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Abstract: We quantify the sensitivity of KKT pairs associated with a parameterized
family of nonlinear programming problems. Our approach involves proto-derivatives, which
are generalized derivatives appropriate even in cases when the KKT pairs are not unique;
we investigate what the theory of such derivatives yields in the special case when the KKT
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KKT multifunction) that B-derivatives provide for single-valued mappings.

Key words: Proto-derivative; sensitivity analysis; nonlinear programming

September, 1995

1 Department of Mathematics, Bowdoin College, Brunswick, ME 04011 USA
2 Department of Mathematics, University of Washington, Seattle, WA 98195 USA

1



1. INTRODUCTION

A nonlinear programming problem in x ∈ IRn as parameterized by w ∈ IRd can be formu-
lated in terms of a set X ⊆ IRn, functions fi on IRn × IRd → IR for i = 0, 1, . . . ,m, and a
convex cone K ⊆ IRm:

minimize f0(w, x) over all x ∈ C(w) (1)

where

C(w) :=
{
x ∈ X : F (w, x) ∈ K

}
for F (w, x) =

(
f1(w, x), . . . , fm(w, x)

)
. (2)

It will be supposed here that X and K are closed and every fi is of class C2.

An important issue in the study of such a problem is the response of solutions to
changes in the parameters, but this faces the difficulty that there can be several (or many,
or no) optimal solutions x associated with a particular w. The solution mapping w 7→ x is
necessarily then a multifunction (set-valued) whose “rates of change” cannot be captured
by traditional methodology. The same goes for the mapping w 7→ (x, y) that assigns to
each w the pairs (x, y) in which x satisfies a first-order optimality condition with y as
multiplier vector.

Because of this difficulty, much of the theory of rates of change in the dependence of
solutions on parameters has centered so far on circumstances in which the multifunction
under investigation happens to be single-valued in a local sense. An adequate conceptual
framework is provided then by relatively elementary notions of Lipschitz continuity and
one-sided differentiability. It is not necessary to appeal to the more challenging notions of
such kind that have been devised for handling multifunctions in general. But by narrowing
the scope to mappings that are essentially single-valued, a significant part of the overall
picture could be lost.

The multifunctions that associate parameter elements w with solutions x or quasi-
solution pairs (x, y) tend to be very special within the realm of multifunctions. Although
not necessarily single-valued, their graphs reflect many of the geometric features of the
graphs of single-valued mappings. Our aim in this paper is to develop such geometry
and its consequences, with emphasis on “proto-differentiability” as providing the natural
counterpart to the type of one-sided differentiability, namely B-differentiability, that has
come to prevail in studies of the single-valued setting. For this purpose we direct our
attention mainly to quasi-solution pairs (x, y), as follows.

The generalized Karush-Kuhn-Tucker (KKT) conditions for (1)–(2) at a feasible solu-
tion x, as established in Rockafellar [25], concern a multiplier vector y = (y1, . . . , ym) such
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that

y ∈ NK

(
F (w, x)

)
, −

[
∇xf0(w, x) + y1∇xf1(w, x) + · · ·+ ym∇xfm(w, x)

]
∈ NX(x), (3)

where NK

(
F (w, x)

)
is the normal cone to K at F (w, x) and NX(x) is the normal cone to

X at x. The first normal cone can be taken in the sense of convex analysis, but unless X

happens to be convex the second should be interpreted in the broader sense of limits of
proximal norm vectors (unconvexified); cf. [25]. Such a multiplier vector exists when x is
locally optimal and satisfies the constraint qualification that there is no vector y 6= 0 such
that

y ∈ NK

(
F (w, x)

)
, −

[
y1∇xf1(w, x) + · · ·+ ym∇fm(w, x)

]
∈ NX(x). (4)

(This is given in Theorem 4.2 of [25] for the case of K = IRs
−×IRm−s; the version for general

K can be obtained by applying Theorem 10.1 of that paper to the indicator function δK .)

When X = IRn and K = IRs
− × IRm−s, which we refer to as the conventional case of

our problem, conditions (3) and (4) reduce to the classical KKT conditions and the dual
form of the Mangasarian-Fromovitz constraint qualification. Other choices of the cone
K allow for coverage of positive-definite programming, for instance. In taking X to be
a proper subset of IRn one can incorporate nonnegativity requirements, upper and lower
bounds on variables, and indeed other constraints of any kind without having to introduce
additional multipliers whose perturbations might need to be coped with. In the convex
case of our problem, i.e., when X is convex, f0(w, x) is convex in x, and F (w, x) is convex
in x with respect to the partial ordering induced by K, the generalized KKT conditions
(3) on (x, y) are sufficient for x to be a globally optimal solution to (1)–(2).

We are interested in the KKT multifunction that assigns to each w the pairs (x, y)
satisfying (3). In the conventional case, at least, much is already known about the prop-
erties of this multifunction; see for example [14], [13], [16], [2], [3], [1], [4]). Robinson’s
property of strong regularity provides a useful criterion for localized single-valuedness and
Lipschitz continuity, even B-differentiability [16]. Closely tied to such results is the analy-
sis of parametric dependence not only on w but on certain “canonical” parameters as well.
The role of these canonical elements is to ensure that the parameterization is sufficiently
rich. They are also in fact the key to the graphical geometry that is the topic here.

The primal canonical perturbation vector u ∈ IRm shifts F (w, x) to F (w, x) + u,
while the dual canonical perturbation vector v ∈ IRn shifts f0(w, x) to f0(w, x) − 〈v, x〉.
In bringing these vectors in, we adopt the format of a nonlinear programming problem
parameterized by (u, v, w) ∈ IRm × IRn × IRd:

minimize f0(w, x)− 〈v, x〉 over all x ∈ C(u, w) (5)
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where

C(u, w) :=
{
x ∈ X : F (w, x) + u ∈ K

}
for F (w, x) =

(
f1(w, x), . . . , fm(w, x)

)
. (6)

The generalized KKT conditions on x and a multiplier vector y then have the form:

y ∈ NK

(
F (w, x) + u

)
and v −∇xf0(w, x)−∇xF (w, x)>y ∈ NX(x). (7)

The multifunction we specifically look at in this format is

SKKT : (u, v, w) 7→
{
(x, y) : (7) holds

}
. (8)

Obviously, the parameters represented by u and v could notationally be built into the
specification of w, but there are advantages to making them explicit in this manner.

Our approach is to study the geometry and generalized differentiability of the multi-
function SKKT in (8) without restricting our focus only to situations where SKKT exhibits
single-valuedness. We identify properties that automatically turn into Lipschitz continuity
or B-differentiability under single-valuedness, but have important content even without
that. The issue of ascertaining single-valuedness is thus posed not as a prerequisite to the
analysis of “rates of change,” but as a separate matter that can be taken up subsequent
to such analysis.

We begin in Section 2 by demonstrating under mild assumptions on X (convexity
would suffice but is not required) that the graph of SKKT is a Lipschitz manifold in the sense
introduced by Rockafellar [18] in work with subgradient multifunctions. The dimension of
this manifold is m + n + d, the same as that of the domain space for SKKT, so this shows
very powerfully the “functionlike” nature of SKKT, even though its values need not be
singletons everywhere. The Lipschitz aspect of the manifold furnishes preliminary insight
into limitations on the effects of perturbations. When SKKT does happen to be single-
valued locally, the graphical geometry entails that it must be locally Lipschitz continuous
too. A Lagrangian version of the generalized KKT conditions is used as a stepping stone
to these results.

In moving on to generalized differentiability in Section 3, we rely on “proto-derivatives,”
which are distinguished by their being defined in terms of set convergence of graphs. In
heuristic terms, a multifunction is proto-differentiable at a point in its graph, if the image
of its graph near the point “stabilizes” as closer and closer views are examined. It was
noted in [7] that a single-valued mapping is B-differentiable if and only if it is continuous
and proto-differentiable with single-valued proto-derivative mapping (in which event the
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proto-derivatives are the same as the B-derivatives). We augment this here by showing
that a single-valued locally Lipschitz continuous mapping is B-differentiable if and only if
it is proto-differentiable; there is no need in this case to assume single-valuedness of the
proto-derivative multifunction. As a geometric extension of this fact, we prove that the
graph a proto-differentiable multifunction is locally a Lipschitz manifold if and only if it
is locally a B-differentiable Lipschitz manifold.

In application to sensitivity analysis, we prove that if the sets X and K are “fully
amenable” (as holds in particular if they are polyhedral convex, but allows also for cases
where X is not necessarily convex), then the multifunction SKKT in (8) is proto-differentiable.
This has the consequence that the graph of SKKT is a B-differentiable Lipschitz manifold,
a powerful property not previously observed.

Although new insights into graphical geometry are presented in this paper, the method-
ology of proto-differentiability has already been found to be effective in the study of mul-
tifunctions much more general than the one treated here; cf. our earlier work in [6]. On
the other hand, many questions remain unanswered, especially concerning the suppression
of some of the elements involved in a setting like (8). In [7] we obtained proto-derivatives
for quasi-solution multifunctions associated with first-order optimality conditions for sim-
ilar minimization problems, but in the form (v, w) 7→ x, without explicit dependence on
primal perturbations u or pairing with multiplier elements y. Whether or not the graph of
such a multifunction can be seen locally as a Lipschitz manifold is still unclear, however.
As for the suppression of v, results of Levy [5] give approximations at least of “outer”
proto-derivatives, which are weaker than true proto-derivatives, but again the graphical
geometry is not yet satisfactorily understood.

Of course, when some localization of the multifunction SKKT in (8) is single-valued
and Lipschitz continuous, or B-differentiable, there is no difficulty whatever retaining these
properties in suppressing some of the elements. Even the submapping w 7→ x will be single-
valued and Lipschitz continuous, or B-differentiable, in that case.
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2. GRAPHS AS LIPSCHITZ MANIFOLDS

The notation S : IRk →→ IRl indicates a multifunction, or set-valued mapping, that assigns
to each w ∈ IRk a set of vectors z ∈ IRl. The graph of S is gphS =

{
(w, z) : z ∈ S(w)

}
. For

some choices of w the set S(w) may be empty, or it may just be a singleton. The effective
domain of S is dom S =

{
w : S(w) 6= ∅

}
. As a special case, S might be single-valued on

a set D, meaning that S(w) is a singleton for every w ∈ D (and hence in particular that
D ⊆ dom S). A weaker concept is that of S being locally single-valued around (w̄, z̄), a
point of gphS, which refers to the existence of neighborhoods W of w̄ and Z of z̄ such
that the “submapping” w ∈ W 7→ S(w) ∩ Z is single-valued.

When such single-valuedness occurs, one can go on to ask whether the submapping
in question is actually continuous or even Lipschitz continuous. If so, there are obvious
consequences for the geometry of gphS. But the same graphical geometry would persist if a
smooth one-to-one mapping of IRk+l onto itself were applied to gphS, regardless of whether
the image of gph S were again locally the graph of a single-valued mapping. Putting this
in reverse, one can have situations where gphS is not locally single-valued around (w̄, z̄),
and yet it corresponds under a certain nonlinear local transformation, smooth in both
directions, to the graph of a single-valued, Lipschitz continuous mapping. The following
concept assists in formalizing the idea.

Definition 2.1. A subset M of IRN is locally a Lipschitz manifold of dimension s around

the point ū ∈ M in the sense of [18] if, under a smooth change of coordinates around ū, it

can be identified locally with the graph of a Lipschitz continuous mapping of dimension s,

or in other words, if there is an open neighborhood U of ū in IRN and a one-to-one mapping

Φ of U onto an open set in IRs × IRN−s with both Φ and Φ−1 continuously differentiable,

such that Φ(M ∩ U) is the graph of some Lipschitz continuous mapping H : O → IRN−s

for an open set O in IRs.

In particular, the graph of any locally Lipschitz continuous mapping G : IRk → IRl

(single-valued) is locally a Lipschitz manifold of dimension k in IRk+l; for this one can take
Φ to be the identity. The same is true then of G−1, which need not be a single-valued
mapping.

Indeed, if a multifunction S : IRk →→ IRl is such that gphS is a Lipschitz manifold of
dimension s around (w̄, z̄), and if the multifunction S′ : IRk′ →→ IRl′ is such that gph S′ cor-
responds to gphS under a one-to-one transformation which is continuously differentiable
in both directions and associates (w̄, z̄) with (w̄′, z̄′) (with k + l = k′+ l′), then gphS′ too
is locally a Lipschitz manifold of dimension s around (z̄′, w̄′). (Here the transformation
could merely be local.) The following elementary facts illustrate this. (By the inverse of
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S is meant the multifunction S−1 : z 7→
{
w : z ∈ S(w)

}
.)

Proposition 2.2. If the graph of S : IRk →→ IRl is locally a Lipschitz manifold of dimension

s around (w̄, z̄), then the graph of the inverse S−1 : IRl →→ IRk is likewise locally a Lipschitz

manifold of dimension s around (z̄, w̄).

Proposition 2.3. If the graph of S : IRk →→ IRl is locally a Lipschitz manifold of dimension

s around (w̄, z̄), and if the single-valued mapping G : IRk → IRl is of class C1, then the

graph of S + G is locally a Lipschitz manifold of dimension s around
(
w̄, z̄ + G(z̄)

)
.

Proof. The mapping Φ : (w, z) 7→
(
w, z + G(z)

)
carries one graph onto the other. This is

a C1 mapping for which the inverse, Φ−1 : (w, z) 7→
(
w, z −G(z)

)
, is C1 as well.

Especially important is the next example, which concerns a key class of mappings
which can well fail to be single-valued.

Proposition 2.4 (Minty [8]). For any maximal monotone multifunction T : IRn →→ IRn,

the set gphT is locally a Lipschitz manifold of dimension n around all of its points.

The subgradient multifunctions ∂f of proper, lower semicontinuous, convex functions
f : IRn → IR (the extended reals) are known to be maximal monotone, cf. [17], and the
same is therefore true for the graphs of normal cone multifunctions x 7→ NX(x) when X

is a closed, convex set (and NX(x) is taken to be the empty set for x /∈ X), inasmuch as
NX = ∂δX .

Corollary 2.5. For any proper, lsc, convex function f : IRn : IR the graph of the subgra-

dient multifunction ∂f : IRn →→ IRn is locally a Lipschitz manifold of dimension n around

all of its points. Likewise, for any nonempty, closed, convex set X ⊆ IRn the graph of the

normal cone multifunction NX : IRn →→ IRn is locally a Lipschitz manifold of dimension n

around all of its points.

The scope of this geometric property can be greatly be extended now beyond the
bounds of convex analysis on the basis of recent results of Poliquin and Rockafellar [11].
The subgradients then are “limiting proximal subgradients.” Recall that a function f :
IRn → IR is amenable at a point x̄ if there is a local representation f(x) = g

(
G(x)

)
in

which G is a C1 mapping into a space IRm, the function g : IRm → IR is a proper, lower
semicontinuous and convex, the point G(x̄) lies in dom g, and the constraint qualification
is satisfied that there is no nonzero vector y in the normal cone Ndom g

(
G(x̄)

)
for which

the gradient of the mapping x 7→ 〈y, G(x)〉 vanishes. It is strongly amenable if there is
such a representation with G of class C2 rather than just of class C1.
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The category of strongly amenable functions includes all C2 functions f , all proper,
lsc, convex functions f , and more. For instance, it includes all functions of the form
f = h + δD in which h is the pointwise max of a finite collection of C2 functions on IRn

and D is a subset of IRn specified by finitely many equality and inequality constraints for
C2 functions—provided only that, at the point x̄ where the amenability is to be tested,
the Mangasarian-Fromovitz constraint qualification is fulfilled; see [19] and [10] (the ter-
minology of amenability comes from the latter). Any function of the kind just described is
in fact “fully amenable,” a higher property which will be of interest in Section 3 and will
explained there when it is needed.

Theorem 2.6. If a function f : IRn → IR is strongly amenable at x̄, then for any sub-

gradient v̄ ∈ ∂f(x̄) the graph of the subgradient multifunction ∂f : IRn →→ IRn is locally a

Lipschitz manifold of dimension n around (x̄, v̄).

Proof. Proposition 2.5 of Poliquin and Rockafellar [11] establishes that f is “prox-regular”
and “subdifferentially continuous” at x̄. Theorem 3.2 of the same paper demonstrates,
among other things, that when these properties hold and v̄ ∈ ∂f(x̄) there is a neighborhood
of (x̄, v̄) with respect to which the graph of ∂f is maximal submonotone, i.e., such that the
multifunction T = ∂f + λI is maximal monotone for some λ > 0. Then the graph of T is,
by a localization of Minty’s theorem cited above, locally a Lipschitz manifold of dimension
n around (x̄, v̄ +λx̄). Since ∂f = T −λI, we conclude from Proposition 2.3 that the graph
of ∂f itself is locally a Lipschitz manifold of dimension n around (x̄, v̄).

A set D is defined to be amenable or strongly amenable at a point x̄ if its indicator
function has these properties. In particular, any closed, convex set D is strongly amenable
at any of its points, and so too is any set D specified locally by finitely many C2 constraints
in such a manner that the Mangasarian-Fromovitz constraint qualification holds.

Corollary 2.7. If a set X ⊆ IRn is strongly amenable at one of its points x̄, then for any

normal vector v̄ ∈ NX(x̄) the graph of the multifunction NX is locally a Lipschitz manifold

of dimension n around (x̄, v̄).

Proof. This specializes Theorem 2.6 to the case of f = δX .

These results have laid the foundation for proving the following fact about the geom-
etry of the general multifunction SKKT introduced above.

Theorem 2.8. Let (x̄, ȳ) ∈ SKKT(ū, v̄, w̄) and suppose the set X is strongly amenable at

the point x̄. Then the graph of SKKT is locally a Lipschitz manifold of dimension m+n+d

around (ū, v̄, w̄; x̄, ȳ).
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Proof. The relation y ∈ NK

(
F (w, x) + u

)
in (7) can be expressed in terms of the polar

cone Y = K∗ as F (w, x) + u ∈ NY (y), cf. [17], Corollary 23.5.4. Let D = IRd ×X × Y , so
that

ND(w, x, y) =
{
(z′, v′, u′) : z′ = 0 ∈ IRd, v′ ∈ NX(x), u′ ∈ NY (y)

}
. (9)

Further, define the mapping G : IRd × IRn × IRm by

G(w, x, y) =
(
0, ∇f0(w, x) +∇xF (w, x)>y,−F (w, x)

)
.

In this notation, the KKT conditions (7) come down to (0, v, u) ∈ ND(w, x, y)+G(w, x, y).
We thus have

(w, x, y; z, v, u) ∈ gph(ND + G) ⇐⇒
{

(u, v, w;x, y) ∈ gphSKKT,
z = 0.

(10)

Therefore, the assertion that gphSKKT is locally a Lipschitz manifold of dimension m+n+d

around (ū, v̄, w̄; x̄, ȳ) is equivalent to the assertion that gph(ND + G) has this property
around (w̄, x̄, ȳ; 0, v̄, ū).

Because Y is a closed, convex cone, we know that D is strongly amenable at (w̄, x̄, ȳ)
whenever the points x̄ ∈ X and ȳ ∈ Y are such that X is strongly amenable at x̄. Then
by Corollary 2.7 the graph of the normal cone multifunction ND is locally a Lipschitz
manifold of dimension d + n + m around (w̄, x̄, ȳ, 0, v′, u′) for any vectors v′ ∈ NX(x̄) and
u′ ∈ NY (ȳ). On the other hand, the mapping G is of class C1 (by our blanket assumption
that f0 and the component functions fi of F are of class C2). It follows then by Proposition
2.3 that the graph of ND +G is locally a Lipschitz manifold of dimension d+n+m around
any of its points (w̄, x̄, ȳ, z̄, v̄, ū) such that X is strongly amenable at x̄. This gives what
we need.
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3. GRAPHICAL DIFFERENTIABILITY

A mapping G : IRk → IRl (single-valued) is B-differentiable at w̄ as defined by Robinson
[15] if the difference quotient mappings

∆tG(w̄) : ω 7→
[
G(w̄ + tω)−G(w̄)

]/
t for t > 0

converge pointwise as t↘0 to a continuous mapping H : IRk → IRl and do so uniformly
on bounded sets. Then H(ω) is the one-sided directional derivative of G relative to ω.

Classical differentiability is the case where H(ω) is linear in ω. The definition of
B-differentiability always implies at least that H(0) = 0 and that H is positively homo-
geneous, i.e., H(λω) = λH(ω) for λ > 0 (hence also for λ = 0), but it allows H(ω) to be
nonlinear in ω in other respects. We will denote H by DG(w̄) and call this the B-derivative
mapping for G at w̄.

Of course, when G is Lipschitz continuous around w̄ the same holds uniformly for the
mappings ∆tG(w̄), and mere pointwise convergence of these mappings to H as t↘0 implies
that H is globally Lipschitz continuous and that the convergence is uniform on bounded
sets. In this case, therefore, B-differentiability is automatic simply from the existence of
limt↘ 0

[
G(w̄ + tω)−G(w̄)

]
/t for every ω.

Definition 3.1. A subset M of IRN is locally a B-differentiable Lipschitz manifold of
dimension s near the point ū ∈ M if, under a smooth change of coordinates around ū, it

can be identified locally with the graph of a Lipschitz continuous mapping of dimension s

that happens also to be B-differentiable, or in other words, if there is an open neighborhood

U of ū in IRN and a one-to-one mapping Φ of U onto an open set in IRs × IRN−s with

both Φ and Φ−1 continuously differentiable, such that Φ(M ∩ U) is the graph of some

B-differentiable, Lipschitz continuous mapping H : O → IRN−s for an open set O in IRs.

The graph of any B-differentiable, locally Lipschitz continuous mapping G : IRk →
IRl is locally a B-differentiable Lipschitz manifold in IRk+l. So too is the graph of G−1

(generally just a multifunction). Following the same geometric patterns as in the preceding
section, we arrive at the principle that if a multifunction S : IRk →→ IRl is such that gphS

is locally a B-differentiable Lipschitz manifold of dimension s around (w̄, z̄), and if the
multifunction S′ : IRk′ →→ IRl′ is such that gphS′ corresponds to gphS under a one-to-
one transformation which is continuously differentiable in both directions and associates
(w̄, z̄) with (w̄′, z̄′), then gphS′ too is a B-differentiable Lipschitz manifold of dimension
s around (z̄′, w̄′).

Facts analogous to Propositions 2.2 and 2.3 can be stated at once.

10



Proposition 3.2. If the graph of S : IRk →→ IRl is locally a B-differentiable Lipschitz

manifold of dimension s around (w̄, z̄), then the graph of the inverse S−1 : IRl →→ IRk is

likewise locally a B-differentiable Lipschitz manifold of dimension s around (z̄, w̄).

Proposition 3.3. If the graph of S : IRk →→ IRl is locally a B-differentiable Lipschitz

manifold of dimension s around (w̄, z̄), and if the single-valued mapping G : IRk → IRl is

of class C1, then the graph of the multifunction S +G is locally a B-differentiable Lipschitz

manifold of dimension s around
(
w̄, z̄ + G(z̄)

)
.

We wish to take advantage of such geometry in treating various multifunctions that
arise in optimization. For this we are led to a concept of generalized differentiability called
proto-differentiability, which was introduced in [21]. Proto-differentiability is distinguished
from other differentiability notions through its utilization of set convergence of graphs.

Consider any multifunction S : IRk →→ IRl and any pair (w̄, z̄) ∈ gphS. For each t > 0
one can form the difference quotient multifunction

∆tS(w̄|z̄) : ω 7→
[
S(w̄ + tω)− z̄

]/
t for t > 0.

(When z̄ happens to be the sole element of S(w̄), the notation ∆tS(w̄) suffices.) Instead
of asking the difference quotient multifunctions ∆tS(w̄|z̄) to converge in some kind of
pointwise sense as t↘0, proto-differentiability asks that they converge graphically, i.e.,
that their graphs converge as subsets of IRk × IRl to the graph of some multifunction
H : IRk →→ IRl. Then H is the proto-derivative multifunction at w̄ for z̄; the notation
we will use for this multifunction H is DS(w̄|z̄). It associates with each ω ∈ IRk some
(possibly empty) subset of IRl.

The concept of Painlevé-Kuratowski set convergence underlies the formation of these
graphical limits. It refers to a kind of approximation described from two sides as follows.
The inner set limit of a parameterized family of sets {Ct}t>0 in IRN is the set of points
η such that for every sequence tk ↘0 there is a sequence of points ηk ∈ Ctk

with ηk → η.
The outer set limit of the family is the set of points η such that for some sequence tk ↘0
there is a sequence of points ηk ∈ Ctk

with ηk → η. When the inner and outer set limits
coincide, the common set C is the limit as t↘0.

In our framework, this is applied to sets that are the graphs of multifunctions. For a
multifunction S : IRk →→ IRl and any pair (w̄, z̄) in gphS, the graph of the difference quo-
tient mapping ∆tS(w̄|z̄) is t−1

[
gphS − (w̄, z̄)

]
. The multifunction D+S(w̄|z̄) : IRk →→ IRl

having as its graph the outer limit of the sets gph∆tS(w̄|z̄) as t↘0 is called the outer
graphical derivative of S at w̄ for z̄. In parallel, the multifunction D−S(w̄|z̄) : IRk →→ IRl
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having as its graph the inner limit of these sets is the inner graphical derivative. Proto-
differentiability of S at w̄ for z̄ is the case where the outer and inner derivatives agree, the
common mapping being then the proto-derivative: DS(w̄|z̄) = D+S(w̄|z̄) = D−S(w̄|z̄), cf.
Rockafellar [24]. (Again, if z̄ happens to be the only element of S(w̄), the notation can be
simplified to DS(w̄).)

The following result comes from [7] and clarifies the relationship in the single-valued
case between proto-differentiability and B-differentiability.

Proposition 3.4 ([7], Prop. 2.2). Let O be an open neighborhood of a point w̄ ∈ IRk

and consider a single-valued mapping G : O → IRl. Then G is B-differentiable at w̄ if and

only if G is continuous at w̄ and (as a special case of a multifunction that happens to be

single-valued) is proto-differentiable at w̄ with DG(w̄) single-valued, in which event one

has the local expansion

G(w̄ + tω) = G(w̄) + tDG(w̄)(ω) + o
(
t|ω|

)
for t > 0.

When G happens to be Lipschitz continuous around w̄, an even stronger result holds.

Proposition 3.5. In the setting of Proposition 3.4, suppose that G is also Lipschitz con-

tinuous around w̄. Then G is B-differentiable at w̄ if and only if G is proto-differentiable at

w̄, in which event the proto-derivative multifunction reduces to the B-derivative mapping.

Proof. Necessity follows immediately from Proposition 3.4. For sufficiency, we apply
[22] (Theorem 4.3), noting that for the single-valued mapping G local Lipschitz continuity
around w̄ is equivalent to “pseudo-Lipschitz” continuity at w̄ as a multifunction. (In [22],
B-differentiability is equivalent to a property called “semi-differentiability.”)

These results mean that proto-differentiability extends to multifunctions, just in the
manner that might be wished, the notion of one-sided directional differentiability deemed
most appropriate in the sensitivity analysis of single-valued mappings, smooth or non-
smooth. The question of whether a certain mapping is single-valued or not can be dealt
with as a separate issue, which need not be resolved before progress can be made on
quantitative stability of solutions.

Theorem 3.6. For a multifunction S : IRk →→ IRl, let (w̄, z̄) be a point around which

the graph of S is locally a Lipschitz manifold of dimension s. In order that the graph

of S be locally in fact a B-differentiable Lipschitz manifold around (w̄, z̄), it is necessary

and sufficient that, for all (w, z) within some neighborhood of (w̄, z̄) relative to gphS, the

mapping S should be proto-differentiable at w for z.
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Proof. A transformation Φ as in Definitions 2.1 and 3.1 allows us to pass to the framework
where S is replaced by a single-valued Lipschitz continuous mapping G. Then Proposition
3.5 can be brought into play, and the result is immediate.

The route to applying this result to optimality conditions lies in the second-order
variational analysis of subgradient multifunctions and a further form of “amenability.”
Recall that a convex function g : IRm → IR is piecewise linear-quadratic if the set dom g

is polyhedral and can be represented as the union of finitely many polyhedral convex sets,
relative to each of which g has a formula as a polynomial function of degree no more than
2. A function f : IRn → IR is called fully amenable at x̄ if it satisfies the earlier definition
of being strongly amenable at x̄ and does so with the additional condition that the convex
function g in that representation is piecewise linear-quadratic.

Functions f of this type were first studied by Rockafellar [19] for their second-order
“epi-derivatives.” The connection between such generalized second derivatives and proto-
derivatives of the corresponding subgradient multifunctions ∂f was established for convex
functions by Rockafellar [23] and for arbitrary fully amenable functions by Poliquin [9].
The following result was obtained in particular.

Theorem 3.7 ([9]). Suppose that the function f : IRn → IR is fully amenable at x̄, and

let v̄ ∈ ∂f(x̄). Then for all pairs (x, v) in some neighborhood of (x̄, v̄) relative to gph ∂f ,

the subgradient multifunction ∂f is proto-differentiable at x for v.

We can now deduce from this an important geometric property of the graphs of sub-
gradient multifunctions.

Theorem 3.8. If the function f : IRn → IR is fully amenable at x̄, then for any v̄ ∈ ∂f(x̄)
the graph of the subgradient multifunction ∂f : IRn →→ IRn is locally a B-differentiable

Lipschitz manifold around (x̄, v̄).

Proof. It is merely necessary to combine Theorem 3.7 with Theorems 2.6 and 3.6.

There is no need here to discuss the large class of functions that are fully amenable
(see [10]), because attention here is turned toward application to KKT conditions. The
case of indicator functions is therefore the main one to consider.

A set X ⊆ IRn is called fully amenable at one of its points x̄ if the indicator function
δX is fully amenable at x̄.

Corollary 3.9. If a set X ⊆ IRn is fully amenable at x̄, then for any v̄ ∈ NX(x̄) the graph

of the normal cone multifunction NX : IRn →→ IRn is locally a B-differentiable Lipschitz

manifold around (x̄, v̄).
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The operational meaning of full amenability of a set can be elucidated as follows.

Proposition 3.10. A set X ⊆ IRn is fully amenable at one of its points x̄ if and only

if there exists a local representation of X around x̄ by a finite family of C2 constraints

(equations, inequalities or a mixture) such that the Mangasarian-Fromovitz constraint

qualification is satisfied at x̄.

Proof. An indicator function δD is convex and piecewise linear-quadratic if and only if
D is a polyhedral convex set. Through its definition, therefore, full amenability of X at x̄

means the existence of a neighborhood V of x̄ yielding a representation X∩V = G−1(D)∩V

for some polyhedral convex set D and C2 mapping G with the property that no nonzero
vector y ∈ ND

(
G(x̄)

)
has ∇G(x̄)>y = 0. The set D can be expressed by a system of finitely

many linear equations and inequalities, and moreover this can be accomplished in such a
manner that the system satisfies the Mangasarian-Fromovitz constraint qualification at
G(x̄). Namely, we can write D = G−1

0 (D0) for a set D0 of the form IRq
+ × IRr and an

affine mapping G0 with the property that no nonzero vector y0 ∈ ND0

(
G0(G(x̄))

)
has

∇G0(G(x̄))>y0 = 0. Then the local representation X = [G0 ◦ G]−1(D0) corresponds
to a standard system of C2 constraints around x̄ such that the Mangasarian-Fromovitz
constraint qualification is satisfied at x̄.

Proposition 3.11. A polyhedral convex set X ⊆ IRn is fully amenable at all of its points.

Proof. This is obvious from the comment made at the beginning of the proof of the
preceding proposition. The mapping G in the definition of full amenability can in this case
be taken to be the identity.

Our principle geometric result about the KKT multifunction defined in (8) can now
be stated and proved.

Theorem 3.12. Let (x̄, ȳ) ∈ SKKT(ū, v̄, w̄) and suppose the set X is fully amenable at the

point x̄. Suppose also that the cone K is fully amenable at F (w̄, x̄) + ū. Then the graph

of SKKT is locally a B-differentiable Lipschitz manifold of dimension m + n + d around the

point (ū, v̄, w̄; x̄, ȳ).

Proof. The argument closely follows the lines of the one employed for the related result in
Theorem 2.8. We introduce D and G in exactly the same manner as there and use them to
represent the graph of SKKT as in (10). The challenge becomes that of demonstrating that
the graph of ND +G is locally a B-differentiable Lipschitz manifold around (w̄, x̄, ȳ; 0, v̄, ū).
By virtue of Proposition 3.3, this can be accomplished by demonstrating that the graph

14



of ND is locally a B-differentiable Lipschitz manifold around the point

(w̄, x̄, ȳ; 0, v̄′, ū′) for v̄′ = v̄ −∇xf0(w̄, x̄)−∇xF (w̄, x̄)>ȳ, ū′ = F (w̄, x̄) + ū.

The product structure exhibited for the graph of ND in (9) brings this down to verifying
that the graph of NX is a B-differentiable Lipschitz manifold around the point

(
x̄, v̄′),

whereas the graph of NY is such a manifold around
(
ȳ, ū′).

The required property of the graph of NX follows from Corollary 3.9 through the full
amenability assumed for X. The corresponding assumption for K likewise tells us that the
graph of NK is locally a B-differentiable Lipschitz manifold around (ū′, ȳ). But NY = N−1

K

through the polarity between Y and K, so by Proposition 3.2 the graph of NY is locally
a B-differentiable Lipschitz manifold around (ȳ, ū′), as desired.

Corollary 3.13. The conclusion of Theorem 3.12 holds in particular when both X and

K are polyhedral convex sets, or when both X and K can be represented by systems of

finitely many C2 constraints for which the Mangasarian-Fromovitz constraint qualification

is fulfilled at x̄ and F (w̄, x̄) + ū, respectively.

Proof. This specializes to the criteria for full amenability in Propositions 3.10 and 3.11.
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