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Abstract

Problems of nonlinear programming are placed in a broader framework of com-
posite optimization. This allows second-order smoothness in the data structure
to be utilized despite apparent nonsmoothness in the objective. Second-order
epi-derivatives are shown to exist as expressions of such underlying smooth-
ness, and their connection with several kinds of second-order approximation is
examined. Expansions of the Moreau envelope functions and proximal map-
pings associated with the essential objective functions for certain optimization
problems in composite format are studied in particular.

1 Introduction

Problems in nonlinear programming are customarily stated in terms of a finite system
of equality and inequality constraints, defining a feasible set over which a certain func-
tion is to be minimized. For most numerical work it is assumed that the constraint
and objective functions are C2, so that second-order methodology can be utilized.
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This is taken as the model for “smooth” optimization, and any problem whose objec-
tive function fails to enjoy such differentiability, for instance by being only piecewise
C2, belongs then to the category of “nonsmooth” optimization. But in practice a
distinction between smooth and nonsmooth optimization based on such grounds is
artificial.

Many problems that start out with a nonsmooth objective, perhaps involving
penalty functions and “max” expressions, can be recast with a smooth objective. On
the other hand, nominally smooth problems with inequality constraints inherently
exhibit nonsmoothness in their geometry. Anyway, techniques for solving those prob-
lems often veer into nonsmoothness by appealing to merit functions or dualization.

The real issue in numerical and theoretical optimization alike is how to represent
and exploit to the fullest whatever degree of smoothness may be available in a prob-
lem’s elements. In this respect the traditional format falls short. Its deficiency is that
it places all the emphasis in problem formulation on making a list of constraints, which
must be simple equations or inequalities, each associated with an explicit constraint
function, and afterward merely specifying one additional function for the objective.
While a vehicle is provided for working with nonsmoothness in the boundary of the
feasible set, none is provided for nonsmoothness as it might be found in the graph of
the function being minimized, or for that matter for any other structural features of
the objective.

In contrast, the composite format for problems of optimization treats both con-
straints and objective more supportively and is able to span a wider range of situations
with ease. In the composite format, a problem is set up by specifying a representation
of the type

(P) minimize f(x) := g(F (x)) over x ∈ IRn,

where F : IRn → IRm is the data mapping and g : IRm → IR is the model function.
The mapping F supplies the problem’s special elements and carries its smoothness,
whereas the function g provides the structural mold. Not only does g have no need to
be smooth, it can even be extended-real-valued, with values in IR = [−∞,∞] instead
of just IR = (−∞,∞). This is central to the idea. The feasible set in (P) is defined
to be

C = dom f := {x | f(x) < ∞} = {x |F (x) ∈ D},

where
D = dom g := {u | g(u) < ∞}.

Here we aim at applying second-order nonsmooth analysis to the essential objec-
tive function f of problem (P) in this format. Keeping close to the ordinary domain
of nonlinear programming, if not the usual framework, we concentrate on the case in
which

• F is a C2 mapping, and
• g is a proper, convex function that is polyhedral ,
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i.e., such that the set epi g := {(u, α) ∈ IRm× IR |α ≥ g(u)} is polyhedral convex, cf.
[17, Section 19]. The set D is polyhedral then as well.

The nature and extent of the problem class covered under these restrictions is
explored in Section 2 along with the relationship to “amenable” functions, which by
definition have composite expressions f = g◦F with smooth F and convex g satis-
fying a certain constraint qualification. For amenable functions a highly developed
theory of first- and second-order generalized derivatives is now in place and ready for
application under the circumstances described here. Formulas for such derivatives are
worked out in Section 3 and incorporated into optimality conditions in the composite
format, in particular second-order conditions related to epigraphical approximation.
In Section 4, second-order expansions in terms of uniform convergence instead of epi-
graphical convergence are studied, and the question of Hessian matrices in a standard
or generalized sense is taken up.

Finally, Section 5 analyzes the Moreau envelope functions

eλ(x) := min
x′

{
f(x′) +

1

2λ
|x′ − x|2

}
for λ > 0,

which relate to epigraphical approximation of f because eλ(x) increases to f(x) as
λ↘0. These functions not only approximate but provide a kind of regularization of f .
While f may be extended-real-valued and have discontinuities (in particular, jumps
to ∞), eλ is finite and locally Lipschitz continuous and has one-sided directional
derivatives at all points. Moreover, the minimizing sets agree: argmin eλ = argmin f
for all λ > 0. We investigate the degree to which second-order properties of eλ at
minimizing points x̄ correspond to such properties of f at these points. Second-
order properties of eλ have a bearing on numerical techniques like the proximal point
algorithm in the minimization of f , since they inevitably depend on the proximal
mapping

Pλ(x) := argmin
x′

{
f(x′) +

1

2λ
|x′ − x|2

}
for λ > 0.

This phase of our effort owes its inspiration to recent work of Lemaréchal and Saga-
gastizábal [6], followed by Qi [16], who were motivated by the goals just mentioned.
These authors have concentrated on finite, convex functions f , not necessarily of the
composite form adopted here, whereas we relinquish convexity and welcome infinite
values in order to obtain results that deal with constraints. On the other hand, Qi
[16] takes up the topic of semi-smoothness of ∇eλ, which is not addressed here.

2 Problem characteristics and amenability

To understand better the class of optimization problems (P) covered by the composite
format through some choice of a C2 mapping F and polyhedral function g, it helps first
to see how problems that are stated in the traditional manner can be accommodated.
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Example 2.1. For C2 functions f0, f1, . . . , fm on IRn, consider the minimization of
f0(x) subject to

fi(x)
{≤ 0 for i = 1, . . . , s,

= 0 for i = s + 1, . . . ,m.

This fits the composite format of minimizing f = g◦F over IRn for the C2 mapping
F : IRn → IRm+1 defined by F (x) = (f0(x), f1(x), . . . , fm(x)) and the polyhedral
function g : IRm+1 → IR defined by

g(u) = g(u0, u1, . . . , um) =

 u0 if ui

{≤ 0 for i = 1, . . . , s,
= 0 for i = s + 1, . . . ,m,

∞ otherwise.

Next we look at an apparently very different model, which illustrates accommo-
dations that can be made to nonsmoothness.

Example 2.2. For C2 functions f1, . . . , fm on IRn, consider the minimization of

f(x) = max {f1(x), . . . , fm(x)}

over all x ∈ IRn (no constraints). This fits the composite format f = g◦F with F (x) =
(f1(x), . . . , fm(x)) and g(u) = g(u1, . . . , um) = max{u1, . . . , um}. The mapping F is
C2 and the function g is polyhedral.

It is well known that this kind of problem, although nominally concerned with
unconstrained minimization of a nonsmooth function, can be posed instead in terms
of minimizing a linear function subject to smooth inequality constraints. Indeed,
in the notation x̃ = (x, α) ∈ IRn+1 it corresponds to minimizing f̃0(x̃) subject to
f̃i(x̃) ≤ 0 for i = 0, 1, . . . ,m, where f̃0(x̃) = α and f̃i(x̃) = fi(x)− α for i = 1, . . . ,m.
Thus it surely deserves to be treated on a par with other problems where smoothness
dominates the numerical methodology, at least as long as the dimension n is not
unduly large.

Another sort of flexibility in the composite model comes to light in the way con-
straints can be handled in patterns deviating from the standard one in Example 2.1.
Simple equations and inequalities can be supplemented by conditions that restrict a
function’s values to lie in a certain interval. Box constraints on x do not have to be
written with explicit constraint functions at all.

Example 2.3. For C2 functions f0, f1, . . . , fm on IRn, nonempty closed intervals
I1, . . . , Im in IR and a nonempty polyhedral set X ⊂ IRn, consider the problem of
minimizing f0(x) over the set

C := {x ∈ X | fi(x) ∈ Ii, i = 1 . . . m},

or equivalently, minimizing f(x) over all x ∈ IRn in the case of

f(x) = f0(x) + δC(x) =
{

f0(x) if x ∈ C,
∞ if x /∈ C.
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This concerns f = g◦F for the C2 mapping F : IRn → IRm+n+1 defined by

F (x) = (f0(x), f1(x), . . . , fm(x), x)

and the polyhedral function g : IRm+n+1 → IR defined by

g(u) = g(u0, u1, . . . , um, um+1, . . . , um+n) =

 u0 if
{

ui ∈ Ii for i = 1, . . . ,m,
(um+1, . . . , um+n) ∈ X,

∞ otherwise.

Example 2.3 encompasses Example 2.1 as the special case where X = IRn and
Ii = (−∞, 0] for i = 1, . . . , s but Ii = [0, 0] for i = s + 1, . . . ,m. On the other hand,
Example 2.3 could be extended by taking f0 to be a max function as in Example 2.2,
f0(x) = max{f01(x), . . . , f0r(x)}. Then the C2 functions f0k would become additional
components of F , and the u0 part of u would turn into a vector (u01, . . . , u0r), with
max{u01, . . . , u0r} entering the formula for g(u).

An alternative way of arriving at nonsmoothness in the objective is illustrated by
the following model.

Example 2.4. For C2 functions f0, f1, . . . , fm on IRn and proper polyhedral functions
gi : IR → IR for i = 1, . . . ,m, the problem of minimizing

f0(x) + g1(f1(x)) + · · ·+ gm(fm(x))

over all x ∈ IRn corresponds to f = g◦F for the C2 mapping F with F (x) =
(f0(x), f1(x), . . . , fm(x)) and the polyhedral function g with

g(u) = g(u0, u1, . . . , um) = u0 + g1(u1) + · · ·+ gm(um).

Polyhedral functions gi of a single real variable as in Example 2.4 are piecewise
linear convex functions in the obvious sense, except that they could have the value
∞ outside of a some closed interval Ii. As a special case, such a function could have
just one “piece,” being affine on Ii, or even just 0 on Ii (with the term gi(fi(x)) just
representing then a constraint fi(x) ∈ Ii). Piecewise linear functions with multiple
slopes arise in a setting like Example 2.4 when constraints are relaxed by linear
penalty expressions. Of course, a geometric constraint x ∈ X with X polyhedral (e.
g. a box—a product of closed intervals, not necessarily bounded) could be built into
Example 2.4 as in Example 2.3.

Within nonsmooth analysis, the composite format in optimization is closely as-
sociated with concept of “amenability.” For simplicity in stating the definition and
working with it in the rest of the paper, we introduce the following notation. For any
mapping F : IRn → IRm and any vector y ∈ IRm we simply write yF for the scalar
function defined by (yF )(x) = 〈y, F (x)〉. Thus,

(yF )(x) = y1f1(x) + · · ·+ ymfm(x) when

F = (f1, . . . , fm) and y = (y1, . . . , ym),



6 R. A. Poliquin and R. T. Rockafellar

and if F is C1 with Jacobian ∇F (x) one has further that

∇(yF )(x) = y1∇f1(x) + · · ·+ ym∇fm(x) = ∇F (x)Ty.

Definition 2.5. A function f : IRn → IR is amenable at x̄ if f(x̄) is finite and,
at least locally around x̄, there is a representation f = g◦F in which the mapping
F is C1, the function g is proper, lsc (lower semicontinuous) and convex, and the
following condition, an abstract constraint qualification, is satisfied by the normal
cone ND(F (x̄)) to the convex set D = dom g at F (x̄):

there is no vector y 6= 0 in ND(F (x̄)) with ∇(yF )(x̄) = 0. (CQ)

It is strongly amenable if F is C2 rather than just C1, and fully amenable if, in addition,
g is piecewise linear-quadratic.

To say that g is piecewise linear-quadratic is to say that its effective domain D
is the union of finitely many polyhedral sets, on each of which the formula for g is
linear-quadratic, i.e., a polynomial of degree at most 2. When no quadratic terms
are involved, g is just piecewise linear (piecewise affine might be a better term).
The convex functions that are piecewise linear are precisely the polyhedral functions
of convex analysis we have been referring to so far. This leads to the following
observation, which paves the way for us to applying the theory of amenable functions,
cf. [11]–[15], to the class of problems under consideration.

Proposition 2.6. For problem (P) in the composite format with F of class C2 and
g polyhedral, let x̄ be a point of the feasible set C at which constraint qualification
(CQ) is satisfied. Then the essential objective function f is fully amenable at all
points x ∈ C in some neighborhood of x̄.

Proof. This merely records the import for problem (P) of the observations just
made, utilizing the fact that if (CQ) holds at x̄ it must hold for all x ∈ C in some
neighborhood of x̄ (cf. [13]).

The constraint qualification (CQ) is satisfied trivially when F (x̄) ∈ int D, since
ND(ū) = {0} at all points ū ∈ int D. To see what it means in other situations, we
inspect the preceding examples one by one.

Example 2.1′. In Example 2.1, the constraint qualification (CQ) reduces to the
Mangasarian-Fromovitz condition (written in its equivalent dual form): unless all the
coefficients y1, . . . , ym are taken to be 0, it is impossible to have the equation

y1∇f1(x̄) + · · ·+ ym∇fm(x̄) = 0

with yi ≥ 0 for indices i ∈ {1, . . . , s} such that fi(x̄) = 0, and yi = 0 for indices
i ∈ {1, . . . , s} such that fi(x̄) < 0 (but yi unrestricted for indices i ∈ {s + 1, . . . ,m}).
Detail. The set D in this case consists of all vectors u = (u1, . . . , um) such that
ui ≤ 0 for i = 1, . . . , s and ui = 0 for i = s + 1, . . . ,m. For any ū ∈ D, therefore, the
normal cone ND(ū) consists of the vectors y with yi ≥ 0 for i ∈ {1, . . . , s} such that
ūi = 0, whereas yi = 0 for i ∈ {1, . . . , s} such that ūi < 0.
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Example 2.2′. In Example 2.2, condition (CQ) reduces to triviality; it is satisfied
automatically at every point x̄ ∈ IRn.

Detail. In this case D = IRn, hence F (x̄) ∈ int D always.

Example 2.3′. In Example 2.3, the constraint qualification (CQ) at a feasible point
x̄ means that

the only multipliers yi ∈ NIi
(fi(x̄)) satisfying

−∑m
i=1yi∇fi(x̄) ∈ NX(x̄) are y1 = 0, . . . , ym = 0.

Here Ii is a closed interval with lower bound ai and upper bound bi (these bounds
possibly being infinite, with ai ≤ bi), and the relation yi ∈ NIi

(fi(x̄)) restricts sign of
yi in the following pattern, depending on how the constraint fi(x̄) ∈ Ii is satisfied at
x̄ relative to these bounds:

yi ∈ NIi
(fi(x̄)) ⇐⇒


yi ≥ 0 when ai < fi(x̄) = bi,
yi ≤ 0 when ai = fi(x̄) < bi,
yi = 0 when ai < fi(x̄) < bi,
yi free when ai = fi(x̄) = bi.

Detail. The representation f = g◦F for this case has

D = I1 × · · · × Im ×X,

and consequently

ND(F (x̄)) = NI1(f1(x̄))× · · · ×NIm(fm(x̄))×NX(x̄).

The characterization of the one-dimensional relations yi ∈ NIi
(ui) is elementary.

Note that the constraint qualification in Example 2.3′ reduces to the Mangasarian-
Fromovitz condition in Example 2.1′ when X is the whole space, so that NX(x̄) = {0},
while Ii = (−∞, 0] for i = 1, . . . , s (so that NIi

(ui) equals [0,∞) if ui = 0 but equals
{0} if ui < 0), whereas Ii = [0, 0] for i = s + 1, . . . ,m (so that NIi

(ui) = (−∞,∞) as
long as ui = 0).

Example 2.4′. In Example 2.4 with the closed intervals dom gi denoted by Ii (these
possibly being all of IR for some indices i), the constraint qualification (CQ) takes
the same form as it does in Example 2.3′, except that NX(x̄) is replaced by {0}.

The examples have indicated the advantages of the composite format in allowing
optimization problems to be expressed in a variety of ways. But just how general
is the class of problems the composite format covers under our restrictions? This
question is answered by the next result.
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Theorem 2.7. The optimization problems that can be placed in the composite for-
mat as (P) for a C2 mapping F and a polyhedral function g are precisely the ones
which, in principle, concern the minimization over a set C, specifiable by a finite
system of C2 equality and inequality constraints, of a function f0 that is either C2

itself or expressible as the pointwise max of a finite collection of C2 functions.
Moreover, the representation can always be set up in such a way that a point

x̄ ∈ C satisfies the constraint qualification (CQ) for (P) if and only if it satisfies the
Mangasarian-Fromovitz condition relative to the equality and inequality constraints
utilized in representing C.

Proof. If an optimization problem has a representation of the kind described, it
fits into the composite format in the manner of Example 2.1 as supplemented by
the device explained after Example 2.2. Then (CQ) reduces to the Mangasarian-
Fromovitz constraint qualification just as in Examples 2.1′.

Conversely, suppose f = g◦F for a C2 mapping F and a polyhedral function g.
The epigraph set epi f consists then of the points (x, α) such that (F (x), α) ∈ epi g.
To say that g is polyhedral is to say that epi g can be represented by a finite system
of linear constraints, say

(u, α) ∈ epi g ⇐⇒ lk(u, α)
{≤ 0 for k = 1, . . . , q,

= 0 for k = q + 1, . . . , r,

where each function lk is affine on IRm+1. Without loss of generality this system can
be set up so that the Mangasarian-Fromovitz condition is satisfied at all points of
epi g. (Proceeding from an arbitrary system, one can rewrite as equality constraints
any inequalities that never hold strictly, and then pare down the list of equality
constraints until none is redundant.)

The equality constraint functions lk must have the form lk(u, α) = 〈ak, u〉− bk for
some vector ak ∈ IRm and scalar bk ∈ IR, since otherwise the hyperplane defined by
lk(u, α) = 0 could not contain epi g. The same form may be present for some of the
inequality constraint functions. We can suppose that for a certain p ≤ q all of the
functions lk for k = p+1, . . . , r have this special form, whereas for k = 1, . . . , p none of
them has it. In the latter case we can rescale lk to write it lk(u, α) = 〈ak, u〉 − bk − α
for some ak ∈ IRm and bk ∈ IR, since otherwise, again, the half-space defined by
lk(u, α) ≤ 0 could not contain epi g. The set D = dom g is given then by

u ∈ D ⇐⇒ 〈ak, u〉 − bk

{≤ 0 for k = p + 1, . . . , q,
= 0 for k = q + 1, . . . , r.

We have ∇lk(u, α) ≡ (ak,−1) for k = 1, . . . , p, but ∇lk(u, α) ≡ (ak, 0) for k =
p + 1, . . . , r. The fact that the Mangasarian-Fromovitz condition holds everywhere
for the system representing epi g implies that it holds everywhere for this system
representing D.

Because epi f consists of all pairs (x, α) such that (F (x), α) ∈ epi g, it is specified
by lk(F (x), α) ≤ 0 for k = 1, . . . , q and lk(F (x), α) = 0 for k = q + 1, . . . , r. Let
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hk(x) = 〈ak, F (x)〉 − bk for i = 1, . . . , r. Thus, according to what we have arranged,

(x, α) ∈ epi f ⇐⇒ hk(x)


≤ α for k = 1, . . . , p,
≤ 0 for k = p + 1, . . . , q,
= 0 for k = q + 1, . . . , r.

In other words, the set C = dom f is specified by hk(x) ≤ 0 for k = p + 1, . . . , q and
hk(x) = 0 for k = q +1, . . . , r, and the problem of minimizing f over IRn corresponds
to minimizing over this set C the function f0(x) = max{h1(x), . . . , hp(x)}.

How do the constraint qualifications correspond in this framework? Consider any
x̄ ∈ C. Condition (CQ) forbids the existence of a nonzero vector y ∈ ND(F (x̄)) such
that ∇(yF )(x̄) = 0. We know from the representation given to D that ND(F (x̄))
consists of all y =

∑r
k=p+1 λkak such that

λk


≥ 0 for k ∈ {p + 1, . . . , q} with 〈ak, F (x̄)〉 − bk = 0,
= 0 for k ∈ {p + 1, . . . , q} with 〈ak, F (x̄)〉 − bk < 0,
free for k ∈ {q + 1, . . . , r},

where furthermore (because the Mangasarian-Fromovitz condition is satisfied univer-
sally in the representation of D) the vector y =

∑r
k=p+1 λkak cannot be 0 unless all

the coefficients λk vanish. It follows that the vectors of the form ∇(yF )(x̄) for some
y ∈ ND(F (x̄)) are precisely those of the form

∑r
k=p+1 λk∇hk(x̄), and that (CQ) re-

quires, under the restrictions listed for λk, that the zero vector cannot be expressed
in this form except by taking every λk = 0. Thus, (CQ) at x̄ comes out as identical to
the Mangasarian-Fromovitz constraint qualification at x̄ relative to the specification
of C by the functions hk.

In the statement of Theorem 2.7, the words “in principle,” “specifiable,” and
“expressible” warn that although it may be possible to reduce a problem to the
special form described, this may be neither easy nor expedient. The advantage of
the composite format is that it bypasses such reformulation and allows one to move
ahead without it, if that is preferred.

3 Subgradients, epi-derivatives and optimality

Our task in analyzing problem (P) is greatly assisted by Proposition 2.6. When a
function f : IRn → IR is amenable at x̄, it is Clarke regular at x̄ in particular; cf. [2]
and [12]. In consequence, all the various definitions of “subgradient” that might in
general be invoked lead to the same set ∂f(x̄).

Derivatives simplify as well. First-order one-sided derivatives arise from consider-
ing difference quotient functions

∆x,tf : ξ 7→ [f(x + tξ)− f(x)]/t for t > 0.
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Classical differentiability of f at x̄ can be identified with the case where, as t↘0,
the functions ∆x̄,tf converge pointwise, uniformly on all bounded sets, to some linear
function. Such uniform convergence, even if to a possibly nonlinear function, is too
narrow an idea, though, to serve when f is extended-real-valued, as we wish it to be
here in harmony with our mode of handling constraints. A substitute notion with
many interesting ramifications can be based instead on epi-convergence of functions,
which expresses set convergence of their epigraphs.

We say that f is epi-differentiable at x̄ if, as t↘0, the functions ∆x̄,tf epi-converge
to a proper function h; such a limit function need not be linear but must of necessity
be lsc and positively homogeneous. Then h is the first-order epi-derivative function
for f at x̄ and is denoted by f ′x̄. The property of epi-convergence translates into
having, for each choice of a sequence tν ↘0 and a vector ξ, that{

lim infν ∆x̄,tν (ξ
ν) ≥ f ′x̄(ξ) for every sequence ξν → ξ,

lim supν ∆x̄,tν (ξ
ν) ≤ f ′x̄(ξ) for some sequence ξν → ξ.

We say further that f is strictly epi-differentiable at x̄ if, not only as t↘0 but as
x → x̄ with f(x) → f(x̄), the functions ∆x,tf epi-converge (the limit in this wider
sense necessarily still being the function f ′x̄,t).

Theorem 3.1. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any feasible solution
to (P) at which condition (CQ) holds. Then at all feasible solutions x in some
neighborhood of x̄, f is epi-differentiable at x and has at least one subgradient there
as well, the subgradients being characterized as the vectors v such that

f(x′) ≥ f(x) + 〈v, x′ − x〉+ o(|x′ − x|).

The epi-derivative function f ′x is convex and positively homogeneous, the subgradient
set ∂f(x) is convex and closed, and the two are related by

f ′x(ξ) = sup
v∈∂f(x)

〈v, ξ〉,

∂f(x) = {v | f ′x(ξ) ≥ 〈v, ξ〉 for all ξ}.

Furthermore, these epi-derivative functions and subgradient sets are obtained from
those for g by the formulas

f ′x(ξ) = g′F (x)(∇F (x)ξ),

∂f(x) = {∇(yF )(x) | y ∈ ∂g(F (x))}.

In addition, there is a neighborhood U of x̄ such that, relative to U × IRn, the set of
points (x, v) with x ∈ U and v ∈ ∂f(x) is closed, and relative to this set, the mapping

(x, v) 7→ Y (x, v) := {y |∇(yF )(x) = v, y ∈ ∂g(F (x))},
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is locally bounded with closed graph, hence in particular compact-valued, while the
function (x, v) 7→ f(x) is continuous.

Proof. From Proposition 2.6 we know that f is fully amenable at every point x ∈ C
near enough to x̄. All these properties, except for the very last (concerning continuity
of f), are already understood to hold for any amenable function; see [19], [22]. Really,
they only need F to be C1 and g to be lsc, proper, convex. The last property has
been established in [14, Prop. 2.5] in the name of strongly amenable functions, but
again the proof only requires amenability.

Moving to second-order concepts, we work with second-order difference quotient
functions which depend not only on a point x where f is finite but also on the choice
of a subgradient v ∈ ∂f(x), namely the functions

∆2
x,v,tf : ξ 7→ [f(x + tξ)− f(x)− t〈v, ξ〉]/1

2t
2 for t > 0.

We say that f is twice epi-differentiable at x̄ for a vector v̄ if f(x̄) is finite, v̄ ∈ ∂f(x̄),
and the functions ∆2

x̄,v̄,tf epi-converge to a proper function as t↘0. The limit is then

the second epi-derivative function f ′′x̄,v̄ : IRn → IR; see [12], [19] and [21]. When
∂f(x̄) is a singleton consisting of v̄ alone, the notation f ′′x̄,v̄ can be simplified to
f ′′x̄ . The second epi-derivative function, when it exists, has to be lsc and positively
homogeneous of degree 2, although not necessarily quadratic. Further, we call f
strictly twice epi-differentiable at x̄ for v̄ if the stronger property holds that the
functions ∆2

x,v,tf epi-converge as t↘0, x → x̄ with f(x) → f(x̄), and v → v̄ with
v ∈ ∂f(x).

It is important to appreciate that, because it is defined in terms of epi-convergence,
second-order epi-differentiability is essentially a geometric property of approximation
of epigraphs . This kind of approximation differs in general from the classical kind
of approximation expressed by uniform convergence of functions on bounded sets,
although key relationships can be detected in special situations. Such uniform con-
vergence is not a viable concept for broad use in an environment like ours here.
Circumstances where it does nicely come into play will be identified in Sections 4 and
5, where second-order “expansions” of f and its envelopes eλ will be considered. For
now, f ′′x̄,v̄ has to be thought of as providing a second-order approximation

f(x̄ + tξ) ≈ f(x̄) + t〈v̄, ξ〉+ 1
2t

2f ′′x̄,v̄(ξ),

not in the usual sense of local uniformity, but the closeness of epi ∆2
x̄,v̄,tf to epi f ′′x̄,v̄.

A rather remarkable fact about second-order epi-differentiability was established
in [19]: when f is fully amenable at x̄, it is twice epi-differentiable there for every
v̄ ∈ ∂f(x̄). The widespread availability of this property in the context of optimization
is what makes it especially interesting. Before looking at what the theory of second
epi-derivatives tells us about the class of problems under consideration, we look at a
parallel concept which turns out to be closely connected with this.
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Second-order differentiation of f can be contemplated also in the framework of
first-order differentiation of the subgradient mapping ∂f : IRn →→ IRn (where ∂f(x) is
always regarded as the empty set when f(x) is not finite). For any set-valued mapping
T : IRn →→ IRn, one can work with difference quotient mappings ∆x,v,tT : IRn →→ IRn

associated with pairs (x, v) in the graph of T , namely

∆x,v,tT : ξ 7→ [T (x + tξ)− v]/t for t > 0.

The mapping T is said to be proto-differentiable at x̄ for v̄ if v̄ ∈ T (x̄) and the
mappings ∆x̄,v̄,tT converge graphically to a mapping ∆ as t↘0, in which event the
limit mapping is denoted by T ′x̄,v̄ and called the proto-derivative of T at x̄ for v̄; see
[13], [20], [22]. (Graph convergence of these mappings refers to the convergence of
their graphs as subsets of IRn × IRn.) We say that T is strictly proto-differentiable
at x̄ for v̄ if in fact the mappings ∆x,v,tT converge graphically to T ′x̄,v̄ as t↘0 and
(x, v) → (x̄, v̄) with v ∈ T (x).

Again, a geometric notion of approximation is invoked. We have

T (x̄ + tξ) ≈ T (x̄) + tT ′x̄,v̄(ξ),

not with respect to some kind of uniform local bound on the difference, but in the
sense that the set epi ∆x̄,v̄,tT can be made arbitrarily close to epi T ′x̄,v̄ (relative to the
concepts of set convergence appropriate for unbounded sets) by taking the parameter
t > 0 sufficiently small. The mapping T ′x̄,v̄ assigns to each ξ ∈ IRn a subset T ′x̄,v̄(ξ) of
IRn, which could be empty for some choices of ξ. When T (x̄) is a singleton consisting
of v̄ only (as for instance in the case where T is actually single-valued everywhere),
the notation T ′x̄,v̄(ξ) can be simplified to T ′x̄(ξ).

In stating the next theorem, we continue the notation introduced in advance of
Definition 2.5 by writing ∇2(yF ) for the matrix of second partial derivatives of the
function yF : x 7→ 〈y, F (x)〉. Then

∇2(yF )(x) = y1∇2f1(x) + · · ·+ ym∇2fm(x)

when F = (f1, . . . , fm) and y = (y1, . . . , ym).

Theorem 3.2. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any feasible solution
to (P) at which condition (CQ) holds. Then at all feasible solutions x in some
neighborhood of x̄, and for all subgradients v ∈ ∂f(x),

(a) f is twice epi-differentiable at x for v,

(b) ∂f is proto-differentiable at x for v,

and the second epi-derivative function f ′′x,v and proto-derivative mapping (∂f)′x,v are
related to each other by

(∂f)′x,v = ∂(1
2f
′′
x,v).
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Furthermore, one has the formula

f ′′x,v(ξ) =

 max
y∈Y (x,v)

〈ξ,∇2(yF )(x)ξ〉 if ξ ∈ Ξ(x, v),

∞ if ξ /∈ Ξ(x, v),

where Y (x, v) is the compact subset of IRm defined in Theorem 3.1 and Ξ(x, v) is the
closed cone in IRn defined by

Ξ(x, v) = N∂f(x)(v) = {ξ | f ′x(ξ) = 〈v, ξ〉} = {ξ | f ′x(ξ) ≤ 〈v, ξ〉}.

In fact Y (x, v) and Ξ(x, v) are polyhedral, and in terms of the finite set Yext(x, v)
consisting of the extreme points of Y (x, v) the second-order epi-derivative formula
can be written as

f ′′x,v(ξ) =

{
max

y∈Yext(x,v)
〈ξ,∇2(yF )(x)ξ〉 if 〈∇(yF )(x)− v, ξ〉 ≤ 0 for all y ∈ Y (x, v),

∞ otherwise.

Proof. Once more we appeal to Proposition 2.6 for the observation that our hy-
pothesis implies f is fully amenable at points x near enough to x̄ with f(x) finite.
Then we apply the twice epi-differentiability result and formula of [19] with the proto-
differentiability result and formula of [10]. This, in combination with the results in
Theorem 3.1, takes care of all the assertions except those at the end relying on the
polyhedral nature of Y (x, v).

The fact that Y (x, v) is polyhedral is obvious from its definition in Theorem 3.1
as the set of vectors y ∈ ∂g(F (x)) satisfying the linear equation ∇F (x)Ty = v, since
the subgradient set ∂g(F (x)) is itself polyhedral (due to g being polyhedral). Indeed,
this has previously been observed in [11], [13]. For any fixed vector ξ the function
y 7→ 〈ξ,∇2(yF )(x)ξ〉 is linear, so its maximum over Y (x, v) has to be attained at one
of the finitely many points of Yext(x, v).

Because the set ∂f(x) is the image of the polyhedral set ∂g(F (x)) under the linear
mapping y 7→ ∇(yF )(x) = ∇F (x)Ty, it is polyhedral as well. Then Ξ(x, v) must be
polyhedral, since it is the normal cone to ∂f(x) at v. The definition of this normal
cone characterizes Ξ(x, v) as consisting of the vectors ξ such that 〈v′ − v, ξ〉 ≤ 0 for
all v′ ∈ ∂f(x). Hence it consist of all ξ such that 〈∇(yF )(x) − v, ξ〉 ≤ 0 for all
y ∈ ∂g(F (x)).

The last part of Theorem 3.2 reveals interestingly enough that the second epi-
derivative function f ′′x,v has the same character as that ascribed to f itself in Theorem
2.7, although simpler. It is the max of finitely many C2 (actually quadratic) functions
plus the indicator of a set defined by finitely many C2 (actually linear) constraints.
Note again that just because we know that a set can in principle be expressed in
terms of such constraints, this does not mean we can readily make use of such an
expression. To write Ξ(x, v) in terms of a finite system of linear constraints we would
have to identify all extreme points and extreme rays of ∂g(F (x)). Depending on the
circumstances, this might or might not be easy.



14 R. A. Poliquin and R. T. Rockafellar

Additional formulas for the proto-derivative mapping (∂f)′x,v can be developed
from this description of f ′′x,v by following the lines in [13].

To see more closely what the results in Theorems 3.1 and 3.2 mean in common
situations, we focus on two key cases, the ones in Examples 2.2 and 2.3 (as extended
in Examples 2.2′ and 2.3′).

Example 3.3 [13, Thm. 2]. In the problem of Example 2.2, consider any x ∈ IRn and
let I(x) denote the set of indices i such that fi(x) = f(x). Then f is epi-differentiable
at x and has at least one subgradient there, with

∂f(x) = co {∇fi(x) | i ∈ I(x)}, f ′x(ξ) = max
i∈I(x)

〈∇fi(x), ξ〉.

Moreover, f is twice epi-differentiable at x for any subgradient v ∈ ∂f(x), with the
second-order epi-derivative function given by

f ′′x,v(ξ) =

 max
y∈Yext(x,v)

m∑
i=1

yi〈ξ,∇2fi(x)ξ〉 if 〈∇fi(x)− v, ξ〉 ≤ 0 for all i ∈ I(x),

∞ otherwise.

where Yext(x, v) is the finite set of extreme points of the compact polyhedral set

Y (x, v) :=
{
y

∣∣∣ yi ≥ 0 if i ∈ I(x), yi = 0 if i /∈ I(x),∑m
i=1yi = 1,

∑m
i=1yi∇fi(x) = v

}
.

Moving on now to the problem in Example 2.3, which subsumes the one in Exam-
ple 2.1, we denote by TC(x) the tangent cone to C at a point x ∈ C, and similarly by
TX(x) the tangent cone to the polyhedral set X at x. These tangent cones are polar
to the normal cones NC(x) and NX(x) (because we are dealing with convex sets or
more generally sets that are Clarke regular, for which the various definitions in use
for tangent cones all agree). The tangent cone notation will be useful also in handling
constraints: we denote by TIi

(ui) the tangent cone to the closed interval Ii ⊂ IR at
ui ∈ Ii, which simply indicates the directions in which one can move from ui without
leaving Ii. Specifically, in parallel with the formulas for the normal cones, in the case
where Ii has lower bound ai and upper bound bi (these possibly being infinite, with
ai ≤ bi), one has

TIi
(fi(x)) =


(−∞, 0] when ai < fi(x) = bi,
[0,∞) when ai = fi(x) < bi,
(−∞,∞) when ai < fi(x) < bi,
[0, 0] when ai = fi(x) = bi.

Example 3.4 [13, Thm. 4]. For the problem of Example 2.3, consider any x̄ ∈ C
satisfying the constraint qualification described in Example 2.3′. Let

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x).
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For all x ∈ C in some neighborhood of x̄, f is epi-differentiable at x and has at least
one subgradient there, with

∂f(x) = ∇f0(x) + NC(x) =
{
∇xL(x, y)

∣∣∣ yi ∈ NIi
(fi(x))

}
+ NX(x),

f ′x(ξ) =
{
〈∇f0(x), ξ〉 if ξ ∈ TX(x) and 〈∇fi(x), ξ〉 ∈ TIi

(fi(x)) for all i,
∞ otherwise.

Moreover f it twice epi-differentiable at x for every subgradient v ∈ ∂f(x), with the
second-order epi-derivative function given in terms of the Lagrangian L by

f ′′x,v(ξ) = max
y∈Y (x,v)

〈ξ,∇2
xxL(x, y)ξ〉 + δΞ(x,v)(ξ),

where Y (x, v) is a compact polyhedral set and Ξ(x, v) is a polyhedral cone, namely

Y (x, v) =
{
y

∣∣∣ yi ∈ NIi
(fi(x)), v −∇xL(x, y) ∈ NX(x)

}
,

Ξ(x, v) =
{
ξ ∈ TC(x)

∣∣∣ 〈v −∇f0(x), ξ〉 = 0
}

=
{
ξ ∈ TX(x)

∣∣∣ 〈∇fi(x), ξ〉 ∈ TIi
(fi(x)) for all i, 〈v −∇f0(x), ξ〉 = 0

}
.

Here Y (x, v) can be replaced in the max expression by its finite set of extreme points.

In Example 3.4 the function f0 has been assumed to be C2, but the methodology
is not limited to that case. We could easily go further by taking f = f0 + δC with the
set C chosen according to the specifications in Example 2.3, but with f0 taken to be
any fully amenable function. In particular, f0 could be a max function of the kind
in Examples 2.1 and 3.3, hence nonsmooth. This generality is attained through the
calculus we have developed in [12], which provides formulas for f ′′x,v(ξ) and (∂f)′x,v(ξ)
when f is expressed as the sum of two fully amenable functions under an associated
“constraint qualification” on the domains of the functions. For f = f0 + δC this
constraint qualification is satisfied in particular when f0 is finite everywhere, as in
the max function case. Then ∂f(x) = ∂f0(x) + NC(x), and for any v ∈ ∂f(x) one
has in terms of the set

V (x, v) := {(v0, v1) | v0 ∈ ∂f0(x), v1 ∈ NC(x), v0 + v1 = v}

the expressions

f ′′x,v(ξ) = max
(v0,v1)∈V (x,v)

{
(f0)

′′
x,v0

(ξ) + (δC)′′x,v1
(ξ)

}
,

(∂f)′x,v(ξ) =
⋃

(v0,v1)∈Vmax(x,v,ξ)

{
(∂f0)

′
x,v0

(ξ) + (∂δC)′x,v1
(ξ)

}
,

where Vmax(x, v, ξ) is the set of vectors (v0, v1) that achieve the maximum.
The problem in Example 2.4 could likewise be handled by such calculus or tackled

directly through Theorems 3.1 and 3.2.
The first- and second-order epi-derivatives that have been shown to exist for the

general problems in composite format we have been considering can be used employed
in particular in the statement of optimality conditions.
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Theorem 3.5. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any feasible solution at
which the condition (CQ) is satisfied. Let Y (x̄, 0) := {y ∈ ∂g(F (x̄)) |∇(yF )(x̄) = 0},
this being a compact, polyhedral convex set (possibly empty), and let Yext(x̄, 0) be
its finite set of extreme points.

(a) If x̄ is locally optimal, then Y (x̄, 0) must be nonempty, and

max
y∈Yext(x̄)

〈ξ,∇2(yF )(x̄)ξ〉 ≥ 0 for ξ satisfying

〈∇(yF )(x̄), ξ〉 ≤ 0 for all y ∈ ∂g(F (x̄)).

(b) If Y (x̄, 0) is nonempty and

max
y∈Yext(x̄,0)

〈ξ,∇2(yF )(x̄)ξ〉 > 0 for ξ 6= 0 satisfying

〈∇(yF )(x̄), ξ〉 ≤ 0 for all y ∈ ∂g(F (x̄)),

then x̄ is locally optimal.

Proof. This applies the formulas of Theorems 3.1 and 3.2 to the general characteri-
zation of local optimality in terms of first- and second-order epi-derivatives in [19].

4 Hessians and second-order expansions

Pursuing second-order properties to a greater depth, we turn to the question of the
existence of second-order expansions for f in the sense of locally uniform convergence
of difference quotient functions rather than the epi-convergence employed so far. In
this endeavor we draw on results from our paper [15]. Two definitions from this paper
set the stage.

Definition 4.1. A single-valued mapping G from an open neighborhood of x̄ ∈ IRn

into IRm has a first-order expansion at a point x̄ ∈ O if there is a continuous mapping
D such the difference quotient mappings

∆x̄,tG : [G(x̄ + tξ)−G(x̄)]/t for t > 0

converge to D uniformly on bounded sets as t↘0. The expansion is strict if actually
the mappings

∆x,tG : [G(x + tξ)−G(x)]/t for t > 0

converge to D uniformly on bounded sets as t↘0 and x → x̄.

The existence of a first-order expansion means that G is directionally differentiable
at x̄: for every vector ξ̄ ∈ IRn, the directional derivative limit

lim
ξ→ξ̄
t↘ 0

G(x̄ + tξ)−G(x̄)

t
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exists. The existence of a strict first-order expansion means that G is strict directional
differentiable at x̄; it corresponds to the existence for every ξ̄ of the more complicated
limit where x̄ is replaced by x, and x → x̄ along with ξ → ξ̄ and t↘0. In both cases
the mapping D in Definition 4.1 gives for each ξ̄ the directional derivative D(ξ̄).

Definition 4.2. Consider a function g on IRn and a point x̄ where g is finite and
differentiable.

(a) g has a second-order expansion at x̄ if there is a finite, continuous function h
such that the second-order difference quotient functions

∆2
x̄,tg(ξ) := [g(x̄ + tξ)− g(x̄)− t〈∇g(x̄), ξ〉]/1

2t
2

converge to h uniformly on bounded sets as t↘0. The expansion is strict if g is
differentiable not only at x̄ but on a neighborhood of x̄, and the functions

∆2
x,tg(ξ) := [g(x + tξ)− g(x)− t〈∇g(x), ξ〉]/1

2t
2

converge to h uniformly on bounded sets as t↘0 and x → x̄.
(b) g has a Hessian matrix H at x̄, this being a symmetric n× n matrix, if g has

a second-order expansion with h(ξ) = 〈ξ, Hξ〉. The Hessian is strict if the expansion
is strict.

(c) g is twice differentiable at x̄ if its first partial derivatives exist on a neighborhood
of x̄ and are themselves differentiable at x̄, i.e., the second partial derivatives of g exist
at x̄. Then ∇2g(x̄) denotes the matrix formed by these second partial derivatives.

A second-order expansion in the sense of Definition 4.2 automatically requires the
function h also to be positively homogeneous of degree 2: h(λξ) = λ2h(ξ) for λ > 0,
and in particular, h(0) = 0. It means that

g(x̄ + tξ) = g(x̄) + t〈∇g(x̄), ξ〉+ 1
2t

2h(ξ) + o(t2|ξ|2)

for such a function h that is finite and continuous. The existence of a Hessian corre-
sponds to h actually being quadratic.

The existence of a second-order expansion for an essential function f can be settled
in a definitive manner on the basis of the second-order epi-derivative formula in
Theorem 3.2 and a general result in our paper [14]. It is crucial for this purpose that
strongly amenable functions f , such as we know we are dealing with now by virtue
of Proposition 2.6, have a property called “prox-regularity,” which we introduced in
[14] (cf. Prop. 2.5 of that paper). This property is a typical hypothesis for most of
the results of [14] and [15] that will be applied in what follows. Here we leave all
discussion of it aside, jumping directly to the conclusions it supports.

Theorem 4.3. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any point of the
feasible set C = dom f at which the condition (CQ) holds. Then for all x sufficiently
close to x̄ with f(x) finite, the following properties are equivalent:
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(a) f has a second-order expansion at x;
(b) f is differentiable at x;
(c) ∂f(x) contains a solitary vector v;
(d) ∇(yF )(x) is the same vector v for all y ∈ ∂g(F (x));
(e) (∂f)′x,v(0) = {0} for some v.

Under these circumstances necessarily x ∈ int C and ∇f(x) = v, and the expansion
of f takes the form

f(x + tξ) = f(x) + 〈v, ξ〉+ 1
2t

2 max
y∈Yext(x)

〈ξ,∇2(yF )(x)ξ〉+ o(t2|ξ|2),

where Yext(x) is the set of extreme points of the compact, polyhedral convex set
∂g(F (x)), and the max expression also equals f ′′x,v(ξ).

Proof. In view of Proposition 2.6, condition (CQ) extends from x̄ to all points x
sufficiently near to x̄ with f(x) finite. It suffices therefore to argue the equivalences
just at x̄ itself.

If a second-order expansion exists at x̄, f must in particular be differentiable at x̄
and the function h expressing the second-order term must be the second epi-derivative
function f ′′x̄ , inasmuch as locally uniform convergence of difference quotient functions
implies their epi-convergence. Conversely, if for any v̄ ∈ ∂f(x̄) the function f ′′x̄,v̄ is
finite, we obtain from [14, Thm. 6.7] (through the prox-regularity of f mentioned
prior to the statement of the present theorem) that (b) and (c) hold with ∇f(x̄),
and moreover that (a) holds with the second-order term in the expansion dictated by
h = f ′′x̄,v̄. At this juncture we can apply the formula for f ′′x̄,v̄ in Theorem 3.2, which
yields all the rest. In particular, (e) is obtained as an equivalent condition because
(∂f)′x̄,v̄(0) consists of the subgradients of 1

2f
′′
x̄,v̄ at 0. The subgradient formula for this

function (cf. [13]) indicates that the unique subgradient at the origin is 0 if and only
if the cone Ξ(x̄, v̄), which is the effective domain of f ′′x̄,v̄, has the origin in its interior,
i.e., this cone is the whole space.

When does the expansion in Theorem 4.3 correspond actually to a Hessian for f
at x̄? The following lemma will help answer this and a subsequent question as well.

Lemma 4.4. Let Qi, i = 0, 1 . . . , m be symmetric matrices in IRn×n, and let M be
any subspace of IRn (perhaps IRn itself). Then in order to have the property

max
i=1,...,m

〈ξ, Qiξ〉 = 〈ξ, Q0ξ〉 for all ξ ∈ M,

there must actually be an index i0 ∈ {1, . . . ,m} such that the quadratic forms as-
sociated with Qi0 and Q0 agree on M . In other words, there must exist i0 such
that

i0 ∈ argmax
i=1,...,m

〈ξ, Qiξ〉 for all ξ ∈ M.

Proof. We may assume without loss of generality that M = IRn, since otherwise a
change of coordinates can be employed to bring about a reduction to a space IRd with
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d < n. For each i ∈ {1, . . . ,m} let Ci denote the closed subset of IRn consisting of the
points x where index i gives the max, i.e., where the quadratic function qi associated
with Qi agrees with the quadratic function q0 associated with Q0. The union of these
sets Ci is IRn. By suppressing indices one by one as needed, we can come up with a
collection indexed by i ∈ I ⊂ {1, . . . ,m} such that the union of the Ci’s for i ∈ I is
all of IRn, but no subcollection has this property. Then every Ci for i ∈ I must have
nonempty interior, because it covers the complement of the (closed) union of all the
other sets in this collection. The fact that qi agrees with q0 on the nonempty, open
set int Ci implies Qi = Q0 (e.g., because the two functions qi and q0 have the same
second derivatives there). Hence we have Qi = Q0 for all i ∈ I.

Theorem 4.5. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any point of the
feasible set C = dom f at which the condition (CQ) holds. Then for all x sufficiently
close to x̄ with f(x) finite, the following properties are equivalent:

(a) f has a Hessian at x;
(b) f is differentiable at x, and the function f ′′x is quadratic;
(c) ∂f(x) is a singleton, and (∂f)′x is single-valued everywhere and linear;
(d) there is a vector ŷ ∈ Yext(x) such that, for every y ∈ Yext(x), one has both

∇([y − ŷ]F )(x) = 0 and ∇2([y − ŷ]F )(x) positive semidefinite.

Proof. The equivalence between (a), (b) and (d) is immediate from Theorem 4.3 and
Lemma 4.4. Condition (c) comes into the picture because (∂f)′x is the subgradient
mapping for 1

2f
′′
x by Theorem 3.2, so it is linear if and only if f ′′x is quadratic.

These results make clear that the existence of a Hessian for f is quite a special
property in our context. It corresponds to f ′′x,v being quadratic with v the unique
element of ∂f(x), and that only shows up in cases where constraints and first-order
discontinuities are out of the immediate picture. However, there is an interesting
concept to fall back on, which operates in wider territory.

Recall that a function h : IRn → IR is a generalized (purely) quadratic function if
it is expressible in the form

h(ξ) =

{
1
2〈ξ, Qξ〉 if ξ ∈ M ,
∞ if ξ /∈ M ,

where M is a linear subspace of IRn and Q is a symmetric matrix in IRn×n. On the
other hand, a possibly set-valued mapping D : IRn →→ IRm is a generalized linear
mapping if its graph is a linear subspace of IRn × IRm. The generalized quadratic
functions are known to be precisely (up to an additive constant) the functions whose
subgradient mappings are generalized linear mappings.

Let us think of f as having a generalized Hessian at x relative to a subgradient
v ∈ ∂f(x) if the second-order epi-derivative function f ′′x,v exists and is a generalized
quadratic function. We do not want to push this terminology too far, since the
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concept reverts to approximation in the sense of epi-convergence rather than locally
uniform convergence, but a certain case can be made for it, especially in view of
the results that will be obtained in the next section in connection with envelope
functions. The idea is that a generalized quadratic function h can be regarded as
associated with a “generalized matrix for which some of the eigenvalues may be ∞,”
this being identified with a subspace M and an equivalence class of symmetric n× n
matrices Q with respect to inducing the same quadratic form on M . These matrices
all have the same eigenvalues relative to M ; by an isometric change of coordinates
that preserves the orthogonal decomposition of IRn into the sum of the subspaces
M and M⊥, they can simultaneously be reduced to the same diagonal matrix whose
entries are these eigenvalues. We can simply regard M⊥ as the eigenspace associated
with the eigenvalue ∞.

These remarks are chiefly intended to be motivational, but the question of when
f ′′x,v is a generalized quadratic function turns out to be important for a number of
reasons. We proceed with putting together an answer. In this we denote by ri B the
relative interior of a convex set B (in the sense of convex analysis [17]).

Theorem 4.6. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any point of the
feasible set C = dom f at which the condition (CQ) holds. Then for all x sufficiently
close to x̄ with f(x) finite, and all v ∈ ∂f(x), the following properties are equivalent:

(a) f ′′x,v is generalized quadratic;
(b) (∂f)′x,v is generalized linear;
(c) there exists y ∈ ri ∂g(F (x)) such that ∇(yF )(x) = v; further, there exists

ŷ ∈ Yext(x, v) such that

〈ξ,∇2([y − ŷ]F )(x)ξ〉 ≥ 0 for all y ∈ Yext(x, v) and ξ ∈ Ξ(x, v),

where the notation is that of Theorem 3.2.

Proof. The equivalence between (a) and (b) is assured by the relation between f ′′x,v

and (∂f)′x,v in Theorem 3.2. For the equivalence between (a) and (c), we recall
from Theorem 3.2 that, for all x in a neighborhood of x̄, the domain of f ′′x,v is the
normal cone to the convex set ∂f(x) at v. The normal cone to a convex set is
a subspace precisely when the point under consideration belongs to the interior of
the set. Because ∂f(x) is the image of the convex set ∂g(F (x)) under the linear
transformation y 7→ ∇F (x)Ty (by Theorem 3.1), its relative interior is the image
under ri ∂g(F (x)) under this transformation (cf. [17, Sec. 6]). Thus, the cone Ξ(x, v)
is a subspace if and only if v = ∇(yF )(x) for some y ∈ ri ∂g(F (x)). It remains only
to apply Lemma 4.4.

The “generalized Hessian” case also arises in connection with strict second-order
epi-differentiability of f .

Theorem 4.7. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any point of the feasible



Second-order Nonsmooth Analysis 21

set C = dom f at which the condition (CQ) holds. Then for all x sufficiently close to
x̄ with f(x) finite, and for all v ∈ ∂f(x), the following properties are equivalent and
imply in particular that f ′′x,v is a generalized quadratic function:

(a) f is strictly twice epi-differentiable at x for v;
(b) f ′′x′,v′ epi-converges (to something) as (x′, v′) → (x, v) in the set of pairs (x′, v′)

with v′ ∈ ∂f(x′) for which f ′′x′,v′ is generalized quadratic.

Proof. This comes out of [15, Cor. 4.3] because of Theorem 3.2 and the prox-
regularity of f consequent to the strong amenability in Proposition 2.6.

A test of sorts for the case in Theorem 4.7, albeit a stringent one, is the following.

Proposition 4.8. Let f be the essential objective function in problem (P), with
f = g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any point of
the feasible set C = dom f at which the condition (CQ) holds. Suppose the function
f ′′x̄,v̄ is generalized quadratic for a certain v̄ ∈ ∂f(x̄), and for all points (x, v) near
(x̄, v̄) such that f ′′x,v is generalized quadratic denote by Ymax(x, v) the set of vectors ŷ
satisfying the associated condition in Theorem 4.7(c).

Then a sufficient condition for f to be strictly twice epi-differentiable at x̄ for v̄
is that both Ξx,v → Ξx̄,v̄ and Ymax(x, v) → Ymax(x̄, v̄) as x → x̄ and v → v̄ in the set
of pairs (x, v) with v ∈ ∂f(x) for which f ′′x,v is generalized quadratic.

Proof. All we need to do, according to Theorem 4.7, is to show that f ′′x,v epi-converges
to f ′′x̄,v̄ as (x, v) → (x̄, v̄) in the set of pairs (x, v) with v ∈ ∂f(x) for which f ′′x,v is
generalized quadratic. We first need to show that for all ξ

f ′′x̄,v̄(ξ) ≤ lim inf
k→∞

f ′′xk,vk
(ξk)

whenever ξk → ξ, xk → x̄ and vk → v̄ in the set of pairs (xk, vk) with vk ∈ ∂f(xk) for
which fxk,vk

is generalized quadratic. If ξxk,vk
/∈ Ξ(xk, vk) for all k sufficiently large

there is nothing to show. Assume not, then ξ ∈ Ξ(x̄, v̄). Now consider y ∈ Ymax(x̄, v̄).
Because Ymax(x, v) → Ymax(x̄, v̄), there exists yk ∈ Ymax(xk, vk) with yk → y. It follows
that f ′′xk,vk

(ξk) = 〈ξk,∇2(ykF )(xk)ξk〉, and in the limit we get the desired inequality.
Finally we show that for all ξ there exist ξx,v → ξ, as x → x̄ and v → v̄ in the set

of pairs (x, v) with v ∈ ∂f(x) for which fx,v is generalized quadratic, with

lim sup
x→x̄, v→v̄

f ′′x,v(ξx,v) ≤ f ′′x̄,v̄(ξ).

If ξ /∈ Ξ(x̄, v̄) there is nothing to show. When ξ ∈ Ξ(x̄, v̄) there exists ξx,v ∈
Ξ(x, v) with ξx,v → ξ. We have f ′′x,v(ξx,v) = 〈ξx,v,∇2(yx,vF )(xx,v)ξx,v〉 for some
yx,v ∈ Ymax(x, v). We may assume that yx,v → y with y ∈ Ymax(x̄, v̄); this is due
to (CQ). In the limit we get the desired inequality.

To what extent are these various properties realized in our examples? The case
of a max function furnishes some good insights.
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Proposition 4.9. In the case of a function f = max{f1, . . . , fm} in Example 2.2
(as continued in Examples 2.2′ and 3.3), consider any x ∈ IRn and any v ∈ ∂f(x) =
co {∇fi(x) | i ∈ I(x)}.

(a) f has a second-order expansion at x if and only if the vectors∇fi(x) for i ∈ I(x)
coincide (or I(x) is just a singleton). It has a Hessian at x if and only if, in addition,
the matrices∇2fi(x) for i ∈ I(x) coincide, this common matrix then being the Hessian
matrix.

(b) f ′′x,v has a subspace for its effective domain Ξ(x, v) if and only if one actually
has v ∈ ri [ co {∇fi(x) | i ∈ I(x)}], in which event

Ξ(x, v) :=
{
ξ

∣∣∣ 〈∇fi(x)− v, ξ〉 = 0 for all i ∈ I(x)
}
.

For f ′′x,v to be generalized quadratic, it is necessary and sufficient to have, in addition,
the existence of some ŷ in the set

Y (x, v) =
{
y

∣∣∣ yi ≥ 0 if i ∈ I(x), yi = 0 if i /∈ I(x),∑m
i=1yi = 1,

∑m
i=1yi∇fi(x) = v

}
such that

m∑
i=1

yi〈ξ,∇2fi(x)ξ〉 ≥
m∑

i=1

y′i〈ξ,∇2fi(x)ξ〉 for all y′ ∈ Y (x, v) and ξ ∈ Ξ(x, v).

Proof. These results follow from Theorem 4.6 via Theorem 3.2.

Strict twice epi-differentiability is harder to pin down in this example, but an
elementary sufficient condition for it can readily be developed. Recall that a set of
vectors v0, v1 . . . , vs is affinely independent if the set {v1 − v0, . . . , vs − v0} is linearly
independent.

Proposition 4.10. For the max function in Proposition 4.8, suppose that
(a) the vectors ∇fi(x̄) for i ∈ I(x̄) are affinely independent, and
(b) v̄ ∈ ri [ co {∇fi(x̄) | i ∈ I(x̄)}].

Then f is strictly twice differentiable at x̄ for v̄. Indeed in this case, for all (x, v)
sufficiently close to (x̄, v̄) with v ∈ ∂f(x), the function f ′′x,v is generalized quadratic
and depends epi-continuously on (x, v).

Proof. Let gph ∂f denote the graph of the mapping ∂f , i.e., the set of pairs (x, v)
with v ∈ ∂f(x). We first show that under our assumptions there is a neighborhood
U of (x̄, v̄) such that for all (x, v) ∈ U ∩ gph ∂f , we have I(x) = I(x̄). Consider
xk → x̄ and vk → v̄ with vk ∈ ∂f(xk). We have

∑
i∈I(xk)(yk)i∇fi(xk) = vk for some

vector yk ∈ Y (xk, vk). Because
∑

i∈I(xk)(yk)i = 1 and (yk)i ≥ 0, we may assume
that (yk)i → yi (as k → ∞). We may also assume (by taking a subsequence if
necessary) that I(xk) = I∗ for some subset I∗ of {1, . . . ,m}. In the limit we have∑

i∈I∗ yi∇fi(x̄) = v̄. Then it follows from our assumptions that I∗ = I(x̄).
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We next show that Y (x, v) consists of only one vector when {∇fi(x) | i ∈ I(x)} is
affinely independent. To see this, assume that∑

i∈I(x)

yi∇fi(x) = v =
∑

i∈I(x)

y′i∇fi(x)

for y and y′ in Y (x, v). This in turn means that∑
i∈I(x)

(yi − y′i)∇fi(x) = 0 =
∑

i∈I(x)

(yi − y′i)∇f1(x),

because
∑

i∈I(x) yi = 1 =
∑

i∈I(x) y′i. Therefore∑
i∈I(x)

(yi − y′i)(∇fi(x)−∇f1(x)) = 0,

which shows that yi = y′i for all i.
It follows easily from the preceding observations that (a) and (b) are satisfied at

(x, v) ∈ U ∩ gph ∂f . Also note that the arguments we have furnished show that for
all (x, v) ∈ U ∩ gph ∂f we have y′ → y as x′ → x and v′ → v where y′ = Y (x′, v′) and
y = Y (x, v). We know then from Proposition 4.8 that f ′′x,v is a generalized quadratic
for all (x, v) ∈ U ∩ gph ∂f (inasmuch as Y (x, v) is a singleton).

Finally we demonstrate that for all (x, v) ∈ gph ∂f in a neighborhood of (x̄, v̄) the
function f is strictly twice epi-differentiable at x for v. We know that I(x′) = I(x̄) for
all (x′, v′) ∈ U ∩ gph ∂f . Fix (x, v) ∈ U ∩ gph ∂f . Because the set {(∇fi(x

′)− v′) | i ∈
I(x̄)} is affinely independent, we have Ξ(x′, v′) → Ξ(x, v) as x′ → x and v′ → v with
v′ ∈ ∂f(x′). Recall that Ymax(x

′, v′) → Ymax(x, v). We now apply Proposition 4.8,
and this completes the proof.

The condition in Proposition 4.10 is so powerful that it guarantees not only the
strict second-order epi-differentiability of f at x̄ for v̄ but the same also for all (x, v)
near (x̄, v̄) in the graph of ∂f . It is hard to come up with a tractable condition
for strict second-order epi-differentiability that is more modest in its consequences.
The following example does show, however, that a max of finitely many C2 functions
can be strictly twice epi-differentiable at a point x̄ (actually here a point of global
minimum) without necessarily being strictly twice epi-differentiable at nearby points.

Example 4.11. Let f1(x1, x2) := x1
3x2

2 and f2(x1, x2) := −f1(x1, x2). Consider

f(x1, x2) := |f1(x1, x2)| = max {f1(x1, x2), f2(x1, x2)}.

This function f is C1 (in fact it is both C1+ (differentiable with locally Lipschitz
continuous gradient mapping) and lower-C2), and it is strictly twice epi-differentiable
at x̄ = (0, 0), yet it does not have this property at points of the x1-axis away from
the origin.

Detail. The functions f1 and f2 agree on the x1- and x2-axes, with ∇fi(x1, x2) =
(0, 0) there for i = 1, 2. This shows that f is C1+ as well as lower-C2, and in particular
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C1. Furthermore, f has a global minimum at x̄ = (0, 0), where both f1 and f2

the null matrix as their Hessian. We therefore have f ′′(0,0),(0,0)(ξ) = 0 for all ξ by
Theorem 3.2, so the function f ′′(0,0),(0,0) is quadratic. At a general point x not on
the x1- or x2-axes, f ′′x,v is the quadratic associated with the Hessian of f1 or f2. For
points with x1 = 0, the second-order epi-derivative likewise has the property that
f ′′(0,x2),(0,0)(ξ) = 0 for all ξ. But when x2 = 0 we have 〈ξ,∇2f1(x1, 0)ξ〉 = 2x3

1ξ2
2 and

〈ξ,∇2f2(x1, 0)ξ〉 = −2x3
1ξ2

2, so that except for the origin, f is not twice differentiable
at such a point nor strictly twice epi-differentiable there. Instead, f ′′(x1,0),(0,0)(ξ) =

max{2x3
1ξ2

2,−2x3
1ξ2

2} = |2x3
1ξ2

2| for all ξ = (ξ1, ξ2). The formulas we have identified
for the second-order epi-derivative show that f ′′x,∇f(x) converges uniformly on bounded
sets to f ′′(0,0),(0,0) as x → 0; in particular they epi-converge. Hence by Theorem 4.7, f
is strictly twice epi-differentiable at (0, 0) for (0, 0).

We now turn our attention to Example 2.3, where f(x) = f0(x) + δC(x) with f0

smooth. Adopting the terminology of [1], we say in this setting that a pair (x, v)
for v ∈ ∂f(x) furnishes a nondegenerate stationary point (relative to the problem of
minimizing f − 〈v, ·〉 in IRn) if v −∇f0(x) ∈ ri NC(x).

Proposition 4.12. In Example 2.3, consider any point x ∈ C where the constraint
qualification is satisfied (as characterized in Example 2.3′), and let v ∈ ∂f(x), which
is equivalent to v −∇f0(x) ∈ NC(x). Then

(a) the effective domain Ξ(x, v) of f ′′x,v is a subspace if and only if (x, v) furnishes
a nondegenerate stationary point, in which event

Ξ(x, v) =
{
ξ ∈ TC(x)

∣∣∣ 〈v −∇f0(x), ξ〉 = 0
}

=
{
ξ ∈ TX(x)

∣∣∣ 〈∇fi(x), ξ〉 ∈ TIi
(fi(x)) for all i, 〈v −∇f0(x), ξ〉 = 0

}
;

(b) f ′′x,v is a generalized quadratic function if and only if, in addition, there is a
multiplier vector ŷ in the set

Y (x, v) =
{
y

∣∣∣ yi ∈ NIi
(fi(x)), v −∇xL(x, y) ∈ NX(x)

}
with the property that〈

ξ,∇2
xxL(x, y)ξ

〉
≤

〈
ξ,∇2

xxL(x, ŷ)ξ
〉

for all y′ ∈ Y (x, v) and ξ ∈ Ξ(x, v).

Proof. This result follows from Example 3.4 and Theorem 4.6. Note that from
Example 3.4 we do have ∂f(x) = ∇f0(x) + NC(x), and therefore v ∈ ri ∂f(x) if and
only if v −∇f0(x) ∈ ri NC(x), i.e., (x, v) is a nondegenerate stationary point.

Proposition 4.13. In Example 2.3, consider any x̄ ∈ C with v̄ ∈ ∇f0(x̄) + NC(x̄).
Assume that

(a) (x̄, v̄) furnishes a nondegenerate stationary point,
(b) {∇fi(x̄) | fi(x̄) /∈ ri Ii} is linearly independent,
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(c) X = IRn.
Then for all (x, v) in a neighborhood of (x̄, v̄) with v ∈ ∂f(x) the function f is strictly
twice epi-differentiable at x for v, and in particular f ′′x,v is generalized quadratic.

Proof. The line of proof is very similar to that of Proposition 4.10. First notice
that there exists a neighborhood U of (x̄, v̄) such that for all (x, v) ∈ U ∩ gph ∂f we
must have {∇fi(x) | fi(x) /∈ ri Ii} linearly independent. Next notice that we may also
assume that

{i | fi(x) ∈ ri Ii} = {i | fi(x̄) ∈ ri Ii}

when (x, v) ∈ U ∩ gph ∂f . This is because v̄ −∇f0(x̄) ∈ ri NC(x̄), where

NC(x̄) = {∇xL(x̄, y) | yi ∈ NIi
(fi(x̄))}

(recall that L(x, y) = f0(x)+
∑

yifi(x)). From this it follows that Y (x, v) is a singleton
for all (x, v) ∈ U ∩ gph ∂f . We now easily conclude that Ymax(x, v) → Ymax(x̄, v̄) and
Ξ(x, v) → Ξ(x̄, v̄) when x → x̄ and v → v̄ with v ∈ ∂f(x). To finish off, we apply
Proposition 4.8.

5 Proximal mappings and envelopes

From now on we concentrate on the envelope functions eλ and proximal mappings Pλ

defined at the end of Section 2 in association with a function f . We continue to take
f to be the essential objective function for problem in composite format. Mainly we
concentrate henceforth on the case of minimizing points x̄ ∈ argmin f . Such points
have v̄ = 0 as a subgradient: 0 ∈ ∂f(x̄) by Theorem 3.5.

First on the agenda is the specialization to this context of a selection of facts
from [14] and [15]. (The interested reader should consult these papers for many other
results.)

Theorem 5.1. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any optimal solution
at which the condition (CQ) is satisfied.

Then for each λ > 0 sufficiently small, there is a neighborhood of x̄ on which
the function eλ is C1+ and lower-C2, the mapping Pλ is single-valued and Lipschitz
continuous, and

∇eλ = λ−1[I − Pλ] = [λI + (∂f)−1]−1,

Pλ = (I + λ∂f)−1 with Pλ(x̄) = x̄.

Proof. We invoke [14, Thms. 4.4, 4.6, 5.2], making the observation, as above, that
our assumptions entail through Proposition 2.6 that f has the prox-regularity de-
manded in those theorems.
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Functions that are C1+ have been the focus of much research recently. The reader
interested in the study of generalized second-order directional derivatives and Hessians
of these functions will surely want to consult the work of Cominetti and Correa [3],
Hiriart-Urruty [4], Jeyakumar and Yang [5], Páles and Zeidan [9], and Yang and
Jeyakumar [23]. Note that here the function eλ is not only C1+ but also lower-C2.

Theorem 5.2. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any optimal solution
at which condition (CQ) is satisfied (so that 0 ∈ ∂f(x̄) in particular), and for λ > 0
define

dλ(ξ) = min
ξ′

{
1

2
f ′′x̄,0(ξ

′) +
1

2λ
|ξ′ − ξ|2

}
for all ξ.

Then for all λ sufficiently small the function dλ is both C1+ and lower-C2, the gradient
mapping ∇dλ being Lipschitz continuous globally, and the following properties hold:

(a) eλ has a second-order expansion at x̄, given by

eλ(x̄ + tξ) = eλ(x̄) + t2dλ(ξ) + o(|tξ|2),

(b) ∇eλ has a first-order expansion at x̄, given by

∇eλ(x̄ + tξ) = t∇dλ(ξ) + o(|tξ|),

(c) Pλ has a first-order expansion at x̄, given by

Pλ(x̄ + tξ) = x̄ + t[I − λ∇dλ(ξ)] + o(|tξ|).

Proof. This time we apply [15, Thm. 3.5], again utilizing the prox-regularity of f
furnished through Proposition 2.6.

Theorem 5.3. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any optimal solution
at which the condition (CQ) is satisfied. Then for every λ > 0 sufficiently small, the
following properties are equivalent and necessarily involve the same matrix Hλ:

(a) eλ has a Hessian matrix Hλ at x̄;

(b) ∇eλ is differentiable at x̄ with Jacobian matrix Hλ;

(c) eλ is twice differentiable at x̄, with Hλ = ∇2eλ(x̄);

(d) Pλ is differentiable at x̄ with Jacobian matrix I − λHλ;

(e) f ′′x̄,0 is generalized quadratic.

Proof. This goes back to [15, Thm. 3.8], once more under the prox-regularity that
our hypothesis guarantees.
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Theorem 5.4. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any optimal solution
at which the condition (CQ) is satisfied. Then for every λ > 0 sufficiently small, the
following properties are equivalent:

(a) f is strictly twice epi-differentiable at x̄ for v̄;

(b) eλ has a strict Hessian at x̄;

(c) ∇eλ is strictly differentiable at x̄;

(d) eλ is twice differentiable at x̄, and ∇2eλ(x) → ∇2eλ(x̄) as x → x̄ in the set of
points x where eλ is twice differentiable;

(e) eλ is strictly twice epi-differentiable at x̄ for v̄;

(f) ∇eλ is strictly proto-differentiable at x̄ for v̄;

(g) Pλ is strictly differentiable at x̄;

(h) Pλ is strictly proto-differentiable at x̄;

Proof. This quotes [15, Thms. 4.1,4.2] in the environment of the prox-regularity of
f that comes from Proposition 2.6.

Theorem 5.5. Let f be the essential objective function in problem (P), with f =
g◦F for a C2 mapping F and a polyhedral function g. Let x̄ be any optimal solution
at which the condition (CQ) is satisfied. Then for every λ > 0 sufficiently small, the
following properties are equivalent:

(a) eλ is C2 on a neighborhood of x̄;

(b) Pλ is C1 on a neighborhood of x̄;

(c) For all (x, v) near to (x̄, v̄) in the graph of ∂f , f is twice epi-differentiable,
f ′′x,v is generalized quadratic, and f ′′x,v depends epi-continuously on (x, v), i.e., f ′′x′,v′

epi-converges to f ′′x,v as (x′, v′) → (x, v) with v′ ∈ ∂f(x′).

Proof. We appeal here to [15, Thm. 4.4].

Corollary 5.6. In the case of Theorem 5.5 where f happens to be differentiable at
x̄, or merely if it satisfies a local growth condition of type f(x) ≤ f(x̄) + s|x − x̄|2,
properties (a) and (b) hold if and only if f is itself C2 on a neighborhood of x̄.

Proof. The additional assumption forces f ′′x̄,v̄ to be finite (cf. Theorem 4.3), and the
property in (c) of Theorem 5.5 reduces then to f being C2; see also [15](Cor. 4.5).

Example 5.7. For the function f of Example 2.2, the assumptions of Proposition
4.8 and Theorem 5.5 ensure the presence of properties (a) and (b) of Theorem 5.5.

Example 5.8. For the function f of Example 2.3, the assumptions of Proposition
4.13 and Theorem 5.5 ensure the presence of properties (a) and (b) of Theorem 5.5.
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