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1. Introduction

A familiar property of a C2 function f : IRn → IR at any point x̄ ∈ IRn is the symmetry of
the Hessian matrix ∇2f(x̄), which is the Jacobian matrix ∇(∇f)(x̄) associated with the
gradient mapping ∇f : IRn → IRn. What analogous property might hold in the second-
order nonsmooth analysis of functions f : IRn → IR = [−∞,∞] and their subgradient
mappings ∂f : IRn →→ IRn? This question has not previously been asked, but we pose
it here in the framework of graphical derivatives and coderivatives of ∂f and provide an
answer covering a major class of functions f .

Second-order nonsmooth analysis builds on the geometry of tangent and normal cones,
just like first-order nonsmooth analysis. Recall that for a set C ⊂ IRn, the tangent cone
at a point x̄ ∈ C is defined by

TC(x̄) = lim sup
t↘ 0

1
t
[C − x̄],

while the general (unconvexified) normal cone has the expression

NC(x̄) = lim sup
x→C x̄

TC(x)∗

with “x→C x̄” referring to convergence to x̄ within C. The same cone NC(x̄) is generated
if the polar cone TC(x)∗ in this formula is replaced by the proximal normal cone

Np
C(x) =

{
v

∣∣ ∃λ > 0 : PC(x + λv) = x
}
,

where PC : IRn →→ C denotes the projection onto C. (We use “ →→ ” to signal the potential
set-valuedness of a mapping.) A vector v belongs to Np

C(x) if and only if x ∈ C and, for
some λ > 0, one has

〈v, x′ − x〉 ≤ 1
2λ
|x′ − x|2 for all x′ ∈ C.

The subgradient mapping ∂f associates with each point x̄ with f(x̄) finite the set

∂f(x̄) =
{
v

∣∣ (v,−1) ∈ Nepi f

(
x̄, f(x̄)

)}
.

Two notions of “second derivative” of f can be developed out of the tangent and
normal cone geometry of the graph gph ∂f of ∂f in IRn×IRn. For any choice of v̄ ∈ ∂f(x̄)
one can define the graphical derivative mapping D(∂f)(x̄ | v̄) : IRn →→ IRn by

D(∂f)(x̄ | v̄)(w) =
{
z

∣∣ (w, z) ∈ Tgph ∂f (x̄, v̄)
}
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and also the coderivative mapping D∗(∂f)(x̄ | v̄) : IRn →→ IRn by

D∗(∂f)(x̄ | v̄)(w) =
{
z

∣∣ (z,−w) ∈ Ngph ∂f (x̄, v̄)
}
.

Such derivatives and coderivatives make sense with respect to any mapping (possibly set-
valued), and they have already been studied extensively, in particular by Mordukhovich
[1]. But are there special relationships between them in the subgradient setting?

A clue coming from the case of a C2 function f is seen through the reduction of ∂f to
the gradient mapping ∇f , which is single-valued and C1. The notion for derivatives and
coderivatives can be simplified then to D(∇f)(x̄)(w) and D∗(∇f)(x̄)(w), since v̄ = ∇f(x̄)
automatically. It’s easy to see that the mappings D(∇f)(x̄) and D∗(∇f)(x̄) both come out
as the linear transformation corresponding to the Hessian matrix ∇2f(x̄). More generally
for a C1 mapping F with Jacobian ∇F (x̄), DF (x̄) is the linear transformation with matrix
∇F (x̄), whereas D∗F (x̄) is the linear transformation corresponding to ∇F (x̄)∗, the trans-
pose matrix, so this gives the idea of looking at graphical derivatives and coderivatives
more generally for analogs of symmetry.

Beyond the C2 case, one could begin by speculating that the mappings D(∂f)(x̄ | v̄)
and D∗(∂f)(x̄ | v̄) might typically turn out to be the same despite the absence of Hessians.
But simple examples puncture such hopes even for functions f of class C1+ (differentiable
with ∇f locally lipschitzian). For instance, the function f on IR1 with f(x) = 1

2x2 for
x ≥ 0 and f(x) = − 1

2x2 for x ≤ 0, has ∂f(x) = ∇f(x) = f ′(x) = |x| and consequently
D(∂f)(0 |0)(w) = |w| for all w. But D∗(∂f)(0 |0)(w) is

{
z

∣∣ − |w| ≤ z ≤ |w|
}

for w ≥ 0
and {−w,w} for w < 0. Note, however, that although D(∂f)(0 |0)(w) 6= D∗(∂f)(0 |0)(w)
in this example when w 6= 0, one does have D(∂f)(0 |0)(w) ⊂ D∗(∂f)(0 |0)(w) for all w.

Our main goal in this paper is to prove that, in a range of important situations, the
graph of the derivative mapping D(∂f)(x̄ | v̄) is always included within the graph of the
coderivative mapping D∗(∂f)(x̄ | v̄).

Theorem 1.1. Suppose that the function f : IRn → IR is prox-regular and subdifferen-

tially continuous at x̄ for v̄, and that ∂f is proto-differentiable at x̄ for v̄ (these properties

being present for any v̄ ∈ ∂f(x̄) when f is fully amenable at x̄). Then

D(∂f)(x̄ | v̄)(w) ⊂ D∗(∂f)(x̄ | v̄)(w) for all w. (1.1)

The meaning of the terms in this statement is as follows. The function f is subdif-
ferentially continuous at x̄ for v̄ if v̄ ∈ ∂f(x̄) and, whenever xν → x̄ and vν → v̄ with
vν ∈ ∂f(xν), one automatically has f(xν) → f(x̄). (Sequences in this paper are always
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indexed by superscript ν.) On the other hand, f is prox-regular at x̄ for v̄ if v̄ ∈ ∂f(x̄),
the set epi f is closed relative to a neighborhood of

(
x̄, f(x̄)

)
, and there exist ε > 0 and

r > 0 such that, whenever v ∈ ∂f(x) with |x− x̄| < ε and |v − v̄| < ε, one has

f(x′) ≥ f(x) + 〈v, x′ − x〉 − r

2
|x′ − x|2 when |x′ − x| < ε.

These terms were introduced by Poliquin and Rockafellar [2], who noted that the properties
are enjoyed not only by C2 functions and convex functions, but more generally by strongly
amenable functions.

As defined in [3], f is amenable at x̄ if it has a local representation around x̄ as g◦F for
a C1 mapping F : V → IRm on a neighborhood V of x̄ and a proper, lsc, convex function
g : IRm → IR such that no nonzero vector y ∈ Ndom g

(
F (x̄)

)
has ∇F (x̄)∗y = 0. It is

strongly amenable when F is C2 around x̄ rather than just C1, and it is fully amenable if,
in addition, g is piecewise linear-quadratic, i.e., dom g is expressible as a union of finitely
many polyhedral sets, relative to each of which g is given by a polynomial function of
degree at most 2. These functions have a key role in second-order variational analysis and
perturbation theory; see [3], [4], [5], [6].

Also included in the class of functions that are both subdifferentially continuous and
prox-regular are all p.l.n. functions [7], [8] (cf. [2, Proposition 2.2]), and all lower-C2 func-
tions (cf. [2, Example 2.7]), hence in particular all C1+ functions. Indeed, these functions
too are strongly amenable.

The concept of proto-differentiability of general set-valued mappings was introduced
by Rockafellar [9]. The proto-differentiability of ∂f at x̄ for v̄, where v̄ ∈ ∂f(x̄), means
that the graphs of the difference quotient mappings

∆t(∂f)(x̄ | v̄) : w 7→ 1
t

[
∂f(x̄ + tw)− v̄

]
converge as t↘0; in other words, they don’t just have the graph of D(∂f)(x̄ | v̄) as their
“lim sup” (as implied by the definition of that mapping), but as their limit in the sense of
set convergence in IRn× IRn. This property has been shown by Poliquin [10] to hold when
f is fully amenable at x̄. If f is a C1+ function, so that ∂f reduces to ∇f and v̄ = ∇f(x̄),
proto-differentiability is equivalent to ( one-sided) directional differentiability, and for that
matter to the semidifferentiability or B-differentiability of ∇f at x̄.

Corollary 1.2. When f : IRn → IR is strongly amenable at x̄, the inclusion (1.1) holds

for any v̄ ∈ ∂f(x̄) such that ∂f is proto-differentiable at x̄ for v̄. The proto-differentiability

assumption is superfluous when f is fully amenable at x̄, and in that case, moreover,

lim sup
(x,v)→(x̄,v̄)

v ∈ ∂f(x)

gph D(∂f)(x |v) ⊂ gph D∗(∂f)(x̄ | v̄). (1.2)
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Proof. This is clear from the foregoing citations and the fact that when f is fully amenable
at x̄ there exists ε > 0 such that f is fully amenable at every point x with |x − x̄| ≤ ε

and f(x) ≤ f(x̄) + ε. Then the inclusion (1.1) holds also at all points (x, v) ∈ gph ∂f

sufficiently near to (x̄, v̄) (due to subdifferential continuity), and one gets (1.2), since

lim sup
(x,v)→(x̄,v̄)

v ∈ ∂f(x)

gph D∗(∂f)(x |v) ⊂ gph D∗(∂f)(x̄ | v̄)

by the definition of these coderivative graphs via normal cones.

Theorem 1.1 will be proved in Section 3, after we first lay a foundation in Section 2 in
the easier setting of C1+ functions. The need for the proto-differentiability assumption in
Theorem 1.1 will be demonstrated in Section 3 as well. The one-dimensional case, which
goes through with weaker assumptions, will be treated in Section 4.

2. Smooth Functions with Lipschitzian Gradient

As a step along the way toward proving Theorem 1.1, we will demonstrate that the
derivative-coderivative inclusion holds for the gradient mappings ∇f of functions f of class
C1+ under assumptions of directional differentiability. Rather than working with the full
graphical inclusion, we focus on establishing the inclusion D(∇f)(x̄)(w̄) ⊂ D(∇f)∗(x̄)(w̄)
for a single vector w̄. This impels us to assume an enhanced property of directional differ-
entiability at x̄ relative to w̄.

Definition 2.1. Let the single-valued mapping F : IRn → IRn be locally lipschitzian. We

say that F is adequately directionally differentiable at x̄ for w̄ when

(a) limt↘ 0

[
F (x̄ + tw̄)− F (x̄)

]
/t exists and

(b) for some sequence tν ↘0 one has

lim sup
s→0

{
1 + s

s
lim sup

ν→∞

∣∣∣∣F (x̄ + tν(1 + s)w)− F (x̄)
tν(1 + s)

− F (x̄ + tνw)− F (x̄)
tν

∣∣∣∣
}

≤ O(w − w̄)

for a function O : IRn → [0,∞] that is continuous at 0 with O(0) = 0.

In what follows, we denote by IB(a, r) the closed ball of radius r around a.

Proposition 2.2. If there is a neighborhood IB(w̄, r) such that the directional derivative

limt↘ 0

[
F (x̄ + tw) − F (x̄)

]
/t exists for every w ∈ IB(w̄, r), then F is adequately direc-

tionally differentiable at x̄ for w̄. Thus in particular, if F is directionally differentiable at

4



x̄ (in all directions), then, no matter what the choice of w̄, F is adequately directionally

differentiable at x̄ for w̄.

Proof. The upper limit with respect to ν in (b) of the definition is 0 when w ∈ IB(w̄, r),
regardless of the choice of the sequence tν ↘0.

Corollary 2.3. When n = 1, the existence of limt↘ 0

[
F (x̄ + tw̄) − F (x)

]
/t with w̄ 6= 0

already in itself ensures adequate directional differentiability at x̄ for w̄.

Proof. The existence of the limit persists when w̄ is replaced by multiples αw̄ for α > 0,
and because n = 1, such multiples constitute a neighborhood of w̄.

The implication in Proposition 2.2 can’t be reversed: there are cases where F is
adequately directionally differentiable at x̄ for w̄, but there exists r > 0 such that F is not
directionally differentiable at x̄ for any w ∈ IB(w̄, r) that isn’t a multiple of w̄. For example,
this is seen for F : IR2 → IR2 with x̄ = (0, 0), w̄ = (1, 0), and F (x1, x2) =

(
ϕ1(x1)ϕ2(x2), 0

)
when ϕ1 : IR → IR is a C1 function with ϕ1(0) = 1, but ϕ2 : IR → IR is a function with
ϕ2(0) = 0 whose right and left derivatives don’t exist at 0.

Theorem 2.4. Let f : IRn → IR be a C1+ function such that ∇f is adequately direction-

ally differentiable at x̄ for w̄. Then

D(∇f)(x̄)(w̄) ⊂ D(∇f)∗(x̄)(w̄). (2.1)

Corollary 2.5. If f : IRn → IR is a C1+ function such that ∇f is directionally differen-

tiable at x̄, then gph D(∇f)(x̄) ⊂ gph D∗(∇f)(x̄), i.e.,

D(∇f)(x̄)(w) ⊂ D(∇f)∗(x̄)(w) for all w ∈ IRn.

If ∇f is directionally differentiable at all points x in a neighborhood of x̄, then also

lim sup
x→x̄

gph D(∇f)(x) ⊂ gph D∗(∇f)(x̄).

Proof. This combines Theorem 2.4 with Proposition 2.2 and the fact that the “lim sup”
inclusion holds automatically with gph D∗(∇f)(x) in place of gph D(∇f)(x).

The proof of Theorem 2.4 will require two auxiliary facts.

Lemma 2.6. Let Cν and C be nonempty, closed sets such that Cν → C as ν →∞, and

let v̄ ∈ NC(x̄). Then there exist xν ∈ Cν and vν ∈ Np
Cν (xν) with (xν , vν) → (x̄, v̄).

Proof. The pair (x̄, v̄) can be approximated arbitrarily closely by pairs (x, v) with v ∈
Np

C(x), so there is no harm is supposing that v̄ is itself a proximal subgradient, i.e.,
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v̄ ∈ Np
C(x̄). By definition, then, there exists λ > 0 such that x̄ is the unique point of C

nearest to x̄ + λv̄. For each index ν, choose any

xν ∈ PCν (x̄ + λv̄) = argmin
x∈Cν

|x− (x̄ + λv̄)|.

The vector (x̄ + λv̄)− xν belongs then to Np
Cν (xν). Let vν =

[
(x̄ + λv̄)− xν

]
/λ. Then vν

belongs to NCν (xν) as well. By demonstrating that xν → x̄, we will confirm at the same
time that vν → v̄.

Because Cν → C, there exist points x̄ν ∈ Cν with x̄ν → x̄. We have |xν − (x̄ + λv̄)| ≤
|x̄ν − (x̄ + λv̄)|, hence

lim sup
ν→∞

|xν − (x̄ + λv̄)| ≤ lim
ν→∞

|x̄ν − (x̄ + λv̄)| = |x̄− (x̄ + λv̄)| = λ|v̄|.

Thus, the sequence of points xν is bounded, and every cluster point of this sequence lies in
the closed ball of radius λ|v̄| around x̄ + λv̄. But this ball touches C only at x̄. Therefore,
the sequence in question has to converge to x̄.

Lemma 2.7. When f is a function of class C1+, there exists for any ball IB(x̄, r) a constant

ρ > 0 such that the function fρ(x) = f(x) + 1
2ρ|x − x̄|2 is convex on IB(x̄, r). One has

∂fρ(x̄) = ∂f(x̄) and, for any vector v̄ in this subgradient set, also

D(∂fρ)(x̄ | v̄) = D(∂f)(x̄ | v̄) + ρI and D∗(∂fρ)(x̄ | v̄) = D∗(∂f)(x̄ | v̄) + ρI.

Proof. Since ∇f is locally lipschitzian, there exists ρ > 0 such that |∇f(x′)−∇f(x)| ≤
ρ|x′ − x| when x, x′ ∈ IB(x̄, ρ). Then fρ, having ∇fρ(x) = ∇f(x) + ρ(x− x̄), satisfies

〈∇f(x′)−∇f(x), x′ − x〉 ≥ 0 for x, x′ ∈ IB(x̄, ρ).

This guarantees that fρ is convex on IB(x̄, ρ).

We have ∂fρ = ∂f + ρ∇h for the function h(x) = 1
2 |x − x̄|2. For any C1 mapping

F : IRn → IRn with F (x̄) = 0, one has D(∂f+F )(x̄ | v̄)(w) = D(∂f)(x̄ | v̄)(w)+∇F (x)w and
also D∗(∂f +F )(x̄ | v̄)(w) = D∗(∂f)(x̄ | v̄)(w) +∇F (x)∗w by the calculus of Mordukhovich
in [1]. The formulas for D(∂fρ)(x̄ | v̄) and D∗(∂fρ)(x̄ | v̄) are then immediate.

Proof of Theorem 2.4. On the basis of Lemma 2.7, there is no loss of generality in
assuming that f is convex. Let F = ∇f and z̄ ∈ DF (x̄)(w̄). This means that (w̄, z̄) ∈
Tgph F (x̄, v̄) for v̄ = F (x̄). In order to verify (2.1), we have to show that z̄ ∈ D∗F (x̄)(w̄),
or in other words that (z̄,−w̄) ∈ Ngph F (x̄, v̄).
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By hypothesis, the mapping F = ∇f is locally lipschitzian, and conditions (a) and
(b) of Definition 2.1 hold. The lipschitzian property guarantees through (a) that

lim
t↘ 0
w→w̄

F (x̄ + tw)− F (x̄)
t

= lim
t↘ 0

F (x̄ + tw̄)− F (x̄)
t

= z̄. (2.2)

With respect to the sequence tν ↘0 in (b), define the mappings Hν : IRn → IRn by
Hν(w) =

[
F (x̄ + tνw)− F (x̄)

]
/tν , noting that then

Hν = ∇hν for hν(w) =
f(x̄ + tνw)− f(x̄)− tν〈∇f(x̄), w〉

tν 2
,

these functions hν being convex and of class C1+.

Relative to any compact, convex subset of IRn, the mappings Hν are equi-continuous,
in fact equi-lipschitzian with a constant they inherit from F . It follows by application of the
Arzela-Ascoli theorem that some subsequence converges uniformly on all compact subsets
of IRn to a mapping H : IRn → IRn, which itself must be locally lipschitzian. Passing
to such a subsequence if necessary, we can suppose that the whole sequence has this
convergence property. Then in particular the sets Gν = gph Hν converge to G = gph H.
Each Hν , because it’s the gradient mapping for some convex function, is maximal cyclically
monotone; cf. [11]. The same just be true then of H, and this guarantees that H = ∇h

for some convex function h (again from [11]); here h is C1+. We have Hν(0) = 0 for all ν,
hence also H(0) = 0.

By Rademacher’s theorem, the mapping H = ∇h is differentiable almost everywhere.
Hence we can find a sequence of vectors wν → w̄ for which the Jacobian matrices ∇H(wν)
exist. These matrices must be symmetric; this property for a C1+ function h was proved by
Rockafellar and Poliquin [12, Cor. 3.3] (any function of class C1+ is in particular a lower-C2

function). The locally uniform convergence of Hν to H implies that Hν(wν) → H(w̄), and
since Hν(wν) =

[
F (x̄ + tνwν)− F (x̄)

]
/tν we deduce from (2.2) that H(w̄) = z̄.

Our assumption that F has the limit property in (b) of Definition 2.1 can now be put
to use. In terms of the mappings Hν we have(1 + s

s

)∣∣∣∣F (x̄ + tν(1 + s)w)− F (x̄)
tν(1 + s)

− F (x̄ + tνw)− F (x̄)
tν

∣∣∣∣
=

(1 + s

s

)∣∣∣∣Hν
(
[1 + s]w

)
1 + s

−Hν(w)
∣∣∣∣ =

∣∣∣∣Hν(w + sw)−Hν(w)
s

−Hν(w)
∣∣∣∣.

The convergence of Hν to H yields from the limit property in (b) that

lim sup
s→0

∣∣∣∣H(w + sw)−H(w)
s

−H(w)
∣∣∣∣ ≤ O(w − w̄).

7



Applying this at wν , where the expansion H(wν +z) = H(wν)+∇H(wν)z +o(|z|) is valid,
we obtain

lim sup
s→0

∣∣∣∣∇H(wν)wν −
o
(
s|wν |

)
s

−H(wν)
∣∣∣∣ ≤ O(wν − w̄)

and consequently
∣∣∇H(wν)wν −H(wν)

∣∣ ≤ O(wν − w̄), so that

lim
ν→∞

∇H(wν)wν = H(w̄) = z̄. (2.3)

Let zν = H(wν), so that (wν , zν) ∈ G = gph H and (wν , zν) → (w̄, z̄). The tan-
gent cone TG(wν , zν) is the graph of the linear transformation with matrix ∇H(wν);
this is the subspace M of IRn × IRn consisting of all pairs (ω,∇H(wν)ω) as ω ranges
over IRn. The polar cone TG(wν , zν)∗ is the orthogonal subspace M⊥, which consists
of all pairs (−∇H(wν)∗ζ, ζ) as ζ ranges over IRn. But ∇H(wν)∗ = ∇H(wν). Hence
(∇H(wν)wν ,−wν) ∈ TG(wν , zν)∗. In passing to the limit as ν → ∞ and invoking (2.3)
along with the definition of the normal cone NG(w̄, z̄), we see that

(
z̄,−w̄

)
∈ NG

(
w̄, z̄

)
.

Lemma 2.6 now provides us with a sequence of points (w̄ν , z̄ν) ∈ Gν = gph Hν with
(w̄ν , z̄ν) → (w̄, z̄) and proximal normals (ζν ,−ων) ∈ Np

Gν (w̄ν , z̄ν) such that (ζν ,−ων) →
(z̄,−w̄). Here z̄ν = Hν(w̄ν) =

[
F (x̄ + tνw̄ν) − F (x̄)

]
/tν and moreover Gν = gph Hν =

(1/tν)
[

gph F − (x̄, v̄)
]

with v̄ = F (x̄), so that

Np
Gν (w̄ν , z̄ν) = Np

gph F (x̄ + tνw̄ν , v̄ + tν z̄ν) = Np
gph F

(
x̄ + tνw̄ν , F (x̄ + tνw̄ν)

)
.

Because this cone contains (ζν ,−ων), we obtain in the limit as (ζν ,−ων) → (z̄,−w̄) and(
x̄ + tνw̄ν , F (x̄ + tνw̄ν)

)
→

(
x̄, F (x̄)

)
that (z̄,−w̄) ∈ Ngph F (x̄, v̄). This is the conclusion

that we needed.
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3. Extension to Nonsmooth Functions

Although Theorem 2.4 refers only to a special class of smooth functions, its applicability
is actually much wider. This is best seen in the framework of Corollary 2.5. Everything
there can be translated into geometry. The basic inclusion can be put in the form

J
[
Tgph∇f (x̄,∇f(x̄))

]
⊂ Ngph∇f (x̄,∇f(x̄)) for J : (w, z) 7→ (z,−w). (3.1)

The directional differentiability assumption, equivalent to proto-differentiability inasmuch
as ∇f is locally lipschitzian, means that the sets (1/t)

[
gph∇f − (x̄,∇f(x̄))

]
converge

to Tgph∇f (x̄,∇f(x̄)) as t↘0, rather than merely having this cone as their “lim sup.” In
principle, then, we can apply the result to the graph of any subgradient mapping that, by
way of an orthogonal linear transformation L (a linear isometry), can be converted locally
to a portion of gph∇f . Some nonorthogonal transformations L can be utilized as well.

Lemma 3.1. Let G and G′ be subsets of IRn×IRn such that G = L(G′) for a nonsingular

linear transformation L such that L∗JL = J , where J(w, z) = (z,−w). Then

J
[
TG(0, 0)

]
⊂ NG(0, 0) ⇐⇒ J

[
TG′(0, 0)

]
⊂ NG′(0, 0).

Proof. It is elementary from G = L(G′) that TG(0, 0) = L
[
TG′(0, 0)

]
and NG(0, 0) =

(L∗)−1
[
NG′(0, 0)

]
. If J

[
TG(0, 0)

]
⊂ NG(0, 0), we get L∗JL

[
TG′(0, 0)

]
⊂ NG′(0, 0), hence

J
[
TG′(0, 0)

]
⊂ NG′(0, 0) under our assumption about L. The converse implication must

then be valid as well, since G′ = L−1(G) and J−1 = J , so that (L−1)∗JL−1 = J .

Remarkably, the graphs of many subgradient mappings, even for nonconvex functions
with nonconvex domain, can be converted into the graphs of gradient mappings in just such
a manner. This has emerged from the theory of Moreau envelopes as developed recently
by Poliquin and Rockafellar [2].

Proposition 3.2 ([2], Thm. 4.4, Prop. 4.6). Let f : IRn → IR be subdifferentially contin-

uous and prox-regular at x̄ = 0 for v̄ = 0, and also bounded from below by a quadratic

function on IRn. Then for λ > 0 sufficiently small the envelope function

eλf(x) = inf
x′∈IRn

{
f(x′) +

1
2λ
|x′ − x|2

}
is C1+ on a neighborhood of 0 with ∇(eλf)(0) = 0 and, locally around (0, 0), one has

v = ∇(eλf)(x) ⇐⇒ v ∈ ∂f(x− λv).
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This gives us precisely what we need in order to derive our main result. Note that
although the results in Section 2 were formulated for finite functions of class C1+ every-
where on IRn, all that really was involved was this property on a neighborhood of x̄. Thus,
the local character of Proposition 3.2 presents no handicap.

Proof of Theorem 1.1. No loss of generality is incurred in taking x̄ = 0 and v̄ = 0,
since this merely amounts to a translation of the graph of ∂f . We can suppose f to be
lower semicontinuous (since by closing epi f , which in prox-regularity is already closed
locally around

(
x̄, f(x̄)

)
, there is no effect on the subgradients that we are dealing with).

Furthermore, by adding to f the indicator of some compact neighborhood of x̄ = 0 if
necessary, we can make f be bounded from below. Then we are in the framework of
Proposition 3.2.

The last assertion of Proposition 3.2 tells us that the intersection of gph ∂f with
some neighborhood of (0, 0) is mapped onto the intersection of gph∇(eλf) with some
neighborhood of (0, 0) by the linear transformation L with inverse L−1 : (x, v) 7→ (x−λv, v),
namely L : (x′, v) 7→ (x′ + λv, v). The assumed proto-differentiability of ∂f at 0 for 0
translates to the directional differentiability of ∇(eλf) at 0.

It remains only to check that L∗JL = J , because in that case the principle in Lemma
3.1 can be invoked to reach the desired conclusion. In matrix terms, the equation L∗JL = J

comes out as [
I 0
λI I

] [
0 I
−I 0

] [
I λI
0 I

]
=

[
0 I
−I 0

]
.

This matrix equation is correct, as verified by direct multiplication, and the proof is there-
fore complete.

The proto-differentiability assumption in Theorem 1.1 can’t be removed without en-
dangering the derivative-coderivative inclusion. We establish this through an example.

Proposition 3.3. There is a function f that meets all the assumptions of Theorem 1.1, ex-

cept for the proto-differentiability of ∂f at x̄ for v̄, and for which the derivative-coderivative

inclusion (1.1) fails. In fact, there is such a function that is finite, convex and of class C1+.

Proof. We construct an example in stages. First we define two auxiliary functions p, q :
IR → IR in terms of indices i = 1, 2, . . . as follows:

p(t) :=


0 if t ≤ 0 or t ≥ 2−1,

3(t− 2−i−1) if 2−i−1 ≤ t ≤ 3
42−i,

−3(t− 2−i) if 3
42−i ≤ t ≤ 2−i,
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q(t) :=


0 if t ≤ 0 or t ≥ 3

42−4,

2(t− 3
42−4i−4) if 3

42−4i−4 ≤ t ≤ 3
42−4i−3,

− 1
7 (t− 3

42−4i) if 3
42−4i−3 ≤ t ≤ 3

42−4i.

To the right of the origin, these are nonnegative “sawtooth” functions with more and more
teeth as the origin is approached; for p, the slopes alternate between −3 and 3, whereas
for q they alternate between − 1

7 and 2. Farther to the right of the origin, and everywhere
to the left of the origin, both functions vanish. Now we define

f(x1, x2) :=
∫ x1

0

p(t)dt +
∫ x2

0

q(t)dt + δD(x1, x2) with

D :=
{

(x1, x2) ∈ IR2
∣∣ 0 ≤ 7x1 ≤ 8x2 ≤ 9x1

}
.

The convex set D is a “sector” bounded by two rays in the first quadrant of IR2, the slopes
of which are 7

8 and 9
8 . Although f is not convex, the function f0 that is defined in the same

way, but with p(t) and q(t) replaced by the nondecreasing expressions p0(t) = p(t) + 3t

and q0(t) = q(t) + t, is convex; we have f(x1, x2) = f0(x1, x2)− 3
2x2

1−
1
2x2

2, so f is strongly
amenable. (Any function obtained by subtracting a C2 function from a proper, lsc, convex
function is strongly amenable.) The subgradients of f are given by

∂f(x1, x2) =
(
p(x1), q(x2)

)
+ ND(x1, x2), (3.2)

where the normal cone is generated for points (x1, x2) ∈ D by

ND(x1, x2) =


{
s1(7,−8) + s2(−9, 8)

∣∣ s1 ≥ 0, s2 ≥ 0
}

if (x1, x2) = (0, 0),{
s1(7,−8)

∣∣ s1 ≥ 0
}

if 0 < 7x1 = 8x2,{
s2(−9, 8)

∣∣ s2 ≥ 0
}

if 0 < 8x2 = 9x1,
{(0, 0)} if 0 < 7x1 < 8x2 < 9x1.

It is evident from these formulas that (0, 0) ∈ ∂f(0, 0). We will work with x̄ = (0, 0)
and v̄ = (0, 0) to get a counterexample to the inclusion in Theorem 1.1. We begin by
observing that for tν = 3

42−4ν−3 the points (tν , tν) are interior to D with

p(tν) = −3
(

3
42−4ν−3 − 2−4ν−3

)
= tν , q(tν) = 2

(
3
42−4ν−3 − 3

42−4ν−4
)

= tν ,

so that (tν , tν) ∈ ∂f(tν , tν) by (3.2). Thus we have

(1, 1) ∈ 1
tν

[
∂f

(
tν(1, 1)

)
− (0, 0)

]
as tν ↘0,
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and consequently (1, 1) ∈ D(∂f)
(
(0, 0) | (0, 0)

)
(1, 1). We will demonstrate, however, that

(1, 1) /∈ D(∂f)∗
(
(0, 0) | (0, 0)

)
(1, 1), or in other words that

(1, 1,−1,−1) /∈ Ngph ∂f (0, 0, 0, 0). (3.3)

Suppose that (3.3) is false; it will be shown that this is impossible. At elements
(xν

1 , xν
2 , vν

1 , vν
2 ) → (0, 0, 0, 0) in gph ∂f there are proximal normals (zν

1 , zν
2 ,−wν

1 ,−wν
2 ) →

(1, 1,−1,−1). For certain values λν > 0 we have〈
(zν

1 ,zν
2 ,−wν

1 ,−wν
2 ), (x1, x2, v1, v2)− (xν

1 , xν
2 , vν

1 , vν
2 )

〉
≤ 1

2λν

∣∣(x1, x2, v1, v2)− (xν
1 , xν

2 , vν
1 , vν

2 )
∣∣2 for all (x1, x2, v1, v2) ∈ gph ∂f.

(3.4)

In particular, the points (xν
1 , xν

2) belong to the set D.

Let us first of all eliminate the case of infinitely many of these points (xν
1 , xν

2) lying on
the upper edge of D, with 8xν

2 = 9xν
1 ≥ 0. If there were such a subsequence (we may as well

suppose it’s the whole sequence), we could consider any fixed ν and take (x1, x2, v1, v2) =
(xν

1 , xν
2 , vν

1 − 9s, vν
2 + 8s) for arbitrary s > 0; this would satisfy (v1, v2) ∈ ∂f(x1, x2) by

(3.2). Then in (3.4) we would have

−
〈
(wν

1 , wν
2 ), (−9s, 8s)

〉
≤ 1

2λν

∣∣(−9s, 8s)
∣∣2.

Dividing both sides by s and taking the limit as s↘0, we would get 9wν
1 − 8wν

2 ≤ 0. In
passing then to the limit as ν → ∞ with (wν

1 , wν
2 ) → (1, 1), we would obtain 1 ≤ 0, a

contradiction.

In the case of a subsequence lying instead on the lower edge of D, with 7xν
1 = 8xν

2 ≥ 0,
we could similarly take (x1, x2, v1, v2) = (xν

1 , xν
2 , vν

1 + 7s, vν
2 − 8s) for fixed ν and arbitrary

s > 0 to deduce from (3.4) that −7wν
1 + 8wν

2 ≤ 0 and, in the limit, again obtain 1 ≤ 0.

So, let’s assume that the points (xν
1 , xν

2) are interior to D, and (harmlessly too) that
they are near enough to (0, 0) to be in the “sawtooth” intervals for p and q; in other words,
xν

1 < 2−1 and xν
2 < 3

42−4. We have (vν
1 , vν

2 ) =
(
p(xν

1), q(xν
2)

)
then by (3.2).

This time, for arbitrary fixed ν take (x1, x2) = (xν
1 + s, xν

2) in (3.4) for s 6= 0 small
enough that this still belongs to D. Let (v1, v2) =

(
p(xν

1 + s), q(xν
2)

)
, so that (v1, v2) ∈

∂f(x1, x2). Then (3.4) yields

zν
1 s− wν

1

[
p(xν

1 + s)− p(xν
1)

]
≤ 1

2λν

∣∣(s, [p(xν
1 + s)− p(xν

1)]
)∣∣2.

In dividing by s and taking the limit first as s↘0, and second as s↗0, we arrive at the
pair of inequalities

zν
1 − wν

1p′+(xν
1) ≤ 0 and zν

1 − wν
1p′−(xν

1) ≥ 0,
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where p′+(xν
1) and p′−(xν

1) denote the right and left derivatives of p at xν
1 . In the limit as

ν →∞, we have zν
1 → 1, wν

1 → 1 and p′−(xν
1) ≤ zν

1/wν
1 ≤ p′+(xν

1), hence

lim sup
ν→∞

p′−(xν
1) ≤ 1 ≤ lim inf

ν→∞
p′+(xν

1).

But p′+(xν
1) and p′−(xν

1) can only take the values 3 or −3, so we must have p′+(xν
1) = 3 and

p′−(xν
1) = −3 for all ν sufficiently large. This requires xν

1 to correspond to a “lower tooth”
of p; it has to have the form

xν
1 = 2−iν

for some integer iν > 0 when ν is sufficiently large. (3.5)

Returning now to the inequality in (3.4), we temporarily fix ν and let (x1, x2) =
(xν

1 , xν
2 + s) for arbitrary s 6= 0 small enough that this point still belongs to D. We take

(v1, v2) =
(
p(xν

1), q(xν
2 + s)

)
, so that (v1, v2) ∈ ∂f(x1, x2) by (3.2). Since vν

2 = q(xν
2), we

obtain from this case of (3.4) that

zν
2 s− wν

2

[
q(xν

2 + s)− q(xν
2)

]
≤ 1

2λν

∣∣(s, [q(xν
2 + s)− q(xν

2)]
)∣∣2.

In dividing this by s and taking the limit first as s↘0 and second as s↗0, we produce the
inequalities

zν
2 − wν

2q′+(xν
2) ≤ 0 and zν

2 − wν
2q′−(xν

2) ≥ 0.

In taking the limit then as ν →∞ we have zν
2 → 1, wν

2 → 1 and q′−(xν
2) ≤ zν

2/wν
2 ≤ q′+(xν

2),
so that

lim sup
ν→∞

q′−(xν
2) ≤ 1 ≤ lim inf

ν→∞
q′+(xν

2).

Here, the values of q′+(xν
2) and q′−(xν

2) can only be 2 or − 1
7 . Hence q′+(xν

2) = 2 and
q′−(xν

2) = − 1
7 for all ν sufficiently large. Then

xν
2 = 3

42−4jν

for some integer jν > 0 when ν is sufficiently large. (3.6)

But since (xν
1 , xν

2) belongs to the interior of D, we have 7/8 < xν
2/xν

1 < 9/8, which
implies through (3.5) and (3.6) that (7/8)(4/3) < 2−4jν

/2−iν

< (9/8)(4/3), or in other
words that 7/6 < 2iν−4jν

< 3/2 for all ν sufficiently large. This isn’t possible, because no
power of 2 lies in the interval [7/6, 3/2]. The contradiction validates the claims about f .

Knowing that f gives a counterexample to the derivative-coderivative inclusion in
Theorem 1.1 in the absence of proto-differentiability, we know also that the same is true
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for the convex function f0 introduced early in the proof. Indeed, we have ∂f0(x1, x2) =
∂f(x1, x2)− (3x1, x2), so that

D(∂f0)
(
(0, 0) | (0, 0)

)
(w1, w2) = D(∂f)

(
(0, 0) | (0, 0)

)
(w1, w2) + (3w1, w2),

D∗(∂f0)
(
(0, 0) | (0, 0)

)
(w1, w2) = D∗(∂f)

(
(0, 0) | (0, 0)

)
(w1, w2) + (3w1, w2).

A counterexample is given then too by f1 = f0 + δB for any closed ball B centered at
the origin, since such a function f1 has gph ∂f1 agreeing with gph ∂f0 around (0, 0, 0, 0).
Utilizing Lemma 3.1 once more, we see that the envelope function eλf1 for any λ > 0
likewise provides a counterexample. Because f1 is lsc, proper and convex with dom f

bounded, the function eλf1 is finite, convex and of class C1+.

4. The One-Dimensional Case.

The counterexample constructed in the proof of Proposition 3.3 is two-dimensional, and
with good reason. For functions of a single real variable, there is no need for the assumption
of proto-differentiability.

Theorem 4.1. If a function f : IR → IR is prox-regular and subdifferentially continuous

at x̄ for v̄, then

D(∂f)(x̄ | v̄)(w) ⊂ D∗(∂f)(x̄ | v̄)(w) for all w.

In particular this holds for any function f : IR → IR that is C1+ on a neighborhood of x̄;

then ∂f reduces to f ′, and v̄ = f ′(x̄), so the inclusion comes out as

D(f ′)(x̄)(w) ⊂ D∗(f ′)(x̄)(w) for all w.

Proof. In drawing on the technique used to prove Theorem 1.1, we are able to reduce to
the case where f is of class C1+ around x̄. There is nothing to prove if w = 0. The cases
where w > 0 or w < 0 are symmetric, so it’s enough to deal with w > 0. But the mappings
D(f ′)(x̄) and D∗(f ′)(x̄) are positively homogeneous, so we can even just take w = 1. We
consider any z̄ ∈ D(f ′)(x̄)(1) and work toward confirming that z̄ ∈ D∗(f ′)(x̄)(1).

If the right derivative (f ′)′+(x̄) actually existed (in which case the set D(f ′)(x̄)(1)
would be the singleton {z̄}), we would be able to reach our goal immediately by applying
Theorem 2.4 on the basis of the fact in Corollary 2.3. We suppose therefore that

z̄− < z̄+ for z̄− := lim inf
t↘ 0

f ′(x̄ + t)− f ′(x̄)
t

, z̄+ := lim sup
t↘ 0

f ′(x̄ + t)− f ′(x̄)
t

, (4.1)

these values being finite because f ′ is locally lipschitzian around x̄.
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Since z̄ ∈ D(f ′)(x̄)(1), there are wν → 1 and tν ↘0 with
[
f ′(x̄+tνwν)−f ′(x̄)

]
/tν → z̄.

The same limit then holds with wν replaced by 1. Thus,

z̄ = lim
ν→∞

zν for zν :=
f ′(x̄ + tν)− f ′(x̄)

tν
.

Either z̄ > z̄− or z̄ = z̄−, and our argument splits into these two cases.

Case 1: z̄ > z̄−. Without loss of generality, we can suppose also that zν > z̄− for all ν.
Define the auxiliary functions rν : [0, tν ] → IR by rν(t) = zνt−

[
f ′(x̄ + t)− f ′(x̄)

]
. Then

rν(0) = 0 = rν(tν) and

lim sup
t↘ 0

rν(t)
t

= zν − z̄− > 0,

so that rν(t) must be positive for some t ∈ (0, tν). Let sν ∈ argmin
{
rν(t)

∣∣ 0 ≤ t ≤ tν
}

;
then sν → 0. We have rν(t) ≤ rν(sν) for all t ∈ [0, tν ], and therefore

zν [t− sν ]−
[
f ′(x̄ + t)− f ′(x̄ + sν)

]
≤ 0 for all t ∈ [0, tν ].

In terms of x = x̄ + t and xν = x̄ + sν , this says that〈
(zν ,−1), (x, f ′(x))− (xν , f ′(xν))

〉
≤ 0 for all x sufficiently near xν .

Hence (zν ,−1) belongs to the polar of the tangent cone Tgph f ′
(
xν , f(xν)

)
. As ν →∞ we

have
(
xν , f(xν)

)
→

(
x̄, f(x̄)

)
and (zν ,−1) → (z̄,−1) so (z̄,−1) ∈ Ngph f ′

(
x̄, f(x̄)

)
by the

definition of this normal cone. Thus, z̄ ∈ D∗(f ′)(x̄)(1).

Case 2: z̄ = z̄−. On the basis of (4.1) there exists ε > 0 with ε < z̄+ − z̄−. Define the
auxiliary functions rν

ε : [0, tν ] → IR by rν
ε (t) =

[
zν + ε

]
t −

[
f ′(x̄ + t) − f ′(x̄)

]
. This gives

us rν
ε (0) = 0, rε(tν) = εtν > 0, and

lim inf
t↘ 0

rν
ε (t)
t

= zν − z̄+ + ε. (4.2)

Since zν → z̄− and z− − z̄+ + ε < 0, the right side of (4.2) is negative for large ν; we can
suppose this true for all ν. Then each function rν

ε has negative values in every neighborhood
of 0 relative to [0, tν ], in addition to being positive at tν , so the continuity of rν

ε ensures
the existence of tν0 ∈ (0, tν) with rν

ε (tν0) = 0. Select any sν ∈ argmin
{
rν
ε (t)

∣∣ 0 ≤ t ≤ tν0
}

;
then sν → 0. Since rν

ε (t) ≤ rν
ε (sν) for all t ∈ [0, tν0 ], we have

(zν + ε)[t− sν ]−
[
f ′(x̄ + t)− f ′(x̄ + sν)

]
≤ 0 for all t ∈ [0, tν0 ].

Once more setting x = x̄ + t and xν = x̄ + sν , we see that〈
(zν + ε,−1), (x, f ′(x))− (xν , f ′(xν))

〉
≤ 0 for all x sufficiently near xν .
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Hence (zν + ε,−1) belongs to the polar cone Tgph f ′
(
xν , f(xν)

)∗. The same must then
be true for (zν ,−1), because this cone is closed and our argument has worked for any
ε ∈ (0, z̄+− z̄−). Since

(
xν , f(xν)

)
→

(
x̄, f(x̄)

)
and (zν ,−1) → (z̄,−1) as ν →∞, we may

conclude again that (z̄,−1) ∈ Ngph f ′
(
x̄, f(x̄)

)
, and thus that z̄ ∈ D∗(f ′)(x̄)(1).
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