that work the same cone was denoted
by N(t, x); the change of notation here is meant to emphasize the fact that this cone is
related to the multifunction X and that, like Clarke’s normal cone, it has closed convex
values.)

Hypothesis (H4) and definition (1.7) together imply that for any continuous function
x: [a, b] → IRn satisfying x(t) ∈ X(t) ∩ Ωt for all t, the convex cone valued multifunc-
tion t 7→7→NX(t, x(t)) is Borel measurable. In this case, to call an IRn-valued measure µ
“NX(t, x(t))-valued” means that µ is absolutely continuous with respect to some nonneg-
ative measure µ0 on [a, b], and that some measurable selection ν(t) ∈ NX(t, x(t)) satisfies
dµ(t) ≡ ν(t)dµ0(t). (See Rockafellar [22, Section 5].)

Necessary conditions for optimality in which the adjoint function is merely of bounded
variation, with jump directions described in terms of cone-valued measures, were first given
for convex problems of Bolza by Rockafellar [23], [24], [26].

The Constraint Qualification. Our necessary conditions require that the cone N X(t, x(t))
be pointed everywhere on the graph of the optimal arc x. This constraint qualification is
also essential in Clarke’s formulation (see [2, Remark 3.2.7(iii)]), as explained by Loewen
and Rockafellar [13, Section 2]. Let us call the state constraint “active” (relative to x)
at any time t when (t, x(t)) lies on the boundary of gph X, and “inactive” when (t, x(t))
lies in the interior of gph X. It follows easily from (1.7) that NX(t, x(t)) collapses to the
trivial cone {0} if and only if the state constraint is inactive at time t. In particular, if
the state constraint is inactive for all t ∈ [a, b]—perhaps because X(t) ≡ IRn—then the
constraint qualification mentioned above holds automatically. (Notice that there can be
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times when the state constraint is active even though x(t) ∈
∫

X(t) for all t. An example
is provided by the arc x(t) = 2t and the multifunction X(t) = {y : |y| ≥ t}: the state
constraint is active at t = 0 even though x(t) ∈

∫
X(t) for all t.) Another common case in

which the constraint qualification holds automatically arises when the state constraint sets
X(t) are convex and have nonempty interior, for then the cone NX(t, x) coincides with
the usual normal cone NX(t) (x) of convex analysis; and the latter cone is pointed if and
only if

∫
X(t) 6= ∅.

The state constraint we impose can be given a simple geometric interpretation, based
on Rockafellar [25, Thm. 3]. That result states that if a closed subset Ξ of IRn contains a
point ξ at which the Clarke normal cone NΞ (ξ) is pointed, then there is a neighbourhood
of ξ in which Ξ is indistinguishable from the isometric linear image of the epigraph of
some Lipschitz function on IRn−1. (The set Ξ is then called epi-Lipschitzian at ξ.) The
set NX(t, x) defined by (1.7) is generally larger than Clarke’s normal cone NX(t) (x) by
(1.2)–(1.3), since it contains information not only about the shape of the set X(t), but
also about its behaviour as t varies. This leads to the following result, which makes precise
the sense in which we can regard our constraint qualification as a requirement of “uniform
epi-Lipschitzian behaviour” of the multifunction X.

1.1. Proposition. Let (t, x) be a point in Ω ∩ gph X at which the cone NX(t, x) is
pointed. Then there exist a neighbourhood U of (t, x) in [a, b] × IRn, a linear isometry A
on IRn, and a constant L with the following properties. For any (s, y) ∈ U ∩ gph X, there
is a Lipschitz function φ(s,y) of rank L having the property that

A
(
epi φ(s,y)

)
= X(s) near y.

(In detail, this conclusion means that there is a neighbourhood V of y such that A
(
epi φ(s,y)

)
∩

V = X(s) ∩ V .)
Proof. This result follows from a careful quantitative analysis of the cited theorem of

Rockafellar. Details are available in [12]; here we merely indicate the main steps in the
proof.

For any ε ∈ (0, 1) and any unit vector v ∈ IRn, define the closed, pointed convex cone

Kε(v) := {ζ ∈ IRn : 〈ζ , v〉 ≥ ε|ζ|} .

Deduce from the hypothesis that there exist some ε ∈ (0, 1) and some v of unit length,
together with a neighbourhood U0 of (t, x) relative to Ω, such that

(∗) NX(s) (y) ⊆ Kε(v) ∀(s, y) ∈ U0.

Let A be any linear isometry of IRn into IRn−1× IR such that Av = (0,−1). (One certainly
exists.) Then taking polars in (∗) gives

TA(X(s)) (Ay) ⊇ Kε′(0, 1) ∀(s, y) ∈ U0,

where ε′ =
√

1 − ε2. For each (s, y) in U0, Rockafellar’s proof of [25, Thm. 3], provides a
Lipschitzian function φ(s,y) on IRn−1 whose epigraph coincides with A(X(s)) throughout
some neighbourhood of Ay. The Lipschitz rank of φ(s,y) can be estimated using the bound
on the size of Clarke’s generalized gradient of φ(s,y) implicit in the identification with
A(X(s)) and epi φ(s,y). (In fact the estimate gives L = ε√

1−ε2
.) The conclusion of the

proposition now follows, but we have interchanged the names of A and A−1 for clarity. ut
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Notice that we have little control over the time-dependence of the functions φ(s,y) in
Proposition 1.1. For example, the multifunction

X(t) := {(x, y) : y ≥ 0} if t < 1/2, X(t) := {(x, y) : y ≥ 1} if t ≥ 1/2

satisfies all our hypotheses but has a discontinuity at t = 1/2. Since X is convex-valued,
NX( 1

2 , (0, 1)) = N
X( 1

2 )
(0, 1) = {0} × (−∞, 0]. This cone is clearly pointed. When s < 1

2

and y is near 1, the set X(s) near y looks like the epigraph of φ(s,y) ≡ 0; but when s ≥ 1
2

and y is near 1, the set X(s) near y looks like the epigraph of the function φ(s,y) ≡ 1.
Hamiltonian Necessary Conditions. We are now in a position to state the necessary

conditions for bounded differential inclusions on which our main results are based. These
involve the Hamiltonian associated with the multifunction F , defined by H(t, x, p) :=
sup {〈p , v〉 : v ∈ F (t, x)}. Theorem 1.2, below, is essentially a transcription of [13], Thm. 2.8,
except that the transversality inclusion in part (b) involves limiting subgradients and nor-
mals instead of the Clarke subgradients and normals used in [13]. (Clarke subgradients are
still required in the Hamiltonian inclusion.) This distinction is immaterial in the smooth
and convex cases, for which Clarke’s notions are indistinguishable from the corresponding
limiting constructions. In general, however, it is possible that the right-hand side of (b)
is a proper subset of its counterpart in [13]. A detailed proof of Theorem 1.2 would be
both long and repetitive, since many of the steps in the argument are now (or should be)
well known. For this reason we simply outline a derivation of the result based on small
adjustments to proofs in the literature. Theorem 4.1, below, will significantly weaken the
boundedness and Lipschitz continuity hypotheses (i) and (ii) in the following statement.

1.2. Theorem. Assume (H1)–(H4). Suppose the arc x solves problem (P ), and that
the constraint qualification below is satisfied:

(CQ) the cone NX(t, x(t)) is pointed for all t in [a, b].

Suppose further that there exist integrable functions φ and k such that

(i) F (t, x) ⊆ φ(t) cl IB ∀(t, x) ∈ Ω,

(ii) F (t, y) ⊆ F (t, x) + k(t)|y − x| cl IB ∀t ∈ [a, b], x, y ∈ Ωt.

Then there exist a scalar λ ∈ {0, 1} and a function p ∈ BV ([a, b]; IRn), not both zero,
together with an integrable selection ν(t) ∈ NX(t, x(t)) for all t ∈ [a, b], such that
(a) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) for almost all t ∈ [a, b],
(b) (p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b));
(c) The singular part of the measure dp is NX(t, x(t))-valued, and in particular is sup-

ported on the set

{
t : NX(t, x(t)) 6= {0}

}
= {t ∈ [a, b] : (t, x(t)) ∈ bdry gph X} .

Proof (Outline). Our first step is to reconsider Clarke’s necessary conditions for opti-
mality in [2, Thm. 3.5.2], noting that they apply to a slightly different problem than ours.
We claim that these remain valid when the transversality condition at the final time [2,
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p. 143, eq. (2)] is written as −E ∈ NC1
(x(b)) instead of −E ∈ NC1

(x(b)). (That is, with
the limiting normal cone in place of Clarke’s normal cone.) To justify this, we must review
the proof of [2, Thm. 3.4.3]. In the notation used there, choosing x′ = x in line (4) of
Lemma 2 shows immediately that −v is a proximal normal (“perpendicular” in [2]) to the
set C1 at the point c: hence the third displayed conclusion of Lemma 2 can be replaced by

λβζ + p(b) +

∫

[a,b]

γ(s) µ(ds) ∈ − ̂̂NC1
(x(b) − u) .

In the limiting analysis of Step 4, this relation becomes

λβ0ζ + p̃(b) +

∫

[a,b]

γ(s) µ̃(ds) = λv0 ∈ −NC1
(x(b)) .

The proof of [2, Thm. 3.4.3] concludes as before, and the trick used to make the given
solution unique employed in the proof of [2, Thm. 3.5.2] respects the refined formulation
of the transversality condition.

Our second step is to extend the necessary conditions described above to cope with an
endpoint cost functional and endpoint constraint set involving both x(a) and x(b) jointly.
To do so, simply notice that if an arc x solves (P ) then the extended arc (r, x) with
r(t) ≡ x(a) solves the following problem




minimize `(r(b), x(b))

subject to ṙ(t) = 0, ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b],

(r(a), x(a)) ∈ D, (r(b), x(b)) ∈ S,

(r(t), x(t)) ∈ IRn × X(t) ∀t ∈ [a, b],

where D = {(z, z) : z ∈ IRn} is the diagonal of IRn × IRn. This is a situation to which our
refinement of [2, Thm. 3.5.2] can be applied, and the resulting transversality condition is

(†) (p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b)) .

This differs from the desired conclusion (b) only in its use of the Clarke subgradient of the
endpoint cost function `.

Passing from the parametric form of the state constraint g(t, x(t)) ≤ 0 to the intrin-
sic form x(t) ∈ X(t) as described in Section 2 of [13] does not affect the transversality
inclusion. The same methods, therefore, imply that [13, Thm. 2.8] remains valid with the
transversality inclusion replaced by (†)—and in particular that conclusion (b) holds if ` is
smooth.

We now turn to the statement of Theorem 1.2. Suppose x solves problem (P ). Then
the extended arc (x, z) in which z(t) ≡ `(x(a), x(b)) must solve the following problem




minimize z(b)

subject to ẋ(t) ∈ F (t, x(t)), ż(t) = 0 a.e. t ∈ [a, b],

(x(a), x(b), z(b)) ∈ epi(` + ΨS), z(a) ∈ IR,

(x(t), z(t)) ∈ X(t) × IR ∀t ∈ [a, b].
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(Here ΨS denotes the indicator function of the set S, defined by setting ΨS(x) = 0 if x
lies in S, and ΨS(x) = +∞ otherwise.) Applying the intermediate form of [13, Thm. 2.8]
described above leads to the conclusion that for some λ ∈ {0, 1} and p ∈ BV ([a, b]; IRn),
not both zero, and some selection ν(t) ∈ NX(t, x(t)), we have the desired conclusions (a)
and (c) of the current theorem, along with the transversality condition

(∗) (p(a),−p(b),−λ) ∈ Nepi(`+ΨS) (x(a), x(b), `(x(a), x(b))) .

If λ > 0, this assertion is equivalent to

(p(a),−p(b)) ∈ λ∂(` + ΨS)(x(a), x(b)) :

thanks to the calculus rules for limiting subgradients due to Ioffe [6, Thm. 4], we deduce
that

(‡) (p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b)) .

In particular, when λ = 1 we obtain the desired conclusion (b). When λ = 0, the
proximal subgradient formula (Rockafellar [27, proof of Thm. 1]) asserts that the vector
(p(a),−p(b), 0) appearing on the left-hand side of (∗) can be expressed as a limit of some
sequence (pk(a),−pk(b),−λk) with λk > 0, along which (∗) holds relative to a sequence
of base points (xk(a), xk(b), `(xk(a), xk(b))) converging to (x(a), x(b), `(x(a), x(b))). These
sequences therefore satisfy an analogue of (‡) in which a subscript k appears throughout;
taking the limit as k → ∞ we obtain (‡) with λ = 0. Thus conclusion (b) is also valid in
this case. ut

Remark. The transversality condition (∗) from which (b) is derived in the foregoing
proof could conceivably be sharper than (b) in some cases, since it involves the subgradients
of the essential endpoint cost functional ` + ΨS instead of the sum of subgradients of its
two terms.

2. Localization of Unbounded Multifunctions. Suppose the arc x solves prob-
lem (P ). Then x must also solve any problem with the same objective function as (P ) but
fewer admissible arcs: such a problem can be described by replacing the given velocity sets
F (t, x) by their bounded subsets

(2.1) F̃ (t, x) := F (t, x) ∩
(
ẋ(t) + R(t) cl IB

)

for some real-valued function R(t). Known necessary conditions for differential inclusion
problems with compact right-hand sides, like Theorem 1.2 above, then provide some in-
formation about x. Our goal is to translate this information into necessary conditions
which refer only to the data of the original problem (P ). This translation is not com-
pletely straightforward; neither is it obvious which hypotheses on F and which choice of
R(t) will make the application of Theorem 1.2 to the reduced problem both legitimate and
informative.

This section deals with the hypotheses: it is rather obvious that for any nonnegative
integrable function R(t), the truncated multifunction F̃ defined above has compact convex
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values satisfying Theorem 1.2(i). But how can we ensure nonemptiness and Lipschitz
continuity? We approach these by way of the following lemma, whose uncluttered notation
is intended to clarify the essential geometry.

2.1. Lemma. Let v ∈ IRn, and let F1 and F2 be two subsets of IRn such that for some
δ > 0 and 0 < r < R,
(i) F2 ∩ (v + R cl IB) ⊆ F1 + δ cl IB,
(ii) F1 ∩ (v + r cl IB) 6= ∅,
(iii) F1 is convex.

Then F2 ∩ (v + R cl IB) ⊆ F1 ∩ (v + R cl IB) +

(
2Rδ

R − r

)
cl IB.

Proof. Without loss of generality, take v = 0. Choose any v2 ∈ F2∩R cl IB. According
to (i), there exists v1 ∈ F1 such that |v2 − v1| ≤ δ. We also have some v0 ∈ F1 such that
|v0| ≤ r, thanks to (ii). And hypothesis (iii) ensures that

vt := (1 − t)v0 + tv1 ∈ F1 ∀t ∈ [a, b].

We estimate
|vt| ≤ (1 − t)|v0| + t|v1|

≤ (1 − t)r + t (δ + |v2|)
≤ r + t(δ + R − r).

This implies that vt ∈ F1 ∩ R cl IB whenever r + t(δ + R − r) ≤ R, in particular whenever

0 ≤ t ≤ t̂ :=
R − r

δ + R − r
.

Let v̂ = v
t̂
. Then v̂ ∈ F1 ∩ (v + R cl IB), and

|v2 − v̂| ≤ |v2 − v1| + |v1 − v̂|
≤ δ + (1 − t̂)|v0 − v1|
≤ δ + (1 − t̂) (|v0| + |v1|)
≤ δ + (1 − t̂)(r + R + δ)

= 2δ

[
1 +

r

δ + R − r

]
.

The right-hand side increases if we discard the δ appearing in the denominator: this yields
|v2 − v̂| ≤ 2δR/(R − r). Since v2 ∈ F2 is arbitrary and v̂ ∈ F1 ∩ (v + R cl IB), the desired
inclusion follows. ut

Remark. Clarke’s Lemma 3 on p. 172 of [2] is proven by a very similar argument, but
starts with a stronger hypothesis.

Using Lemma 2.1, we now provide a set of sufficient conditions for our localization
technique to produce a multifunction satisfying the hypotheses of Theorem 1.2.

2.2. Proposition. Let Ω and F be given as in the formulation of problem (P ); as-
sume (H2)–(H3). Let x be an F -trajectory. Suppose there exists ε > 0 together with
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nonnegative integrable functions m and R such that m/R ∈ L∞[a, b] and for almost every
t ∈ [a, b] one has

(2.2) F (t, y) ∩
(
ẋ(t) + R(t) cl IB

)
⊆ F (t, x) + m(t)|y − x| cl IB ∀x, y ∈ x(t) + εIB.

Then there is a relatively open subset Ω̃ of [a, b]×IRn containing the graph of x on which the

truncated multifunction F̃ (t, x) of (2.1) satisfies not only (H2)–(H3), but also hypotheses
(i)–(ii) of Theorem 1.2.

Proof. Notice that the requirement that x(t) + εIB ⊆ Ωt for all t is implicit in hypoth-
esis (2.2), since the choice y = x(t) forces F (t, x) 6= ∅ for all x ∈ x(t) + εIB. Therefore any

choice of ε ∈ (0, ε] will ensure that gph x ⊆ Ω̃ ⊆ Ω for the set

Ω̃ := {(t, x) : t ∈ [a, b], |x − x(t)| < ε} .

We therefore fix ε ∈ (0, ε], taking care to arrange that

(∗) εm(t)/R(t) ≤ 1/2 a.e. t ∈ [a, b].

(This is possible because m/R is essentially bounded by hypothesis.)
Let us fix a time t ∈ [a, b] at which (∗) and (2.2) hold, ẋ(t) exists, and ẋ(t) ∈ F (t, x(t)).

(Such t-values form a subset of [a, b] with full measure.) The sets F̃ (t, x) are evidently
compact and convex valued for each x ∈ x(t) + εIB. To see that they are nonempty, choose
y = x(t) in (2.2): then

ẋ(t) ∈ F (t, x(t)) ∩
(
ẋ(t) + R(t) cl IB

)
⊆ F (t, x) + m(t)|x(t) − x| cl IB ∀x ∈ x(t) + εIB.

This inclusion implies that

(†) F (t, x) ∩
(
ẋ(t) + εm(t) cl IB

)
6= ∅ ∀x ∈ x(t) + εIB,

and F̃ (t, x) contains the left-hand side because of (∗). Thus (H2) holds relative to Ω̃; the
measurability property required by (H3) is evident. As for condition (i) of Theorem 1.2, the
choice φ(t) :=

∣∣ẋ(t)
∣∣ + R(t) will clearly serve. Only condition (ii) remains to check. With

t fixed as above, choose any x, y ∈ x(t) + εIB and let F1 = F (t, x), F2 = F (t, y). Then the
hypotheses of Lemma 2.1 hold with v = ẋ(t), R = R(t), δ = m(t)|y − x| from (2.2), and

r = εm(t) ≤ R(t)/2 from (†). The conclusion is that F̃ (t, y) ⊆ F̃ (t, x) + k(t)|y − x| cl IB,
where

k(t) =
2R(t)m(t)

R(t) − εm(t)
=

2m(t)

1 − εm(t)/R(t)
≤ 4m(t).

Hypothesis (ii) of Theorem 1.2 requires that the function k be integrable; this is ensured
by the integrability of m. ut

The central hypothesis (2.2) of Proposition 2.2 is a quantitative version of Aubin’s
pseudo-Lipschitzian continuity for the multifunctions F (t, ·) at the points (x(t), ẋ(t)) along
the trajectory x (see Rockafellar [28]). Although the conditions of Proposition 2.2 are
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sufficient for the development of our theory, they require that the arc x be known in
advance, and offer few suggestions about effective choices of the functions R and m. Before
continuing the development, we pause to describe hypotheses on the multifunction F which
can be used to verify (2.2) along any admissible arc. These involve the following concepts.

2.3. Definition. Let Γ: Ω→→ IRm be a multifunction with closed values, and suppose
Γ is L × B measurable on Ω. Consider a point (t, x) in Ω.
(a) The multifunction Γ is called sub-Lipschitzian at (t, x) if for every constant ρ ≥ 0,

there exist constants ε > 0 and α ≥ 0 such that

(2.3) Γ(t, y) ∩ ρ cl IB ⊆ Γ(t, x) + α|y − x| cl IB

for all t ∈ (t − ε, t + ε) ∩ [a, b] and all x, y in x + εIB.
(b) The multifunction Γ is called integrably sub-Lipschitzian in the large at (t, x) if there

exist constants ε > 0 and β ≥ 0, together with a nonnegative function α integrable
on (t − ε, t + ε), such that

(2.4) Γ(t, y) ∩ ρ cl IB ⊆ Γ(t, x) + (α(t) + βρ)|y − x| cl IB

for all t ∈ (t − ε, t + ε) ∩ [a, b], all x, y in x + εIB, and all ρ ≥ 0.

Definition 2.3(a) is very similar to the notion of sub-Lipschitzian behaviour introduced
by Rockafellar [28]—the only difference being that here we consider multifunctions with
explicit time-dependence, and require a certain uniformity of the parameters ε and α with
respect to t. Rockafellar [28] offers a detailed discussion of (autonomous) sub-Lipschitzian
multifunctions and the relationship between this property and the pseudo-Lipschitz conti-
nuity introduced by Aubin; he also describes several classes of sub-Lipschitzian multifunc-
tions.

Definition 2.3(b) introduces a new type of sub-Lipschitzian assumption even in the
autonomous case. It looks like a stricter hypothesis than that of Definition 2.3(a), because
it places certain restrictions on the growth of the right-hand side with ρ. If (b) holds for
a constant function α(t) ≡ α, then certainly (a) follows; it is not obvious that (b) always
implies (a), however, since (b) allows α to depend on t, whereas α must be constant
in (a). Each of these hypotheses has a role as a sufficient condition for the applicability of
Proposition 2.2.

2.4. Proposition. Let Ω and F be given as in the formulation of problem (P ); as-
sume (H2)–(H3). Let x be an F -trajectory. Under either of the two hypotheses below, all
the conditions of Proposition 2.2 are met. In particular, there is a relatively open subset
Ω̃ of Ω containing the graph of x on which the truncated multifunction F̃ defined by (2.1)
satisfies all the hypotheses of Theorem 1.2.
(a) The arc x is Lipschitzian, and the multifunction F is sub-Lipschitzian at every point

(t, x(t)) in gph x.
(b) The multifunction F is integrably sub-Lipschitzian in the large at every point (t, x(t))

in gph x.
2.5. Remarks. 1. Notice that the two parts of Proposition 2.4 correspond exactly to

the two parts of Definition 2.3. Part (b) imposes apparently stricter conditions on F and
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applies to any arc x, while part (a) imposes apparently weaker requirements on F but
pertains only to Lipschitzian arcs x.

2. The proof of part (a) below allows for an arbitrarily small positive constant value
of R in the localization of (2.1): this may eventually link our results with the necessary
conditions for “weak local minima” in the calculus of variations.

3. The conditions of the Proposition make explicit reference to the arc x, but
they would obviously follow from corresponding hypotheses regarding sub-Lipschitzian
behaviour of F throughout the set Ω.

4. Proposition 2.4 remains valid when Definition 2.3 is weakened by replacing the
phrase “ρ ≥ 0” with “ρ ≥ 0 sufficiently large” in parts (a) and (b).

Proof (Proposition 2.4). (b) Both hypotheses in the statement of the Proposition must
first be extended to the whole interval [a, b] by a compactness argument. We illustrate this
just once, taking the more delicate case, situation (b). Applying Definition 2.3(b) to a
point (s, x(s)) in gph x yields constants εs > 0, βs ≥ 0, and a nonnegative function αs(t)
integrable on (s − εs, s + εs) such that (2.4) holds for any ρ ≥ 0 and any triple (t, x, y)
chosen from the set

Gs = {(t, x, y) : |t − s| < εs, x ∈ x(s) + εsIB, y ∈ x(s) + εsIB} .

Now each set Gs, s ∈ [a, b], is open, and the family of these sets covers the compact
set {(t, x(t), x(t)) : t ∈ [a, b]}. Therefore we may extract a finite subcover indexed by
s1, . . . , sN , and define

G :=

N⋃

j=1

Gj .

For simplicity, we have written Gsj as Gj : we define εj , βj , and αj(t) similarly. Observe
that there exists ε > 0 so small that for every t ∈ [a, b],

{t} × (x(t) + εIB) × (x(t) + εIB) ⊆ G.

(If this were not true, then there would be a sequence of points outside G converging
to some point (t, x(t), x(t)) in the interior of G, a contradiction.) Next, choose β =
max {β1, . . . , βN} and define

α(t) := max
j=1,...,N

{αj(t) : t ∈ (sj − εj , sj + εj)} .

Clearly β is finite and α(t) is integrable. Moreover, for any pair of points (t, x) and

(t, y) chosen from the set Ω̂ = {(t, x) : t ∈ [a, b], x ∈ x(t) + εIB}, we have (t, x, y) ∈ G, so
(t, x, y) ∈ Gj for some j = 1, . . . , N . Thus (2.4) holds for (t, x, y) with parameters βj and
αj(t), and therefore it holds with the larger parameters β and α(t). This shows that the

set Ω̂ is a relatively open subset of Ω containing the graph of x throughout which (2.4)
holds uniformly with parameters ε, β, and α(t).

Now consider the function R(t) = 1 + α(t) +
∣∣ẋ(t)

∣∣. For any t in [a, b], choosing

ρ =
∣∣ẋ(t)

∣∣+R(t) in the extension of (2.4) just proved leads to the following estimate, valid
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for all x, y in x(t) + εIB:

F (t, y) ∩
(
ẋ(t) + R(t) cl IB

)
⊆ F (t, y) ∩

(∣∣ẋ(t)
∣∣ + R(t)

)
cl IB

⊆ F (t, x) +
(
α(t) + β

[∣∣ẋ(t)
∣∣ + R(t)

])
|y − x| cl IB.

This confirms (2.2), where the function

m(t) = α(t) + β
[∣∣ẋ(t)

∣∣ + R(t)
]

= (1 + β)α(t) + 2β
∣∣ẋ(t)

∣∣ + β

is clearly integrable, as is R(t), while m(t)/R(t) ≤ 2 + 2β almost everywhere. All the
hypotheses of Proposition 2.2 are in place; part (b) of the desired result follows.

(a) Under hypothesis (a), we fix any R > 0 (perhaps quite small) and let ρ = R+
∥∥ẋ

∥∥
∞.

Then a compactness argument very similar to the one described in detail above leads to
a pair of constants ε > 0 and α ≥ 0 for which (2.3) holds for any pair of points (t, x) and

(t, y) in Ω̂ := {(t, x) : t ∈ [a, b], |x − x(t)| < ε}. In particular, since ρ ≥ R+
∣∣ẋ(t)

∣∣, we have

F (t, y) ∩
(
ẋ(t) + R cl IB

)
⊆ F (t, y) ∩ ρ cl IB

⊆ F (t, x) + α|y − x| cl IB :

thus (2.2) holds with the constants m = α and R identified here. ut

3. Hamiltonian Calculus. We now take up the second question raised at the be-
ginning of Section 2. Given a multifunction F satisfying our standing hypotheses, and
an F -trajectory x, suppose it is possible to choose a function R(t) for which the localiza-

tion (2.1) produces a multifunction F̃ with suitable boundedness and Lipschitz properties.

What is the relationship between the Hamiltonian of F̃ and that of the given multifunction
F? More specifically, how are their subgradients linked? We answer these questions using
simplified notation which suppresses the time-dependence of F , since we are concerned
only with partial subgradients computed at fixed times.

Throughout this section, we consider a multifunction F defined on some neighbour-
hood x + εIB of a given point x, and taking on nonempty closed convex subsets of IRn as
values. We assume that F (x) depends continuously on x in the set x+εIB, in the sense that
the inner and outer limits of the sets F (x′) share the common value F (x) as x′ → x. Given

a point v in F (x), we consider the localized multifunction F̃ (x) := F (x)∩ (v + R cl IB) for

some fixed R > 0. Like its predecessor F , the multifunction F̃ has closed convex values on
the set x + εIB. Concerning F̃ , we assume that

(3.1) F̃ is Lipschitz of rank k on x + εIB

(in particular F̃ is nonempty-valued there), and consider a vector p with the property that

(3.2) 〈p , v〉 ≥ 〈p , v〉 for all v ∈ F̃ (x).

Our concern is to relate the subgradients at (x, p) of the two Hamiltonians corresponding

to F and F̃ , namely

(3.3)
H(x, p) := sup{〈p , v〉 : v ∈ F (x)},
H̃(x, p) := sup{〈p , v〉 : v ∈ F̃ (x)}.
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In particular, we plan to prove that under the hypotheses described above,

(3.4) ∂H̃(x, p) ⊆ ∂H(x, p).

Recall the Legendre-Fenchel transform, which associates to any function f : IRn →
IR ∪ {+∞} its conjugate

f∗(p) := sup {〈p , v〉 − f(v) : v ∈ IRn} .

When f is a proper convex function, its conjugate is too, and the duality sponsored by
this transformation is the cornerstone of many fundamental results in convex analysis. In
our current setting, we recognize the Hamiltonians H and H̃ as the conjugates of certain
indicator functions: using the notation ΨC(v) := 0 if v ∈ C and ΨC(v) := +∞ if v 6∈ C,
we have

H(x, p) =
(

ΨF (x)

)∗
(p),

H̃(x, p) =
(

Ψ
F̃ (x)

)∗
(p) =

(
ΨF (x) + Ψv+R cl IB

)∗
(p).

One important consequence of this observation is that the possibly extended-valued func-
tion H is lower semicontinuous on (x + εIB) × IRn. Indeed, the continuity of F assumed
above implies that epi ΨF (x) varies continuously with x on x+εIB. According to Wijsman’s
theorem [32, Thm. 6.2], epi-continuity is preserved under the Legendre-Fenchel transform.
In particular, epi H(x, ·) also varies continuously with x on x + εIB. The very definition of
epi-continuity now implies that H is lower semicontinuous near (x, p).

Infimal Convolution. Addition of proper convex functions corresponds to infimal con-
volution of their conjugates under the Legendre-Fenchel transform: according to Convex
Analysis [21, Thm. 16.4], we have the following identity for all x near x and all p ∈ IRn:

(3.5)

H̃(x, p) =
(

Ψ∗
F (x) ut Ψ∗

v+R cl IB

)
(p)

= inf
{

Ψ∗
F (x)(p − z) + Ψ∗

v+R cl IB(z) : z ∈ IRn
}

= inf {H(x, p − z) + 〈v , z〉 + R|z| : z ∈ IRn} .

(The hypotheses of [21, Thm. 16.4] require that for each x near x, the convex sets

ri(dom H(x, ·)) and ri(dom H̃(x, ·)) have a point in common. But since F̃ is bounded,
the latter set is the whole space IRn; the former set is nonempty, so this hypothesis holds.)

Subgradient Analysis. Equation (3.5) expresses H̃ as the value function associated
with a minimization problem depending upon the parameters x and p. Proximal analysis
is a powerful technique for estimating the subgradients of such functions: the situation we
now face is covered by Rockafellar [29, Thm. 8.3]. If we write f(z, x, p) := H(x, p − z) +
〈v , z〉 + R|z|, that result affirms that

(3.6) ∂H̃(x, p) ⊆ cl co

[
⋃

z∈Σ(x,p)

{
(π, v) : (0, π, v) ∈ ∂f(z, x, p)

}

+
⋃

z∈Σ(x,p)

{
(π, v) : (0, π, v) ∈ ∂

∞
f(z, x, p)

}]
,
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where Σ(x, p) denotes the set of all points z ∈ IRn at which the infimum in (3.5) is
attained. Our assumption (3.2) and the convexity of the set F (x) together ensure that

one such point is z = 0, where H̃(x, p) = 〈p , v〉 = H(x, p). But since v ∈ F (x), we have
H(x, p − z) ≥ 〈p − z , v〉 for any z ∈ IRn, whence

H(x, p − z) + 〈v , z〉 + R|z| ≥ H(x, p) + R|z|.

The right-hand side here strictly exceeds the minimum value H(x, p) for all z except z = 0:
therefore Σ(x, p) = {0}, and inclusion (3.6) simplifies to

(3.7) ∂H̃(x, p) ⊆ cl co
[{

(π, v) : (0, π, v) ∈ ∂f(0, x, p)
}

+
{

(π, v) : (0, π, v) ∈ ∂
∞

f(0, x, p)
}]

.

Before completing our analysis of (3.7), we must verify that the derivation of (3.6)
from [29, Thm. 8.3] is justified. This requires that we check three hypotheses. First,

the function H̃ must be finite at (x, p): this requires only that F̃ (x) be nonempty, which
we have assumed from the start. Second, a certain constraint qualification must hold at
(z, x, p) for every z ∈ Σ(x, p): this turns out to be trivial, since the constraint structure
of our problem is so much simpler than that involved in the general situation of the cited
theorem. Third, there must exist constants ε > 0 and α > H̃(x, p) such that the following
set is bounded:

S := {(z, x, p) : H(x, p − z) + 〈v , z〉 + R|z| ≤ α, |(x, p) − (x, p)| ≤ ε} .

To prove this, we apply the Lipschitz hypothesis (3.1), which implies (since v ∈ F̃ (x)) that
for any x in x + εIB,

(v + k|x − x| cl IB) ∩ F̃ (x) 6= ∅.
It follows that for any such x, and for any p, z ∈ IRn,

H(x, p − z) ≥ H̃(x, p − z) ≥ 〈p − z , v〉 − k|x − x||p − z|.

Therefore if we choose ε > 0 small enough that R− εk > ε/2, any triple (z, x, p) satisfying
the defining inequalities in S will obey

α ≥ H(x, p − z) + 〈v , z〉 + R|z|
≥ R|z| + 〈p , v〉 − k|x − x||p − z|
≥ (R − k|x − x|) |z| − (|v| + k|x − x|) |p|
≥ (ε/2)|z| − (|v| + kε)(|p| + ε).

This clearly imposes an upper bound on |z|, and it follows that the set S is bounded.
Our verification of the hypotheses of [29, Thm. 8.3] is complete, and we can apply its
conclusions (3.6) and (3.7) with confidence.
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To complete our derivation of inclusion (3.4), it remains only to compute the subgra-
dient sets appearing in (3.7). Recall that f(z, x, p) = H(x, p− z) + 〈v , z〉+ R|z|: thus f is
the sum of a lower semicontinuous function and a continuous convex function. According
to Thm. 8.1 (the sum rule) and Cor. 7.1.2 (the chain rule) of Rockafellar [29], we have

∂f(0, x, p) ⊆
{

(−v, π, v) : (π, v) ∈ ∂H(x, p)
}

+ (v + R cl IB) × {(0, 0)}
∂
∞

f(0, x, p) ⊆
{

(−v, π, v) : (π, v) ∈ ∂
∞

H(x, p)
}

.

Thus (3.7) yields
(3.8)

∂H̃(x, p) ⊆ cl co
([

∂H(x, p) ∩ (IRn × (v + R cl IB))
]

+
[
∂
∞

H(x, p) ∩ (IRn × {0})
])

⊆ cl co
(
∂H(x, p) + ∂

∞
H(x, p)

)
.

Since the set on the left side is nonempty, the set on the right must also be nonvoid. This
forces ∂H(x, p) 6= ∅, a situation in which ∂

∞
H(x, p) is known to equal the recession cone of

∂H(x, p). In particular, ∂H(x, p)+∂
∞

H(x, p) is a subset of the closed convex set ∂H(x, p).
Therefore (3.8) implies (3.4), and the objective of this section is accomplished.

4. General Necessary Conditions. We now combine the efforts of the first three
sections to prove necessary conditions for optimality in (P ) without the boundedness and
Lipschitz continuity assumptions used previously. Our first result, Theorem 4.1, extends
the Hamiltonian necessary conditions of Theorem 1.2 to the unbounded case. Although
this is a significant advance in itself, it is superseded by Theorem 4.3 below, in which
the same hypotheses are used to produce an adjoint function satisfying the Hamiltonian
inclusion, a refined Euler-Lagrange inclusion, and the Weierstrass-Pontryagin maximum
condition simultaneously. Our purpose in proving Theorem 4.1 first is to clarify the roles
of Sections 2 and 3 in eliminating boundedness assumptions. This provides a convenient
point to reflect on what has been achieved, and to gather strength for the next step.

Hypotheses (H1)–(H4) mentioned in the statement below are listed in Section 1; the
notions required in assumptions (i) and (ii) are described in Definition 2.3. As observed
in Section 2, assumptions (i) and (ii) can be replaced by stronger hypotheses requiring
appropriate sub-Lipschitzian behaviour at every point of Ω if the arc x is not known in
advance.

4.1. Theorem (Hamiltonian Necessary Conditions). Assume (H1)–(H4). Sup-
pose that the arc x solves problem (P ), and that the constraint qualification below is satis-
fied:

(CQ) the cone NX(t, x(t)) is pointed for all t in [a, b].

Suppose further that one of the following two conditions holds:
(i) The arc x is Lipschitzian, and the multifunction F is sub-Lipschitzian at every point

(t, x(t)) of gph x; or
(ii) The multifunction F is integrably sub-Lipschitzian in the large at every point (t, x(t))

of gph x.



460 philip d. loewen and r. t. rockafellar

Then there exist a scalar λ ∈ {0, 1} and a function p ∈ BV ([a, b]; IRn), not both zero, such
that one has
(a) the Hamiltonian inclusion

(−ṗ(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) − NX(t, x(t)) × {0} a.e. t ∈ [a, b],

(b) the transversality inclusion

(p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b)) , and

(c) the singular part of the measure dp is NX(t, x(t))-valued, and in particular is supported
on the set

{
t : NX(t, x(t)) 6= {0}

}
= {t ∈ [a, b] : (t, x(t)) ∈ bdry gph X} .

Remark. The interpretation of inclusion (a) in Theorem 4.1 is the same as that given
in Theorem 1.2. That is, (a) asserts that for some integrable selection ν(t) ∈ NX(t, x(t))
for all t ∈ [a, b], one has

(−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) a.e. t ∈ [a, b].

Proof. Under either hypothesis (i) or (ii), Proposition 2.4 describes a choice of R(t)

for which the truncated multifunction F̃ (t, x) := F (t, x)∩
(
ẋ(t) + R(t) cl IB

)
satisfies both

assumptions (i) and (ii) of Theorem 1.2. Of course the arc x is a trajectory for F̃ , and con-

sequently solves the problem (P̃ ) defined by replacing F with F̃ in (P ). Apply Theorem 1.2

to x in (P̃ ): this produces a constant λ and an adjoint function p of bounded variation,
not both zero, together with a selection ν(t) of NX(t, x(t)), satisfying all the conclusions

of Theorem 1.2. Let us denote these by (ã)–(̃c), since they involve the multifunction F̃

and its associated Hamiltonian H̃. We will show that these three conditions imply the
desired conclusions (a)–(c) for the same λ, p, and ν. Indeed, conditions (b̃) and (̃c) are
the same as the desired assertions (b) and (c), while (ã) implies (a). To justify the latter

assertion, fix t ∈ (a, b) and consider the multifunctions F (t, ·) and F̃ (t, ·). Our assumption
of either (i) or (ii) implies that the given multifunction F (t, ·) is continuous in the weak

sense required in Section 3, and that the truncated multifunction F̃ (t, ·) satisfies the Lip-
schitz condition (3.1) (see Proposition 2.4). Hypothesis (3.2) for p = p(t) is a well-known
consequence of (ã)—see Clarke [2, Prop. 3.2.4(d)]. The conclusion is that for almost every

time t ∈ [a, b], ∂H̃(t, x(t), p(t)) ⊆ ∂H(t, x(t), p(t)): hence (a) follows from (ã), as required.
ut

Strict Convexity. The crucial observation which allowed us to unify the adjoint in-
clusions of Hamilton, Euler-Lagrange, and Weierstrass-Pontryagin in [13] was that the
Hamiltonian inclusion actually implies the other two inclusions when ẋ(t) is almost always
an extreme point of the (convex) velocity set F (t, x(t)). We now use the same observation
to extend Theorem 4.1. Let us continue under the hypotheses of that result.
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Consider the function

L(t, v) :=

√
1 +

∣∣v − ẋ(t)
∣∣2 − 1.

Notice that L is nonnegative, smooth, and strictly convex, with L(t, ẋ(t)) ≡ 0 and Lv(t, ẋ(t)) ≡
0. Observe also that for each fixed t, the function L(t, ·) is globally Lipschitzian of rank 1
on IRn. These properties are important in our analysis of the following auxiliary problem,
whose state (x, y) evolves in IRn × IR:

(P)




minimize `(x(a), x(b)) + y(b)

subject to (ẋ(t), ẏ(t)) ∈ [F (t, x(t)) × IR] ∩ epi L(t, ·) a.e. t ∈ [a, b],

(x(a), x(b)) ∈ S, y(a) = 0,

(x(t), y(t)) ∈ X(t) × IR ∀t ∈ [a, b],

It is clear that any absolutely continuous function (x(t), y(t)) admissible for the auxiliary
problem (P) has a first component admissible for the original problem (P ), while the
second component obeys y(b) ≥ 0. Therefore the objective value in (P) is always at least
as large as the objective value in (P ). But the arc (x, y) for which y(t) ≡ 0 is admissible
for (P), and it has an objective value equal to the minimum value in (P ): therefore it must
be optimal in (P).

The dynamic constraint in (P) involves the unbounded multifunction F : Ω×IR→→ IRn×
IR defined by

F(t, x, y) := [F (t, x) × IR] ∩ epi L(t, ·).

We now show that F inherits the sub-Lipschitzian property of F along x, and consequently
admits a truncation displaying the boundedness and Lipschitz continuity properties re-
quired for the application of Theorem 1.2.

4.2. Lemma. Suppose that hypothesis (i) or (ii) of Theorem 4.1 holds for the mul-
tifunction F relative to the arc x. Then the same hypothesis holds for F relative to x.
Moreover, there exists a nonnegative function R such that both truncated multifunctions
below satisfy hypotheses (i) and (ii) of Theorem 1.2 on some relatively open subset of
[a, b] × IRn containing the graph of x:

F̃ (t, x) := F (t, x) ∩
[
ẋ(t) + R(t) cl IB

]
,

F̃(t, x) := F(t, x, y)∩
[
(ẋ(t), 0) + R(t)(cl IB × [−1, 1])

]
.

Proof. (ii) Suppose F satisfies hypothesis 4.1(ii) relative to x. Let any t ∈ [a, b] be
given. Then by hypothesis, there must be constants ε > 0 and β ≥ 0, together with a
nonnegative function α integrable on (t − ε, t + ε) ∩ [a, b] such that

(∗) F (t, x′) ∩ ρ cl IB ⊆ F (t, x) + (α(t) + βρ) |x′ − x| cl IB
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for all t ∈ (t − ε, t + ε) ∩ [a, b], all x, x′ in x(t) + εIB, and all ρ ≥ 0. To prove a similar
statement involving F , let any ρ ≥ 0 and t ∈ (t−ε, t+ε)∩ [a, b] be given, together with any
two points x, x′ ∈ x(t) + ρ cl IB. Then for any point (v′, r′) in F(t, x′) ∩ ρ(cl IB × [−1, 1]),
we have v′ ∈ F (t, x′) ∩ ρ cl IB, so (∗) provides a point v ∈ F (t, x) such that |v′ − v| ≤
(α(t) + βρ)|x′ − x|. Now L(t, ·) is Lipschitz of rank 1, and r′ ≥ L(t, v′). Hence there must
be a point r ≥ L(t, v) for which |r′ − r| ≤ |v′ − v|. Thus (v, r) is a point in F(t, x) for
which

|(v′, r′) − (v, r)| ≤ |v′ − v| + |r′ − r|
≤ 2|v′ − v|
≤ 2(α(t) + βρ)|x′ − x|.

Since (v′, r′) is arbitrary, this argument proves that

(∗∗) F(t, x′) ∩ ρ (cl IB × [−1, 1]) ⊆ F(t, x) + 2 (α(t) + βρ) |x′ − x| (cl IB × [−1, 1]) .

Hypothesis 4.1(ii) for F follows.
Now if we multiply both α and β in (∗) by 2, we find that both multifunctions F

and F are integrably sub-Lipschitzian in the large at (t, x(t)) with the same choices of ε,
2α(t), and 2β in the definition. Reviewing the proof of Proposition 2.4, we deduce that the
function R(t) := 1+2α(t)+

∣∣ẋ(t)
∣∣ provides a truncation radius for which each multifunction

F̃ , F̃ satisfies the hypotheses (i) and (ii) of Theorem 1.2 on some neighbourhood of gph x.
We restrict attention to the intersection of these two neighbourhoods to obtain the desired
conclusion.

(i) If F satisfies hypothesis 4.1(i) relative to x, then an argument similar to that just
given shows that for every point t ∈ [a, b] and every ρ ≥ 0, there exist constants ε > 0 and
α ≥ 0 such that

F (t, y) ∩ ρ cl IB ⊆ F (t, x) + 2α|y − x| cl IB(†)
F(t, y) ∩ ρ (cl IB × [−1, 1]) ⊆ F(t, x) + 2α|y − x| (cl IB × [−1, 1])(‡)

for all t ∈ (t − ε, t + ε) ∩ [a, b] and all x, y in x(t) + εIB. Just as above, the proof of
Proposition 2.4 shows that any constant value of R > 0 will provide a truncation radius
suitable for both multifunctions F and F at once. ut

Now, just as in the proof of Theorem 4.1, the arc (x, 0) which solves (P) remains

optimal for the problem (P̃) obtained from (P) by changing F to F̃ . We apply Theorem 1.2
to deduce that there exist a scalar λ ≥ 0 and a function (p, q): [a, b] → IRn × IR of bounded
variation, not both zero, together with a selection ν(t) ∈ NX(t, x(t)) for all t ∈ [a, b] such
that
(a) (−ṗ(t) + ν(t), ẋ(t), 0) ∈ ∂H̃(t, x(t), p(t), q(t)) a.e. t ∈ [a, b],

q̇(t) = 0 a.e. t ∈ [a, b],
(b) (p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b)); q(b) = −λ;
(c) The singular part of the measure (dp, dq) is NX(t, x(t))×{0}-valued, and in particular

is supported on the set

{
t : NX(t, x(t)) 6= {0}

}
= {t ∈ [a, b] : (t, x(t)) ∈ bdry gph X} .
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Here we have used the fact that F̃ is independent of y to simplify the Hamiltonian inclusion;
we need only deal with the reduced Hamiltonian given by

H̃(t, x, p, q) := sup
{
〈p , v〉 + qr : (v, r) ∈ F̃(t, x)

}
.

Conditions (a)–(c) together imply that the adjoint function’s q(t) component is actually
constant, with the value −λ. Thus conclusions (b) and (c) reduce to the expected transver-
sality and support conditions associated with the adjoint function p, while conclusion (a)
may be written as follows:

(4.1) (−ṗ(t) + ν(t), ẋ(t), 0) ∈ ∂H̃(t, x(t), p(t),−λ) a.e. t ∈ [a, b].

In the remainder of this section we use inclusion (4.1) to show that the function p sat-
isfies the Hamiltonian inclusion, a refined Euler-Lagrange inclusion, and the Weierstrass-
Pontryagin maximum condition for the original problem (P ).

The Maximum Condition. We have seen in Lemma 4.2 that F̃ is a multifunction
satisfying hypotheses (i) and (ii) of Theorem 1.2. Under these assumptions, Clarke [2,
Prop. 3.2.4(d)] shows that inclusion (4.1) implies

(4.2) (p(t),−λ) ∈ NF̃(t,x(t))

(
ẋ(t), 0

)
a.e. t ∈ [a, b].

But for each t ∈ [a, b], the compact set F̃(t, x(t)) coincides with the unbounded set
F(t, x(t)) on a neighbourhood of (ẋ(t), 0): hence these two sets have the same normal
cone at this point. Using the calculus of convex normal cones (Rockafellar [21], or [29,
Cor. 8.1.1]), we deduce that for almost every t ∈ [a, b],

(p(t),−λ) ∈ NF(t,x(t))

(
ẋ(t), 0

)

= NF (t,x(t))×IR∩epi L(t,·)
(
ẋ(t), 0

)

⊆ NF (t,x(t))×IR

(
ẋ(t), 0

)
+ Nepi L(t,·)

(
ẋ(t), 0

)

= NF (t,x(t))

(
ẋ(t)

)
× {0} + {0} × (−∞, 0].

(The last step uses the fact that Nepi L(t,·)
(
ẋ(t), 0

)
is the convex cone generated by ∂L(t, ẋ(t))×

{−1} = {(0,−1)}.) The first component of this inclusion gives the desired maximum con-
dition for p, namely,

(4.3) p(t) ∈ NF (t,x(t))

(
ẋ(t)

)
a.e. t ∈ [a, b].

The Hamiltonian Inclusion. Observe that the function H̃ can be written as follows:

H̃(t, x, p, q) =

{
sup{〈p , v〉 + qL(t, v) : v ∈ F̃ (t, x)}, if q < 0,

sup{〈p , v〉 : v ∈ F̃ (t, x)} + qR(t), if q ≥ 0.

This is precisely the sort of function studied in Section 4 of our previous work [13], where
we examined its relationship to the function below:

H̃λ(t, x, p) := sup
{
〈p , v〉 − λL(t, v) : v ∈ F̃ (t, x)

}
.
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Lemma 4.2 ensures that for each fixed t ∈ [a, b], the multifunction F̃ (t, ·) in this expression
obeys the standing assumptions (A1)–(A3) of [13, Section 4]. This observation allows us
to apply [13, Thm. 4.4] to inclusion (4.1), and thereby derive

(4.4) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H̃λ(t, x(t), p(t)) a.e. t ∈ [a, b].

In the case where λ = 0, H̃λ coincides with H̃, so inclusion (4.4) is equivalent to

(4.5) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H̃(t, x(t), p(t)) a.e. t ∈ [a, b]

In the case where λ = 1, inclusion (4.4) implies (4.5), thanks to [13, Cor. 4.3(b)]. To justify
this, fix any time t where (4.4) holds and apply Clarke [2, Prop. 2.5.3] to deduce that

ẋ(t) ∈ ∂pH̃1(t, x(t), p(t)). Conversely, elementary convex analysis shows that any vector

v lying in ∂pH̃1(t, x(t), p(t)) must maximize the function v′ 7→ 〈p , v′〉 − L(t, v′) over the

set F̃ (t, x(t)). Since this function is strictly concave by construction, only one maximizer

can exist, namely ẋ(t). Consequently ∂pH̃1(t, x(t), p(t)) =
{
ẋ(t)

}
. The union appearing

in [13, Cor. 4.3(b)] therefore involves the choices v = ẋ(t) and z ∈ ∂vL(t, ẋ(t)) = {0}: this
implies that the right-hand side of (4.4) is a subset of the right-hand side of (4.5).

With (4.5) in hand, we note that the Hamiltonian analysis of Section 3 allows us to

replace H̃ with H in (4.5) just as we did in the proof of Theorem 4.1. The result is the
desired Hamiltonian inclusion for p:

(4.6) (−ṗ(t) + ν(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) a.e. t ∈ [a, b].

The Euler-Lagrange Inclusion. Once again we rely upon the technical results of Loewen
and Rockafellar [13], as extended by Rockafellar [30]. To streamline the discussion, we fix
a time t ∈ [a, b] at which (4.1) holds, and suppress t in the notation below. Thus our
starting point is the inclusion

(4.7) (−ṗ + ν, ẋ, 0) ∈ ∂H̃(x, p,−λ).

Rockafellar [30, Thm. 3.1] provides a far-reaching analogue of [13, Lemma 4.5] in which
limiting normals and subgradients replace Clarke normals and subgradients. Applying this
result to our problem (with f = ΨF̃ ), we find that

(4.8)
−∂(−H̃)(x, p,−λ) ⊆ {(−u, v, `) : (u, p,−λ) ∈ N

gph F̃ (x, v, `) ,

(p,−λ) ∈ NF̃(x)
(v, `) }.

Since the function H̃ is Lipschitzian, we have ∂H̃ = −∂(−H̃) = co−∂(−H̃). Thus it must
be possible to express the point (−ṗ + ν, ẋ, 0) as a convex combination of elements from
the right side of (4.8). That is, there must be some N ∈ N and some constants αi ≥ 0
with

∑
αi = 1 such that

(4.9a) (−ṗ + ν, ẋ, 0) =
N∑

i=1

αi(−ui, vi, `i),
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where, for each i,

(4.9b) (ui, p,−λ) ∈ N
gph F̃ (x, vi, `i) , (p,−λ) ∈ NF̃(x)

(vi, `i) .

We have already shown that (p,−λ) ∈ NF̃(x)

(
ẋ, 0

)
(see (4.2)). We now add the observation

that (ẋ, 0) is an extreme point of the set F̃(x). This is obvious, since F̃(x) is the intersection

of the compact convex sets epi L and F̃ (x) × IR, and (ẋ, 0) is an extreme point of the first
of these by the strict convexity of L. It follows that (ẋ, 0) is the only point (v, `) for which
(p,−λ) ∈ NF̃(x)

(v, `). This forces (vi, `i) = (ẋ, 0) in (4.9), and thus implies

(4.10) ṗ − ν ∈ co
{
u : (u, p,−λ) ∈ N

gph F̃
(
x, ẋ, 0

)}
.

To simplify this assertion, temporarily think of L as a function of both x and v (L(x, v) ≡
L(v)) in order to write gph F̃ = epi

(
L + Ψ

gph F̃

)
. This allows us to transcribe the inclusion

characterizing the right-hand side of (4.10) as

(u, p,−λ) ∈ Nepi(L+Ψ
gph F̃

)

(
x, ẋ, 0

)
.

The same arguments used in the last paragraph of the proof of Theorem 1.2, together with
the observation that ∂L(x, ẋ) = {(0, 0)}, show that this inclusion implies

(u, p) ∈ N
gph F̃

(
x, ẋ

)
= Ngph F

(
x, ẋ

)
.

The equality here holds because the sets gph F̃ and gph F coincide on a neighbourhood
of the point (x, ẋ), so their limiting normal cones at this point are identical. Using this
statement in (4.10) leads to the following inclusion, in which we revert to fully explicit
notation:

(4.11) ṗ(t) − ν(t) ∈ co
{
u : (u, p(t)) ∈ Ngph F (t,·)

(
x(t), ẋ(t)

)}
.

This inclusion holds for all t outside a null subset of [a, b]: it is the form of the Euler-
Lagrange inclusion we wish to record.

The Main Result. We now summarize the results of the derivation above. Conclu-
sions (a)–(c) in the following formal statement have already been established as lines (4.3),
(4.6), and (4.11) above. We remind the reader that our notation differs slightly from that
of Clarke [2], as indicated in the last paragraph of the introduction.

4.3. Theorem (General Necessary Conditions). Assume (H1)–(H4). Suppose
that the arc x solves problem (P ), and that the constraint qualification below is satisfied:

(CQ) the cone NX(t, x(t)) is pointed for all t in [a, b].

Suppose further that the one of the following two conditions holds:
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(i) The arc x is Lipschitzian, and the multifunction F is sub-Lipschitzian at every point
(t, x(t)) of gph x; or

(ii) The multifunction F is integrably sub-Lipschitzian in the large at every point (t, x(t))
of gph x.

Then there exist a scalar λ ∈ {0, 1} and a function p ∈ BV ([a, b]; IRn), not both zero, such
that for almost all t ∈ [a, b], one has
(a) the Hamiltonian inclusion

(−ṗ(t), ẋ(t)) ∈ ∂H(t, x(t), p(t)) − NX(t, x(t)) × {0} ,

(b) the Euler-Lagrange inclusion

ṗ(t) ∈ co
{
u : (u, p(t)) ∈ Ngph F (t,·)

(
x(t), ẋ(t)

) }
+ NX(t, x(t)),

(c) the Weierstrass-Pontryagin maximum condition

〈
p(t) , ẋ(t)

〉
= max {〈p(t) , v〉 : v ∈ F (t, x(t))} .

The adjoint function p also satisfies
(d) the transversality inclusion

(p(a),−p(b)) ∈ λ∂`(x(a), x(b)) + NS (x(a), x(b)) , and

(e) the singular part of the measure dp is NX(t, x(t))-valued, and in particular is supported
on the set

{t : NX(t, x(t)) 6= {0} } = {t ∈ [a, b] : (t, x(t)) ∈ bdry gph X} .

4.4. Remarks. 1. If the state constraint is inactive along the optimal arc x (i.e., x(t) ∈∫
X(t) for all t ∈ [a, b]) and the endpoint constraint set S has the form C × IRn or IRn ×D

for some closed sets C, D, then one may take λ = 1 in Theorem 4.3. This is not completely
obvious from the theorem’s statement, but it does follow from the proof given above. To
see this, note that the scalar λ and the function p described in the conclusions of the
theorem actually arise as the dual variables in the auxiliary problem (P̃). Problem (P̃)

has a Hamiltonian H̃ for which the mapping x′ 7→ H(t, x′, p) is Lipschitz of rank k(t)|p|
for some integrable function k. Under the extra assumptions above we have ν(t) ≡ 0, so
the adjoint function p must be absolutely continuous and satisfy the differential inequality
|ṗ(t)| ≤ k(t)|p(t)| almost everywhere. Now if the endpoint conditions described above are
satisfied, then assuming λ = 0 leads to either p(a) = 0 or else p(b) = 0: in either case,
Gronwall’s lemma implies p(t) ≡ 0, a contradiction.

2. A separated form of the Hamiltonian inclusion can be asserted concurrently with
(a)–(c) above. To derive it, note that since H̃ is locally Lipschitz, inclusion (4.5) implies

(−ṗ(t) + ν(t), ẋ(t)) ∈ co
[
∂xH̃(t, x(t), p(t)) × ∂pH̃(t, x(t), p(t))

]
a.e. t ∈ [a, b].



optimal control of unbounded differential inclusions 467

The second component simply reiterates (4.3), while the first asserts that

−ṗ(t) + ν(t) ∈ co ∂xH̃(t, x(t), p(t)) a.e. t ∈ [a, b].

Arguments similar to those in Section 3 allow us to replace H̃ with H in this statement:
the result is the separated Hamiltonian inclusion

(4.12)
−ṗ(t) ∈ co ∂xH(t, x(t), p(t)) − NX(t, x(t)),

ẋ(t) ∈ ∂pH(t, x(t), p(t)) a.e. t ∈ [a, b].

5. Epilogue. Theorem 4.3 is the most general set of necessary conditions available
for differential inclusion control problems. To substantiate this claim, we review the liter-
ature and discuss several pertinent examples in this section.

The Bounded Case. Notice first that Theorem 4.3 is a strict extension of our best
previous result for bounded differential inclusions, the case L ≡ 0 of [13, Thm. 1.1]. To
prove this, it suffices to show that the boundedness and Lipschitz continuity hypotheses
of [13], which coincide with conditions (i)–(ii) of the current Theorem 1.2, imply the
hypotheses of Theorem 4.3. Indeed, suppose that the multifunction F satisfies condition (ii)
of Theorem 1.2. Then the choices β = 0 and α = k in Definition 2.3(b) show that F is
integrably sub-Lipschitzian in the large at every point (t, x) in Ω. Hence hypothesis (ii) of
Theorem 4.3 is satisfied; the conclusions either reproduce those of [13, Thm. 1.1] or else are
strictly stronger. Notice in particular that hypothesis (i) is completely superfluous both
in [13] and in Theorem 1.2.

The two conclusions of Theorem 4.3 which differ from their counterparts in [13,
Thm. 1.1] are the Euler-Lagrange inclusion (b) and the transversality inclusion (d). The
right-hand side of (d) is always a subset of its cognate phrased in terms of Clarke subgradi-
ents and normals, although the two right-hand sides coincide whenever the function ` and
the set S are Clarke regular at the point (x(a), x(b)). Likewise, the Euler-Lagrange inclu-
sion (b) readily implies (but may not be equivalent to) the more familiar form involving
Clarke’s normal cone:

(5.1) (ṗ(t), p(t)) ∈ co Ngph F

(
x(t), ẋ(t)

)
− NX(t, x(t)) × {0} a.e.

The formulation in (b) has the advantage of applying the convex hull only to variables asso-
ciated with the derivatives of the adjoint function p. The routine use of weak convergence
of the derivatives both in existence theory and in the derivation of necessary conditions
makes it hard to imagine making do with less convexity than this.

The possibility of refining the Euler-Lagrange inclusion in our main theorem was
suggested by a recent preprint of Boris Mordukhovich, a pioneer in the systematic reduction
of convexity hypotheses in nonsmooth analysis. His manuscript [18] introduces a version
of the Euler-Lagrange inclusion whose counterpart in our problem would read as follows:

(5.2)
(ṗ(t) − ν(t), ẋ(t)) ∈ co{(u, v) : (u, p(t)) ∈ Ngph F (t,·) (x(t), v) ,

p(t) ∈ NF (t,x(t)) (v) }.
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(Here, as in Section 4, ν(t) is a selection of NX(t, x(t)): Mordukhovich’s work does not
allow for state constraints, so his version of (5.2) involves an absolutely continuous function
p and ν ≡ 0.) This is clearly a consequence of inclusion (4.11). The two are equivalent if,
for almost every t, the maximum value of 〈p(t) , v〉 over v ∈ F (t, x(t)) is attained at the
unique point v = ẋ(t). Without this hypothesis, however, the right-hand side of (5.2) may
be a proper superset of the right-hand side of (4.11): this is demonstrated by Example 5.2
below. Thus the necessary conditions of Mordukhovich [18] are strictly superseded by
those given here. Indeed, Rockafellar’s dualization result [30, Thm. 3.1] used to prove
the Euler-Lagrange inclusion (4.11) implies that under Mordukhovich’s hypotheses in [18],
inclusion (5.2) actually follows from the Hamiltonian inclusion in Theorem 1.2.

Although several technical results from our previous work [13] were used to prove
Theorem 4.3, this paper’s development starts from [13], Thm. 2.8. Since we recover [13,
Thm. 1.1] as a corollary (at least in the case L ≡ 0), this paper provides an much sim-
pler alternative to the formidable sequential arguments of [13, Section 3]. This makes
sense, because the sequences of adjoint functions required there arose directly out of a less
sophisticated truncation procedure than the one introduced in the current work.

The simultaneous assertion of the adjoint inclusion in both Hamiltonian and Eulerian
forms is a significant feature Theorem 4.3 shares with the main result of [13]. The relation-
ship between these two inclusions in their various forms is still not completely understood.
For example, we now show that the Euler-Lagrange inclusion in Clarke’s form (5.1) bears
no simple relationship to the Hamiltonian inclusion.

5.1. Example. There exist a compact convex valued, Lipschitzian multifunction F : IR →→ IR
and a pair of arcs x, p on [a, b] such that for all t ∈ [a, b] the Clarke form of the Euler-
Lagrange inclusion holds, i.e.,

(5.3a) (ṗ(t), p(t)) ∈ Ngph F (x(t), ẋ(t)) ,

but the following two inclusions fail:

(ṗ(t), ẋ(t)) ∈ co
{

(u, v) : (u, p(t)) ∈ Ngph F (x(t), v) , p(t) ∈ NF (x(t)) (v)
}

,(5.3b)

(−ṗ(t), ẋ(t)) ∈ ∂H(x(t), p(t)).(5.3c)

Proof. Let F (x) := [−|x|, |x|]. This multifunction is compact convex valued and
Lipschitz continuous; its graph is the plane set obtained by filling in the vertical space
between the lines y = x and y = −x. The limiting normal cone to gph F at the point
(0, 0) consists of the two lines y = ±x in the plane; the corresponding Clarke normal
cone is therefore the whole space IR2. Thus for the arc x(t) ≡ 0, the right-hand side in
Clarke’s form of the Euler-Lagrange inclusion (5.3a) is simply IR2, so any arc p will serve.
On the other hand, Mordukhovich’s form of the Euler-Lagrange inclusion (5.3b) makes a
nontrivial restriction on the choice of p. The inclusion p(t) ∈ NF (0) (v) forces v = 0, so
that (5.3b) becomes

(ṗ(t), 0) ∈ co {(u, 0) : |u| = |p(t)|} = [−|p(t)|, |p(t)|] × {0} .

Any arc p which obeys |ṗ(t)| > |p(t)| will confirm (5.3a) but violate (5.3b). For ex-
ample, p(t) = e2t will serve. By the result of Rockafellar cited above, inclusion (5.3c)
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implies (5.3b): hence the same choice of p must also violate (5.3c). Of course, this can be
confirmed directly by noting that the Hamiltonian corresponding to F is

H(x, p) = sup {pv : |v| ≤ |x|} = |px|,
and that for p 6= 0, one has ∂H(0, p) = [−|p|, |p|] × {0}. ut

Notice that in Example 5.1, the Mordukhovich form of the Euler-Lagrange inclusion
is equivalent to the refined form used in Theorem 4.3 because F (0) is a one-point set.
Thus Example 5.1 shows that the Euler-Lagrange inclusion in Clarke’s form (5.1) does not
imply the Hamiltonian inclusion, and that (5.1) can be strictly weaker than our refined
Euler-Lagrange inclusion (4.11). However, it does not rule out the possibility that (4.11)
implies the Hamiltonian inclusion.

Our next example shows that the Hamiltonian inclusion does not imply either Euler-
Lagrange inclusion (4.11) or (5.1) “pointwise”; recall, however, that the Hamiltonian in-
clusion does imply the Euler-Lagrange inclusion (5.2) in Mordukhovich’s form.

5.2. Example. There exist a compact convex valued, Lipschitzian multifunction F : IR2 →→ IR2

and a collection of points x, v, p, u in IR2 such that

(−u, v) ∈ ∂H(x, p) but (u, p) 6∈ N gph F (x, v) .

In particular,
u 6∈ co {u′ : (u′, p) ∈ Ngph F (x, v) } .

Proof. Define F : IR2 →→ IR2 as follows:

F (x1, x2) := {(t, t|x1| + r) : t ∈ [−1, 1], r ∈ [a, b]} .

For each x = (x1, x2) in IR2, the set F (x) is a solid parallelogram in the plane. The
corresponding Hamiltonian is

H(x1, x2, p1, p2) =
∣∣p1 + p2|x1|

∣∣ + max {p2, 0} .

We consider the points x = (0, 0), v = (0, 0), and p = (0,−1). With these choices, F (x)
is the plane rectangle [−1, 1] × [a, b], and p is an outward normal vector to this set at the
boundary point v. The crucial feature of this example is that the hyperplane x2 = 0 which
supports the set F (x) at v intersects the set F (x) in more than one point. (In other words,
the maximum of 〈p , v〉 over v in F (x) is attained at infinitely many points.) Clarke’s
subgradient of H at the point (x, p) = (0, 0, 0,−1) can be calculated using [2, Thm. 2.5.1]:
it is the two-dimensional square [−1, 1]×{0}×[−1, 1]×{0} in IR4. One point in this square
is (1, 0, 0, 0), which suggests the choice u = (−1, 0). We claim that (u, p) = (−1, 0, 0,−1)
lies outside Ngph F (x, v). To prove this, notice that up to a permutation of the coordinates,
gph F = E × IR for the set E := {(x1, t, |x1|t + r) : x1 ∈ IR, t ∈ [−1, 1], r ∈ [a, b]} . Near
the point (0, 0, 0), E coincides with the epigraph of the function g: IR2 → IR defined by
g(y, t) := t|y|. This function g is Lipschitzian, and it is easy to show that ∂g(0, 0) =
{(0, 0)}. Therefore

NE (0, 0, 0) = N epi g (0, 0, g(0, 0)) =
⋃

λ≥0

λ
[
∂g(0, 0) × {−1}

]
= {(0, 0)} × (−∞, 0].

We deduce that Ngph F (0, 0, 0, 0) = {(0, 0, 0)}× (−∞, 0]. In particular, N gph F (x, v) does
not contain the point (u, p) = (−1, 0, 0,−1), even though (−u, v) ∈ ∂H(x, p). ut
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It follows from Example 5.2 that the Mordukhovich form of the Euler-Lagrange in-
clusion (5.2) may fail to imply either the Clarke form (5.1) or the sharper form (4.11). To
see this, recall that the Hamiltonian inclusion in Example 5.2 implies the Mordukhovich
inclusion (5.2) by the result of Rockafellar [30] cited above: hence this is an example in
which (5.2) holds, but both (5.1) and (4.11) fail.

The Unbounded Case. Since Theorem 4.3 incorporates a form of the Euler-Lagrange
inclusion at least as sharp as (5.1), it subsumes the main result of Clarke [1]. That result
requires the multifunction F to display integrably Lipschitz dependence on the state, a
hypothesis strictly stronger than assumption (ii) of Theorem 4.3.

Conditions (i) and (ii) of Theorem 4.3 are not directly comparable to the basic hy-
pothesis of Polovinkin and Smirnov [19]. Their truncation scheme involves a constant
truncation radius in place of the positive-valued function R(t) in (2.1), and their work

involves explicit assumptions about the behaviour of the truncated multifunction F̃ along
the nominal arc x. Our Section 2 has the advantage of introducing hypotheses only on
the pointwise behaviour of the given multifunction F near the nominal arc. Indeed, our
entire Section 2 can be viewed as a set of verifiable sufficient conditions for a weakened
form of Polovinkin and Smirnov’s “Condition 1” [19, p. 662] to hold. (See especially
Proposition 2.2.)

Polovinkin and Smirnov’s conclusions [19, 20] pertain to differential inclusions whose
right-hand side may take on nonconvex values, whereas the convexity of the sets F (t, x)
is crucial to our approach. But their work offers only a version of the Euler-Lagrange
inclusion, whereas ours incorporates a Hamiltonian inclusion as well. Even in the case
of bounded differential inclusions, no one knows whether the Hamiltonian inclusion is a
correct necessary condition in the absence of this convexity hypothesis.

A detailed comparison of our Euler-Lagrange inclusion with that in [19, (17)] is beyond
the scope of this discussion. However, two comments are in order. First, the approach
in [19, 20] is completely different from ours. It is based on “linearizing” the given differ-
ential inclusion about the nominal arc, and examining the manner in which solutions of
the linearized system provide approximations for the resulting reachable set. (A similar
approach is taken by Frankowska [5], and has recently been extended to second-order ap-
proximations by Zheng [33].) Second, we note that in Example 5.1 the inclusion [19, (17)]
is equivalent to (5.3a). (In general, [19, (17)] is a sharper condition than (5.3a).) As such
it may generate adjoint arcs which do not satisfy either the Hamiltonian inclusion (4.6) or
the refined Euler-Lagrange inclusion (4.11). So we have at least one example in which our
results outperform those of Polovinkin and Smirnov.

Let us note that Theorem 4.3 cannot be obtained simply by reformulating problem (P )
as an instance of the Generalized Problem of Bolza. For simplicity, we discuss only the case
without state constraints by setting X(t) ≡ IRn. Then the definition L(t, x, v) := ΨF (t,x)(v)
puts problem (P ) into the following form:

(PB)




minimize `(x(a), x(b)) +

∫ 1

0

L(t, x(t), ẋ(t)) dt

subject to (x(a), x(b)) ∈ S.
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The Hamiltonian for this problem is the same as the one we have already associated with
F . In particular, since the sets F (t, x(t)) is not necessarily bounded, the convex functions
p 7→ H(t, x(t), p) are not necessarily finite-valued everywhere. This places the current
instance of (PB) beyond the scope of the necessary conditions in Clarke [2, Chap. 4],
since the strong Lipschitz condition used there tacitly requires the finiteness of H. (See
[2, Remark 4.2.1].) Likewise, the possibility that H could take the value +∞ makes it
impossible to verify the basic growth condition assumed in Clarke [3]. Thus Theorem 4.3
not only generalizes the necessary conditions formulated explicitly in terms of differential
inclusions, but also lies beyond the reach of the best results on the Generalized Problem
of Bolza. Indeed, there is good reason to expect that Theorem 4.3 may lead to strict
improvements of the necessary conditions for the Bolza problem. The authors are now
pursuing this prospect.
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