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Abstract

Linear and nonlinear variational inequality problems over a poly-
hedral convex set are analyzed parametrically. Robinson’s notion of
strong regularity, as a criterion for the solution set to be a singleton
depending Lipschitz continuously on the parameters, is characterized
in terms of a new “critical face” condition and in other ways. The
consequences for complementarity problems are worked out as a spe-
cial case. Application is also made to standard nonlinear programming
problems with parameters that include the canonical perturbations. In
that framework a new characterization of strong regularity is obtained
for the variational inequality associated with the Karush-Kuhn-Tucker
conditions.
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1. Introduction

For a map f : IRd × IRn → IRn and a nonempty, polyhedral, convex set
C ⊂ IRn, we study the variational inequality problem in which a point x is
sought such that

x ∈ C and 〈z + f(w, x), x′ − x〉 ≥ 0 for all x′ ∈ C.

(Here 〈·, ·〉 refers to the scalar product of two vectors.) This problem is
viewed as depending on w ∈ IRd and z ∈ IRn as parameter vectors (with z
representing the “canonical perturbations”); we put them together as p =
(z, w). In terms of the normal cone NC(x) to C at x in convex analysis,
which is given by

NC(x) =
{ {v ∈ IRn | 〈v, x′ − x〉 ≤ 0 for all x′ ∈ C} if x ∈ C,
∅ if x /∈ C,

the targeted variational inequality can be expressed conveniently as

z + f(w, x) + NC(x) 3 0. (1)

For each p = (z, w) ∈ IRn × IRd let S(p) be the (possibly empty) set of
solutions x of (1). We concern ourselves with the local behavior of the map S
around a fixed element p0 = (z0, w0) and a point x0 ∈ S(p0). Specifically we
are interested in the circumstances under which S is locally single-valued and
Lipschitz continuous around (p0, x0), in the sense that there exist neighbor-
hoods U of x0 and V of p0 such that the map p 7→ S(p) ∩ U is single-valued
and Lipschitz continuous relative to p ∈ V . In addressing this we assume
here that:

(A) f is differentiable with respect to x with Jacobian matrix ∇xf(w, x)
depending continuously on (w, x) in a neighborhood of (w0, x0);

(B) f is Lipschitz continuous in w uniformly in x around (w0, x0); that
is, there exist neighborhoods U of x0 and V of w0 and a number l > 0 such
that ‖f(w1, x)− f(w2, x)‖ ≤ l‖w1 − w2‖ for all x ∈ U and w1, w2 ∈ V .

It has long been known, thanks to Robinson, that the analysis of S is
closely tied to the linear variational inequality

q + Ax + NC(x) 3 0 (2)
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with canonical parameter vector q around q0 in the case of

A = ∇xf(w0, x0), q0 = z0 + f(w0, x0)−∇xf(w0, x0)x0, (3)

which serves to “linearize” (1) at (p0, x0). Let L(q) denote the set of solutions
x to (2). Then x0 ∈ L(q0) by (3). In a landmark paper [23], Robinson proved
that the solution map S for (1) is locally single-valued and Lipschitz contin-
uous around (p0, x0) when the solution map L for (2) is locally single-valued
and Lipschitz continuous around (q0, x0). Robinson called this property of
L under (3) the strong regularity of the variational inequality (1) at (p0, x0).
(His framework in [23] was somewhat broader than the one adopted here: C
did not have to be polyhedral, and w could range over a parameter space
other than IRd; for subsequent extensions in such a mode see Robinson [25]
and Dontchev and Hager [6].)

The strong regularity of (1) at (p0, x0) is identical by definition to the
strong regularity of (2) at (q0, x0) under the choice of elements in (3). Our
goal here is to characterize this strong regularity by a certain critical face
condition on A and the closed faces of the critical cone K0 consisting of the
vectors in the tangent cone TC(x0) to C at x0 that are orthogonal to the
normal vector

v0 = −Ax0 − q0 ∈ NC(x0). (4)

We further provide characterizations through a localized Lipschitz condition
on L at (q0, x0) which we call the Aubin property, and also through the lower
semicontinuity of L around (q0, x0).

The result that the lower semicontinuity of L around (q0, x0) thereby
entails the local single-valuedness and Lipschitz continuity of L can be com-
pared with the well known fact that a monotone map has to be single-valued
and continuous wherever it is lower semicontinuous; we would have L mono-
tone if the matrix A in (2) were monotone (i.e., positive semidefinite, not
necessarily symmetric), but such monotonicity is not assumed. We do not
know whether the lower semicontinuity of S around (p0, x0) likewise ensures
the local single-valuedness and Lipschitz continuity of S around (p0, x0), but
we verify that the Aubin property of S at (p0, x0) does yield it.

Throughout we denote by IBr(x) the closed ball centered at x with radius
r and by IB the closed unit ball. For a (potentially set-valued) map Γ from
IRm to IRn we denote by gph Γ the graph of Γ, i.e., the set {(u, x) |u ∈
IRm, x ∈ Γ(u)}. Recall that Γ is called lower semicontinuous at the pair
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(u0, x0) ∈ gph Γ if for every sequence ui → u0 there exists a sequence xi → x0

such that xi ∈ Γ(ui) for all i = 1, 2, . . . sufficiently high. If Γ is lower
semicontinuous at every point (u, x) ∈ gph Γ with u belonging to an open
set U , it is said to be lower semicontinuous on U . We say that Γ is lower
semicontinuous around (u0, x0) ∈ gph Γ if there exists a neighborhood W of
(u0, x0) such that Γ is lower semicontinuous at every (u, x) ∈ gph Γ∩W . We
also employ the following concept of Aubin [1].

Definition 1. A set-valued map Γ from IRm to the subsets of IRn has the
Aubin property at (u0, x0) ∈ gph Γ with a constant M if there exist neigh-
borhoods U of u0 and V of x0 such that

Γ(u1) ∩ V ⊂ Γ(u2) + M‖u1 − u2‖IB for all u1, u2 ∈ U.

Aubin himself referred to this as “pseudo-Lipschitz continuity.” In actu-
ality it is a fundamental property more important in general than Lipschitz
continuity as usually interpreted with the Hausdorff metric: it readily char-
acterizes the latter when Γ is locally bounded (see Rockafellar [27]), but it
makes better sense in most cases when Γ is not locally bounded or in par-
ticular has unbounded images Γ(u)—all of which jars with the connotation
of “pseudo” as “false.” We prefer therefore to call this concept the Aubin
property, giving credit where credit is due. This property of Γ is equivalent
to Γ−1 having a “linear rate of openness” (hence providing a link to open
map theorems) as well as to Γ−1 being metrically regular (a basic condition
employed in the stability analysis of optimization problems); see Borwein
and Zhuang [3] and Penot [21].

When C is the nonnegative orthant IRn
+, the variational inequality (1)

corresponds to the complementarity problem while (2) gives the linear com-
plementarity problem, which seeks an x ∈ IRn such that

Ax + q ≥ 0, x ≥ 0, 〈x, Ax + q〉 = 0. (5)

The initial motivation for our efforts came from this case and the results that
had been obtained for its solution map L0, assigning to each q the set of all
x that satisfy (5), if any.

Samelson, Thrall and Wesler [29] showed that L0 is single-valued every-
where on IRn if and only if A is a P-matrix; that is, every principal minor
of A has positive sign. Alternative descriptions of P-matrices have been pro-
vided in [4] and [19]. Mangasarian and Shiau [16] proved that when L0 is
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single-valued everywhere it is automatically Lipschitz continuous everywhere
as well. Gowda [8] proved that if L0(q) = {0} for some positive q, then the
Lipschitz continuity of L0 everywhere in the sense of the Hausdorff metric
guarantees that L0 is single-valued everywhere; see also Pang [20]. Murthy,
Parthasarathy and Sabatini [18] dropped the requirement that L0(q) = {0}
for some positive q, obtaining that L0 is Lipschitz continuous everywhere if
and only if it is single-valued everywhere. Gowda and Sznajder [9] noted that
this result can be extended to the map L by using some recently discovered
properties of normal maps. Such results got us interested in investigating also
the question of local single-valuedness versus local Lipschitz continuity and
how these properties could better be understood in relation to each other,
and this led to the developments presented here. A product of this study,
back on the global level, turns out to be that the lower semicontinuity of L
everywhere on IRn is already enough to guarantee the single-valuedness of L
everywhere.

We begin in Section 2 by considering the linear variational inequality (2)
and establishing the equivalences that have been mentioned for its solution
map L. In obtaining our critical face condition, a key step is the application
to L of Mordukhovich’s coderivative criterion in [17] for the Aubin property
to hold. In Section 3 we return to the nonlinear variational inequality (1),
putting the preceding results together and furnishing along the way an inde-
pendent proof of Robinson’s theorem, not based on a fixed point argument
but utilizing instead our identification of strong regularity with the Aubin
property, and noting further that strong regularity is not just sufficient but
necessary for the local single-valuedness and Lipschitz continuity of S when
the canonical perturbations z are present along with the general parameter
element w.

As applications in Sections 4 and 5 we characterize strong regularity in
the complementarity problem and for the variational inequality representing
the first-order optimality conditions in a nonlinear programming problem. In
the latter case we demonstrate that the combination of linear independence
of the active constraint gradients with the strong second-order sufficient con-
dition for local optimality is necessary as well as sufficient (in the presence
of the canonical perturbations) for the Karush-Kuhn-Tucker map to be not
just locally single-valued and Lipschitz continuous but such that its primal
components are locally optimal solutions.
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2. Strong Regularity and the Linear Problem.

As noted, the strong regularity of the nonlinear variational inequality
(1) at (p0, x0) is the same as the strong regularity of the linear variational
inequality (2) at (q0, x0) under the choice of elements in (3). Our plan of
characterizing the strong regularity property in various ways can therefore
be executed entirely in the linear context. Eventually the case of interest will
be the one given by (3), but for now (q0, x0) can be any pair belonging to
the graph of the solution map L for (2).

A key part in our investigation will be played by a lemma which reduces
the linear variational inequality (2) over a polyhedral convex set C to a
variational inequality over a polyhedral convex cone K. To formulate it, we
introduce for each x ∈ C and normal vector v ∈ NC(x) the cone

K(x, v) = {x′ ∈ TC(x) |x′ ⊥ v}, (6)

where TC(x) denotes the tangent cone to C at x. Here TC(x) is polyhedral
convex because C is polyhedral convex, and this ensures that K(x, v) is
polyhedral convex too. Our interest will center especially on the critical
cone associated with (2) for (q0, x0), which is

K0 = K(x0, v0) for v0 = −Ax0 − q0. (7)

Reduction Lemma. For any (x, v) ∈ G = gph NC there is a neighborhood
U of (0, 0) in IRn × IRn such that for (x′, v′) ∈ U one has

v + v′ ∈ NC(x + x′) ⇐⇒ v′ ∈ NK(x,v)(x
′).

In particular, the tangent cone TG(x, v) to G at (x, v) is gph NK(x,v).

Proof. This is a particular case of Lemma 3.5 in Robinson [24]; see also
Theorem 5.6 in Rockafellar [28].

In the following theorem we show that the Aubin property of the map
L is equivalent to the the strong regularity of the variational inequality (2).
The key steps in the proof are the Reduction Lemma and a combination of
some recently obtained characterizations of normal maps.

Theorem 1. The following are equivalent:
(i) L is lower semicontinuous around (q0, x0);
(ii) L has the Aubin property at (q0, x0);
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(iii) L is locally single-valued and Lipschitz continuous around (q0, x0);
(iv) the linear variational inequality (2) is strongly regular at (q0, x0).

Proof. Obviously, (iv) ⇔ (iii) ⇒ (ii) ⇒ (i). It will suffice therefore to
show that (i) ⇒ (iii). For the critical cone K0 in (7) consider the variational
inequality

q′ + Ax′ + NK0(x
′) 3 0 (8)

and denote its solution map by L′: for each q′, L′(q′) is the set of all x′

satisfying (8). The Reduction Lemma tells us that as long as (x′, v′) is near
enough to (0, 0), we have v0 + v′ ∈ NC(x0 + x′) if and only if v′ ∈ NK0(x

′).
Thus, (q0 + q′) + A(x0 + x′) + NC(x0 + x′) 3 0 if and only if q′ + Ax′ +
NK0(x

′) 3 0. In the shifted notation x = x0 + x′ and q = q0 + q′, therefore,
we have x ∈ L(q) if and only if x′ ∈ L′(q′). In particular 0 ∈ L′(0), and the
lower semicontinuity of L around (q0, x0) in (i) reduces to that of L′ around
(0, 0). But L′ is positively homogeneous by virtue of K0 being a cone, so the
lower semicontinuity of L′ around (0, 0) implies the lower semicontinuity and
nonempty-valuedness of L′ on all of IRn. Our task comes down to proving
that this implies L′ is locally single-valued and Lipschitz continuous around
(0, 0) (and hence by positive homogeneity has these properties globally).

Let ΠK0 be the projection map onto K0. We have

u− ΠK0(u) ∈ NK0(ΠK0(u)) for all u.

Let h be the normal map associated with (8), namely

h(u) = [u− ΠK0(u)] + AΠK0(u).

As a step toward applying known results of the theory of normal maps, we
prove next that h is an open map: it maps open sets into open sets.

For this purpose fix any open set O ⊂ IRn and any point h(u) with
u ∈ O; it will be expedient to take q′ = −h(u). Consider any sequence
q′i → q′ as i → ∞. By demonstrating the existence of a sequence ui → u
with q′i = −h(ui), we will confirm that eventually −q′i ∈ h(O) and therefore
that h(O) is open. From the definitions of L′ and h along with the choice of
q′ we have for x′ = ΠK0(u) that −q′ = [u− x′] + Ax′ with u− x′ ∈ NK0(x

′),
hence x′ ∈ L′(q′) and x′− q′−Ax′ = u. The nonempty-valuedness and lower
semicontinuity of L′ on IRn implies the existence of points x′i ∈ L′(q′i) (for i
sufficiently large) with x′i → x′. Since x′i ∈ L′(q′i) we have−q′i−Ax′i ∈ NK0(x

′
i)
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and consequently for the points ui = x′i − q′i − Ax′i that ΠK0(ui) = x′i. But
x′i − q′i − Ax′i → x′ − q − Ax′, so we have ui → u as demanded.

The rest of the proof is based on combining two known facts. The first is
that a piecewise affine map (here h fits this category because ΠK0 is piecewise
linear) is open if and only if it is coherently oriented; see Eaves and Rothblum
[7], Lemma 6.12, and Scholtes [30], Proposition 2.3.7. The second is that the
normal map corresponding to a linear variational inequality over a polyhedral
convex set is coherently oriented if and only if it is one-to-one; see Robinson
[26], Theorem 4.3, and also Ralph [22]. From these facts we deduce that h−1

is single-valued and Lipschitz continuous everywhere. The equivalence

x′ ∈ L′(q′) ⇐⇒ x′ = ΠK0(h
−1(q′))

implies then that L′ is single-valued and Lipschitz continuous everywhere.
Thus we have arrived at (iii), the goal we had set out for.

Remark 1. Corresponding to Theorem 1 on the global level is the fact
that the following are equivalent:

(i) L is lower semicontinuous on IRn;
(ii) L(q) is a singleton set for every q ∈ IRn.

This is easily derivable from known literature with a little help from the
argument we have used in proving Theorem 1. Assuming (i), denote by hC

the normal map associated with (2). Tracing the argument in the proof of
Theorem 1 but with h replaced by hC and L′ replaced by L, and relying on the
references cited there, we obtain that hC is open everywhere and consequently
that L is single-valued everywhere. Conversely, under (ii) the map hC is a
homeomorphism, hence it is Lipschitz continuous everywhere. Then L is
Lipschitz continuous and in particular lower semicontinuous everywhere.

We proceed now toward our critical face condition. Recall that the closed
faces F of any polyhedral convex cone K are the polyhedral convex cones of
the form

F = {x ∈ K |x ⊥ v} for some v ∈ K∗, (9)

where K∗ denotes the polar of K. The largest of these faces is K itself, while
the smallest is K ∩ (−K), this being the maximal subspace of IRn included
within K. Recall too that

v′ ∈ NK(x′) ⇐⇒ x′ ∈ K, v′ ∈ K∗, x′ ⊥ v′. (10)
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Definition 2. The critical face condition will be said to hold at (q0, x0) if
for all choices of closed faces F1 and F2 of the critical cone K0 with F1 ⊃ F2,

u ∈ F1 − F2, A>u ∈ (F1 − F2)
∗ =⇒ u = 0

(where A> denotes the transpose of A).

Remark 2. When the critical cone K0 happens to be a subspace, it has a
unique closed face (namely itself). The critical face condition reduces then
to a nonsingularity condition for A relative to this subspace:

u ∈ K0, A>u ⊥ K0 =⇒ u = 0.

Theorem 2. The solution map L for the linear variational inequality (2) has
the Aubin property at (q0, x0), and therefore the other equivalent properties
of Theorem 1 as well, if and only if the critical face condition holds at (q0, x0).

Proof. According to the powerful criterion developed by Mordukhovich [17],
we know that a necessary and sufficient condition for the Aubin property to
hold for L at (q0, x0) is

A>u + D∗NC(x0|v0)(u) 3 0 =⇒ u = 0,

where the map D∗NC(x0|v0) is the coderivative of the map NC at the point
(x0, v0) of G = gph NC . By definition, the graph of this coderivative map
consists of all the pairs (−u, r) such that (r, u) ∈ ÑG(x0, v0), where ÑG(x0, v0)
is the generalized cone of normals to the (nonconvex) set G that is described
below. In these terms the Mordukhovich criterion takes the form:

(A>u, u) ∈ ÑG(x0, v0) =⇒ u = 0. (11)

Everything hinges therefore on determining ÑG(x0, v0).
In general, ÑG(x0, v0) is defined as the “lim sup” of polar cones TG(x, v)∗

as (x, v) → (x0, v0) in G, but because G is the union of finitely many poly-
hedral sets in IR2n (due to C being polyhedral), only finitely many cones can
be manifested as TG(x, v) at points (x, v) ∈ G near (x0, v0). Thus, we have
for any sufficiently small neighborhood U of (x0, v0) that

ÑG(x0, v0) =
⋃

(x,v)∈U∩G

TG(x, v)∗. (12)
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Next we utilize the Reduction Lemma: we have TG(x, v) = gph NK(x,v), and
therefore by (10) as applied to K = K(x, v) that

TG(x, v) = {(x′, v′) |x′ ∈ K(x, v), v′ ∈ K(x, v)∗, x′ ⊥ v′}.

It follows that

TG(x, v)∗ = {(r, u) | 〈(r, u), (x′, v′)〉 ≤ 0 for all (x′, v′) ∈ TG(x, v)}
= {(r, u) | 〈r, x′〉+ 〈u, v′〉 ≤ 0 for all

x′ ∈ K(x, v), v′ ∈ K(x, v)∗ with x′ ⊥ v′}.

It is evident from this (first in considering v′ = 0, then in considering x′ = 0)
that actually

TG(x, v)∗ = K(x, v)∗ ×K(x, v). (13)

Hence ÑG(x0, v0) is the union of all product sets K∗ × K associated with
cones K such that K = K(x, v) for some (x, v) ∈ G near enough to (x0, v0).

We claim now that the cones K arising in this manner are precisely the
cones of the form F1−F2 where F1 and F2 are closed faces of K0 = K(x0, v0)
satisfying F1 ⊃ F2. This will be enough to prove the theorem by way of (11),
(12) and (13).

For any vector v ∈ IRn, let [v] = {τv | τ ∈ IR}. Of course, this is a
subspace of dimension 1 if v 6= 0, but just {0} if v = 0. Accordingly, [v]⊥ is
a hyperplane through the origin if v 6= 0, but [v]⊥ = IRn if v = 0.

Because C is polyhedral, we know that for x ∈ C sufficiently near to x0

we are sure to have

TC(x) = TC(x0) + [x− x0] ⊃ TC(x0),

NC(x) = NC(x0) ∩ [x− x0]
⊥ ⊂ NC(x0).

Furthermore, the vectors x − x0 for x ∈ C sufficiently near to x0 are the
vectors x′ ∈ TC(x0) having sufficiently small norm. On the other hand the
cones of form TC(x0) ∩ [v]⊥ for v ∈ NC(x0) are the closed faces of TC(x0),
while the “lim sup” of TC(x0) ∩ [v]⊥ as v → v0 with v ∈ NC(x0) is included
within TC(x0) ∩ [v0]

⊥. Since TC(x0) has only finitely many closed faces, we
must have TC(x0) ∩ [v]⊥ ⊂ TC(x0) ∩ [v0]

⊥ for v ∈ NC(x0) sufficiently close
to v0. Since the critical cone K0 = TC(x0) ∩ [v0]

⊥ is itself a closed face of
TC(x0), any closed face of TC(x0) within K0 is also a closed face of K0.
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In light of this, the cones K = K(v, x) at points (x, v) ∈ G arbitrarily
near to (x0, v0) are the cones having the form

K = (TC(x0) + [x′]) ∩ [v]⊥ for some

x′ ∈ TC(x0) ∩ [v0]
⊥ and v ∈ NC(x0) ∩ [x′]⊥

with v sufficiently close to v0 and x′ sufficiently close to 0 (with x′ = x−x0).
We can write K = (TC(x0) ∩ [v]⊥) + [x′] equally well, because x′ ⊥ v.

If K has this form, let F1 = TC(x0) ∩ [v]⊥, this being a closed face of the
polyhedral cone K0 for reasons already given. We have x′ ∈ F1 and therefore
actually K = F1−F2, where F2 is the closed face of F1 having x′ in its relative
interior. Then F2 is also a closed face of K0, and the desired representation
of K is achieved.

Conversely, if K = F1−F2 for closed faces F1 and F2 of K0 with F1 ⊃ F2,
there must be a vector v ∈ NC(x0) with TC(x0) ∩ [v]⊥ = F1. Then F2 is a
closed face of F1. Let x′ ∈ ri F2; in particular x′ ∈ TC(x0), so by taking the
norm of x′ sufficiently small we can arrange that the point x = x0 + x′ lies
in C. We have x′ ⊥ v and

F1 − F2 = (TC(x0) ∩ [v]⊥) + [x′] = (TC(x0) + [x′]) ∩ [v]⊥

= (TC(x0) + [x− x0]) ∩ [v]⊥ = TC(x) ∩ [v]⊥,

which is the form required.

Corollary 1. A sufficient condition for the Aubin property to hold for L
at (q0, x0), and therefore all the other equivalent properties in Theorem 1
as well, is that 〈u, Au〉 > 0 for all vectors u 6= 0 in the subspace K0 − K0

spanned by the critical cone K0.

Proof. The inequality 〈u, Au〉 ≤ 0 is equivalent to 〈u, A>u〉 ≤ 0, which
must hold in particular when u belongs to a cone F1 − F2 ⊂ K0 − K0 and
A>u ∈ (F1 − F2)

∗. In the circumstances described, this is impossible unless
u = 0.

Remark 3. In consequence of Theorem 2, the critical face condition is
both necessary and sufficient for the coherent orientation of the normal map
associated with the linear variational inequality (2).

3. The Nonlinear Problem
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Now we extend our results to the nonlinear variational inequality (1),
taking the linear variational inequality (2) to be its linearization as indi-
cated by (3). We start by recording a background fact about our underlying
assumption (A) in Section 1.

Strict Differentiability Lemma. Under (A) there exist for any ε > 0
neighborhoods U of x0 and V of w0 such that, for all x1, x2 ∈ U and w ∈ V ,

‖f(w, x1)− f(w, x2)−∇xf(w0, x0)(x1 − x2)‖ ≤ ε‖x1 − x2‖.

Proof. This is classical, but we supply the proof for completeness. For an
arbitrary e ∈ IRn with ‖e‖ = 1 and any x1, x2 ∈ IRn and w ∈ IRd we can
apply the mean value theorem to ϕ(t) = 〈e, f(w, tx1 + (1 − t)x2)〉 to get a
value τ ∈ (0, 1) such that ϕ(1)− ϕ(0) = ϕ′(τ), i.e.,

〈e, f(w, x1)〉 − 〈e, f(w, x2)〉 = 〈e,∇xf(w, τx1 + (1− τ)x2)(x1 − x2)〉.

Choose neighborhoods U of x0 and V of w0 such that U is convex and
‖∇xf(w, x) − ∇xf(w0, x0)‖ ≤ ε when x ∈ U and w ∈ V , as is possible
by virtue of the continuity of ∇xf(w, x) in w and x that is assumed in (A).
For all x1, x2 ∈ U and w ∈ V we have

〈e, [f(w, x1)〉 − f(w, x2)−∇xf(w0, x0)(x1 − x2)] 〉
= 〈e, [∇xf(w, τx1 + (1− τ)x2)−∇xf(w0, x0)](x1 − x2) 〉
≤ ‖∇xf(w, τx1 + (1− τ)x2)−∇xf(w0, x0)‖‖x1 − x2‖

≤ ε‖x1 − x2‖.

This being true for all e with ‖e‖ = 1, we get the required estimate.

Proposition 1. The following are equivalent for the maps L and S:
(i) L has the Aubin property at (q0, x0);
(ii) S has the Aubin property at (p0, x0).

Proof. This can be obtained at once from the observation that the Mor-
dukhovich coderivative criterion for the Aubin property to hold, as invoked
in the proof of Theorem 2, has the same form for (1) at (p0, x0) that it has for
(2) at (q0, x0), because the coderivative map associated with S is the same
as for L. But we proceed anyway with an independent proof which shows
how this equivalence extends beyond such a framework; cf. Remark 4 below.
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Let L have the Aubin property at (q0, x0) with a constant M ; that is, for
some a > 0 and b > 0 and for every q′, q′′ ∈ IBb(q0) we have

L(q′) ∩ IBa(x0) ⊂ L(q′′) + M‖q′ − q′′‖IB. (14)

Let ε > 0 be such that Mε < 1. Choose α > 0 and β1 > 0 with

α < min{a, b/ε}

such that the inequality in the Strict Differentiability Lemma holds whenever
x′, x′′ ∈ IBα(x0) and w ∈ IBβ1(w0). Let β > 0 be such that

β ≤ min

{
β1,

α(1− εM)

4M(1 + l)
,
b− εα

1 + l

}
. (15)

It will be demonstrated that S has the Aubin property at (p0, x0) with con-
stant M ′ = [M(l + 1)/[1− εM ].

Fix p′, p′′ ∈ IBβ(p0), with p′ = (z′, w′) and p′′ = (z′′, w′′), and consider
any x′ ∈ S(p′) ∩ IBα/2(x0). Then

0 ∈ z′ + f(w′, x′) + NC(x′)

= [z′ + f(w′, x′)−∇xf(w0, x0)x
′] + Ax′ + NC(x′),

so that x′ ∈ L(q′) ∩ IBα/2(x0) for q′ = z′ + f(w′, x′) − ∇xf(w0, x0)x
′, where

in terms of the linearization map

g(x) = f(w0, x0) +∇xf(w0, x0)(x− x0) = q0 − z0 +∇xf(w0, x0)x (16)

we can write q′ − q0 = z′ − z0 + f(w′, x′)− g(x′). Using (15) we have

‖q′ − q0‖ = ‖z′ − z0 + f(w′, x′)− g(x′)‖
≤ ‖z′ − z0‖+ +‖f(w′, x′)− f(w′, x0)−∇xf(w0, x0)(x

′ − x0)‖
+‖f(w′, x0)− f(w0, x0)‖

≤ ‖p′ − p0‖+ ε‖x′ − x0‖+ l‖w′ − w0‖ ≤ β(1 + l) +
εα

2
,

so that ‖q′ − q0‖ ≤ b, that is, q′ ∈ IBb(q0). (17)

Analogously, for the vector q′′ = z′′ + f(w′′, x′)−∇xf(w0, x0)x
′ = q0 + z′′ −

z0 + f(w′′, x′)− g(x′) we have q′′ ∈ IBb(q0). Let x1 = x′. On the basis of (14)
there exists then an x2 such that

z′′ + f(w′′, x1) +∇xf(w0, x0)(x2 − x1) + NC(x2) 3 0
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and

‖x2 − x1‖ ≤ M‖q′ − q′′‖ ≤ M(‖z′ − z′′‖+ ‖f(w′, x1)− f(w′′, x1)‖)
≤ M(‖z′ − z′′‖+ l‖w′ − w′′‖) ≤ M(l + 1)‖p′ − p′′‖.

Suppose that there exist points x2, x3, . . . , xn−1 with

z′′ + f(w′′, xi−1) +∇xf(w0, x0)(xi − xi−1) + NC(xi) 3 0

and

‖xi − xi−1‖ ≤ M(l + 1)‖p′ − p′′‖(Mε)i−2 for i = 2, . . . , n− 1.

Then for every i we have

‖xi − x0‖ ≤ ‖x1 − x0‖+
i∑

j=2

‖xj − xj−1‖

≤ α

2
+ M(l + 1)‖p′ − p′′‖

i∑
j=2

(Mε)j−2

≤ α

2
+

M(l + 1)

1− εM
‖p′ − p′′‖ ≤ α

2
+

2Mβ(l + 1)

1− εM
≤ α,

because of (15). Setting qi = z′′ + f(w′′, xi)−∇xf(w0, x0)xi = q0 + z′′− z0 +
f(w′′, xi)− g(xi) for i = 2, 3, . . . , n− 1 we get

‖qi − q0‖ = ‖z′′ − z0 + f(w′′, xi)− g(xi)‖
≤ ‖z′′ − z0‖+ ‖f(w′′, xi)− f(w′′, x0)−∇xf(w0, x0)(xi − x0)‖

+‖f(w′′, x0)− f(w0, x0)‖
≤ ‖p′ − p0‖+ ε‖xi − x0‖+ l‖w′′ − w0‖
≤ β(1 + l) + εα ≤ b,

so that qi ∈ IBb(q0). Since xn−1 ∈ L(qn−2)∩IBα(x0), we know from the Aubin
property (14) that there exists xn with

z′′ + f(w′′, xn−1) +∇xf(w0, x0)(xn − xn−1) + NC(xn) 3 0 (18)

and

‖xn − xn−1‖ ≤ M‖qn−1 − qn−2‖
≤ M‖f(w′′, xn−1)− f(w′′, xn−2)−∇xf(w0, x0)(xn−1 − xn−2)‖
≤ Mε‖xn−1 − xn−2‖ ≤ M(l + 1)‖p′ − p′′‖)(Mε)n−2.

14



The induction step is thereby joined. We obtain an infinite sequence of
points x1, x2, . . . , xn, . . . in IBα(x0) that is a Cauchy sequence and therefore
converges to some x′′ ∈ IBα(x0). Since f(w′′, ·) is continuous in IBα(x0)
and the normal cone map NC has closed graph, it follows from (18) that
x′′ ∈ S(p′′). Moreover, since

‖xn − x′‖ ≤
n∑

i=2

‖xi − xi−1‖

≤ M(l + 1)‖p′ − p′′‖
n∑

i=2

(Mε)i−2 ≤ M(l + 1)

1− εM
‖p′ − p′′‖,

we obtain in passing to the limit that

‖x′′ − x′‖ ≤ M(l + 1)

1− εM
‖p′ − p′′‖ = M ′‖p′ − p′′‖.

The implication (i) ⇒ (ii) is thereby established.
To prove the implication (ii) ⇒ (i), suppose S has the Aubin property

at (p0, x0) with constant M . Choose ε, α and β relative to M as above. It
will be demonstrated that L has the Aubin property at (q0, x0) with constant
M ′ = M/(1− εM). Consider q′, q′′ ∈ IBβ(q0) and x′ ∈ L(q′) ∩ IBα/2(x0):

q′ +∇xf(w0, x0)x
′ + NC(x′) 3 0.

Then x′ ∈ S(p′) ∩ IBα/2(x0) for the parameter element p′ = (z′, w0) with
z′ = q′ +∇xf(w0, x0)x

′ − f(w0, x
′) = z0 + [q′ − q0]− [f(w0, x

′)− g(x′)]. Now
also let p′′ = (z′′, w0) for the vector z′′ = q′′ + ∇xf(w0, x0)x

′ − f(w0, x
′) =

z0 +[q′′− q0]− [f(w0, x
′)−g(x′)]. As in the chain of estimates leading to (17)

we get p′, p′′ ∈ IBb(p0). Then there exists x2 such that

z′′ + f(w0, x2) + f(w0, x0) +∇xf(w0, x0)(x
′ − x0)− f(w0, x

′) + NC(x2) 3 0,

‖x2 − x′‖ ≤ M‖p′ − p′′‖ = M‖z′ − z′′‖.
By emulating the argument in the first part of the proof, we obtain by in-
duction a sequence x′ = x1, x2, . . . , xn, . . . convergent to x′′ and such that

z′′+f(w0, xn)+f(w0, x0)+∇xf(w0, x0)(xn−1−x0)−f(w0, xn−1)+NC(xn) 3 0,

‖xn − x′‖ ≤ M‖q′ − q′′‖
n∑

i=2

(Mε)i−2.

15



Passing to the limit we obtain that x′′ ∈ L(q′′) and

‖x′ − x′′‖ ≤ M

1− εM
‖q′ − q′′‖ = M ′‖q′ − q′′‖.

This finishes the proof.

Remark 4. The result in Proposition 1 carries over to a much wider
setting, as may be gleaned from the proof we have given. Let F be a set-
valued map with closed graph from a complete metric space X into the
subsets of a linear normed space Z, and let f be a function from W×X to Z,
where W is a metric space. Suppose that g : X 7→ Z is a continuous function
which strongly approximates f around (w0, x0) in the sense of Robinson [25],
and that f satisfies condition (B) (with the metric of W replacing the norm).
Consider the maps

Σ(p) = {x ∈ X | 0 ∈ z + f(w, x) + F (x)}

where p = (z, w), and

Λ(z) = {x ∈ X | 0 ∈ z + g(x) + F (x)},

and let x0 ∈ Σ(p0). Then Σ has the Aubin property at (p0, x0) if and only
if Λ has it at (z0, x0). Prototypes of such a theorem are contained in [5] and
[6], where a fixed point argument is utilized.

Next we give a new proof of the original result of Robinson in [23] (for
the present context). In contrast to Robinson’s argument, we do not appeal
to a fixed point theorem but rely on Proposition 1 instead. Furthermore,
whereas Robinson focused on the implication from the property of L to the
corresponding one for S, we point out that—in the presence of the canon-
ical perturbation vector z alongside of w in the element p = (z, w)—the
implication goes both ways and becomes an equivalence.

Proposition 2. The following properties are equivalent:
(i) L is locally single-valued and Lipschitz continuous around (q0, x0);
(ii) S is locally single-valued and Lipschitz continuous around (p0, x0).

Proof. Let (i) hold. In particular L has the Aubin property, hence S has
it too by Proposition 2. To get (ii) it suffices therefore to verify that S is
locally single-valued.
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Suppose to the contrary that in every neighborhood V of p0 and X of x0

there exist p̄ = (z̄, w̄) and x1, x2 ∈ S(p̄)∩X such that x1 6= x2: in particular,

z̄ + f(w̄, xi) + NC(xi) 3 0 for i = 1, 2.

Let M be the Lipschitz constant of L around (q0, x0) and choose ε > 0
small enough that Mε < 1. Using the Strict Differentiability Lemma, choose
neighborhoods U of x0 and V of w0 with U ⊂ X such that

‖f(w, x′)− f(w, x′′)−∇xf(w0, x0)(x
′ − x′′)‖ ≤ ε‖x′ − x′′‖

for every x′, x′′ ∈ U and w ∈ V . Note that, for i = 1, 2, and for some
sufficiently small neighborhood U ′ ⊂ U of x0, we have L(qi) ∩ U ′ = {xi} for
qi = q′ +∇xf(w0, x0)x

′ − f(w0, x
′) = q0 + [z̄ − z0] + [f(w̄, xi)− g(xi)], where

g is given as before by (16). Then

‖x1 − x2‖ ≤ M‖q1 − q2‖
= M‖[f(w̄, x1)− g(x1)]− [f(w̄, x2)− g(x2)]‖
= M‖f(w̄, x1)− f(w̄, x2)−∇xf(x0, w0)(x1 − x2)‖
≤ Mε‖x1 − x2‖ < ‖x1 − x2‖,

which is a contradiction. Hence S is locally single-valued around (p0, x0).
The converse implication (ii) ⇒ (i) is established in the same way.

Combining Propositions 1 and 2 with Theorems 1 and 2 we obtain the
following result, in which the implication from (i) to (iv), already known from
Robinson’s theorem in [23], has ended up in a circle of equivalences.

Theorem 3. The following properties are equivalent:
(i) The nonlinear variational inequality (1) is strongly regular at (p0, x0);
(ii) The critical face condition of Definition 2 holds at (q0, x0);
(iii) The solution map S has the Aubin property at (p0, x0);
(iv) The solution map S is locally single-valued and Lipschitz continuous

around (p0, x0).

4. Application to the Complementarity Problem.

Next we apply our results to the nonlinear complementarity problem with
canonical perturbations, namely

x ≥ 0, f(w, x) + z ≥ 0, 〈x, f(w, x) + z〉 = 0, (19)
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which is the special case of (1) with C = IRn
+. Our general assumptions and

notation for (1) continue in the analysis of this case, in particular (3) and
(4). We associate with the vector v0 ∈ NC(x0) the index sets J1, J2, J3 in
{1, 2, . . . , n} given by

J1 = {i |xi
0 > 0, vi

0 = 0},
J2 = {i |xi

0 = 0, vi
0 = 0},

J3 = {i |xi
0 = 0, vi

0 < 0}.

Proposition 3. In the case of the nonlinear complementarity problem, the
critical cone K0 consists of the vectors x′ satisfying

x′i free for i ∈ J1,
x′i ≥ 0 for i ∈ J2,
x′i = 0 for i ∈ J3,

and the cones F1−F2, where F1 and F2 are closed faces of K0 with F1 ⊃ F2,
are the cones K of the following form. There is a partition of {1, 2, . . . , n}
into index sets J ′

1, J ′
2, J ′

3 with J1 ⊂ J ′
1 ⊂ J1 ∪ J2 and J3 ⊂ J ′

3 ⊂ J3 ∪ J2, such
that K consists of the vectors x′ satisfying

x′i free for i ∈ J ′
1,

x′i ≥ 0 for i ∈ J ′
2,

x′i = 0 for i ∈ J ′
3.

(20)

The vectors u ∈ K with A>u ∈ K∗ are then the ones such that
ui free, (A>u)i = 0 for i ∈ J ′

1,
ui ≥ 0, (A>u)i ≤ 0 for i ∈ J ′

2,
ui = 0, (A>u)i free for i ∈ J ′

3.

Proof. It is easy to see that K0 has the form described, so we focus on
analyzing its closed faces. Each such face F has the form K0∩ [v′]⊥ for some
vector v′ ∈ K∗

0 . The vectors v in question are those with
v′i = 0 for i ∈ J1,
v′i ≤ 0 for i ∈ J2,
v′i free for i ∈ J3.
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The closed faces F of K0 correspond one-to-one therefore with the subsets
of J2: the face F corresponding to an index set JF

2 consists of the vectors x′

such that 
x′i free for i ∈ J1,
x′i ≥ 0 for i ∈ J2 \ JF

2 ,
x′i = 0 for i ∈ J3 ∪ JF

2 .

If F1 and F2 have JF1
2 ⊂ JF2

2 , so that F1 ⊃ F2, then F1 − F2 is given by (20)
with J ′

1 = J1 ∪ [J2 \ JF2
2 ], J ′

2 = JF2
2 \ JF1

2 , J ′
3 = J3 ∪ JF1

2 .

Theorem 4. The general complementarity problem (19) is strongly regular
at (p0, x0) if and only if the following condition holds for the entries aij of A:
if ui for i ∈ J1 ∪ J2 are numbers satisfying

∑
i∈J1∪J2

uiaij

{
= 0 for j ∈ J1 and for j ∈ J2 with uj < 0,
≤ 0 for j ∈ J2 with uj > 0,

then ui = 0 for all i ∈ J1 ∪ J2.

Proof. This condition specializes the critical face condition to this setting,
as seen from Proposition 3. It remains only to apply Theorem 3.

Remark 5. The sufficiency of the condition in Theorem 4 for strong reg-
ularity can also be proved directly. Consider the linear complementarity
problem (5) and its solution map L0, which has x0 ∈ L0(q0). Assume tem-
porarily that J1 = ∅ and J3 = ∅. Let a be a subset of {1, 2, . . . , n} and let
Aaa be the corresponding submatrix of A. Let ua ∈ ker A>

aa and

uj =

{
ua

j if j ∈ a,
0 otherwise .

Then (A>u)j = 0 for all j for which uj 6= 0. Hence, from the condition
displayed in Theorem 4, we have u = 0. Thus Aaa is nonsingular, and we
see every principal submatrix of A is nonsingular. Furthermore, let j ∈
{1, 2, · · · , n} and let u ∈ IRn be such that uj = 1 and ui = 0 for all i 6= j.
Then (A>u)j = ajj. If ajj ≤ 0, the condition in Theorem 4 implies that
u = 0, a contradiction. Hence aii > 0 for all i.

There is a linear one-to-one correspondence between the graph of the
solution map L0 and the graph of the solution map of any principal pivotal
transform of the linear complementarity problem (5); see e.g. [4]. Then the
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solution map of any principal pivotal transform of (5) has the Aubin property
at (0, 0). By the above argument all diagonal entries of any principal pivotal
transform of A are positive. This means that A is a P-matrix, see [19],
p. 205. This in turn is equivalent to the condition that L0 is single-valued
everywhere.

Consider now the general case. First observe that the submatrix A11

corresponding to the set J1 is nonsingular. (Take u1 ∈ ker A11 and uj = u1
j if

j ∈ J1, but uj = 0 otherwise; then (A>u)j = 0 for all j ∈ J1, hence from the
condition in Theorem 4, u1 = 0.) Utilizing the Reduction Lemma we come
to a complementarity problem of the form

0 = A11x
1 + A12x

2 + q1

z2 = A12x
1 + A22x

2 + q2

x2 ≥ 0, z2 ≥ 0, 〈x2, z2〉 = 0,

where the superscripts of x correspond to the sets of indices J1 and J2.
By solving the first equation and substituting to the second one we obtain a
problem whose solution map has the Aubin property at (0, 0); that is, J1 = ∅,
J3 = ∅. This case has already been treated.

As a corollary of Theorem 4 we obtain the following characterization of
P-matrices.

Corollary 2. For an n× n matrix A, the following are equivalent:
(i) A is a P-matrix;
(ii) For u ∈ IRn,

(A>u)j

{
= 0 for j with uj < 0
≤ 0 for j with uj > 0

=⇒ u = 0.

5. Application to Nonlinear Programming.

For a further illustration of our general results we consider the nonlinear
programming problem

minimize g0(w, x) + 〈v, x〉 in x subject to

gi(w, x)− ui

{
= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1, m],

(21)
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for C2 functions gi : IRd × IRn → IR, i = 0, 1, . . . ,m, where the vectors
w ∈ IRd, v ∈ IRn and u = (u1, . . . , um) ∈ IRm are parameters. In terms of

L(w, x, y) = g0(w, x) + y1g1(w, x) + · · ·+ ymgm(w, x)

the first-order optimality conditions for this problem, namely the Karush-
Kuhn-Tucker conditions, take the form{

v +∇xL(w, x, y) = 0,
−u +∇yL(w, x, y) ∈ NY (y) for Y = IRr × IRm−r

+ .
(22)

These can be written together as the variational inequality

(v, u) + f(w, x, y) + NC(x, y) 3 (0, 0) (23)

under the choice of elements

f(w, x, y) = (∇xL(w, x, y),−∇yL(w, x, y)), C = IRn × Y. (24)

(Obviously ∇yL(w, x, y) is simply the vector in IRm having as its components
the values gi(w, x) for i = 1, . . . ,m.) Here (x, y) replaces the point x of the
general theory, while (v, u) corresponds to the canonical perturbation vector
z. The set C is a polyhedral convex cone, and the map f satisfies our blanket
assumptions (A) and (B). (Weaker conditions on the gi’s would suffice, but
we leave that aside.)

Consider any pair (x0, y0) satisfying the KKT conditions (22)—or equiv-
alently the variational inequality (23)—for given u0, v0, and w0. We wish to
work out what our results say about strong regularity in this variational in-
equality at (u0, v0, w0, x0, y0) and therefore about the local single-valuedness
and Lipschitz continuity of the map SKKT that assigns to each (u, v, w) the
set of KKT pairs (x, y) in problem (21).

Associate with the given elements u0, v0, w0, x0, y0, the index sets I1, I2,
I3 in {1, 2, . . . ,m} defined by

I1 = {i ∈ [r + 1, m] | gi(w0, x0)− u0i = 0, y0i > 0} ∪ {1, . . . , r},
I2 = {i ∈ [r + 1, m] | gi(w0, x0)− u0i = 0, y0i = 0},
I3 = {i ∈ [r + 1, m] | gi(w0, x0)− u0i < 0, y0i = 0}.
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The tangent cone TC(x0, y0) consists of all the vectors (x′, y′) ∈ IRn × IRm

such that 
x′ free
y′i free for i ∈ I1,
y′i ≥ 0 for i ∈ I2 ∪ I3.

By definition the critical cone K0 consists of all (x′, y′) ∈ TC(x0, y0) orthogo-
nal to the vector (v0, u0) + f(w0, x0, y0), but the KKT conditions imply that
all the components of this vector are 0 except for the ones at the end cor-
responding to inactive inequality constraints. From this it is apparent that
the critical cone is given by

(x′, y′) ∈ K0 ⇐⇒


x′ free
y′i free for i ∈ I1,
y′i ≥ 0 for i ∈ I2,
y′i = 0 for i ∈ I3.

(25)

On the other hand, the matrix A in the critical face condition specializes to

A =

[
H(w0, x0, y0) G(w0, x0)

>

−G(w0, x0) 0

]
(26)

for the second-derivative matrix H(w, x, y) = ∇2
xxL(w, x, y) and the matrix

G(w, x) = ∇2
yxL(w, x, y) having as its rows the constraint gradient vectors

∇xgi(w, x) for i = 1, . . . ,m.

Theorem 5. The variational inequality (23)–(24) associated with the KKT
conditions (22) is strongly regular for (u0, v0, w0, x0, y0) if and only if the
following two requirements, specializing the critical face condition to this
setting, are fulfilled:

(a) The vectors ∇xgi(w0, x0) for i ∈ I1 ∪ I2 are linearly independent;
(b) For each partition of {1, 2, . . . ,m} into index sets I ′1, I ′2, I ′3 with I1 ⊂

I ′1 ⊂ I1 ∪ I2 and I3 ⊂ I ′3 ⊂ I3 ∪ I2, the cone K(I ′1, I
′
2) ⊂ IRn consisting of all

the vectors x′ satisfying

〈∇xgi(w0, x0), x
′〉

{
= 0 for i ∈ I ′1,
≤ 0 for i ∈ I ′2,

should be such that

x′ ∈ K(I ′1, I
′
2), ∇2

xxL(w0, x0, y0)x
′ ∈ K(I ′1, I

′
2)
∗ =⇒ x′ = 0.
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Proof. From the analysis in Sections 3 and 4 and the observations just
made, it is evident that the cones of form F1 − F2 in which F1 and F2 are
closed faces of K0 with F1 ⊃ F2 correspond one-to-one with the partitions
(I ′1, I

′
2, I

′
3) by

(x′, y′) ∈ F1 − F2 ⇐⇒


x′ free
y′i free for i ∈ I ′1,
y′i ≥ 0 for i ∈ I ′2,
y′i = 0 for i ∈ I ′3,

(27)

in which case

(x′′, y′′) ∈ (F1 − F2)
∗ ⇐⇒


x′′ = 0
y′′i = 0 for i ∈ I ′1,
y′′i ≤ 0 for i ∈ I ′2,
y′′i free for i ∈ I ′3.

In view of the structure determined for A in (26) the critical face condition
emerges as the requirement that whenever x′ and y′ satisfy (27) and have

H(w0, x0, y0)x
′ −

m∑
i=1

y′i∇xgi(w0, x0) = 0 with x′ ∈ K(I ′1, I
′
2),

then x′ = 0 and y′ = 0. The vectors of the form
∑m

i=1 y′i∇xgi(w0, x0) with y′

satisfying (27) are of course the ones in the polar cone K(I ′1, I
′
2)
∗ (by Farkas’

Lemma), so we see that the critical cone condition comes down to (b) along
with the requirement that no

∑m
i=1 y′i∇xgi(w0, x0) with y′ satisfying (27) can

vanish unless y′ = 0. Since the partition I ′1 = I1 ∪ I2, I ′2 = 0, I ′3 = I3 can
be taken as a special case, the latter means neither more nor less than the
linear independence in (a).

By combining Theorem 5 with second-order conditions we obtain a char-
acterization of the case where the KKT map also gives local optimality.

Theorem 6. The following are equivalent:
(i) The map SKKT is locally single-valued and Lipschitz continuous around

(u0, v0, w0, x0, y0), moreover with the property that for all (u, v, w, x, y) ∈
gph SKKT in some neighborhood of (u0, v0, w0, x0, y0), x is a locally optimal
solution to the nonlinear programming problem (21) for (u, v, w);
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(ii) The constraint gradients ∇xgi(w0, x0) for i ∈ I1 ∪ I2 are linearly inde-
pendent and the strong second-order sufficient condition for local optimality
holds for (u0, v0, w0, x0, y0): one has

〈x′,∇2
xxL(w0, x0, y0)x

′〉 > 0 for all x′ 6= 0 in the subspace

M = {x′ |x′ ⊥ ∇xgi(w0, x0) for all i ∈ I1}.

Proof. From Theorem 5 we already know that the local single-valuedness
and Lipschitz continuity in (i) require the linear independence in (ii). On the
other hand, the positive definiteness in (ii) suffices by Theorem 5 for SKKT to
be locally single-valued and Lipschitz continuous around (u0, v0, w0, x0, y0),
because 〈x′,∇2

xxL(w0, x0, y0)x
′〉 ≤ 0 when x′ and ∇2

xxL(w0, x0, y0)x
′ belong

to cones that are polar to each other. Henceforth we therefore work in the
picture of SKKT being locally single-valued and Lipschitz continuous around
(u0, v0, w0, x0, y0), with both (a) and (b) of Theorem 5 holding. In particular
then we have

x′ ∈ M, ∇2
xxL(w0, x0, y0)x

′ ∈ M⊥ =⇒ x′ = 0 (28)

because K(I ′1, I
′
2) = M and K(I ′1, I

′
2) = M⊥ when I ′1 = I1, I ′2 = ∅, I ′3 = I2∪I3.

The focus is on verifying that the local optimality in (i) corresponds in these
circumstances to the positive definiteness in (ii).

For simplicity we denote by S0(u, v, w) the uniquely determined pair (x, y)
in the local single-valuedness of SKKT(u, v, w). We limit attention to param-
eter elements (u, v, w) near enough to (u0, v0, w0) for this to make sense.

Let P (u, v, w) be the nonlinear programming problem associated with
(u, v, w) in (21). This problem has (x, y) = S0(u, v, w) as a KKT pair, with
(x, y) → (x0, y0) as (u, v, w) → (u0, v0, w0). For (u, v, w) close to (u0, v0, w0),
the index sets I1(u, v, w), I2(u, v, w), and I2(u, v, w) that correspond to (x, y)
as I1, I2 and I3 do to (x0, y0) must satisfy

I1 ⊂ I1(u, v, w) ⊂ I1 ∪ I2, I3 ⊂ I3(u, v, w) ⊂ I3 ∪ I2. (29)

In particular I1(u, v, w) ∪ I2(u, v, w) ⊂ I1 ∪ I2, so the gradients ∇xgi(w, x)
for i ∈ I1(u, v, w) ∪ I2(u, v, w) must be linearly independent. We know then
that for x to be locally optimal in P (u, v, w) it is necessary that

〈x′,∇2
xxL(w, x, y)x′〉 ≥ 0 for all x′ satisfying
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〈∇xgi(w, x), x′〉
{

= 0 for i ∈ I1(u, v, w),
≤ 0 for i ∈ I2(u, v, w),

(30)

whereas a sufficient condition for x to be locally optimal in P (u, v, w) is
the same thing with “≥ 0” strengthened to “> 0” when x′ 6= 0. (See [10],
Theorem 10.1.)

The sufficiency just described leads immediately through (29) to the con-
clusion that the positive definiteness in (ii) entails the local optimality in (i).
Conversely, if (i) holds the second-order necessary condition must be satis-
fied by (x, y) = S0(u, v, w) for all (u, v, w) near enough to (u0, v0, w0). The
gradient linear independence property ensures that we can find a sequence
of points xk → x0 with

gi(w0, x
k)− u0i

{
= 0 for i ∈ I1,
< 0 for i ∈ I2 ∪ I3.

For vk = −∇xL(w0, x
k, y0) we have the KKT conditions in P (u0, v

k, w0) satis-
fied by (xk, y0), hence (xk, y0) = S0(u0, v

k, w0) (for k sufficiently large). Then
the necessary condition in (30) holds for these elements, with I1(u0, v

k, w0) =
I1 and I2(u0, v

k, w0) = ∅ so that the condition is just

〈x′,∇2
xxL(w0, x

k, y0)x
′〉 ≥ 0 for all x′ ∈ M.

In the limit as k →∞ we obtain (from the continuity of the second derivatives
of L) that

〈x′,∇2
xxL(w0, x0, y0)x

′〉 ≥ 0 for all x′ ∈ M.

This positive semidefiniteness relative to the subspace M must actually be
positive definiteness, for otherwise there would have to exist by the symmetry
of ∇2

xxL(w0, x0, y0) a vector x′ 6= 0 in M with ∇2
xxL(w0, x0, y0)x

′ ∈ M⊥. But
that is impossible by (28).

Corollary 3. In the convex programming case (where gi(w, x) is affine in x
for i = 1, . . . , r while gi(w, x) is convex in x for i = 0 and i = r + 1, . . . ,m),
condition (ii) of Theorem 6 is both necessary and sufficient for the map SKKT

to be locally single-valued and Lipschitz continuous.

Proof. In this case the local optimality in Theorem 6(i) is automatic.

Several algebraic characterizations of strong regularity in optimization
have previously been available in the literature. In his original paper [23],
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Robinson characterized the strong regularity of linear KKT systems. Kojima
[14] introduced the concept of strong stability of the KKT system of a nonlin-
ear program, which roughly means that the map SKKT is locally single-valued
and continuous with respect to a sufficiently rich class of perturbations. He
gave a characterization of this property and noted (in his Corollary 6.6.) that
a KKT point (x0, y0), of the kind in which x0 is a local minimizer and the
gradients of the active constraints are linearly independent, is strongly stable
if and only if the strong second-order sufficient condition holds. Jongen et al.
[11] proved through a far-reaching inertia-type theorem that strong stability
in the sense of Kojima and strong regularity in the sense of Robinson are
equivalent properties. Another characterization of the strong regularity of
a KKT point was obtained by Kummer [15], who based his argument on a
general implicit-function-type theorem for a nonsmooth equation equivalent
to the KKT system. A related approach was developed in Jongen, Klatte and
Tammer [12] and Klatte and Tammer [13], the latter containing a survey of
characterizations of strong regularity. Our critical face condition in Theorem
5 differs from the conditions of Robinson, Kojima and Kummer, and it is
not clear to us how one could derive the equivalence between these various
conditions directly.

The implication (ii) ⇒ (i) in Theorem 6 was noted by Robinson in [23],
Theorem 4.1. Note that the condition (i) in Theorem 6 implies, via Propo-
sition 2, that x0 is a local minimizer and (x0, y0) is a strongly regular KKT
point. Furthermore, from the strong regularity one can obtain directly that
the gradients of the active constraints are linearly independent. Then, by
combining the results of Kojima [14] and Jongen et al. [11], one obtains (ii).
Recently, Bonnans and Sulem [2] gave a different proof of this implication.
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