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CONVERGENCE RATES IN
FORWARD-BACKWARD SPLITTING*

GEORGE H-G. CHEN† AND R. T. ROCKAFELLAR‡

Abstract. Forward-backward splitting methods provide a range of approaches to solving

large-scale optimization problems and variational inequalities in which structure conducive to de-
composition can be utilized. Apart from special cases where the forward step is absent and a version
of the proximal point algorithm comes out, efforts at evaluating the convergence potential of such

methods have so far relied on Lipschitz properties and strong monotonicity, or inverse strong mono-

tonicity, of the mapping involved in the forward step, the perspective mainly being that of projection
algorithms. Here convergence is analyzed by a technique that allows properties of the mapping in

the backward step to be brought in as well. For the first time in such a general setting, global and
local contraction rates are derived, moreover in a form making it possible to determine the optimal
step size relative to certain constants associated with the given problem. Insights are thereby gained

into the effects of shifting strong monotonicity between the forward and backward mappings when a

splitting is selected.

Key words. Forward-backward splitting, numerical optimization, variational inequalities, pro-
jection algorithms, matrix splitting, operator splitting, convex programming

AMS subject classifications. 49R40, 49M27, 90C25, 90C06

1. INTRODUCTION.
This paper concerns a class of numerical methods for finding solutions to vari-

ational inequalities and other “generalized equations,” especially in circumstances
where a need for decomposition into simpler subproblems is apparent. Optimiza-
tion problems fit the framework of these methods through the ways that variational
inequalities can express first-order optimality conditions in primal, dual, or primal-
dual form. Variational inequalities serve also in models of equilibrium and a diversity
of other applications.

In general, the variational inequality problem for a closed, convex set C ⊂ IRn

and a continuous mapping F : C → IRn looks for a vector x̄ such that

0 ∈ T (x̄) for T (x) = F (x) + NC(x), (1.1)

where NC(x) is the set-valued normal cone mapping associated with C:

NC(x) =
{ {

w ∈ IRn
∣∣ 〈w, x′ − x〉 ≤ 0 for all x′ ∈ C

}
when x ∈ C,

∅ when x /∈ C,
(1.2)

with 〈·, ·〉 denoting the canonical scalar product of vectors. The variational inequality
problem is a complementarity problem when C = IRn

+. Especially important is the
case where F is monotone on C, in the sense that〈

F (x′)− F (x), x′ − x
〉
≥ 0 for all x, x′ ∈ C, (1.3)
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which in the optimization setting characterizes problems of convex type. Then the
set-valued mapping T is itself monotone,〈

w′ − w, x′ − x
〉
≥ 0 whenever w ∈ T (x), w′ ∈ T (x′), (1.4)

in fact maximal monotone: its graph set
{
(x, w)

∣∣ w ∈ T (x)
}

can’t be enlarged without
destroying monotonicity.

Forward-backward splitting methods are versatile in offering ways of exploiting
the special structure of variational inequality problems. Following Lions and Mercier
[1], such methods can be posed broadly in terms of solving

0 ∈ T (x̄) when T (x) = T1(x) + T2(x) (1.5)

for any mapping T that associates with each x ∈ IRn a (possibly empty) set T (x) ⊂
IRn, a situation we symbolize by T : IRn →→ IRn, and any representation of T as a sum
of two other such mappings T1 and T2. The representation T = T1 + T2, which might
be set up in a multitude of different ways, is called a splitting of T . From an initial
point x0, a point xk is generated in each iteration k for k = 1, 2, . . . by solving the
subproblem

0 ∈ (T1k + T2)(xk) with T1k(x) = T1(xk−1) +
1
λk

Hk[x− xk−1] (1.6)

for a step size value λk > 0 and an implementation matrix Hk ∈ IRn×n. Under the
license of denoting the linear mapping x 7→ Hkx by the same symbol Hk, the iterations
can be written in the form

xk ∈ Sk(xk−1) for Sk =
(
Hk + λkT2

)−1(
Hk − λkT1

)
. (1.7)

The forward-backward name comes from the fact that (as long as Hk is nonsin-
gular) the iteration mapping Sk has the equivalent expression

Sk =
(
I + λkH−1

k T2

)−1(
I − λkH−1

k T1

)
.

In the language of numerical analysis, I − λkH−1
k T1 gives a forward step with step

size λk and direction vector dk = −H−1
k uk, uk ∈ T1(xk) (or uk = T1(xk) when T1

is single-valued), whereas (I + λkH−1
k T2)−1 gives a backward step. Implementations

where Hk is symmetric and positive definite are central, but weaker requirements are
of interest in some situations.

For the purpose of solving a variational inequality (1.1), forward-backward split-
ting methods can be applied to

T = F + NC , T1 = F1, T2 = F2 + NC , with F = F1 + F2 (1.8)

for a choice of continuous mappings F1 : C → IRn and F2 : C → IRn. The iterations
mean then that xk is determined by solving

0 ∈ Tk(xk) for Tk(x) = (F1k + F2)(x) + NC(x) with

F1k(x) = F1(xk−1) +
1
λk

Hk[x− xk−1].
(1.9)
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This covers many numerical procedures, the most familiar among them being ones
that correspond to the splitting choices where either F1 = F , F2 = 0, or at the other
extreme, F1 = 0, F2 = F .

For the splitting where F1 = F and F2 = 0 in (1.8), so that T1 = F and T2 = NC ,
the forward-backward iterations with symmetric, positive definite Hk give a projection
algorithm (of possibly “variable metric” type): xk is the point of C nearest to

x′k = xk−1 − λkH−1
k F (xk−1) (1.10)

with respect to the norm induced by Hk. Indeed, (1.9) can be written in terms of
(1.10) as the relation −Hk[xk − x′k] ∈ NC(xk), which is necessary and sufficient for
having

xk = argmin
x∈C

〈
[x− x′k],Hk[x− x′k]

〉
. (1.11)

Of course, if C = IRn the projection trivializes and there’s no backward step, just a
forward step: one has xk = xk−1 − λkH−1

k F (xk−1).
Among projection algorithms (1.9)–(1.10) the gradient case F = ∇f is the best

known. If Hk = I a variant of Cauchy’s method is obtained, whereas if Hk is taken to
be an approximation to ∇F (x̄) = ∇2f(x̄) a form of Newton’s method comes out. Gra-
dient projection algorithms were first studied in the Cauchy form by Goldstein [2] and
in the Newton form by Levitin and Polyak [3], and they have since generated a large
literature in optimization. For general variational inequalities, projection algorithms
go back to Brézis and Sibony [4]; see also Sibony [5], Gajewski and Kluge [6], and for
early developments attuned to mathematical programming, especially Dafermos [7].

For the other extreme splitting in (1.8), where F1 = F and F2 = 0 so that T1 = 0
and T2 = F + NC , the forward-backward procedure specializes to backward steps
only and thus turns into (a “variable metric” form of) the proximal point algorithm
for the mapping T = F + NC . The proximal point algorithm was developed as
a numerical method by Rockafellar [8], [9], in the case of Hk ≡ I, or equivalently
Hk ≡ H symmetric and positive definite, since that differs only in the designation of
the norm (the context being one of a Hilbert space anyway). This algorithm is known
to include, through various special choices, many other schemes such as generalized
Douglas-Rachford splitting, cf. Eckstein and Bertsekas [10], and Spingarn splitting [11],
which apply to maximal monotone mappings T not just of the variational inequality
type in (1.1). An illuminating overview of splitting methods of all kinds has been
provided by Eckstein [12].

Forward-backward splitting is closely related to an algorithmic approach intro-
duced by Cohen as the “auxiliary problem principle” for problems of optimization
in [13], [14], and variational inequalities in [15]. Cohen’s formulation allows for the
replacement of the linear implementation mapping x 7→ Hkx by a kind of nonlinear
mapping, an idea treated also by Pang and Chan [16], among others. Patriksson [17]
has explored this possibility broadly, showing how a vast array of known procedures
can thereby be put into the framework of forward-backward methods.

Our focus in this paper is on the general iterations (1.7) for splittings T = T1 +T2

with T1 single-valued in which T , T1 and T2 are monotone and both T1 6≡ 0 and T2 6≡ 0,
so that nontrivial forward steps as well as nontrivial backward steps can be expected.
In the variational inequality context this corresponds to splittings of type (1.8) in which
F , F1 and F2 are monotone, and F1 6≡ 0. We aim in particular at an understanding
of convergence in cases where F2 6≡ 0 too, so that more than a projection algorithm
is involved. Such forms of forward-backward splitting methods are suggested by the
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decomposition needs of large-scale optimization problems with dynamic or stochastic
structure [18], [19], [20], or PDE structure [21], but they haven’t previously received
much attention.

Except in connection with a weak ergodic type of convergence, cf. Passty [22],
most of the research on general forward-backward splitting methods has relied on
assumptions of strong monotonicity. Recall that a mapping T : IRn →→ IRn is strongly
monotone if there is a constant µ > 0 such that〈

w′ − w, x′ − x
〉
≥ µ‖x′ − x‖2 whenever w ∈ T (x), w′ ∈ T (x′), (1.12)

or equivalently, the mapping T − µI is monotone. By the same token the inverse
mapping T−1, defined by taking x ∈ T−1(w) to mean that w ∈ T (x), is strongly
monotone if there is a constant ν > 0 such that〈

w′ − w, x′ − x
〉
≥ ν‖w′ − w‖2 whenever w ∈ T (x), w′ ∈ T (x′). (1.13)

The strong monotonicity of T−1 is sometimes called the Dunn property or the co-
coercivity of T . If T is single-valued and Lipschitz continuous with constant κ and
strongly monotone with constant µ, then T−1 is strongly monotone with constant
ν = µ/κ2.

For implementations with Hk ≡ I and λk ≡ λ, Gabay [23] showed that if T1 is
single-valued and maximal monotone with constant µ1 as well as Lipschitz continuous
with constant κ1 the sequence of iterates xk generated from any starting point x0

converges to the unique solution x̄ to (1.1), as long as 0 < λ < 2µ1/κ2
1. Alterna-

tively he obtained convergence by assuming that a solution exists and T−1
1 is strongly

monotone with constant ν1 (which entails T1 being Lipschitz continuous with constant
1/ν1), and taking 0 < λ < 2ν1. Tseng [24] extended the latter result to nonconstant
step sizes λk and used it in that paper and in [25] to verify convergence for some
schemes of problem decomposition. Further work in this vein, allowing for nonlinear
implementation mappings and even for the approximation of T1 and T2 by mappings
T k

1 and T k
2 in iteration k, was carried out to a certain degree by Mouallif, Nguyen and

Strodiot [26] and Makler-Scheimberg, Nguyen and Strodiot [27].
In the special case of projection algorithms, Dafermos in [7] obtained Q-linear

convergence as a consequence of deriving a global contraction rate for the iterations
(1.10)–(1.11). She did this for a fixed matrix Hk ≡ H, possibly different from I,
employing the H-norm

‖x‖H =
√〈

x,Hx
〉

(1.14)

and its dual instead of the canonical norm ‖x‖. She determined the fixed step size
λk ≡ λ for which the contraction rate would be optimal relative to constants of
Lipschitz continuity and strong monotonicity for F when estimated in a certain way.
These results were sharpened for affine variational inequalities by Dupuis and Darveau
[28]. Bertsekas and Gafni [29] demonstrated R-linear convergence, i.e.,

lim sup
k→∞

‖xk − x̄‖1/k < 1, (1.15)

for the case where C is polyhedral but F is not itself strongly monotone, rather just
of the form A>F0A for a strongly monotone mapping F0 and a matrix A. Zanni
[30] showed that the rate estimates of Dafermos and of Bertsekas and Gafni could
not be expected to support rapid convergence; as an alternative he developed for
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the affine case in [31] a change of variables which offers a substantial improvement.
Renaud in his thesis [32] got a contraction rate based on strong monotonicity constants
for both F and F−1. Marcotte and Wu [33], in proceeding from Tseng [25] and
Luo and Tseng [34], proved linear convergence when C is polyhedral and F is affine
with F−1 strongly monotone. Tseng in [35] developed broad conditions for Q-linear
convergence of iterative methods which he applied to projection methods for affine
variational inequalities, without however dealing explicitly with rate estimates or step
sizes. For a survey of solution methods for finite-dimensional variational inequalities
more generally, see Harker and Pang [36].

Little was known until recently about linear rates of convergence in the general
setting of forward-backward methods. Renaud [32] succeeded in demonstrating R-
linear convergence (1.15), although not actual contraction, in circumstances where
T−1

1 is strongly monotone while T exhibits strong monotonicity relative to a unique
solution x̄. In Chen’s thesis [37], contraction rates were developed under a variety of
hypotheses entailing strong monotonicity of T , and step size optimization relative to
those rate estimates was carried out.

Our efforts here take off from [37] in directions pioneered by Dafermos [7], going
further than her and through territory encompassing much more than just projection
algorithms. We reach conclusions significantly stronger than those of Chen [37] in
some respects.

For simplicity at the start, we concentrate in Section 2 on a constant step size
λk ≡ λ and a constant matrix Hk ≡ H, which we allow to differ from I but assume
to be symmetric and positive definite. We work at establishing linear convergence in
the strong sense of global contractivity of the mapping

Sλ =
(
H + λT2

)−1(
H − λT1

)
=

(
I + λH−1T2

)−1(
I − λH−1T1

)
(1.16)

with respect to the norm ‖·‖H . Thus, we seek θλ ∈ [0, 1) such that ‖Sλ(x′)−Sλ(x)‖H ≤
θλ‖x′ − x‖H for all x and x′, hence in particular

‖Sλ(x)− x̄‖H ≤ θλ‖x− x̄‖H for all x. (1.17)

We try to do this in such a manner that θλ can be expressed in terms of estimated
properties of the given problem, thereby opening the way to optimizing θλ with respect
to the choice of λ and obtaining some guidance on how λ might be selected in practice.

Obviously αmin‖x‖ ≤ ‖x‖H ≤ αmax‖x‖ for the lowest and highest eigenvalues
αmin and αmax of H, so that linear convergence with respect to ‖ · ‖H is equivalent to
linear convergence with respect to ‖ · ‖. But the rate of linear convergence, as quan-
tified by the size of the contraction factor, which is the crucial measure for numerical
purposes, could be quite different in the two cases. By working with ‖ · ‖H we are
able to capture a better rate through finer tuning. This corresponds essentially to a
change of variables in which we look at behavior in u = H−1/2x instead of x, but our
pattern is to proceed with the analysis directly in terms of x. More consistently than
Dafermos and others in this subject, we avoid reference to the canonical norm ‖ · ‖
so as to keep our results close to the natural geometry of the method and away from
extraneous dependence on the condition number of H through appeal to the eigen-
values αmin and αmax. The philosophy is that if the condition number is to have any
role at all, it should only be relative to a one-time change of variables, not a change
to another norm and back again in every iteration, which is the unfortunate effect of
bringing αmin and αmax into estimates of a contraction rate.



6 GEORGE H-G. CHEN AND R. T. ROCKAFELLAR

We utilize Lipschitz properties of T1 but, in contrast to all previous research, we
base the constant on a residual part of T1, obtained by subtracting off the strong
monotonicity that has been identified. We refer the Lipschitz constant to ‖ · ‖H and
the corresponding dual norm ‖ · ‖H−1 . Likewise, we adapt our estimates of strong
monotonicity to ‖ · ‖H instead of ‖ · ‖.

Especially to be noted is that we don’t insist on strong monotonicity of either T1

or T−1
1 . This is motivated by prospective applications to the large-scale problems cited

in [18]–[20]. Roughly, such problems follow the lines of minimizing f(x) + g
(
D(x)

)
for proper, lsc, convex functions f and g and a mapping D like a discrete differential
operator, integration operator or expectation operator. The subgradient condition for
x̄ to be optimal involves a dual element ȳ such that −D>ȳ ∈ ∂f(x̄) and Dx̄ ∈ ∂g∗(ȳ),
where g∗ is the convex function conjugate to g. This condition can be written as

(0, 0) ∈ (T1 + T2)(x̄, ȳ) for

{
T1(x, y) = (D>y,−Dx),

T2(x, y) =
(
∂f(x), ∂g∗(y)

)
,

(1.18)

and it thus corresponds to a problem in z = (x, y) that consists of solving 0 ∈ T (z̄) in
the presence of a splitting T = T1+T2 with T1 and T2 maximal monotone. Separability
properties of f and g, reflected in a parallel choice of H, typically make it easy to
iterate with (xk, yk) = Sλ(xk−1, yk−1), but T1 is an antisymmetric linear mapping,
so that neither T1 nor T−1

1 can be strongly monotone. No results prior to ours could
say anything substantial about convergence in this instance of a forward-backward
splitting method. Note that (1.18) also gives incentive for not stopping at variational
inequality models (1.8) in the treatment of such methods.

In Section 3 we study the implications of our basic results for the ways that a
splitting T = T1 + T2 might be set up most advantageously. Applications are made
to procedures for solving variational inequalities, in particular projection algorithms.
We show a better contraction rate than that of Dafermos [7] or the one of Dupuis
and Darveau [28] for affine variational inequalities; the result resembles a recent one
of Zanni [31], but goes further. The step size associated with our contraction rate has
the remarkable property of automatically optimizing performance with respect to the
possible shifts of strong monotonicity between T1 and T2. The surprising result is thus
achieved that, as long as our step size prescription is followed, any forward-backward
method in the variational inequality case (1.8)–(1.9) can equally well be executed as
a projection algorithm.

The global analysis of Section 3 is supplemented in Section 4 by a local analysis
of convergence. Variable step sizes λk and implementation matrices Hk are taken up
in Section 5, and methods with asymmetric implementation matrices in Section 6. For
the literature on asymmetric implementations in solving variational inequalities; see
Pang and Chan [16], Dafermos [38], Tseng [25], and Patriksson [17].

Because we are concerned with broad theoretical issues, we omit from the present
study a number of refinements that could be pursued. The question of what happens
when the subproblems in (1.6) or (1.9) are solved only approximately is not dealt
with here, nor is the question of improvements based on augmenting the procedure
with line search relative to some merit function. On the other hand, because we put
our energy into the task of solving 0 ∈ T (x̄) for mappings T not necessarily of the
variational inequality form (1.1), we get results that apply equally well to problems
where, for example as in (1.18), the normal cone mapping NC in (1.1) may be replaced
by the subgradient mapping associated with a possibly nonsmooth convex function.

2. GLOBAL CONVERGENCE ANALYSIS.
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A mapping T that assigns to each x ∈ IRn a set T (x) ⊂ IRn (perhaps a singleton)
is indicated by T : IRn →→ IRn. The effective domain of such a mapping is the set
dom T =

{
x

∣∣ T (x) 6= ∅
}
. When T is maximal monotone, dom T is almost convex,

in the sense that cl(dom T ) is a convex set whose relative interior lies within dom T ;
cf. Minty [39]. The graph of T is considered to be the set of pairs (x,w) such that
w ∈ T (x), and the graph of T−1 consists therefore of the reversals (w, x) of all such
pairs. The set of solutions x̄ to 0 ∈ T (x̄) is T−1(0).

We investigate the feasibility of determining a solution x̄ through iterations xk ∈
Sλ(xk−1) of the mapping in (1.16), as dictated by a choice of a splitting T = T1 + T2,
a step size λ > 0 and an implementation matrix H. We don’t suppose necessarily
that T takes the variational inequality form in (1.1), but we do, for now, make the
following assumptions.

Basic Assumptions (A). The mapping T2 : IRn →→ IRn is maximal monotone,
and the set dom T2, denoted for simplicity by D, contains more than just one point
(to avoid trivialities). The mapping T1 : D → IRn is single-valued, monotone and
Lipschitz continuous, so in particular the mapping T = T1+T2 has effective domain D,
like T2. The matrix H ∈ IRn×n is symmetric and positive definite (hence nonsingular
with H−1 symmetric and positive definite), while µ1 and µ2 denote constants such
that {

the mappings T̃1 = T1 − µ1H and T̃2 = T2 − µ2H are

monotone on D with µ1 ≥ 0, µ2 ≥ 0, µ1 + µ2 > 0.
(2.1)

Furthermore, κ̃1 is a Lipschitz constant for T̃1 on D from ‖ · ‖H to ‖ · ‖H−1 :

‖T̃1(x′)− T̃1(x)‖H−1 ≤ κ̃1‖x′ − x‖H for all x′, x ∈ D. (2.2)

Here in parallel to (1.14) we use the notation ‖w‖H−1 =
√
〈w,H−1w〉. The norm

‖w‖H−1 is dual to the norm ‖ · ‖H ; one has〈
x,w

〉
≤ ‖x‖H‖w‖H−1 for all x, w ∈ IRn. (2.3)

Because monotone mappings must be interpreted technically as going from a vector
space to its dual, it’s natural in (2.2) in taking the H-metric on the domain of T̃1 to
match it with the H−1-metric on the range of T̃1.

The monotonicity assumptions in (2.1) correspond (in the face of T1 being single-
valued on D = dom T2) to requiring that〈

T1(x′)− T1(x), x′ − x
〉
≥ µ1

〈
x′ − x, H[x′ − x]

〉
for all x, x′ ∈ D,〈

w′ − w, x′ − x
〉
≥ µ2

〈
x′ − x,H[x′ − x]

〉
whenever w ∈ T2(x), w′ ∈ T2(x′).

Because µ1 +µ2 > 0, these inequalities combine to imply that T is strongly monotone
with constant (µ1 + µ2)αmin, where αmin stands again for the lowest eigenvalue of
H. But this constant of strong monotonicity won’t itself come into play. We’ll stay
entirely with µ1 and µ2 as measures of monotonicity adapted to ‖ · ‖H rather than to
‖ · ‖.

Assumptions (A) in the variational inequality case (1.1) (for a closed, convex set
C with more than one point, and continuous mappings F1 and F2 from C to IRn) have
D = C and mean that F1 − µ1H and F2 − µ2H are monotone on C, or equivalently
for i = 1, 2, that〈

Fi(x′)− Fi(x), x′ − x
〉
≥ µi

〈
x′ − x, H[x′ − x]

〉
when x, x′ ∈ C,
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while F̃1 = F1 − µ1H is Lipschitz continuous on C with constant κ̃1 from ‖ · ‖H to
‖ · ‖H−1 . For the maximal monotonicity of T2 = F2 + NC , see Rockafellar [40, Thm.
3].

The introduction in (A) of a Lipschitz constant not for T1 but the residual map-
ping T̃1 = T1 − µ1H may seem odd, but it’s crucial to our strategy of trying to
separate the convergence analysis of forward-backward splitting methods from certain
“unessential” features of the splitting. This will be clarified in Section 3. For prac-
tical purposes there’s no disadvantage, at least, by virtue of the following fall-back
estimate.

Proposition 2.1 (Lipschitz estimate). Suppose κ1 is a Lipschitz constant for T1 itself
on D from the norm ‖ · ‖H to the norm ‖ · ‖H−1 :

‖T1(x′)− T1(x)‖H−1 ≤ κ1‖x′ − x‖H for all x′, x ∈ D.

Then κ1 ≥ µ1, and the value
√

κ2
1 − µ2

1 serves as a Lipschitz constant for T̃1 = T1−µ1H

on D with respect to the same norms. Thus, one can always take κ̃1 =
√

κ2
1 − µ2

1 in
the absence of anything better.

Proof. Squaring both sides of the Lipschitz inequality given by κ1, we can write
it as

κ2
1

∥∥x′ − x
∥∥2

H
≥

∥∥T1(x′)− T1(x)
∥∥2

H−1 =
∥∥(T̃1 + µ1H)(x′)− (T̃1 + µ1H)(x)

∥∥2

H−1

=
∥∥ [T̃1(x′)− T̃1(x)] + µ1H[x′ − x]

∥∥2

H−1

=
∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1 + 2µ1

〈
H[x′ − x], H−1[T̃1(x′)− T̃1(x)]

〉
+ µ2

1

〈
H[x′ − x], H−1H[x′ − x]

〉
=

∥∥T̃1(x′)− T̃1(x)
∥∥2

H−1 + 2µ1

〈
x′ − x, T̃1(x′)− T̃1(x)

〉
+ µ2

1

∥∥x′ − x
∥∥2

H
.

Here
〈
x′ − x, T̃1(x′)− T̃1(x)

〉
≥ 0 because T̃1 is monotone by assumption. Hence∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1 ≤ (κ2
1 − µ2

1)
∥∥x′ − x

∥∥2

H
.

Because this holds for all x and x′ in D, and D has more than one point, it’s apparent
that κ1 ≥ µ1, and that

√
κ2

1 − µ2
1 serves as a Lipschitz constant κ̃1 for T̃1 on D.

We develop next a technical fact which will repeatedly be brought into play.

Proposition 2.2 (inverse Lipschitz continuity from strong monotonicity). If a map-
ping T0 : IRn →→ IRn is maximal monotone, and T0−µ0H is monotone for some µ0 > 0,
where H is symmetric and positive definite, then T−1

0 is single-valued and Lipschitz
continuous, with µ−1

0 serving as a Lipschitz constant from the ‖ · ‖H−1 metric to the
‖ · ‖H metric.

Proof. Whenever w ∈ T0(x) and w′ ∈ T0(x′) we have by assumption that

0 ≤
〈
[w′ − µ0Hx′]− [w − µ0Hx], x′ − x

〉
=

〈
w′ − w, x′ − x]

〉
− µ0

〈
H[x′ − x], [x′ − x]

〉
≤ ‖x′ − x‖H‖w′ − w‖H−1 − µ0‖x′ − x‖2H .

Thus, ‖x′ − x‖H ≤ µ−1
0 ‖w′ − w‖H−1 whenever x′ ∈ T0(w′) and x ∈ T−1

0 (w), so that
T−1

0 (w) can’t contain more than one point, and T−1
0 is Lipschitz continuous on its

effective domain with constant µ−1
0 and in particular is locally bounded everywhere.

But T−1
0 inherits maximal monotonicity from T0, so the latter necessitates T−1

0 being
nonempty-valued everywhere, cf. Rockafellar [41].
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Theorem 2.3 (algorithmic background). Under (A) the mapping T = T1 + T2 is
maximal monotone and also strongly monotone. There is a unique solution x̄ to
0 ∈ T (x̄), and for any λ > 0 the iteration mapping Sλ is single-valued and Lipschitz
continuous from the set D = dom T into itself, with unique fixed point x̄.

Proof. Although the single-valued mapping T1 need not be defined outside of D,
it at least has through Lipschitz continuity a unique continuous extension T ′1 to the
closed, convex set C = clD, this extension being monotone and having the same
Lipschitz constant as T1. We can enlarge T ′1 to a maximal monotone mapping T ′′1 :
IRn →→ IRn by defining T ′′1 (x) = T ′1(x) + NC(x) when x ∈ C but T ′′1 (x) = ∅ when
x /∈ C, cf. Rockafellar [40, Thm. 3]. Since dom T ′′1 = C = cl(dom T2), the relative
interiors of dom T ′′1 and dom T2 have nonempty intersection (they actually coincide).
Then, because T2 like T ′′1 is maximal monotone, it follows that T ′′1 + T2 is maximal
monotone, cf. Rockafellar [40, Thm. 2]. To deduce that T is maximal monotone, it
suffices therefore to demonstrate that T ′′1 (x) + T2(x) = T1(x) + T2(x) for all x ∈ C, or
in other words that T2(x) + NC(x) ⊂ T2(x) for all x ∈ C. Unless actually x ∈ D, this
holds trivially with both sides empty.

For any x ∈ D and w ∈ T2(x) we have
〈
x′−x, w′−w

〉
≥ 0 whenever w′ ∈ T2(x′);

also, for any u ∈ NC(x̂) we have
〈
x′ − x, u

〉
≤ 0 for all x′ ∈ C. Consequently, we

have
〈
x′ − x, w′ − (w + u)

〉
≥ 0 whenever w′ ∈ T2(x′). The maximal monotonicity

of T2 then implies w + u ∈ T2(x); for if not, the pair (x,w + u) could be added to
the graph of T2 to get a properly larger mapping that is still monotone. Therefore,
T2(x) + NC(x) ⊂ T2(x) for all x ∈ D, as required. Thus, T is maximal monotone.

From the representation T = (T1−µ1H)+(T2−µ2H)+(µ1+µ2)H with µ1+µ2 >
0, where the first two terms are monotone by assumption, we have T − (µ1 + µ2)H
monotone. Because H is itself strongly monotone, as a consequence of being positive
definite, T likewise is strongly monotone. Hence T−1 is single-valued and Lipschitz
continuous by Proposition 2.2. In particular the set T−1(0), which consists of the
solutions x̄ to 0 ∈ T (x̄), has to be a singleton.

Turning now to the properties of Sλ, we observe first that the mapping λT2, like
T2 itself, is maximal monotone and has the same effective domain as T2, the relative
interior of which meets that of the mapping x 7→ Hx, namely IRn. Furthermore the
latter mapping, by virtue of linearity and positive definiteness, is maximal monotone,
even strongly monotone. It follows through [40, Thm. 2] that H + λT2 is maximal
monotone. Moreover, the mapping [H +λT2]− (1+λµ2)H is monotone, so by Propo-
sition 2.2 the mapping (H + λT2)−1 must be single-valued everywhere and Lipschitz
continuous, in fact with constant (1 + λµ2)−1 from ‖ · ‖H−1 to ‖ · ‖H . At the same
time the mapping H − λT1 is single-valued and Lipschitz continuous on D under (A),
and therefore Sλ, the composite of these two mappings, is of such type as well.

The condition x = Sλ(x) corresponds to having [H −λT1](x) ∈ [H + λT2](x) and
hence to having −T1(x) ∈ T2(x), which is the same as 0 ∈ T (x). Therefore, the unique
fixed point of Sλ on D is the unique x̄ with 0 ∈ T (x̄).

Theorem 2.4 (global contraction rate). Under (A) and for any λ > 0, the value

θλ =


√

(1− λµ1)2 + λ2κ̃2
1

1 + λµ2
when λ−1 ≥ µ1,

λ(κ̃1 + µ1)− 1
1 + λµ2

when λ−1 ≤ µ1,

(2.4)

which depends continuously on λ, is a Lipschitz constant for Sλ : D → D as a mapping
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from the ‖ · ‖H metric to the ‖ · ‖H metric. In particular

‖Sλ(x)− x̄‖H ≤ θλ‖x− x̄‖H for all x ∈ D,

so that Sλ is globally contractive to x̄ on D when θλ < 1, which is true for all λ > 0
sufficiently small, specifically if and only if λ is chosen small enough that

λ−1 >
µ1 − µ2

2
+

κ̃1

2
max

{
1,

κ̃1

µ1 + µ2

}
. (2.5)

The best such estimated contraction rate θλ, as λ ranges over these choices, is

θ = θλ =
1√

1 +
(

µ1 + µ2

κ̃1

)2
, for λ =

1(
κ̃2

1

µ1 + µ2

)
+ µ1

. (2.6)

Proof. As already argued in the proof of Proposition 2.2, our assumptions on T2

in (A) ensure that (H+λT2)−1 is single-valued and Lipschitz continuous with constant
(1 + λµ2)−1 from ‖ · ‖H−1 to ‖ · ‖H . Since Sλ = (H + λT2)−1(H − λT1), our task in
establishing the Lipschitz constant θλ for Sλ comes down to showing that the second
factor in the formula for θλ serves as a Lipschitz constant for H − λT1 on D from
‖ · ‖H to ‖ · ‖H−1 . Fix any points x and x′ in D. In terms of having T1 = T̃1 + µ1H,
we expand∥∥(H − λT1)(x′)− (H − λT1)(x)

∥∥2

H−1

=
∥∥[

(1− λµ1)H − λT̃1

]
(x′)−

[
(1− λµ1)H − λT1

]
(x)

∥∥2

H−1

=
∥∥(1− λµ1)H[x′ − x]− λ

[
T̃1(x′)− T̃1(x)

] ∥∥2

H−1

= (1− λµ1)2
〈
H[x′ − x],H−1H[x′ − x]

〉
− 2λ(1− λµ1)

〈
H[x′ − x],H−1

[
T̃1(x′)− T̃1(x)

]〉
+ λ2

〈[
T̃1(x′)− T̃1(x)

]
,H−1

[
T̃1(x′)− T̃1(x)

]〉
= (1− λµ1)2

∥∥x′ − x
∥∥2

H
+ λ2

∥∥T̃1(x′)− T̃1(x)
∥∥2

H−1

− 2λ(1− λµ1)
〈
x′ − x, T̃1(x′)− T̃1(x)

〉
.

(2.7)

At this stage our analysis divides into the cases where 1 − λµ1 ≥ 0 or 1 − λµ1 ≤ 0,
which correspond to λ−1 ≥ µ1 or λ−1 ≤ µ1. (When equality holds in these relations
the two paths of argument will lead to the same thing.)

In the case where 1−λµ1 ≥ 0, we can invoke the fact that
〈
x′−x, T̃1(x′)−T̃1(x)

〉
≥

0 because T̃1 is monotone on D. We get then from (2.7) and the specification of κ̃1

that∥∥(H − λT1)(x′)− (H − λT1)(x)
∥∥2

H−1 ≤ (1− λµ1)2
∥∥x′ − x

∥∥2

H
+ λ2κ̃2

1

∥∥x′ − x
∥∥2

H
,

hence ‖(H − λT1)(x′) − (H − λT1)(x)‖H−1 ≤ [(1 − λµ1)2 + λ2κ̃2
1]

1/2‖x′ − x‖H in
accordance with the first version of θλ. In the case where 1− λµ1 ≤ 0 instead, we use
the inequality〈

x′ − x, T̃1(x′)− T̃1(x)
〉
≤ ‖x′ − x‖H‖T̃1(x′)− T̃1(x)‖H−1 ≤ κ̃1‖x′ − x‖2H
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from (2.3) to argue through (2.7) that∥∥(H − λT1)(x′)− (H − λT1)(x)
∥∥2

H−1

≤ (1− λµ1)2
∥∥x′ − x

∥∥2

H
+ λ2κ̃2

1

∥∥x′ − x
∥∥2

H
+ 2λ(λµ1 − 1)κ̃1

∥∥x′ − x
∥∥2

H

≤
[
(1− λµ1)2 + λ2κ̃2

1 + 2λ(λµ1 − 1)κ̃1

]∥∥x′ − x
∥∥2

H

=
[
λ(κ̃1 + µ1)− 1

]2∥∥x′ − x
∥∥2

H
.

We obtain ‖(H−λT1)(x′)−(H−λT1)(x)‖H−1 ≤ [λ(κ̃1+µ1)−1]‖x′−x‖H in accordance
with the second version of θλ.

In order to understand the nature of the factor θλ better, we begin with obser-
vation that for λ large enough that λ−1 ≤ µ1 the function φ(λ) = θλ = [λ(κ̃1 + µ +
1)− 1]/(1+λµ2) has φ′(λ) = [κ̃1 +µ1 +µ2]/(1+λµ2)2 > 0 and hence is an increasing
function. In seeking low values of θλ we therefore aren’t interested in λ with λ−1 < µ1

and can concentrate on the case of λ−1 ≥ µ1, where the other formula holds for θλ.
Note, though, that

θλ < 1 ⇐⇒ λ−1 > (µ1 − µ2 + κ̃1)/2 when λ−1 < µ1. (2.8)

The analysis of θλ when λ−1 ≥ µ1 is simplified by passing temporarily from λ to
the parameter

τ = (λ−1 + µ2)−1, which gives τ−1 = λ−1 + µ2, λ−1 = τ−1 − µ2.

The condition λ−1 ≥ µ1 means τ−1 ≥ µ, where we introduce the notation µ = µ1 +µ2

for simplicity. We get

θ2
λ =

(λ−1 − µ1)2 + κ̃2
1

(λ−1 + µ2)2
= τ2

[
(τ−1 − µ)2 + κ̃2

1

]
= 1− 2µτ + (κ̃2

1 + µ2)τ2. (2.9)

From this expression it’s obvious that θλ < 1 if and only if (κ̃2
1 + µ2)τ2 < 2µτ ,

or in other words τ−1 > (κ̃2
1 + µ2)/2µ. This condition translates back to λ−1 >[

(κ̃2
1 +µ2)/2µ

]
−µ2 =

[
κ̃2

1/2µ]+ (µ1−µ2)/2, because µ2−2µµ2 = µ(µ1 +µ2−2µ2) =
µ(µ1 − µ2). Thus,

θλ < 1 ⇐⇒ λ−1 >
µ1 − µ2

2
+

κ̃2
1

2(µ1 + µ2)
when λ−1 ≥ µ1. (2.10)

The union of (2.8) with (2.10) furnishes the condition claimed in (2.5) for having
θλ < 1.

The expression in (2.9) is a strictly convex function of τ which achieves its
minimum uniquely when −2µ + 2(κ̃2

1 + µ2)τ = 0, or in other words for the value
τ̄ = µ/(κ̃2

1 + µ2). This does have the property that τ̄ −1 ≥ µ, so the associated step
size λ satisfies λ

−1 ≥ µ1. The corresponding minimum value for the expression in (2.9)
is κ̃2

1/(κ̃2
1 +µ2). Therefore, the lowest achievable value for θλ is θλ = κ̃1/

√
κ̃2

1 + µ2 for

λ = 1/(τ̄ −1 − µ2) = µ/[(κ̃2
1 + µ2)− µµ2],

which works out to the value claimed for λ in the theorem.
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Corollary 2.5 (special rate estimates). When the estimate κ̃1 =
√

κ2
1 − µ2

1 is used
in accordance with Proposition 2.1, the corresponding best contraction rate that can
be guaranteed is

θλ =
1√

1 +
(µ1 + µ2)2

κ2
1 − µ2

1

, for λ =
µ1 + µ2

κ2
1 + µ1µ2

. (2.11)

In the case of µ2 = 0 this reduces to

θλ =

√
1−

(
µ1

κ1

)2

, for λ =
µ1

κ2
1

. (2.12)

Proof. The case in (2.11) is obvious from Theorem 2.4, and the one in (2.12) then
follows by elementary algebra in replacing µ2 by 0.

The convergence result in Corollary 2.5 was developed in Chen’s thesis [37], but
Theorem 2.4 itself, with its emphasis on κ̃1 instead of κ1, appears here for the first
time.

An alternative result of Renaud [32, Prop. VI.25] under the assumption that T
and T−1

1 are strongly monotone gives R-linear convergence, the convergence factor
(not necessarily a contraction factor as above) being

1√
1 +

µν1

αmin/αmax

for λ = ν1αmin, (2.13)

where µ and ν1 are strong monotonicity constants for T and T−1
1 in the sense of (1.12)

and (1.13) (i.e., calibrated by I instead of H), and αmin and αmax are the smallest and
biggest eigenvalues of H. (Here we specialize to IRn; Renaud operated in the context
of a possibly infinite-dimensional Hilbert space.) Renaud didn’t actually require µ to
be a strong monotonicity constant in the full sense of (1.12), but just a value satisfying〈

w − w̄, x− x̄
〉
≥ µ‖x− x̄‖2 if w ∈ T (x), where w̄ = 0 ∈ T (x̄). (2.14)

Likewise this would suffice in Theorem 2.4 if we aimed at Q-linear convergence to x̄
instead of insisting that Sλ be a contraction mapping; see Section 4.

The dependence of Renaud’s factor in (2.13) on αmin/αmax, which is the condition
number of H, should be noted. This is disadvantageous unless H = I so the condition
number is 1; see Section 3. When H = I and T1 is strongly monotone, it’s possible
under our assumptions to take ν1 = µ1/κ2

1. Then Renaud’s factor in (2.13) becomes

1√
1 +

µ1(µ1 + µ2)
κ2

1

for λ =
µ1

κ2
1

,

which isn’t as sharp as our factor in Corollary 2.5. On the other hand, if ν1 > 0
is known directly one can take κ1 = 1/ν1 and get 1/

√
1 + (µ1 + µ2)ν1 in (2.13) in

comparison to 1/
√

1 + [(µ1 + µ2)ν1]2 in Corollary 2.5, where µ1ν1 ≤ 1 but perhaps
(µ1 + µ2)ν1 > 1.
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3. UTILIZATION OF STRONG MONOTONICITY.
A major purpose of our analysis has been to gain insight into how a splitting

can be set up advantageously. In expressing T as a sum T1 + T2, there may be
terms that could be assigned either to T1 or to T2 without creating an obstacle to the
implementation of the forward-backward method. What approach is best in enhancing
convergence?

Let’s focus on shifts of positive monotonicity. On the basis of (A) we can write
T = T̃1 + T̃2 + µH for T̃1 = T1 − µ1H, T̃2 = T2 − µ2H, and µ = µ1 + µ2. Here T̃1 and
T̃2 are maximal monotone (for if not, that would mean the graph of one of them, say
T̃1, could be enlarged without destroying monotonicity, in which case the same would
be true for T̃1 + µ1H = T1, contrary to the maximality of T1).

Suppose we were to divide up µ in a different way, µ = µ′1 + µ′2 with µ′1 ≥ 0 and
µ′2 ≥ 0, and set T ′1 = T̃1 + µ′1H and T ′2 = T̃2 + µ′2H. This would give a different
splitting, T = T ′1 + T ′2, in which T ′1 and T ′2 are again maximal monotone. Could there
be any advantage in this for the algorithm’s performance when implemented with the
matrix H?

The answer is no—as long as the optimal step size prescription of Theorem 2.4
is employed. This is clear from the fact that the optimal contraction rate θ in (2.6)
depends only on κ̃1 and the sum µ1 + µ2 and therefore would be the same under the
different splitting, since µ′1 + µ′2 = µ1 + µ2 and even T ′1 − µ′1H = T̃1 = T1 − µ1H
(so κ is unaffected). Indeed, the contraction rate has been optimized in Theorem 2.4
with respect to the whole range of splittings that we are looking at. In using the step
size λ prescribed for the splitting T = T1 + T2, one is able automatically to capture
whatever algorithmic advantages may lie in this direction. Although the step sizes for
the splittings T = T1 + T2 and T = T ′1 + T ′2 are given differently as

λ =
1(

κ̃2
1

µ1 + µ2

)
+ µ1

, λ
′
=

1(
κ̃2

1

µ′1 + µ′2

)
+ µ′1

,

and may not themselves be the same, they necessarily result in the same optimal rate
θ.

But a subtle distinction must be noted between Theorem 2.4 and Corollary 2.5.
If the tactic in developing a Lipschitz constant for T̃1 were to use an estimate based
on Proposition 2.1, the answer to the question posed would instead be yes!

The reason is that in passing from T = T1 + T2 to T = T ′1 + T ′2 such an estimate
κ̃1 =

√
κ2

1 − µ2
1, where κ1 is a Lipschitz constant for T1, would be replaced by a

different value κ̃′1 =
√

κ′1
2 − µ′1

2, where κ′1 is a Lipschitz constant for T ′1 (relative to
the specified norms). Then not only would the corresponding step sizes λ and λ

′
, as

dictated by (2.11), be different, but they would result in different contraction rates:
θλ 6= θ

λ
′ in (2.11). The issue would arise of determining which splitting T = T ′1 + T ′2

minimizes
√

κ′1
2 − µ′1

2 and thus furnishes the best contraction rate. Actually, we
know from Proposition 2.1 that the minimum is achieved when T ′1 = T̃1 = T1 − µ1H,
T ′2 = T̃2 + µH = T2 + µ1H. Thus, if we were to rely on the result in Corollary 2.5
rather than the one in Theorem 2.4, as for instance in [37], the optimal splitting would
be obtained by extracting all possible strong monotonicity from T1 and reassigning it
to T2, a qualitatively very different conclusion.

This highlights the contrast between the technique adopted here and previous
research, which has utilized a Lipschitz constant for T1 itself (moreover one in terms
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of the canonical norm only), not to speak of concentrating on strong monotonicity of
T1. Through Theorem 2.4 we can optimally exploit strong monotonicity of T1 or T2

or both, without in the end having to switch any terms in the splitting.
The idea is illustrated by its application to solving variational inequalities.

Theorem 3.1 (application to projection algorithms). Consider the variational in-
equality problem (1.1) in the case of a nonempty, closed, convex set C ⊂ IRn and a
continuous, single-valued mapping F : C → IRn. Let H be a symmetric, positive defi-
nite matrix, and let µ > 0 be a constant such that F satisfies the strong monotonicity
condition 〈

F (x′)− F (x), x′ − x
〉
≥ µ ‖x′ − x‖2H for all x, x′ ∈ C. (3.1)

Let κ̃ ≥ 0 be a Lipschitz constant for F̃ = F − µH on C from the norm ‖ · ‖H to the
norm ‖ · ‖H−1 . Then in applying Theorem 2.4 to the splitting T = T1 +T2 for T1 = F ,
T2 = NC , and with µ1 = µ, µ2 = 0, the optimal contraction rate is

θ = θλ =
1√

1 + (µ/κ̃)2
, for λ =

µ

κ̃2 + µ2
. (3.2)

No alternative splitting T = T ′1 + T ′2 in the mode of T ′1 = F − τH and T ′2 = τH + NC

for some τ ∈ (0, µ] can provide a better contraction rate through Theorem 2.4.

Proof. This is evident from the preceding remarks. The assumptions furnish a
specialization of the conditions in (A) to the special case in question.

The fact that, under the circumstances described, execution of the forward-
backward splitting method as a projection method is just as good as any alternative
execution obtainable by shifting the strong monotonicity from the “forward” part to
the “backward” part of the iteration mapping, is perhaps surprising. But again, it
must be remembered that this result depends on utilizing a Lipschitz constant κ̃ for
F̃ = F − µH rather than a constant κ attached directly to F itself.

Corollary 3.2. When the estimate κ̃ =
√

κ2 − µ2 is used in Corollary 3.2 in ac-
cordance with Proposition 2.1, κ being a Lipschitz constant for F on C from ‖ · ‖H

to ‖ · ‖H−1 , the corresponding best contraction rate that can be guaranteed for the
projection algorithm is

θλ =

√
1−

(µ

κ

)2

, for λ =
µ

κ2
. (3.3)

Proof. This applies the second part of Corollary 2.5.
For the case of H = I, results related to Corollary 3.2 were obtained recently

by Renaud. He noted in [32, p. 143] the contraction rate in (3.3) and went on to
demonstrate Q-linear convergence, although not the full contraction property, under
the assumption that F−1 is strongly monotone with constant ν > 0, the factor then
being

1√
1 + µν

, for λ = ν,

cf. [32, Prop. VI.2]. This alternative assumption is satisfied when F is Lipschitz
continuous with constant κ (from ‖ · ‖ to ‖ · ‖), namely with ν = µ/κ2, and Renaud’s
factor reduces then to ours.
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For the general case where H 6= I, the contraction rate in Corollary 3.2 may be
compared for the one derived for projection algorithms by Dafermos [7]. In effect she
got √

1− µ2

β2
1β2

2cond(H)
, (3.4)

where cond(H) is the condition number of H (its highest eigenvalue divided by its
lowest eigenvalue), β1 is a conversion factor from ‖ · ‖H to ‖ · ‖, and β2 is a Lipschitz
constant for F from ‖ · ‖ to ‖ · ‖H−1 , so that β1β2 is an (upper) estimate for the
Lipschitz constant κ in Corollary 3.2. Unless H = I, Dafermos’ denominator in (3.4)
has to be greater than ours in (3.3), and her contraction factor accordingly has to
be nearer to 1, thus not as good. The dependence of (3.4) on the condition number
for H illustrates very well the unwarranted consequences of bringing in the canonical
norm ‖ · ‖ instead of sticking consistently with the method’s intrinsic geometry. The
canonical norm is irrelevant in this appraisal of algorithmic performance.

Theorem 3.3 (application to affine variational inequalities). Consider the variational
inequality problem (1.1) in the case of a nonempty, closed, convex set C ⊂ IRn and
an affine mapping F (x) = Mx + q. Let Ms = 1

2 (M + M>) and Ma = 1
2 (M −M>) be

the symmetric and antisymmetric parts of the matrix M , and suppose Ms is positive
definite. Take H = Ms and define (with the canonical matrix norm)

skew(M) = ‖M−1/2
s MaM

−1/2
s ‖. (3.5)

Then Theorem 3.1 applies with µ = 1 and κ̃1 = skew(M), which is the minimal
Lipschitz constant for this case. The projection algorithm thus attains the global
contraction rate

θ = θλ =
1√

1 +
1

skew(M)2

, for λ =
1

1 + skew(M)2
. (3.6)

Proof. Here T̃1(x) = (F−µH)(x) = Max+q, an affine monotone mapping devoid
of strong monotonicity. We must verify that the specified value of κ̃1 serves as the
minimal Lipschitz constant for this mapping from the norm ‖·‖H to the norm ‖·‖H−1 .
The square of the required constant is the supremum of the quotient∥∥T̃1(x′)− T̃1(x)

∥∥2

H−1

‖x′ − x‖2H
=

〈
Ma[x′ − x],M−1

s Ma[x′ − x]
〉〈

[x′ − x],Ms[x′ − x]
〉 =

∥∥M
−1/2
s Ma[x′ − x]

∥∥2∥∥M
1/2
s [x′ − x]

∥∥2

over all x and x′ with x′ 6= 0. Through the change of variables u = M
1/2
s [x′ − x],

giving [x′−x] = M
−1/2
s u, we see that the constant is the supremum of the expression∥∥M

−1/2
s MaM

−1/2
s u

∥∥/‖u‖ over all u 6= 0, and this is ‖M−1/2
s MaM

−1/2
s ‖.

The value skew(M) ∈ (0,∞) in (3.5) intrinsically measures the skewness of the
matrix M . Obviously

skew(M) ≤ ‖Ma‖
/
‖Ms‖ (3.7)

in particular, but the right side of this inequality is dependent on the “conditioning”
of M with respect to the canonical norm, whereas skew(M) itself isn’t. The smaller
skew(M) is, the nearer M is to being symmetric and the better the rate of convergence
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that is assured for the solution method addressed by Theorem 3.3. Of course, this
realization of forward-backward splitting is practical only when it’s easy to project
onto C with respect to the norm induced by Ms as H, but that does cover many
applications in which C has a product structure matched by a box-diagonal pattern
of Ms, as in [20].

Dupuis and Darveau [28], in building on the result of Dafermos [7], likewise ob-
tained for the affine variational inequality case of projection algorithms a contraction
factor incorporating the value ‖M−1/2

s MaM
−1/2
s ‖. But the factor they got resembles

the one in (3.4) in being the square root of an expression that depends in part on the
condition number of H. In contrast to our contraction factor in (3.3), it doesn’t tend
to 0 as M approaches symmetry and the implementation matrix H = Ms coalesces
with M . Again, the cost of deviating from the underlying geometry is evident.

The result in Theorem 3.3 can best be compared with a recent result of Zanni
[31] for the same method. He obtains the rate√

1− 1∥∥M
−1/2
s MM

−1/2
s

∥∥2 for λ =
1∥∥M

−1/2
s MM

−1/2
s

∥∥2 , (3.8)

which he elaborates by the estimate∥∥M
−1/2
s MM

−1/2
s

∥∥ ≤ 1 + cond(Ms)
‖Ma‖
‖Ms‖

, (3.9)

taking the ratio ‖Ma‖/‖Ms‖ as a measure of skewness. The appearance of M instead
of Ma in (3.8) can be seen as reflecting a reliance on a Lipschitz constant for M instead
of for Ma; this parallels the difference between Corollary 3.2 and Theorem 3.1. The
estimate in (3.9) suffers from dependence on translation to the canonical norm, but
to avoid this it could be replaced by∥∥M

−1/2
s MM

−1/2
s

∥∥ =
∥∥M

−1/2
s (Ms + Ma)M−1/2

s

∥∥
≤

∥∥M
−1/2
s MsM

−1/2
s

∥∥ +
∥∥M

−1/2
s MaM

−1/2
s

∥∥ = 1 + skew(M).

Yet even so it wouldn’t yield the lower contraction factor in Theorem 3.3.
Yet another measure of skewness was introduced by Marcotte and Guélat [42] for

the special context of solving problems of traffic equilibrium. This differs from ours in
being localized to the solution point x̄ and dependent on the vector q as well as on the
submatrices Ms and Ma. These authors nonetheless demonstrate through numerical
testing of several algorithms an empirical relationship between skewness and difficulty
of solvability such as appears in Theorem 3.3.

For projected gradient algorithms, where F = ∇f for a C2 function f with
bounded Hessians ∇2f(x), better contraction estimates can be given than are ob-
tainable by specializing the ones here; see Polyak [43].

4. LOCAL CONVERGENCE ANALYSIS.
Our efforts so far have gone into identifying a rate of linear convergence that’s

effective immediately from any starting point x0 for a forward-backward splitting
method. There is interest too, of course, in knowing what might be possible with
convergence as the solution x̄ is neared. For this purpose we don’t have to start build-
ing up a broader theory but can make use of the results we already have. Although
Theorem 2.4 presents a contraction rate relative to the entire set D = dom T , its
formulation already allows us to deduce local contraction rates in a neighborhood of
x̄.
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Theorem 4.1 (local contraction rates). Let U be an open ball around x̄ with respect
to the norm ‖ · ‖H , and let µ̂1, µ̂2, and κ̂1 be constants as in (A) but relative to D∩U
in place of D. Then, as long as λ > 0 is small enough that

λ−1 >
µ̂1 − µ̂2

2
+

κ̂1

2
max

{
1,

κ̂1

µ̂1 + µ̂2

}
, (4.1)

the mapping Sλ carries D ∩ U into D ∩ U , and the conclusions of Theorem 2.4 hold
for this localization of Sλ, but with µ̂1, µ̂2, and κ̂1 in place of µ1, µ2, and κ̃1.

Proof. Taking C = clU , define T̂2 = T2 + NC . This mapping, like T2, is maximal
monotone; cf. [39, Thm. 2]. Proposition 2.1 and Theorem 2.4 are applicable to T̂ =
T1 + T̂2 with respect to the constants µ̂1, µ̂2 and κ̂1 on D̂ = dom T̂2 = D ∩ C. In
particular, T̂−1(0) must be a singleton, but because x̄ belongs to the interior of C,
we have NC(x̄) = {0} and T̂ (x̄) = T (x̄). Hence T̂−1(0) = {x̄}, and the contraction
properties given by Theorem 2.4 for the mapping Ŝλ = (H + λT̂2)−1(H − λT1) must
refer to this same x̄. Distances from x̄ can then only be decreased under Ŝλ, so Ŝλ

must carry D ∩ U into itself.
Consider now any x ∈ D∩U and let w = Ŝλ(x). As just seen, we have w ∈ D∩U ,

which implies that w belongs to the interior of C, so NC(w) = {0}. From the definition
of Ŝλ we see that

(H − λT1)(x) ∈ (H + λT̂2)(w) = (H + λT2)(w) + NC(w) = (H + λT2)(w),

hence in fact w = (H + λT2)(H − λT1)(x) = Sλ(x). This shows that Ŝλ agrees with
Sλ on D ∩U . The conclusions about the behavior of Ŝλ on D ∩U therefore translate
to ones about Sλ.

The proof of Theorem 2.4 reveals a way of refining that result, and with it Corol-
lary 2.5 and Theorem 4.1. Although the monotonicity of T2 − µ2H is fully utilized in
obtaining a Lipschitz constant for the factor (H+λT2)−1 of Sλ, the assumptions in (A)
about µ1 and κ̃1 could be weakened if instead of asking for Sλ to be contractive on D we
merely asked for a bound in [0, 1) on the ratios ‖Sλ(x)−Sλ(x̄)‖H/‖x−x̄‖H . The key is
just to observe that if the argument for estimating ‖(H−λT1)(x′)−(H−λT1)(x)‖H−1

is applied only to ‖(H − λT1)(x)− (H − λT1)(x̄)‖H−1 , all that one needs from µ1 and
κ̃1 is that the mapping T̃1 = T1 − µ1H satisfies〈

x− x̄, T̃1(x)− T̃1(x̄)
〉
≥ 0,

∥∥T̃1(x)− T̃1(x̄)
∥∥

H−1 ≤ κ̃1

∥∥x− x̄
∥∥

H
.

Likewise, under these inequalities the estimate in Proposition 2.1 remains valid with
respect to a constant κ1 merely satisfying∥∥T1(x)− T1(x̄)

∥∥
H−1 ≤ κ1

∥∥x− x̄
∥∥

H
.

This refinement appears to offer little advantage in general over the global picture
in Theorem 2.4, inasmuch as special properties of T1 and T2 around the solution point
x̄, in contrast to other points, can hardly be available in advance of calculating x̄,
which threatens a kind of circularity. Indeed, if the assumption on µ1 is weakened
the very existence and uniqueness of x̄ could be thrown into doubt, because Theorem
2.3 might no longer be applicable. Yet in the localized context of Theorem 4.1 the
refinement does at least furnish insights into what might be expected of the rate of in
the tail of a forward-backward sequence, as xk nears x̄. The following is what we get.
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Theorem 4.2 (ultimate linear convergence rate). Assuming (A), define the constants
µ̄1 ≥ 0, µ̄2 ≥ 0, and κ̄1 ≥ 0 at the unique solution point x̄ by

µ̄2 = lim sup
w∈T2(x), w′∈T2(x

′)
x,x′→x̄, x′ 6=x

〈
x′ − x, w′ − w

〉
‖x′ − x‖2H

,

µ̄1 = lim sup
x→x̄

x∈D, x6=x̄

〈
x− x̄, T1(x)− T1(x̄)

〉
‖x− x̄‖2H

,

κ̄1 = lim sup
x→x̄

x∈D, x 6=x̄

∥∥T 1(x)− T 1(x̄)
∥∥

H−1

‖x− x̄‖H
for T 1 = T1 − µ̄1H,

necessarily obtaining µ̄1 ≥ µ1, µ̄2 ≥ µ2, and κ̄1 ≤ κ̃1, in fact κ̄1 ≤
√

κ̃2
1 − (µ̄1 − µ1)2

(hence µ̄1 ≤ µ1 + κ̃1). Also define

γ = lim inf
(x,u)→(x̄,T1(x̄))
−u∈T2(x)

∥∥u− T1(x̄)
∥∥

H−1

‖x− x̄‖H
,

necessarily obtaining γ ≥ µ̄2. Then for any step size λ > 0 the sequence of points xk

generated by xk = Sλ(xk−1) from any starting point x0 ∈ D will satisfy

lim sup
k→∞

‖xk − x̄‖H

‖xk−1 − x̄‖H
≤


√

(1− λµ̄1)2 + λ2κ̄2
1√

1 + 2λµ̄2 + λ2γ2
when λ−1 ≥ µ̄1,

λ(κ̄1 + µ̄1)− 1√
1 + 2λµ̄2 + λ2γ2

when λ−1 ≤ µ̄1.

(4.2)

In particular this holds for the step size λ̄ identified in (2.6) as optimal relative to the
globally estimated constants µ1, µ2, and κ̃1.

Proof. It’s clear from (A) that µ̄1 ≥ µ1 and µ̄2 ≥ µ2, since the monotonicity
of Ti − µiH on D corresponds to having

〈
x′ − x, Ti(x′) − Ti(x)

〉
≥ µi‖x′ − x‖2H for

x, x′ ∈ D. The verification that κ̄1 ≤ κ̃1 takes more effort. It relies indirectly on the
observation above that Proposition 2.1 stays valid when the context is that of points
x compared to x̄ rather than general pairs x and x′. If actually µ̄1 = µ1, we have
T 1 = T̃1 and the inequality κ̄1 ≤ κ̃1 is elementary from the definitions, so we can
concentrate on the case where µ̄1 > µ1.

Consider any δ ∈ (0, µ̄1 − µ1). From the definition of µ̄1 there’s a neighborhood
Z of x̄ consisting of points x for which

〈
x − x̄, T1(x) − T1(x̄)

〉
≥ (µ̄1 − δ)‖x − x̄‖2H .

This inequality means for the mapping T
δ
1 = T1 − (µ̄1 − δ)H = T 1 − δH that

〈
x− x̄, T

δ
1(x)− T

δ
1(x̄)

〉
≥ 0 for x ∈ D ∩ Z. (4.3)

But T
δ
1 = T̃1 − τH for τ = µ̄1 − µ1 − δ > 0. It follows from applying the extended

version of Proposition 2.1 to this relation in light of (4.3) that

∥∥T
δ
1(x)− T

δ
1(x̄)

∥∥
H−1 ≤

√
κ̃2

1 − τ2
∥∥x− x̄

∥∥
H

for x ∈ D ∩ Z.
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On the other hand, since T
δ
1 = T 1 − δH and ‖H[x − x̄]‖H−1 = ‖H(x − x̄)‖H−1 =

‖x′ − x‖H , we know that
∥∥T 1(x) − T 1(x̄)

∥∥
H−1 ≤

∥∥T
δ
1(x) − T

δ
1(x̄)

∥∥
H−1 + δ

∥∥x − x̄
∥∥

H
.

This tells us that

∥∥T 1(x)− T 1(x̄)
∥∥

H−1 ≤
(

δ +
√

κ̃2
1 − (µ̄1 − µ1 − δ)2

) ∥∥x− x̄
∥∥

H
for x ∈ D ∩ Z.

Taking the limit in the definition of κ̄1 and using the fact that a neighborhood Z like
this exists for any δ > 0, we obtain κ̄1 ≤

√
κ̃2

1 − (µ̄1 − µ1)2, hence κ̄1 ≤ κ̃1 because
µ̄1 ≥ µ1.

We look next at the claims about γ and θ∗λ, the latter being the symbol by which
we’ll denote the right side of (4.2). For any ε > 0, let µ̂i = max{µi, µ̄i− ε} for i = 1, 2
and κ̂1 = min{κ̃1, κ̄1 + ε}. On the basis of the definitions we know there’s a ball U
around x̄ with respect to the norm ‖ · ‖H such that

〈
x′ − x, w′ − w

〉
≥ µ̂2‖x′ − x‖H if x, x′ ∈ D ∩ U, w ∈ T2(w), w′ ∈ T2(x′),〈

x− x̄, T1(x)− T1(x̄)
〉
≥ µ̂1‖x− x̄‖H if x ∈ D ∩ U ,

‖T 1(x)− T 1(x̄)‖H−1 ≤ κ̂1‖x− x̄‖H if x ∈ D ∩ U .

We are then in the framework of the extended version of Theorem 4.1 and are able to
see that lim supk ‖xk− x̄‖H

/
‖xk−1− x̄‖H ≤ θ̂λ, the latter being the same as θλ except

that µ̂1, µ̂2 and κ̂1 replace µ1, µ2, and κ̃1. An improvement can be made, however,
in taking advantage of the constant γ.

Let γ̂ = max{0, γ − ε}. From the definition of γ there’s a neighborhood V of
T1(x̄) with respect to the norm ‖ · ‖H−1 such that, when the ball U is small enough,
we have∥∥u− T1(x̄)‖H−1 ≥ γ̂‖x− x̄‖2H when x ∈ D ∩ U, u ∈ V, −u ∈ T2(x). (4.4)

But also, the point ū = T1(x̄) satisfies −ū ∈ T2(x̄), because 0 ∈ T (x̄) = T1(x̄)+T2(x̄).
This implies from earlier that

µ̂2‖x− x̄‖2H ≤
〈
− u + ū, x− x̄

〉
≤ ‖x− x̄‖H‖u− ū‖H−1 ,

so that µ̂2‖x−x̄‖H ≤ ‖u−ū‖H−1 . Therefore µ̂2 ≤ γ̂, which establishes µ̄2 ≤ γ through
the arbitrariness of ε in the definition of µ̂2 and γ̂.

Let w̄ = (H − λT1)(x̄) = Hx̄− λT1(x̄). Since

x̄ = Sλ(x̄) = (H + λT2)−1(H − λT1)(x̄),

we have x̄ = (H + λT2)−1(w̄). Consider along with this any elements w and x with
x = (H +λT2)−1(w). For these the set T−1

2 (x) contains λ−1[w−Hx], whereas T−1
2 (x̄)

contains λ−1[w̄ −Hx̄], the latter being just −T1(x̄). When w is close to w̄, not only
does x lie in the ball U around x̄, due to the continuity of (H + λT2)−1, but also the
vector u = −λ−1[w −Hx] lies in the neighborhood V of ū = −T1(x̄). Then by (4.4),

γ̂2‖x− x̄‖2H ≤
∥∥u− T1(x̄)‖2

H−1 =
∥∥− λ−1[w −Hx] + λ−1[w̄ −Hx̄]

∥∥2

H−1

= λ−2‖w − w̄‖2
H−1 − 2λ−2

〈
w − w̄, x− x̄

〉
+ ‖x− x̄‖2H

≤ λ−2‖w − w̄‖2
H−1 − 2λ−2µ̂2‖x− x̄‖2H + λ−2‖x− x̄‖2H ,
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where the last inequality invokes the property arranged for µ̂2. Rearranging, we obtain
‖x− x̄‖2H ≤ [1 + λµ̂2 + λ2γ̂2]‖w − w̄‖2

H−1 . This shows that the factor (1 + λµ̂2)−1 in

θ̂λ can be replaced by (1 + λµ̂2 + λ2γ̂2)−1/2, which if anything is lower.
It remains only to observe that, having demonstrated that this modified factor

θ̂λ operates in terms of µ̂1, µ̂2, κ̂1 and γ̂ as defined for arbitrary ε > 0, we must in the
limit as ε↘0 get the factor θ∗λ corresponding to µ̄1, µ̄2, κ̄1 and γ.

5. VARIABLE STEP SIZES AND MATRICES.
In the introduction, forward-backward splitting methods were described with vari-

able step sizes λk and matrices Hk. We now look at what can be said about such
methods on the basis of our contraction results for fixed λ and H. The easier case of
variable λk with a fixed H has broader significance, so we deal with it first.

Theorem 5.1 (convergence with variable step sizes). Under assumptions (A), con-
sider any step size interval [λ−, λ+] ⊂ (0,∞) with λ+ small enough that

λ−1
+ >

µ1 − µ2

2
+

κ̃1

2
max

{
1,

κ̃1

µ1 + µ2

}
. (5.1)

Let θ(λ−, λ+) = max{θλ− , θλ+} for θλ defined as in (2.4). Then θ(λ−, λ+) < 1, and
for any sequence of step sizes λk ∈ [λ−, λ+] all the iteration mappings

Sk = (H + λkT2)−1(H − λkT1) = (I + λkH−1T2)−1(I − λkH−1T1) (5.2)

are contractions from D = dom T into itself with fixed point x̄ and contraction factor
θ(λ−, λ+). In particular, the iterates xk = Sk(xk−1) from any starting point x0 ∈ D
converge linearly to x̄ at a rate no worse than θ(λ−, λ+). Indeed,

lim sup
k→∞

‖xk − x̄‖H

‖xk−1 − x̄‖H
≤ min

{
θ(λ−, λ+), θ∗(λ−, λ+)

}
, (5.3)

where θ∗(λ−, λ+) = min{θ∗λ− , θ∗λ+
} with θ∗λ denoting the right side of (4.2).

Proof. The justification of this lies in the proof of Theorem 2.4. It was demon-
strated there that θλ is a increasing function of λ on the interval of λ values satisfying
λ−1 < µ1, which includes all λ sufficiently large. On the other hand, it was observed
that on the complementary interval, where λ−1 ≥ µ1, the expression θ2

λ is convex as a
function of τ under the change of variables induced by taking τ−1 = λ−1 + µ2. This
implies that θ2

λ is unimodal on that interval with respect to λ, and the same then
holds for θλ. Indeed, we saw for the value λ defined in (2.6) that θλ is a continu-
ous, decreasing function of λ on

(
0, λ

]
but a continuous, increasing function of λ on[

λ,∞
)
.

It follows that the max of θλ over any interval [λ−, λ+] ⊂ (0,∞) is θ(λ−, λ+). As
long as this value doesn’t exceed 1, as guaranteed by (5.1) through Theorem 2.4, we
get contraction at the claimed rate θ(λ−, λ+). An appeal to the ultimate convergence
property in Theorem 4.2 then justifies the assertion in (5.3).

For the case of variable implementation matrices, we won’t attempt to prove a
result along the lines of a Newton or quasi-Newton method. That would anyway be
incompatible with most applications of forward-backward splitting to problem decom-
position, where the need to preserve a degree of separability, in order to facilitate
computation of the backward steps, is paramount. Also, such applications tend to de-
mand a global statement rather than a local one. For literature on Newton-like results
in the context of variational inequalities, see Pang and Chen [16] and Patriksson [17].
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Theorem 5.2 (convergence with variable matrices). Under (A), suppose the iterates
xk = Sk(xk−1) are generated from any x0 ∈ D by the mappings

Sk = (Hk + λkT2)−1(Hk − λkT1) = (I + λkH−1
k T2)−1(I − λkH−1

k T1) (5.4)

through a sequence of step sizes λk > 0 and symmetric, positive definite matrices Hk

converging to H. Let λ− = lim infk λk and λ+ = lim supk λk, and suppose that λ− > 0
while λ+ satisfies (5.1). Then (5.3) holds for these values λ− and λ+.

Proof. The convergence of Hk to H implies the existence of values 0 < αk↗1
and 0 < βk↗1 such that H − αkHk and Hk − βkH are positive definite. Through
this, the monotonicity of T1 − µ1H and T2 − µ2H in condition (2.1) of (A) yields
the monotonicity of T1 − µ1kHk and T2 − µ2kHk for the values µ1k = µ1αk↗µ1 and
µ2k = µ2αk↗µ2.

We develop now a Lipschitz constant for T̃1k = T1−µ1kHk = T̃1 +µ1(H−αkHk)
from the norm ‖·‖Hk to the norm ‖·‖H−1

k
. First, let ηk be such a constant for H−αkHk;

then ηk → 0. Next, observe that ‖ · ‖Hk ≥
√

βk ‖ · ‖H , which for the corresponding
dual norms, given by the inverse matrices, means that

√
βk ‖ · ‖H−1

k
≤ ‖ · ‖H−1 . By

these estimates, the Lipschitz inequality in condition (2.2) of (A) gives us√
βk ‖T̃1(x′)− T̃1(x)‖H−1

k
≤ κ̃1(1/

√
βk)‖x′ − x‖Hk

for all x′, x ∈ D.

Hence κ̃1/βk serves as a Lipschitz constant for T̃1 on D from ‖ · ‖Hk to ‖ · ‖H−1
k

. Since

T̃1k = T̃1 + µ1(H − αkHk), we conclude that the constant κ̃1k = (κ̃1/βk) + µ1ηk↘ κ̃1

has this property for T̃1k.
It follows that the splitting T = T1k+T2k with implementation matrix Hk satisfies

(Ak), the version of (A) in which where µ1, µ2 and κ̃1 are replaced by µ1k, µ2k and κ̃1k.
Now let φ stand for the value on the right side of (2.5) and φk for the corresponding
value under this same replacement of constants. Obviously φk → φ.

Consider any ε > 0 small enough that the value λε
− = λ− − ε is positive, while

the value λε
+ = λ+ + ε satisfies (5.1), i.e., (λε

+)−1 > φ. For all k sufficiently large we
have λk ∈ [λε

−, λε
+] and also that (λε

+)−1 > φk. Then by Theorem 2.4 as applied under
(Ak), the mapping Sk is a contraction from D into itself at the rate θk,λk , where θk,λ

denotes the factor obtained from formula (2.4) with µ1k, µ2k and κ̃1k substituting for
µ1, µ2 and κ̃1. Furthermore, we have

θk,λ ≤ θk(λε
−, λε

+) = max{θk,λε
−
, θk,λε

+
}

for the reasons in the proof of Theorem 5.1 (when applied to θk,λ as a function of λ).
The lim sup in (5.3) is bounded above, therefore by the limit of θk(λε

−, λε
+) as k →∞,

which is θ(λε
−, λε

+). This being valid for all ε > 0 sufficiently small, we can take the
limit as ε↘0 and obtain the inequality in (5.3), as targeted.

6. ASYMMETRIC IMPLEMENTATIONS.
Only symmetric implementation matrices Hk are covered directly by our results

up to this stage, but what about the possibility of more general matrices that are
not symmetric, although still positive definite? Such modes of implementation crop
up for example in applications to variational inequality when Hk is taken to be an
approximation to the Jacobian matrix ∇F (xk) or some part of it. Aside from the
gradient case where F = ∇f and ∇F (xk) = ∇2f(xk), Hk may then lack symmetry.
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Asymmetric implementation matrices can be incorporated into our theory by a
simple device. This device has already used by others, e.g. Tseng in [25], but we go
beyond previous instances because of the attention we pay to step sizes. To explain
the idea we keep to the case of constant H for simplicity, and also, to avoid conflicts
with our earlier statements, follow the notational strategy of replacing H by H + K
with K antisymmetric (K> = −K) and H still symmetric, rather than taking H itself
to lack symmetry. This conforms to the fact that any positive definite matrix can
be written as the sum of an antisymmetric matrix and a symmetric, positive definite
matrix.

In this mode, the iteration mappings for the forward-backward method with re-
spect to a splitting T = T1 + T2 take the form(

[H + K] + λT2

)−1([H + K]− λT1

)
. (6.1)

Their practicality hinges on the ease of calculating images under the inverse mapping(
[H + K] + λT2

)−1. This has to be assumed for any analysis to be worthwhile, and
it’s true in applications such have been pinpointed by Pang and Chan [16] and Tseng
[25].

For our purposes we’ll make such practicality of backward step execution part of
the framework by assuming that for any τ ∈ (−∞,∞) the inverse

(
[H +τK]+λT2

)−1

can be handled just as readily as
(
[H + K] + λT2

)−1. We put our focus therefore on
two-parameter iteration mappings

Sλ,τ =
(
[H + τK] + λT2

)−1([H + τK]− λT1

)
. (6.2)

These mappings, like the earlier ones where K didn’t appear, all have the unique
solution x̄ as their unique fixed point. We explore the relation between contraction
properties of Sλ,τ and the values of both λ and τ .

Theorem 6.1 (reduction of asymmetric to symmetric implementations). Assume
(A) as before, except for what it says about κ̃1; in place of that, consider a Lipschitz

constant κ̃1(σ) for the mapping T̃1 − σK on D, with σ any value in (−∞,∞). Let

λ(σ) =
1(

κ̃1(σ)2

µ1 + µ2

)
+ µ1

, τ(σ) = σλ(σ). (6.3)

Then the asymmetrically implemented iteration mapping

Sλ(σ),τ(σ) =
(
[H + τ(σ)K] + λ(σ)T2

)−1([H + τ(σ)K]− λ(σ)T1

)
(6.4)

with respect to the splitting T = T1+T2 is identical to the symmetrically implemented
iteration mapping

S′λ(σ) =
(
H + λ(σ)T ′2

)−1(
H − λ(σ)T ′1

)
(6.5)

with respect to the splitting T = T ′1 +T ′2 where T ′1 = T1−σK and T ′2 = T2 +σK, and
it is Lipschitz continuous on D with constant

θ(σ) =
1√

1 +
(

µ1 + µ2

κ̃1(σ)

)2
< 1. (6.6)
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Proof. Iterations xk = Sλ,τ (xk−1) have the meaning that

0 ∈ 1
λ

[H + τK][xk − xk−1] + T1(xk−1) + T2(xk).

This condition can equally well be written as

0 ∈ 1
λ

H[xk − xk−1] + [T1 − σK](xk−1) + [T2 + σK](xk) (6.7)

under the correspondence σ = τ/λ, τ = σλ. Thus, the same iterations can be written
as xk = S′λ(xk−1) for S′λ = (H + λT ′2)−1(H − λT ′1). The splitting T = T ′1 + T ′2
satisfies (A) with Lipschitz constant κ̃1(σ), so Theorem 2.4 applies. The optimal step
size coming out of that result is λ(σ) as given by (6.3), and it yields for S′λ(σ) the
contraction rate θ(σ) defined in (6.6).

The observation to be made from Theorem 6.1 is that, instead of pursuing asym-
metric implementations directly, a good strategy is to first subtract off from T1 to get
T ′1 whatever multiple σ of the asymmetric part K of the implementation matrix H+K
is appropriate in order to reduce the Lipschitz constant κ̃1(σ) as far as possible. This
multiple is added to T2 to get T ′2. Thereafter, it’s just a matter of taking the optimal
step size λ(σ) for the altered splitting T = T ′1 +T ′2 with respect to the symmetric part
H of the implementation matrix, in accordance with the earlier results. The net effect
will be the same as the asymmetric iterations (6.4), but executed symmetrically and
at an optimized rate.
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