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EXTENDED LINEAR-QUADRATIC PROGRAMMING

Terry Rockafellar

Most work in numerical optimization starts from the convention that the problem to
be solved is given in the form

(P)
minimize f0(x) over all x ∈ X,

such that fi(x)
{
≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m,

with X ⊂ lRn. But this notion of what optimization is all about may be unnecessarily
limiting, both in the kind of modeling it promotes and the computational approaches
it suggests. While all optimization eventually boils down to minimizing some function
over some set, the formulation (P) says nothing about the mathematical structure of
the objective and instead puts all the emphasis on the structure of feasibility, insisting
on “black-and-white” constraints which don’t allow for gray areas of interaction between
feasibility and optimality.

For many applications several objective function candidates are in the background of
any attempt at optimization. Rather than choosing one of them to minimize while the
others are held within precise bounds, it would make sense to form a joint expression out
of “max” terms, penalty terms and the like. That could lead to a nonsmooth objective,
but with special features. In (P) there is no built-in way of handling such features.

In fact the horizons of practical optimization modeling can be widened considerably
by providing for this extra structure in a manner conducive to computation. A key seems
to be the use of composite terms, as is already well understood as a means of treating
nonsmoothness numerically, and by admitting infinite penalties in some situations to inte-
grate such terms into a problem statement that builds on the conventional one. The idea
will be explained briefly here with particular attention to the linear-quadratic case.

An extended problem statement appearing to offer many advantages over (P) is

(P) minimize f(x) = f0(x) + ρ
(
F (x)

)
over x ∈ X, where F (x) =

(
f1(x), . . . , fm(x)

)
.
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Here, as usual in numerical treatments of (P), the set X can be simple (polyhedral, say) and
the functions f0, f1, . . . , fm can be smooth (C2, say), but the function ρ on lRm can be non-
smooth and even extended-real-valued, although with form amenable to elementary convex
analysis. Feasibility in (P) means that x ∈ X and F (x) ∈ D, where D =

{
u

∣∣ ρ(u) < ∞
}
.

The case where (P) reduces to (P) is thus the one where the function constraints in (P)
are represented through infinite penalties:

ρ(u) = ρ(u1, . . . , um) =

{
0 when ui ≤ 0 for i ∈ [1, s] and

ui = 0 for i ∈ [s + 1,m],
∞ otherwise.

Such infinite penalties reflect the attitudes we force on the modeler in the traditional
framework of (P). The slightest violation of any constraint is supposed to cause infinite
dissatisfaction; on the other hand, there is no reward offered for keeping comfortably within
a given bound. In (P) there is much more flexibility.

The potential is already rich when ρ(u) = ρ1(u1) + · · ·+ ρm(um), so that

f(x) = f0(x) + ρ1

(
f1(x)

)
+ · · ·+ ρm

(
fm(x)

)
. (1)

We can think of ρi in general as converting the values of a particular fi into units facilitating
a trade-off with the values of f0 and the other fi’s, but even if we cling to the notion of a
putative constraint like fi(x) ≤ 0, we have new ways of expressing it. For instance, we can
imagine ρi introducing a minor penalty as fi(x) starts to exceed 0, with this becoming more
serious for larger violations and perhaps infinite for violations beyond a certain amount.
In the other direction, ρi could give a negative penalty when fi(x) drops below 0, at least
until a level is reached where no further reward is warranted.

The extended problem model (P) has been studied theoretically in [1], but a linear-
quadratic programming version was proposed earlier in [2] out of needs in stochastic pro-
gramming. (Models with black-and-white constraints are particularly inappropriate in
optimization under uncertainty.) In bridging toward the linear-quadratic context, let’s
concentrate now on a single class of examples of expressions ρi which could be invoked
in (1). These expressions, first introduced in [3], typically involve two linear pieces with
a smooth quadratic interpolation between, but they also cover as limiting cases expres-
sions in which the quadratic piece or one or both of the linear pieces may be missing, or
where an infinite penalty might come up. They are parameterized in general by βi ≥ 0,
ŷi ∈ (−∞,∞), and a closed interval

Yi =
{

yi ∈ lR
∣∣ ŷ−i ≤ ŷi ≤ ŷ+

i

}
,
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where the upper bound ŷ+
i could be ∞ and the lower bound ŷ−i could be −∞. (The

reason for focusing on Yi instead of just the two values ŷ+
i and ŷ−i will emerge through

duality below.) The formula for ρi(ui) as dictated by these parameters is best understood
by starting with ρ̂i(ui) = ŷiui + (1/2βi)u2

i , this being the unique quadratic function with
ρ̂i(0) = 0, ρ̂′i(0) = ŷi, and ρ̂′′i (0) = 1/βi. Let û+

i be the unique value such that ρ̂′i(û
+
i ) = ŷ+

i ,
and similarly let û−

i be the unique value such that ρ̂′i(û
−
i ) = ŷ−i . Then

ρi(ui) = ρYi,βi,ŷi
(ui) =

 ρ̂i(û+
i ) + ŷ+

i (ui − û+
i ) when ui > û+

i ,
ρ̂i(ui) when û−

i ≤ ui ≤ û+
i ,

ρ̂i(û−
i ) + ŷ−i (ui − û−

i ) when ui < û−
i .

(2)

As extreme cases, if ŷ+
i = ∞ this is taken to mean that the quadratic graph is followed

forever to the right without switching over to a tangential linearization; the interpretation
for ŷ−i = −∞ is analogous. The case of βi = 0 is taken to mean that there is no quadratic
middle piece at all: the function is given by ŷ+

i ui when ui > 0 and by ŷ−i ui when ui < 0.
Possibly infinite values for ŷ+

i or ŷ−i then yield infinite penalties.

Already in choosing expressions ρi in (1) just from this class, there are many ways of
incorporating the functions fi into an optimization model. A particular fi can be treated
for instance in terms of a constraint with infinite penalties for violation,{

Yi = [0,∞), βi = 0, ŷi = 0 (inequality mode),
Yi = (−∞,∞), βi = 0, ŷi = 0 (equality mode),

classical linear penalties di > 0,{
Yi = [0, di], βi = 0, ŷi = 0 (inequality mode),
Yi = [−di, di], βi = 0, ŷi = 0 (equality mode),

classical quadratic penalties,{
Yi = [0,∞), βi > 0, ŷi = 0 (inequality mode),
Yi = (−∞,∞), βi > 0, ŷi = 0 (equality mode),

a constraint replaced by an augmented Lagrangian term,{
Yi = [0,∞), βi > 0, ŷi ≥ 0 (inequality mode),
Yi = (−∞,∞), βi > 0, ŷi arb. (equality mode),

or a modified augmented Lagrangian term with “saturation” bound di > 0,{
Yi = [0, di], βi > 0, ŷi ≥ 0 (inequality mode),
Yi = [−di, di], βi > 0, ŷi arb. (equality mode).
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Even expressions with more than the three pieces directly allowed for in (2) can be taken
care of. For instance, if we want to model f1 with no penalty when f1(x) ≤ 0, a linear
penalty rate d1 > 0 when 0 < f1(x) ≤ 1 but an infinite penalty if f1(x) > 1, we can choose
notation so that the function f2 is f1 − 1 and put a linear penalty expression as above
on f1 but an infinite penalty expression on f2. Clearly, the range of modeling expressions
easily representable through such tricks is enormous.

A strong property of the class of functions ρi in (2) is a dual representation: one has

ρYi,βi,ŷi
(ui) = sup

ŷ−
i
≤yi≤ŷ+

i

{
uiyi − 1

2βi(yi − ŷi)2
}

. (3)

This leads us to consider more generally in (P) the class of all functions ρ : lRm → (−∞,∞]
representable dually as

ρY,B,ŷ(u) = sup
y∈Y

{
u·y − 1

2 (y − ŷ)·B(y − ŷ)
}

, (4)

where Y is a nonempty polyhedral set in lRm, B is a symmetric, positive semidefinite
matrix in lRm×m, and ŷ = (ŷ1, . . . , ŷm) is some vector in lRm. The examples of (P) we’ve
been discussing so far correspond to the box-diagonal case of such a function, where

Y = Y1 × · · · × Ym, B = diag[β1, . . . , βm],

for nonnegative values βi and closed intervals Yi, not necessarily bounded. An example of
a multidimensional ρ function not conforming to the box-diagonal format is

ρ(u) = ρ(u1, . . . , um) = max{u1, . . . , um}

= ρY,B,ŷ(u) for Y =
{

y
∣∣ yi ≥ 0, y1 + · · ·+ ym = 1

}
, B = 0, ŷ = 0.

In this case, with f0 taken to be ≡ 0 for instance, (P) would be a nonsmooth optimization
problem of the form: minimize f(x) = max

{
f1(x), . . . , fm(x)

}
over all x ∈ X.

Note by the way that the parameter vector ŷ really adds no generality, because
ρ

Y,B,ŷ
= ρ

Y ′,B,0
for Y ′ = Y − ŷ (translation). But the inclusion of this vector is con-

venient because in many cases it can stand for reference values for Lagrange multipliers.
These can be estimated by the modeler as rates of change of the minimum value of the
objective in (P) relative to shifts in the fi values, cf. [1, Section 9].

The case of problem (P) called extended linear-quadratic programming , ELQP, is the
one in which ρ belongs to the class (4), the set X is polyhedral, the function f0 is convex
linear-quadratic, and the functions f1, . . . , fm are affine. We can state this as

(P lq) minimize f(x) = c·x + 1
2 (x− x̂)·C(x− x̂) + ρY,B,ŷ

(
b−Ax

)
over x ∈ X
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for vectors b ∈ lRm, c ∈ lRn, x̂ ∈ lRn, a symmetric, positive semidefinite matrix C ∈ lRn×n,
and a matrix A ∈ lRm×n. As with ŷ, the parameter vector x̂ adds no real generality—it
can be taken to be 0 if desired—but is convenient often as an initial estimate of an optimal
solution when proximal terms are being introduced to achieve strong convexity.

The ρ function in (P lq) can take the value∞ to the extent that exact linear constraints
are modeled with infinite penalties instead of being built into the specification of X. The
feasible set is generally therefore not X, but{

x ∈ X
∣∣ b−Ax ∈ DY,B

}
, where DY,B =

{
u

∣∣ ρY,B,ŷ(u) < ∞
}

(5)

(this doesn’t actually depend on ŷ). It was shown in [4] that DY,B is always a polyhedral
cone. (It’s the sum of the barrier cone for Y and the range space for B.) The feasible set in
(5) is therefore polyhedral as well; only linear constraints are present in (P lq) in principle.
On the other hand according to [4], the objective function f is convex and piecewise linear-
quadratic on this feasible set. Due to the different ways of setting up penalties, there may
be discontinuities in the first or second derivatives of f .

From this standpoint an ELQP problem may seem quite complicated in comparison
with conventional LP or QP, but simplicity resurfaces through an associated Lagrangian
representation: in terms of

L(x, y) = c·x + 1
2 (x− x̂)·C(x− x̂) + b·y − 1

2 (y − ŷ)·B(y − ŷ)− y·Ax on X × Y,

the essential objective function in (P lq) is given by f(x) = supy∈Y L(x, y) for x ∈ X, as
seen from (4). Thus: ELQP problems are precisely the problems arising from Lagrangians

L that are linear-quadratic convex-concave on a product X × Y of polyhedral sets.

The symmetry in the generalized Lagrangian leads us to dualize in terms of maximizing
g(y) = infx∈X L(x, y) over all y ∈ Y . We arrive then at the dual problem

(D lq) maximize g(y) = b·y − 1
2 (y − ŷ)·B(y − ŷ)− ρ

X,C,x̂

(
AT y − c

)
over y ∈ Y.

This is an ELQP problem expressed concavely instead of convexly. Its feasible set is{
y ∈ Y

∣∣ AT y − c ∈ DX,C

}
, where DX,C =

{
v

∣∣ ρX,C,x̂(v) < ∞
}
.

The ρ function examples given above provide many interesting specializations. Traditional
duality in linear programming and quadratic programming are covered, but much more.
The theoretical properties of this duality are every bit as strong as in the classical cases,
according to the following result from [2].
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Theorem. If either (P lq) or (D lq) has finite optimal value, then both problems have

optimal solutions, and

min (P lq) = max (D lq).

The pairs (x̄, ȳ) ∈ X × Y such that x̄ is an optimal solution to (P lq) and ȳ is an optimal

solution to (D lq) are precisely the saddle points of the associated Lagrangian L on X × Y

and are characterized by the normal cone conditions

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ).

The development of good techniques for solving ELQP problems offers many open
challenges. It was shown in [2] that any ELQP problem could, in principle, be reformulated
as a conventional QP problem and solved that way, but the reformulation greatly increases
the dimension and introduces possibly redundant constraints, which could cause numerical
troubles in some situations. It also destroys the symmetry between the primal and dual
and thereby threatens disruption of the kind of problem structure that ought to be put to
use, especially in large-scale applications. Generalizations of complementarity algorithms
could perhaps be applied effectively to the saddle point expression of optimality. Most of
the efforts so far have been directed however at exploiting new kinds of decomposability
that have come to light in ELQP applications with dynamics and stochastics [2], [3], [4],
[5]. In [6] a class of “envelope” methods, something like bundle methods with smoothing,
has been developed. Envelope ideas have been used differently in [7] to get generalized
projected algorithms which operate with a novel kind of primal-dual feedback. These
algorithms have solved problems with 100,000 primal and 100,000 dual variables, derived
as discretized problems in optimal control [4], in half the time as the earlier algorithms
in [6]. In [8] and [9] forward-backward splitting methods have been applied to the saddle
point representation to take advantage of Lagrangian separability.

Besides offering direct possibilities in optimization modeling far beyond those available
in conventional linear or quadratic programming, ELQP problems (P lq) can arise from
general nonlinear problems (P) just like QP subproblems can arise from problems (P) in
schemes of sequential quadratic programming through second-order approximations to a
Lagrangian function. (Lagrangian theory for (P) is furnished in [1].) There is lots to do,
not only with ELQP as such, but in using ELQP techniques to solve extended problems
(P) by Newton-like approaches.
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