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NEW NECESSARY CONDITIONS FOR THE GENERALIZED
PROBLEM OF BOLZA *

P. D. LOEWEN† AND R. T. ROCKAFELLAR‡

Abstract. Problems of optimal control are considered in the neoclassical Bolza format, which

centers on states and velocities and relies on nonsmooth analysis. Subgradient versions of the Euler-
Lagrange equation and the Hamiltonian equation are shown to be necessary for the optimality of

a trajectory, moreover in a newly sharpened form that makes these conditions equivalent to each

other. At the same time, the assumptions on the Lagrangian integrand are weakened substantially
over what has been required previously in obtaining such conditions.
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1. Introduction. Among the classical problems in the calculus of variations,
that of Bolza marked a high point of complication, involving all the kinds of side con-
ditions then viewed as important. With deceptive simplicity, the generalized problem
of Bolza can be stated in one line:

(P) minimize Λ[x] := l(x(a), x(b)) +
∫ b

a

L(t, x(t), ẋ(t)) dt,

where the minimization takes place over all absolutely continuous functions (“arcs”)
x: [a, b] → IRn. Its generality rests on allowing l and L to be extended-real-valued,
hence not necessarily differentiable or even continuous.

The tactic of admitting such a broad range of choices for l and L, first adopted
in Rockafellar [21], enables (P) to encompass a vast array of dynamic optimization
problems, including those governed by controlled differential equations, differential
inclusions, and incorporating endpoint constraints of every conceivable form. For
example, (P) subsumes the problem

(P1)
minimize Λ1[x] := l1(x(a), x(b)) +

∫ b

a

L1(t, x(t), ẋ(t)) dt

subject to (x(a), x(b)) ∈ S and ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b]

for a set S ⊂ IRn × IRn and a multifunction F : [a, b] × IRn→→ IRn. Indeed, it suffices
to take l = l1 + ΨS and L = L1 + Ψgph F , where ΨS and Ψgph F are the indicators
of S and the graph of F (having the value 0 on these sets but ∞ outside). In the
classical problem of Bolza, S and the graph of F were specified by side conditions of
the kind li(x(a), x(b)) = 0 and Lj(t, x(t), ẋ(t)) = 0, with i and j in given finite index
sets, all functions being assumed smooth, cf. Bliss [2, p. 189]; eventually the equations
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were supplemented by inequalities, and “isoperimetric” constraints were listed too, cf.
Hestenes [8, p. 348]. Isoperimetric constraints fit into (P1) by the trick of adding more
state variables and modifying S and F accordingly. (In these classical formulations
the interval [a, b] was permitted to vary, and this could be built into (P1) and (P)
as well, but we focus on the fixed-interval case here, reserving the variable-interval
extension for elsewhere.)

On the other hand, problems in optimal control of the wide form below can also
be fitted into the pattern of (P):

(PC)
minimize Φ[x, u] := φ(x(a), x(b)) +

∫ b

a

f(t, x(t), u(t)) dt

subject to ẋ(t) ∈ F (t, x(t), u(t)), u(t) ∈ U(t, x(t)) a.e. t ∈ [a, b],
and (x(a), x(b)) ∈ S.

To arrange this, simply take l = φ + ΨS as before and

L(t, x, v) = infu {f(t, x, u) : u ∈ U(t, x), v ∈ F (t, x, u)} ,

interpreting the right side as ∞ when there is no u in U(t, x) for which F (t, x, u)
contains v. Notice that the dynamics here involve a controlled differential inclusion
and that the set of admissible controls displays explicit state-dependence—two features
beyond the scope of the classical theory. It is more difficult to force (PC) into the
framework of (P1), which underscores the importance of (P) as the model of choice
when a full spectrum of control applications is envisioned. For more on this approach
to optimal control, see [24] and [29].

Our aim is to establish necessary conditions for optimality in (P) that retain both
the form and the power of their classical precursors, the equations of Euler-Lagrange
and Hamilton, despite the nonsmooth, extended-real-valued setting. This program for
the generalized problem of Bolza is not new: it began with Rockafellar’s work in the
case where both functions l and L(t, ·, ·) are convex [21, 22, 23, 25], and it was greatly
advanced beyond such full convexity by Clarke [3, 4, 5, 6] and others. Most recently
there have been contributions by Loewen and Rockafellar [13, 14], Mordukhovich [19]
and Ioffe and Rockafellar [10].

The current work has two especially distinguishing features. First, it provides a
sharpened version of the Hamiltonian optimality condition that is equivalent to the
sharpened form of the Euler-Lagrange condition we introduced in [14]. Second, it
assumes significantly less than before about the Lagrangian L; it does not demand
that L have the form L1 +Ψgph F in which Lipschitz properties are expected of L1 and
F , as for instance in [13]. It does ask for the convexity of L in the velocity argument,
in contrast to the recent papers [19] and [10], but those works are more restrictive in
other respects and anyway concern the Euler-Lagrange condition only.

The convexity of L in the velocity argument is essential for the equivalence be-
tween the Euler-Lagrange condition and the Hamiltonian condition, whatever their
versions. Indeed, aside from the classical case of a smooth function L, or the fully
convex case where L is convex in the state and velocity arguments together and some
other special cases covered by [30], results asserting the simultaneous necessity of both
conditions were elusive. The best that could be claimed, in [14], was the existence
of at least one adjoint arc for which both conditions in a certain form were satisfied.
(Other adjoint arcs might fulfill just one of the two.)
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The sharpened Euler-Lagrange condition that we use in relating an extremal arc
x to an adjoint arc p asserts that

(1.1) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. t ∈ [a, b].

Here ∂ refers to the possibly nonconvex limiting subgradient set (see Loewen [12] for
notation and terminology), known also under various other names: limiting proximal
subgradient set in Clarke [6], approximate subdifferential in Ioffe [9], subdifferential
in Mordukhovich [19], subgradient set in the general sense in Rockafellar [31]. (The
subgradients are those of L(t, ·, ·) with t fixed.) Under the hypotheses of this paper (see
Section 2), the inclusion (1.1) implies that for almost all t the vector ẋ(t) maximizes
the function v 7→ 〈p(t) , v〉 − L(t, x(t), v).

The sharpened Hamiltonian condition that we establish for the first time as nec-
essary for optimality, by virtue of its equivalence to (1.1), is

(1.2) ṗ(t) ∈ co
{
w : (−w, ẋ(t)) ∈ ∂H(t, x(t), p(t))

}
a.e. t ∈ [a, b].

The Hamiltonian H is, as usual, the Legendre-Fenchel transform of the Lagrangian L
in its velocity variable:

H(t, x, p) := sup {〈p , v〉 − L(t, x, v) : v ∈ IRn} .

Clearly, (1.2) is a strict improvement on the form (−ṗ(t), ẋ(t)) ∈ co ∂H(t, x(t), p(t))
taken as standard until now, since it convexifies only in the first argument. It im-
plies, in particular, that for almost all t, the vector p(t) maximizes the function
q 7→

〈
q , ẋ(t)

〉
−H(t, x(t), q).

The weakened assumptions on L that suffice for these developments are set out
in hypotheses (H4) and (H5) of Section 2. The first of these is a very mild “epi-
continuity” assumption. Geometrically it amounts to insisting that, for each fixed t,
the set epiL(t, x, ·) should vary continuously with x. The second is a growth condi-
tion on subgradients, reducing when L(t, x, v) is smooth to a local inequality of the
form |∇xL| ≤ κ

(
1 + |∇vL|

)
. It implies, through a result of Mordukhovich [18], the

Aubin (“pseudo-Lipschitz”) continuity of the multifunction x 7→7→ epiL(t, x, ·) near the
optimal arc. Our need for Aubin continuity on a tube of uniform size around the
minimizing trajectory makes it necessary to formulate a quantitative generalization of
Mordukhovich’s result in Section 4.

We give special attention in Section 7 to the Lipschitz-plus-indicator case where
L = L1 + Ψgph F , showing for that version of the problem that the present results
yield a full suite of (sharpened) Lagrangian and Hamiltonian necessary conditions for
optimality in both normal and abnormal forms, beyond what we had previously ob-
tained in [13] and [14]. This recalls the work of Smirnov [32], who proposed the version
of (1.1) for L = Ψgph F as a necessary condition in 1991, but whose requirements that
F be bounded and autonomous are significantly relaxed here. (Smirnov’s result and
proof are linked to prior work of Mordukhovich [15, 16, 17], who has recently given
conditions [19] under which the necessity of (1.1) can be established in the absence of
convexity hypotheses.) The main thrust of our effort, however, goes the other way:
we demonstrate how to transform (P) in its full generality into an instance of the
differential inclusion problem in [14], and with some new machinery we then apply
the results in that paper in combination with the Lagrangian-Hamiltonian equivalence
theorem in [31].
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State constraints requiring x(t) to belong to a set X(t) ⊂ IRn can in principle be
incorporated into problem (P) by adding an indicator term in the specification of L,
but for technical reasons it is better, at least in the theory as it now stands, to keep
them explicit. The treatment of such constraints is taken up in Section 6.

2. The Main Result. Our main result is Theorem 2.1, a set of necessary con-
ditions for an arc x to provide a local minimum in problem (P). So let x be given,
and fix some ε > 0 in order to define a suitable neighbourhood of x:

Ω := {(t, x) : t ∈ [a, b], |x− x(t)| < ε} ,

Ωt := {x : |x− x(t)| < ε} , a ≤ t ≤ b.

We impose five conditions on x and the functions l and L relative to the set Ω; these are
described below as (H1)–(H5). For simplicity in dealing with subgradients of L(t, x, v)
and H(t, x, p) we use the notation ∂L and ∂H instead of the more cumbersome (but
precise) ∂(x,v)L and ∂(x,p)H. In general, as already mentioned, we write ∂f(z) for the
set of limiting subgradients associated with a lower semicontinuous function f at the
point z; the singular counterpart to this set is ∂∞f(z). See Loewen [12] for details.

Theorem 2.1. Assume (H1)–(H5). Suppose that for every arc x with graph
in Ω, one has Λ[x] ≥ Λ[x]. Then either the normal conditions or the degenerate
conditions written below are valid.
[Normal Conditions]: For some arc p on [a, b],

(a) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. t ∈ [a, b],

(b) (p(a),−p(b)) ∈ ∂l(x(a), x(b)).
[Degenerate Conditions]: For some nonzero arc p on [a, b],

(a∞) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂∞L(t, x(t), ẋ(t))

}
a.e. t ∈ [a, b],

(b∞) (p(a),−p(b)) ∈ ∂∞l(x(a), x(b)).
(In particular, if the only arc p on [a, b] satisfying conditions (a∞)–(b∞) is the zero
arc, then the normal conditions are satisfied.) In the normal conditions, assertion (a)
is equivalent to

(a′) ṗ(t) ∈ co
{
w : (−w, ẋ(t)) ∈ ∂H(t, x(t), p(t))

}
a.e. t ∈ [a, b].

Also, conditions (a) and (a′) imply that for almost all t in [a, b],
(c) p(t) ∈ ∂vL(t, x(t), ẋ(t)) = argmax

q∈IRn

{〈
q , ẋ(t)

〉
−H(t, x(t), q)

}
, and

ẋ(t) ∈ ∂pH(t, x(t), p(t)) = argmax
v∈IRn

{〈p(t) , v〉 − L(t, x(t), v)}.

Hypotheses. The terms in the Bolza functional Λ are required to have the fol-
lowing properties, expressed in terms of the constant ε > 0 in the definition of Ω and
two positive-valued integrable functions δ and κ on [a, b].

(H1) The endpoint cost function l(xa, xb): IRn × IRn → IR ∪ {∞} is lower semi-
continuous on Ωa × Ωb;

(H2) The integrand L(t, x, v): Ω× IRn → IR ∪ {∞} is measurable with respect to
the σ-field L×B generated by products of Lebesgue subsets of [a, b] with Borel subsets
of IRn × IRn;

(H3) For each fixed pair (t, x) in Ω, the function v 7→ L(t, x, v) is convex;
(H4) For almost every t in [a, b], the function (x, v) 7→ L(t, x, v) is lower semicon-

tinuous on Ωt× IRn and has the following epi-continuity property: for any point (x̂, v̂)
where |x̂− x(t)| < ε and L(t, x̂, v̂) is finite, and any sequence xk → x̂ in Ωt, there
exists a sequence vk → v̂ along which L(t, xk, vk) → L(t, x̂, v̂).
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(H5) The ratio κ(t)/δ(t) is essentially bounded. For almost all t in [a, b], one has

|w| ≤ κ(t) (1 + |p|) for all (w, p) ∈ ∂L(t, x, v),

whenever |x− x(t)| < ε,
∣∣(v, L(t, x, v))− (ẋ(t), L(t, x(t), ẋ(t)))

∣∣ < δ(t).
As the absence of measures in the statement of Theorem 2.1 signals, state con-

straints cannot be implicit in the instance of (P) under consideration at this stage.
To see how such restrictions are ruled out, notice that (H4) makes the set

Gt =
{
x ∈ Ωt : L(t, x, v) < ∞ for some v with

∣∣v − ẋ(t)
∣∣ < δ(t)

}
be open for almost all t. Indeed, (H4) says that no point x̂ in Gt can be a boundary
point. Of course, x(t) lies in Gt. Thus our paradigm allows for L to impose certain
velocity constraints through the use of infinite penalties, but does not allow unilateral
state constraints to be covered in the same way. State constraints in the explicit form
“x(t) ∈ X(t) ∀t” can nonetheless be handled by our methods, as will be explained in
Section 6.

Hypothesis (H5) can be viewed as a combined growth condition and Lipschitz
condition. As a growth condition, it resembles the “condition of Morrey type” under-
lying Clarke and Vinter’s Prop. 3.2 in [7], a result which establishes the validity of the
Euler-Lagrange equation in the calculus of variations without the a priori assumption
that the minimizing arc is Lipschitzian. Indeed, in the special case where L(t, ·, ·) is
continuously differentiable on Ωt, (H5) reduces to

|∇xL(t, x, v)| ≤ κ(t)
(
1 + |∇vL(t, x, v)|

)
∀(x, v) ∈ Ωt.

As a Lipschitz condition, (H5) is a subgradient characterization of the Aubin continu-
ity of the epigraphical multifunction associated with L, as we shall see in Section 4.
A Hamiltonian formulation of this assumption is derived in Section 5, where its rela-
tionship to Clarke’s “strong Lipschitz condition” [4] is easiest to discern.

Notice that the seemingly weaker form of (H5) obtained by substituting the prox-
imal subgradient set ̂̂∂L for ∂L is actually equivalent to the form stated here, because
∂L is defined by taking limits of proximal subgradients.

The Method of Proof. There is a well known equivalence between Bolza prob-
lems and Mayer problems, mediated by the technique of state augmentation. Indeed,
consider the domain Ω̃ = Ω× IR in one more state dimension, the extra state variable
being denoted by y, and define the epigraphical multifunction E : Ω̃→→ IRn+1 by

E(t, x, y) := epiL(t, x, ·).

(The set E(t, x, y) does not actually depend on y.) If the arc x figuring in our hy-
potheses solves (P), then the arc (x, y), with

y(t) :=
∫ t

a

L(r, x(r), ẋ(r)) dr,

solves the following differential inclusion problem:

(P ′)
minimize k

(
x(a), y(a), x(b), y(b)

)
:= l(x(a), x(b)) + y(b) + Ψ{0}(y(a))

subject to (ẋ(t), ẏ(t)) ∈ E(t, x(t), y(t)) a.e. t ∈ [a, b].
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The right side in the dynamic constraint here is unbounded. Necessary conditions
for optimality in problems of this sort were the subject of a previous paper [14]. Our
procedure in the current paper is basically to check the hypotheses in [14], and then to
translate the conclusions of that work into the context of (P). Checking the hypotheses
takes a certain amount of work, since the transition from the subgradient hypothe-
sis (H5) to the Lipschitz conditions required by [14] is not completely straightforward
(see Section 4). Likewise, an additional state-augmentation argument is necessary to
reduce the case of a general lower semicontinuous endpoint cost l to the Lipschitz-plus-
indicator form treated in [14] (see the proof of Theorem 3.1). Finally, it is insufficient
simply to transcribe the conclusions of [14]: the sharpened Hamiltonian inclusion fea-
tured here relies on a careful analysis of the relationship between the Hamiltonian and
Eulerian forms of the necessary conditions, as carried out by Rockafellar [31].

3. Proof of the Main Result. To prove Theorem 2.1, we shall apply an inter-
mediate result for unbounded differential inclusions which is readily derived from [14,
Theorem 4.3]. The reformulated problem (P ′) under consideration fits the general
pattern:

(P)
minimize k(z(a), z(b))

subject to ż(t) ∈ E(t, z(t)) a.e. t ∈ [a, b].

The hypotheses of [14] for this kind of problem refer to a distinguished arc z, and, for
some fixed η > 0, its “graphical neighbourhood”

U = {(t, z) : t ∈ [a, b], |z − z(t)| < η} ,

Ut = {z : |z − z(t)| < η} , a ≤ t ≤ b.

They read as follows:
(h1) The endpoint cost function k:Ua ×Ub → IR∪ {∞} is lower semicontinuous;
(h2) The sets E(t, z) are nonempty, closed, and convex for each (t, z) in U , and

empty for each (t, z) outside U ;
(h3) The multifunction E is measurable with respect to the σ-field L×B generated

by products of Lebesgue subsets of [a, b] with Borel subsets of IRm;
(h4) There are integrable functions δ and K on [a, b], with K/δ essentially

bounded, such that almost every t in [a, b] obeys

E(t, y) ∩ (ż(t) + δ(t)IB) ⊆ E(t, z) + K(t)|y − z|IB ∀y, z ∈ Ut.

Here and elsewhere in this paper, IB denotes the closed unit ball in the Euclidean
space of appropriate dimension.

Theorem 3.1 [14]. If hypotheses (h1)–(h4) hold and z solves problem (P), then
there exists an arc q on [a, b] such that

(a) q̇(t) ∈ co
{
w : (w, q(t)) ∈ Ngph E(t,·)

(
z(t), ż(t)

) }
a.e. t ∈ [a, b]; and

(b) one of the following transversality conditions holds:
(i) (q(a),−q(b)) ∈ ∂k(z(a), z(b)), or
(ii) (q(a),−q(b)) ∈ ∂∞k(z(a), z(b)), with q not identically zero.

Proof. A simple trick reduces the general lower semicontinuous endpoint cost
function k to one in the Lipschitz-plus-indicator form analyzed in [14]. Indeed, it
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suffices to define the constant arc r = k(z(a), z(b)), and then to observe that the pair
(z, r) solves the problem:

minimize r(b)
subject to (z(a), z(b), r(a)) ∈ epi k, r(b) ∈ IR,

(ż(t), ṙ(t)) ∈ E(t, z(t))× {0} a.e. t ∈ [a, b].

The stated result follows from conditions (b) and (d) of [14, Theorem 4.3] by elemen-
tary subgradient calculus.

Note that although the statement of [14, Theorem 4.3] involves stronger Lipschitz
conditions on the multifunction E, specifically tailored to the modulus of integrability
of the function ż, these are present only to facilitate a statement free of explicit
references to the quantity ż(t). In fact, the conditions of [14, Proposition 2.2] are
sufficient for the conclusions of [14, Theorem 4.3], and it is these we have applied
here—taking R = δ and m = K.

Leaving aside the verification of hypotheses (h1)–(h4) for now, let us derive the
conclusions of Theorem 2.1 from those of Theorem 3.1. To apply the latter result, we
take m = n + 1, with z = (x, y) as a pattern and z = (x, y) as the optimal arc. Of
course, E(t, z) = E(t, x, y) and k(xa, ya, xb, yb) = l(xa, xb) + yb + Ψ{0}(ya). Observe
that

∂k(z(a), z(b)) = {(α, ζ, β, 1) : (α, β) ∈ ∂l(x(a), x(b)), ζ ∈ IR} ,

∂∞k(z(a), z(b)) = {(α, ζ, β, 0) : (α, β) ∈ ∂∞l(x(a), x(b)), ζ ∈ IR} .

In terms of these data, Theorem 3.1 provides an adjoint arc (p, q): [a, b] → IRn × IR
satisfying two conditions. First, the transversality condition 3.1(b) implies that either
q(b) = −1 and (p(a),−p(b)) ∈ ∂l(x(a), x(b)), or else q(b) = 0 and (p(a),−p(b)) ∈
∂∞l(x(a), x(b)) with (p, q) not identically zero. Second, the Euler-Lagrange condi-
tion 3.1(a) asserts that for almost all t in [a, b],

(3.1) (ṗ(t), q̇(t)) ∈ co
{
(v, w) : (v, w, p(t), q(t)) ∈ Ngph E(t,·)

(
x(t), y(t), ẋ(t), ẏ(t)

) }
.

Now for fixed t, one has

gphE(t, ·) = {(x, y, v, r) : (x, v, r) ∈ epiL(t, ·, ·), y ∈ IR} .

In terms of L(t) = L(t, x(t), ẋ(t)), this implies

Ngph E(t,·)
(
x(t), y(t), ẋ(t), ẏ(t)

)
=

{
(v, 0, π,−ρ) : (v, π,−ρ) ∈ Nepi L(t,·,·)

(
x(t), ẋ(t), L(t)

) }
.

Using this relation in (3.1), we get

(3.2) (ṗ(t), q̇(t)) ∈ co
{
v : (v, p(t), q(t)) ∈ Nepi L(t,·,·)

(
x(t), ẋ(t), L(t)

) }
× {0} .

In particular, the second component of this inclusion implies that q̇(t) = 0 almost
everywhere. Thus q is a constant function, whose value is either 0 or −1. In the case
where q = −1, one has the normal conditions of Theorem 2.1:

(a) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
a.e. t ∈ [a, b], and

(b) (p(a),−p(b)) ∈ ∂l(x(a), x(b)).
In the case where q = 0, the degenerate conditions of Theorem 2.1 follow instead:

(a∞) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂∞L(t, x(t), ẋ(t))

}
a.e. t ∈ [a, b], and
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(b∞) (p(a),−p(b)) ∈ ∂∞l(x(a), x(b)), and p is not the zero arc.
In [31, Theorem 1.1], Rockafellar proves that the inclusions (a) and (a′) in Theo-

rem 2.1 are equivalent for each fixed t with the properties described in (H4), provided
that every such t also satisfies the condition

(3.3) (w, 0) ∈ ∂∞L(t, x(t), ẋ(t)) =⇒ w = 0.

Note that (3.3) holds for almost all t, by (H5). Indeed, any point (w, 0) in the cone
∂∞L(t, x(t), ẋ(t)) must have the form (w, 0) = limν→∞ rν(wν , pν) for sequences rν →
0+ and (wν , pν) ∈ ̂̂∂L(t, xν , vν) along which (xν , vν)−→

L
(x(t), ẋ(t)). Since ̂̂∂L ⊆ ∂L

always, (H5) implies that for all ν sufficiently large,

|rνwν | ≤ κ (|rνpν |+ rν) .

In the limit as ν → ∞, it follows that |w| ≤ 0, so (3.3) holds. Under the same
hypotheses, Rockafellar [31] shows that the equivalent conditions (a) and (a′) both
imply the argmax conditions in (c).

To complete the proof of Theorem 2.1, we must demonstrate that Theorem 3.1
is truly applicable—by checking hypotheses (h1)–(h4). Conditions (h1)–(h3) hold for
any η ∈ (0, ε], as obvious consequences of the corresponding hypotheses (H1)–(H3) on
l and L. The real issue is hypothesis (h4), which calls for the Aubin continuity of the
multifunction E (see Aubin [1]) with respect to a certain restricted tube around z.
This condition follows from hypothesis (H5) and Theorem 4.3 in the next section.

To see this, fix a time t in [a, b] at which the conditions in (H4)–(H5) hold. Since t
will be fixed throughout this argument, and since E does not actually depend on y, we
suppress both the t- and y-dependence of E and L, writing simply E(x) = epiL(x, ·)
for |x− x| < ε. (We also write ẋ instead of ẋ(t) and use the shorthand L = L(x, ẋ).)
As noted above, gphE = epiL; thus (H4) implies that gph E is closed, and that
condition (i) of Theorem 4.3 holds. Condition (ii), on the other hand, requires that

|w| ≤ R|(p,−λ)| for all (w, p,−λ) ∈ Nepi L (x, v, r) ,

whenever |x− x| < ε and
∣∣(v, r)− (ẋ, L)

∣∣ < δ.

Now the “proximal subgradient formula” [26, 11] asserts that every nonzero vector
(w, p,−λ) in Nepi L (x, v, r) can be realized as the limit of a sequence of proximal
normals (wν , pν ,−λν) in ̂̂Nepi L (xν , vν , rν) for which λν > 0 and the corresponding
base points obey (xν , vν , rν)−−−−→

epi L
(x, v, r). For every term in such a sequence, one has

(wν/λν , pν/λν) ∈ ̂̂∂L(xν , vν), so (H5) gives

|wν/λν | ≤ κ (1 + |pν/λν |) .

Multiplying through by λν > 0 and letting ν →∞, we obtain

|w| ≤ κ (|p|+ |λ|) ≤ 2κ|(p,−λ)|.

This argument applies to every triple (w, p,−λ) in Nepi L (x, v, r), so condition (ii) of
Theorem 4.3 holds with R = 2κ. The conclusion of Theorem 4.3 establishes (h4), with
K(t) =

√
1 + 4κ(t)2, any constant 0 < η ≤ ε0(t) := min {ε, δ(t)/(9K(t))}, and δ(t)

equal to one-sixth the value of the δ(t) provided in (H5). (The function ε0 is bounded
away from zero because κ/δ ∈ L∞ by (H5).) This completes the proof of Theorem 2.1.
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4. On Uniform Aubin Continuity. This section and the next furnish techni-
cal support for the proof and interpretation of Theorem 2.1 above. Both are intended,
though, to stand alone as having independent interest: they involve functions and con-
stants whose names are deliberately suggestive, but are logically distinct from those
identified in Sections 1–3 and 6–7.

Definition 4.1. Let Γ: IRn→→ IRm be a multifunction; let (x, γ) be a point in
gphΓ. To say that Γ is Aubin continuous at (x, γ) with parameters ε > 0, δ > 0, and
K > 0 means that one has

(4.1) Γ(x) ∩ (γ + δIB) ⊆ Γ(y) + K|y − x|IB ∀x, y ∈ x + εIB.

The modulus of Aubin continuity for a given multifunction Γ at a point (x, γ) in
gphΓ is the number κΓ(x, γ), defined as the infimum of all K > 0 satisfying (4.1) for
some ε > 0 and δ > 0. Mordukhovich [18, Theorem 5.7] has shown that if gph Γ is
closed, then

κΓ(z, γ) = sup {|α| : (α, β) ∈ Ngph Γ (x, γ) , |β| ≤ 1} .

For the purposes of this paper, Aubin continuity with some fixed δ > 0 is required at
every point in some ε-neighbourhood of a given arc, and knowing only that κΓ is finite
at every point along the arc is not sufficient. We need quantitative estimates of the
constants ε, δ, and K in terms of a neighbourhood of (x, γ) in which the (generalized)
slope of vectors normal to the graph of Γ is bounded.

Our approach to this problem is patterned on that introduced in Rockafellar [28,
Remark 3.14]: we prove that Γ has the desired Aubin continuity properties by showing
that the function dΓ defined in the next Lemma satisfies a corresponding Lipschitz con-
tinuity condition. This in turn is accomplished by using Rockafellar’s 1985 results [27]
for estimating the subgradients of marginal functions. (Although the facts we appro-
priate from these earlier papers were phrased in terms of Clarke subgradients, they
apply equally well to the limiting subgradients we are working with here.)

Lemma 4.2. Given a multifunction Γ with closed graph G, consider dΓ(x, v) :=
dΓ(x) (v). If dΓ is Lipschitz of rank K on the set (x+εIB)×(γ+δIB) for some constants
ε > 0, δ > 0, then condition (4.1) holds, with the same constants.

Proof. This is elementary—see Rockafellar [28, Theorem 2.3, (b)⇒(a)].
Theorem 4.3. Let Γ: IRn→→ IRm be a multifunction; write G = gphΓ, and as-

sume that G is a closed set. Let (x, γ) in G be a point for which some constants ε > 0,
δ > 0, and R > 0 satisfy two conditions:

(i) For any point (x, γ) in G with |x− x| < ε and |γ − γ| < δ, and any sequence
xk → x, there is a sequence γk ∈ Γ(xk) such that γk → γ.

(ii) |α| ≤ R|β| for all (α, β) ∈ Ngph Γ (x, γ), whenever |x− x| < ε and |γ − γ| <
δ.
Then Γ is Aubin continuous at (x, γ) with parameters K =

√
1 + R2, δ0 = δ/6, and

ε0 = min {ε, δ/(9K)}, i.e.,

(4.2) Γ(y) ∩ (x + δ0IB) ⊆ Γ(x) + K|y − x|IB ∀x, y ∈ x + ε0IB.

Proof. According to Lemma 4.2, we only have to show that dΓ is Lipschitz con-
tinuous of rank K on the set (x+ε0IB)× (γ +δ0IB). And to accomplish this, it suffices
to show that ∂dΓ(x, v) ⊆ KIB for all (x, v) in this set. We therefore set out to estimate
∂dΓ, relying on Rockafellar [27].
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A convenient characterization of dΓ, valid for all x and v without restriction, is

(4.3)
dΓ(x, v) = min {|v − γ| : (x, γ) ∈ G}

= min {f(x, v, γ) : (x, v, γ) ∈ S} ,

where f(x, v, γ) = |x− γ| and S = {(x, v, γ) : (x, γ) ∈ G, v ∈ IRm}. In the latter
form, dΓ is revealed as the marginal function associated with an optimization problem
depending on parameters (x, v). Such functions have been studied extensively, in
particular by Rockafellar [27], whose results we shall employ here. Let us denote by
Σ(x, v) the set of minimizing vectors γ in (4.3) above. Theorem 8.3 of [27] implies
that any point (x, v) has a neighbourhood in which dΓ is Lipschitzian and satisfies the
following estimate for limiting subgradients:

∂dΓ(x, v) ⊆ {(ξ, η) : (ξ, η, 0) ∈ ∂f(x, v, γ) + NS (x, v, γ) ∃γ ∈ Σ(x, v)} .

(The hypotheses of Rockafellar’s result are easy to verify, because the function f here
is Lipschitzian, so ∂∞f ≡ {0}, and because f grows rapidly enough to make the
inf-compactness condition obvious.) We note that whenever γ ∈ Σ(x, v),

∂f(x, v, γ) ⊆ {(0, u,−u) : |u| ≤ 1} ,

NS (x, v, γ) = {(α, 0, β) : (α, β) ∈ NG (x, γ) } .

(A sharper version of the first inclusion is possible, but this one is adequate for our
purposes.) It follows that any point (ξ, η) in ∂dΓ(x, v) obeys

(ξ, η, 0) = (0, u,−u) + (α, 0, β) for some γ ∈ Σ(x, v), (α, β) ∈ NG (x, γ) , u ∈ IB.

Thus
∂dΓ(x, v) ⊆ {(α, β) ∈ NG (x, γ) : γ ∈ Σ(x, v), |β| ≤ 1} .

For those points (x, v) where all the pairs (x, γ) with γ ∈ Σ(x, v) lie in the set specified
by hypothesis (ii), that condition implies that every pair (α, β) on the right side has
|α| ≤ R and |β| ≤ 1, so |(α, β)|2 ≤ (R2 + 1) = K2. Thus

(4.4) {x} × Σ(x, v) ⊆ (x + εIB)× (γ + δIB) =⇒ ∂dΓ(x, v) ⊆ KIB.

This reveals the key to the result: the location of the set Σ(x, v).
Claim. Fix (x̂, γ̂) in G with |x̂− x| < ε, |γ̂ − γ| < δ. Then for some µ > 0, one

has Σ(x, v) ⊆ γ + δIB whenever |x− x̂| < µ, |v − γ̂| < (δ − |γ̂ − γ|)/3.
To prove this, suppose not: then there are sequences xk → x̂ and vk for which

(4.5) |vk − γ̂| < δ − |γ̂ − γ|
3

and yet Σ(xk, vk) contains some point outside γ + δIB. Call this point πk. Then
|πk − γ| > δ and consequently

(4.6)

dΓ(xk) (vk) = |(πk − γ)− (vk − γ)|
≥ |πk − γ| − |vk − γ|
> δ − |vk − γ̂| − |γ̂ − γ|.
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But the semicontinuity property (i) provides a sequence γk ∈ Γ(xk) such that γk → γ̂.
For this sequence,

(4.7) dΓ(xk) (vk) ≤ |vk − γk| ≤ |vk − γ̂|+ |γ̂ − γk|.

Concatenating inequalities (4.6) and (4.7) and applying condition (4.5) yields

2|vk − γ̂| ≥ δ − |γ̂ − γ| − |γ̂ − γk|
> 3|vk − γ̂| − |γ̂ − γk|,

whence |vk − γ̂| < |γk − γ̂|. In particular, vk → γ̂. Taking the limit in the previous
inequality then gives 0 ≥ δ− |γ̂ − γ|. This is a contradiction, since the right side here
is positive by construction. The claim holds.

We apply the claim first to the point (x̂, γ̂) = (x, γ). In view of (4.4), this shows
that ∂dΓ is bounded by K throughout the interior of some set (x + µIB) × (γ +
(δ/3)IB), but provides no information about the size of µ > 0. To balance the need
for quantitative information in both directions, consider

µ̂ = sup {µ ∈ (0, ε) : ∂dΓ(x, v) ⊆ KIB ∀x ∈ x + µIB, v ∈ γ + δ0IB} ,

where δ0 is defined in the theorem statement. Notice that for every (x, v) where
|x− x| < µ̂ and |v − γ| ≤ δ0, one has ∂dΓ(x, v) ⊆ KIB. Thus dΓ is Lipschitz continuous
of rank K on the set just described. In particular, Γ is Aubin continuous there, and
consequently every y with |y − x| < µ̂ obeys

(4.8) γ ∈ Γ(x) ∩ (γ + δ0IB) ⊆ Γ(y) + K|y − x|IB, i.e.,
Γ(y) ∩ (γ + K|y − x|IB) 6= ∅.

The closed-graph property of Γ makes it elementary to extend (4.8) to all y in the
closed set x + µ̂IB.

Let us prove that µ̂ ≥ ε0. Suppose this statement is false, i.e., µ̂ < ε0: then
every sufficiently large integer k admits a corresponding point (xk, vk) with |xk − x| <
µ̂ + 1/k < ε, |vk − γ| ≤ δ0, but ∂dΓ(x, v) 6⊆ KIB. By passing to a subsequence
if necessary we can assume that (xk, vk) converges to some point (x̂, v̂) satisfying
|x̂− x| ≤ µ̂ < ε0 and |v̂ − γ| ≤ δ0 = δ/6. From the strong form of (4.8) described in
the previous paragraph there exists some point γ̂ in Γ(x̂) such that |γ̂ − γ| ≤ K|x̂− x|.
Our claim applies to the point (x̂, γ̂): it says that the estimate ∂dΓ ⊆ KIB holds
throughout some set of the form

(x̂ + µIB)×
(

γ̂ +
δ − |γ̂ − γ|

3
IB

)
,

where µ > 0 and (by choice of ε0)

δ − |γ̂ − γ|
3

≥ δ −K|x̂− x|
3

≥
δ −K

(
δ

9K

)
3

=
8δ

27
.

But the point (x̂, v̂) satisfies

|v̂ − γ̂| ≤ |v̂ − γ|+ |γ − γ̂| ≤ δ

6
+ K|x̂− x|

≤ δ

6
+ K

(
δ

9K

)
=

5δ

18
.
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Now 8δ
27 > 5δ

18 , so these two estimates show that (x̂, v̂) lies in the interior of a set in
which ∂dΓ is bounded by K. This contradicts the stated properties of the sequence
(xk, vk), and completes our justification that µ̂ ≥ ε0.

These arguments show that dΓ is Lipschitz with rank K on a set containing
(x + ε0IB)× (γ + δ0IB). The desired result now follows from Lemma 4.2.

5. Aubin Continuity in Lagrangian and Hamiltonian Terms. Like Sec-
tion 4, this section is logically independent of the others in the paper, although the
similarity of the notation is deliberate.

Given x in IRn and ε > 0, write Ω = x + εIB and consider a Lagrangian L: Ω ×
IRn → IR ∪ {∞}. Assume that for every x ∈ Ω, the function v 7→ L(x, v) is closed,
proper, and convex. Use L to define the multifunction E(x) := epiL(x, ·). Notice that
for every x ∈ Ω, this multifunction has nonempty closed convex values. In this section
we characterize the Aubin continuity of E near (x, v) in terms of conditions on L and
its associated Hamiltonian H(x, p) := sup {〈p , v〉 − L(x, v) : v ∈ IRn}.

Theorem 5.1. Fix any point (v, L) in E(x), along with scalars ε > 0, K ≥ 0.
Write IB′ = IB× [−1, 1] for the unit ball in in IRn × IR. Then for any x, y ∈ x + εIB,
conditions (a)–(c) below are equivalent:

(a) E(x) ∩ ((v, L) + δIB′) ⊆ E(y) + K|y − x|IB′;
(b) For any u ∈ v + δIB obeying L(x, u) ≤ L + δ, there exists v ∈ IRn satisfying

(i) |v − u| ≤ K|y − x|, and
(ii) L(y, v) ≤ max

{
L− δ, L(x, u)

}
+ K|y − x|;

(c) For any p ∈ IRn,

(5.1) inf
p′∈IRn

θ>0

{
θH(x, p′/θ) + δ|p′ − p|+ δ|θ − 1|+ 〈p− p′ , v〉+ (θ − 1)L

}
≤ H(x, p) + K (1 + |p|) |y − x|.

Proof. (a⇒b) Suppose (a) holds. If u ∈ IRn satisfies L(x, u) ≤ L + δ, then the
point

(
u, max{L− δ, L(x, u)}

)
lies in the left side shown in condition (a): thus(

u, max{L− δ, L(x, u)}
)
∈ E(y) + K|y − x|IB′.

In particular, there has to be a point (h, r) with max {|h|, |r|} ≤ K|y − x| such that(
u, max{L− δ, L(x, u)}

)
+ (h, r) ∈ E(y).

The special shape of the epigraph set E(y) allows us to replace r by the larger value
K|y − x| on the left side: in this case, defining v = u +h gives |v − u| ≤ K|y − x| and(

v,max{L− δ, L(x, u)}+ K|y − x|
)
∈ E(y),

i.e., L(y, v) ≤ max{L− δ, L(x, u)}+ K|y − x|.

(b⇒a) Suppose (b) holds. Let (u, r) be a vector on the left side in (a). Then
L(x, u) ≤ r and L− δ ≤ r ≤ L + δ, so (b) provides a vector v such that

(i′) |v − u| ≤ K|y − x|,
(ii′) L(y, v) ≤ max

{
L− δ, L(x, u)

}
+ K|y − x| ≤ r + K|y − x|.

Thus r ≥ L(y, v)−K|y − x|: the special shape of the epigraph set E(y) ensures that
(u, r) ∈ E(y) + K|y − x|IB, as required.
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(c⇔a) The right side in (a) is a nonempty, closed convex set, since it arises as
the sum of a closed convex set and a compact convex set. A separation theorem
customized for epigraphs implies that an equivalent formulation of (a) is

(5.2) σLS(p,−1) ≤ σRS(p,−1) ∀p ∈ IRn.

We calculate

(5.3)
σRS(p,−1) = σE(y)(p,−1) + K|y − x|σIB′(p,−1)

= H(t, y, p) + K‖(p,−1)‖∗|y − x|,

where ‖(v, r)‖∗ = |v|+ |r| is the norm on IRn × IR dual to the one defining IB′ there.
Basic convex analysis (Rockafellar [20], Chap. 16) affirms that for any nonempty

convex sets C and D, with D compact, one has

σC∩D = cl(σC ut σD) = σC ut σD.

(The second equation here holds because the convex function σC ut σD is finite, hence
continuous, on the whole space.) It follows that

σLS(p,−1)

=
(
σE(x) ut σ(v,L)+δIB′

)
(p,−1)

= inf
(p′,q′)

{
σE(x)(p′, q′) + δ‖(p,−1)− (p′, q′)‖∗ + 〈p− p′ , v〉+ (−1− q′)L

}
.

Now σE(x)(p′, q′) = ∞ whenever q′ > 0, so the latter infimum can be restricted to
those points where q′ ≤ 0. Furthermore, at any point (p′, q′) where q′ = 0, the special
features of epigraph sets imply that the quantity σE(x)(p′, 0) + δ‖(p,−1)− (p′, 0)‖∗
can be realized as a limit of some sequence σE(x)(p′k, q′k) + δ‖(p,−1)− (p′k, q′k)‖∗ with
q′k < 0. Thus the infimum can be restricted to points where q′ < 0. So we write
θ = −q′ > 0, and use the observation that

σE(x)(p′,−θ) = θσE(x)(p′/θ,−1) = θH(x, p′/θ)

to obtain
(5.4)

σLS(p,−1) = inf
p′∈IRn

θ>0

{
θH(x, p′/θ) + δ‖(p′ − p, θ − 1)‖∗ + 〈p− p′ , v〉+ (θ − 1)L

}
.

Equations (5.3) and (5.4) reveal that condition (5.2) is equivalent to (c), whereas (5.2)
is equivalent to (a) by construction.

Clarke’s Strong Lipschitz Condition. In treating the generalized problem of
Bolza in [4, Chap. 4], Clarke imposes a Hamiltonian requirement called the “strong
Lipschitz condition,” which asks that for all x and y in some large enough ball,

(5.5) H(y, p) ≤ H(x, p) + K (1 + |p|) |y − x| ∀p ∈ IRn.

Our next corollary shows that Aubin continuity of the sort utilized here is a less
demanding hypothesis.
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5.2. Corollary. If H satisfies the strong Lipschitz condition (5.5), then H sat-
isfies each of the equivalent conditions (a)–(c) in Theorem 5.1 for every δ > 0.

Proof. Choose p′ = p, θ = 1 in (5.1) to see that RS(5.1)≤RS(5.5). Thus (5.5)
implies condition (c) of Theorem 5.1.

To see that (5.1) can be strictly weaker than (5.5), consider the example of
L(x, v) = 1

2 [v2 + x2v2]. It is easy to compute that H(x, p) = 1
2p2/(1 + x2). For

any ε > 0, then, there is a constant σε > 0 such that |Hx(x, p)| ≥ σε|p|2 for some x
in [−ε, ε]. In particular, the strong Lipschitz condition (5.5) fails. However, for any
fixed x, y in [−ε, ε], the choices θ = 1 and p′ = p

√
1 + y2/

√
1 + x2 in (5.1) give

LS(5.1) ≤ H(x, p) + δ

∣∣∣∣p√1 + y2

√
1 + x2

− p

∣∣∣∣ ≤ H(x, p) + (δ
√

1 + x2)|p||y − x|.

Thus inequality (5.1) holds for any δ > 0, with K = δ
√

1 + ε2.
In his later treatment of the generalized problem of Bolza in [5], Clarke replaces

his “strong Lipschitz condition” with a “weak Lipschitz condition.” Although the
latter condition is difficult to compare to our Aubin continuity assumption, it does
hold for the simple example introduced above.

6. Problems with Explicit State Constraints. In deriving Theorem 3.1
from Loewen and Rockafellar [14], we have transcribed only the conclusions that per-
tain in the absence of explicit state constraints. Such constraints are handled in [14],
however, and a proof perfectly analogous to the one given in Section 3 allows us to
incorporate them into the main result of this paper as well. In this section we sum-
marize the new ideas required in this broader context, and develop the associated
enlargement of Theorem 2.1. Fuller explanations of the new ingredients and ideas
appear in [13], [14].

Consider the following extension of problem (P) in which state constraints now
explicitly enter:

(P∗)
minimize Λ[x] := l(x(a), x(b)) +

∫ b

a

L(t, x(t), ẋ(t)) dt

subject to x(t) ∈ X(t) ∀t ∈ [a, b].

We retain hypotheses (H1)–(H5) of Section 2 and impose the following conditions on
the state constraint multifunction X:

(H6) Each set X(t) is closed, and the multifunction t 7→7→X(t) is lower semicontin-
uous, which means that for every point (t0, x0) ∈ Ω∩ (gph X), and for every
sequence tk → t0 in [a, b], there exists a sequence xk → x0 with xk ∈ X(tk)
for all k.

For each (t, x) in Ω ∩ (gph X) let

(6.1)
NX(t, x) = cl co

{
ν ∈ IRn : ν = lim

k→∞
νk for some sequences

νk ∈ ̂̂NX(tk) (xk) , (tk, xk)−−−−−→
gph X

(t, x)
}
.

This closed convex cone specifies the directions in which the adjoint function p is
allowed to jump when the state constraint is active. Recall that a vector-valued
measure dp is called “NX(t, x(t))-valued” when dp can be written as ν(t) dµ(t) for
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some nonnegative measure µ on [a, b] with dp � µ and some measurable selection
ν(t) ∈ NX(t, x(t)) µ-a.e.

With these additional ingredients, our main result takes the form stated below.
This version differs from the original one, Theorem 2.1, primarily in that its adjoint
function p is only of bounded variation, not absolutely continuous as it must be when
X ≡ IRn. In particular, the endpoints p(a) and p(b) may differ from the one-sided
limits p(a+) and p(b−) in cases where the measure dp has an atom at one or both
ends of the interval [a, b].

Theorem 6.1. Assume (H1)–(H6). Suppose that the arc x solves problem (P∗),
and that the constraint qualification below is satisfied:

(CQ) the cone NX(t, x(t)) is pointed for all t in [a, b].

Then either the normal conditions or the degenerate conditions below are satisfied by
some function p ∈ BV ([a, b]; IRn) for which the singular part of the measure dp is
NX(t, x(t))-valued, and hence in particular is supported on the set{

t : NX(t, x(t)) 6= {0}
}

= {t ∈ [a, b] : (t, x(t)) ∈ bdy gphX} .

[Normal Conditions]:
(a) ṗ(t) ∈ co

{
w : (w, p(t)) ∈ ∂L(t, x(t), ẋ(t))

}
+ NX(t, x(t)) a.e. t ∈ [a, b],

(b) (p(a),−p(b)) ∈ ∂l(x(a), x(b)).
[Singular Conditions]:

(a∞) ṗ(t) ∈ co
{
w : (w, p(t)) ∈ ∂∞L(t, x(t), ẋ(t))

}
+ NX(t, x(t)) a.e. t ∈ [a, b],

(b∞) (p(a),−p(b)) ∈ ∂∞l(x(a), x(b)).
(In particular, if the only such function p satisfying conditions (a∞)–(b∞) is identically
zero, then the normal conditions are satisfied.) In the normal conditions, assertion (a)
is equivalent to

(a′) ṗ(t) ∈ co
{
w : (−w, ẋ(t)) ∈ ∂H(t, x(t), p(t))

}
+ NX(t, x(t)) a.e. t ∈ [a, b].

Also, conditions (a) and (a′) imply that for almost all t in [a, b],
(c) p(t) ∈ ∂vL(t, x(t), ẋ(t)) = argmax

q∈IRn

{〈
q , ẋ(t)

〉
−H(t, x(t), q)

}
, and

ẋ(t) ∈ ∂pH(t, x(t), p(t)) = argmax
v∈IRn

{〈p(t) , v〉 − L(t, x(t), v)}.

7. Application: The Lipschitz-plus-Indicator Case. Many practical prob-
lems permit a clear distinction to be drawn between the constraints and the costs.
They can thus be expressed in the form of (P1) in Section 1. To this model we can
now add the possibility of explicit state constraints. We focus then on the problem:

(P∗1 )
minimize Λ1[x] := l1(x(a), x(b)) +

∫ b

a

L1(t, x(t), ẋ(t)) dt

subject to (x(a), x(b)) ∈ S and ẋ(t) ∈ F (t, x(t)) a.e. t ∈ [a, b]
along with x(t) ∈ X(t) ∀t ∈ [a, b],

in which the endpoint cost function l1 and, for each t, the running cost function
L1(t, ·, ·) are assumed to be locally Lipschitz continuous. To display this problem as an
instance of the general problem’s state-constrained version (P∗) treated in Section 6,
it suffices, as we have noted above, to take l = l1 + ΨS and L = L1 + Ψgph F , where
ΨS and Ψgph F are the indicators of S and the graph of the multifunction F .
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Suitable hypotheses on l1 and S, as well as L1 and F , are as follows. Again, they
refer to the constant ε > 0 appearing in the definition of Ω and to two positive-valued
integrable functions δ and κ.

(H1+) The endpoint cost function l1: IRn × IRn → IR is locally Lipschitzian on
Ωa × Ωb; the target set S ⊆ IRn × IRn is closed.

(H2+) The integrand L1: Ω×IRn → IR and the multifunction F : Ω→→ IRn are L×B-
measurable.

(H3+) For each fixed pair (t, x) in Ω, the function v 7→ L1(t, x, v) is convex on IRn,
while the set F (t, x) is convex.

(H4+) For almost every t in [a, b], the function (x, v) 7→ L1(t, x, v) is finite-valued
and lower semicontinuous on Ωt × IRn, while the multifunction x7→7→F (t, x) has closed
graph. Furthermore, one has the following epi-continuity property: for any point
(x̂, v̂) in gph F where |x̂− x(t)| < ε and L(t, x̂, v̂) is finite, and any sequence xk → x̂
in Ωt, there exists a sequence vk → v̂ satisfying both vk ∈ F (t, xk) and L1(t, xk, vk) →
L1(t, x̂, v̂).

(H5+) The ratio κ(t)/δ(t) is essentially bounded. For almost all t in [a, b], the
function (x, v) 7→ L1(t, x, v) is Lipschitz of rank κ(t) on the set (x(t) + εIB)× (ẋ(t) +
δ(t)IB), while the multifunction F satisfies

|w| ≤ κ(t) (1 + |p|) for all (w, p) ∈ Ngph F (t,·) (x, v) ,

whenever |x− x(t)| < ε,
∣∣v − ẋ(t)

∣∣ < δ(t).
This case is especially interesting because the Lipschitz continuity of l1 and L1

ensures that the singular subgradients of l and L coincide with the usual subgradients
of the reduced functions l0 = ΨS and L0(t, x, v) = Ψgph F (t, x, v). This makes it
possible to expand the degenerate conditions of Theorem 6.1, which now take the
form

(a∞) ṗ(t) ∈ co
{
v : (v, p(t)) ∈ ∂L0(t, x(t), ẋ(t))

}
+ NX(t, x(t)) a.e.,

(b∞) (p(a),−p(b)) ∈ ∂l0(x(a), x(b)) = NS (x(a), x(b)).
Rockafellar’s equivalence results in [31] certainly apply to L0 as well as to L, and
consequently condition (a∞) has the equivalent Hamiltonian form

ṗ(t) ∈ co
{
w : (−w, ẋ(t)) ∈ ∂H0(t, x(t), p(t))

}
a.e. t ∈ [a, b],

where, of course, H0(t, x, p) := sup {〈p , v〉 : v ∈ F (t, x)} is the Hamiltonian corre-
sponding to L0. Either of the equivalent forms of (a∞) implies a corresponding argmax
condition analogous to (c) in Theorem 6.1.

To summarize these developments, define the Lagrangian and Hamiltonian of
index λ, for any λ > 0, by

Lλ(t, x, v) := λL1(t, x, v) + Ψgph F (t, x, v),
Hλ(t, x, p) := sup {〈p , v〉 − λL1(t, x, v) : v ∈ F (t, x)} .

Then the following result holds.
Theorem 7.1. Assume (H1+)–(H5+) and (H6). Suppose that the arc x solves

problem (P∗1 ), and that the constraint qualification (CQ) of Theorem 6.1 is satisfied.
Then there exist p ∈ BV ([a, b]; IRn) and a constant λ ∈ {0, 1}, not both zero, such that
for almost all t in [a, b],

(a) ṗ(t) ∈ co
{
w : (−w, ẋ(t)) ∈ ∂Hλ(t, x(t), p(t))

}
+ NX(t, x(t)),

(b) ṗ(t) ∈ co
{
w : (w, p(t)) ∈ ∂Lλ(t, x(t), ẋ(t))

}
+ NX(t, x(t)),
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(c) p(t) ∈ ∂vLλ(t, x(t), ẋ(t)) = argmax
q∈IRn

{〈
q , ẋ(t)

〉
−Hλ(t, x(t), q)

}
,

ẋ(t) ∈ ∂pHλ(t, x(t), p(t)) = argmax
v∈F (t,x(t))

{〈p(t) , v〉 − λL1(t, x(t), v)}.

Furthermore,
(d) (p(a),−p(b)) ∈ ∂ (λl1 + ΨS) (x(a), x(b)) ⊆ λ∂l1(x(a), x(b))+NS (x(a), x(b)),
(e) the singular part of the measure dp is NX(t, x(t))-valued, and thus is sup-

ported on the set
{
t : NX(t, x(t)) 6= {0}

}
= {t : (t, x(t)) ∈ bdy gphX}.

Notice that when L1 ≡ 0, problem (P∗1 ) reproduces the unbounded differential
inclusion control problem of Loewen and Rockafellar [14]. The conclusions of Theo-
rem 7.1 then correspond exactly to those of [14, Theorem 4.3], but with three major
improvements: they allow for a nonzero integrand L1, offer the alternative formula-
tion of the Aubin continuity hypothesis in (H5+), and present a sharper Hamiltonian
inclusion in (a).
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