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Abstract

Nonlinear programming problems are analyzed for Lipschitz and
upper-Lipschitz behavior of their solutions and stationary points un-
der general perturbations. Facts from a diversity of sources are put
together to obtain new characterizations of several local stability prop-
erties.

1. INTRODUCTION

In this paper we consider the following nonlinear programming problem
with canonical perturbations:

minimize g0(w, x) + 〈v, x〉 over all x ∈ C(u, w), (1)

where C(u, w) is given by the constraints

gi(w, x)− ui

{
= 0 for i ∈ [1, r],
≤ 0 for i ∈ [r + 1,m],

(2)

for C2 functions gi : IRd × IRn → IR, i = 0, 1, . . . ,m. The vectors w ∈ IRd,
v ∈ IRn and u = (u1, . . . , um) ∈ IRm are parameter elements. Consolidating
them as p = (v, u, w), we denote by X(p) the set of local minimizers of (1)
and refer to the map p 7→ X(p) as the solution map. An element x ∈ X(p)
is isolated if X(p) ∩ U = {x} for some neighborhood U of x. To fit with
this notational picture, we write C(p) for the set of feasible solutions, even
though this only depends on the (u, w) part of p; the map p 7→ C(p) is the
constraint map.

1This work was supported by National Science Foundation grants DMS 9404431 for the
first author and DMS 9500957 for the second.
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In terms of the basic Lagrangian function

L(w, x, y) = g0(w, x) + y1g1(w, x) + · · ·+ ymgm(w, x),

the Karush-Kuhn-Tucker (KKT) system associated with problem (1) has the
form: {

v +∇xL(w, x, y) = 0,
−u +∇yL(w, x, y) ∈ NY (y) for Y = IRr × IRm−r

+ , (3)

where NY (y) is the normal cone to the set Y at the point y. For a given
p = (v, u, w) the set of solutions (x, y) of the KKT system (the set of the
KKT pairs) is denoted by SKKT(p); the map p 7→ SKKT(p) is called the KKT
map. We write XKKT(p) for the set of stationary points; that is, XKKT(p) =
{x | there exists y such that (x, y) ∈ SKKT(p)}; the map p 7→ XKKT(p) is
the stationary point map. The set of Lagrange multiplier vectors associated
with x and p is YKKT(x, p) = {y |(x, y) ∈ SKKT(p)}.

Recall that the Mangasarian-Fromovitz condition holds at (p, x) if y = 0
is the only vector satisfying

y = (y1, y2, . . . , ym) ∈ NK(g1(w, x)− u1, . . . , gm(w, x)− um)
and y1∇xg1(w, x) + · · ·+ ym∇xgm(w, x) = 0,

where K is the convex and closed cone in IRm with elements whose first r
components are zeros and the remaining m− r components are nonpositive
numbers. Under the Mangasarian-Fromovitz condition, the KKT system (3)
represents a necessary condition for a feasible point x for (1) to be locally
optimal, see e.g. [37].

In this paper we study Lipschitz-type properties of the maps SKKT and
XKKT. We complement and unify a number of results scattered in the liter-
ature by putting together facts from a diversity of sources and exploiting the
canonical form of the perturbations in our model (1). In Section 2 we discuss
the robustness of the local upper-Lipschitz property with respect to higher-
order perturbations and give a characterization of a stronger version of this
property for the KKT map SKKT. Section 3 is devoted to the stationary
point map XKKT. In Theorem 3.1 we present a characterization of the local
upper-Lipschitz property of this map by utilizing a condition for its proto-
derivative. Theorem 3.3 complements a known result of Kojima; we prove
that if the map XKKT is locally single-valued and Lipschitz continuous with
its values locally optimal solutions, then both the Mangasarian-Fromovitz
condition and the strong second-order condition hold. The converse is true
under the constant rank condition for the constraints. Further, in the line
of our previous paper [8], we show in Theorem 3.6 that the combination of
the Mangasarian-Fromovitz condition and the Aubin continuity of the map
XKKT is equivalent to the local single-valuedness and Lipschitz continuity
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of this map, provided that the values of XKKT are locally optimal solutions.
In Section 4 we present a sharper version of the characterization of the local
Lipschitz continuity of the solution-multiplier pair obtained in [8].

The literature on stability of nonlinear programming problems is enor-
mous, and even a short survey would be beyond the scope of the present
paper. We refer here to papers that are explicitly related to the results pre-
sented. For recent surveys also on other aspects of the subject, see [4] and
[15].

Throughout we denote by IBa(x) the closed ball with center x and radius
a. The ball IB1(0) is denoted simply by IB. For a (potentially set-valued)
map Γ from IRm to IRn we denote by gph Γ the set {(u, x) |u ∈ IRm, x ∈
Γ(u)}. We associate with any point (u0, v0, w0, x0, y0) ∈ gphSKKT the index
sets I1, I2, I3 in {1, 2, . . . ,m} defined by

I1 = {i ∈ [r + 1,m] | gi(w0, x0)− u0i = 0, y0i > 0} ∪ {1, . . . , r},
I2 = {i ∈ [r + 1,m] | gi(w0, x0)− u0i = 0, y0i = 0},
I3 = {i ∈ [r + 1,m] | gi(w0, x0)− u0i < 0, y0i = 0}.

Recall that the strict Mangasarian-Fromovitz condition holds at a point
(p0, x0) if there is a Lagrange multiplier vector y0 ∈ YKKT(x0, p0) such that:

(a) the vectors ∇xgi(w0, x0) for i ∈ I1 are linearly independent;
(b) there is a vector z ∈ IRn such that

∇xgi(w0, x0)
>
z = 0 for all i ∈ I1

∇xgi(w0, x0)
>
z < 0 for all i ∈ I2.

It is known that the strict Mangasarian-Fromovitz condition holds at (p0, x0)
if and only if there is a unique multiplier vector y0 associated with (p0, x0);
that is, YKKT(x0, p0) = {y0} (cf. Kyparisis [21]).

Let (x0, y0) satisfy the KKT conditions (3) for a given p0 = (v0, u0, w0).
In the notation A = ∇2

xxL(w0, x0, y0), B = ∇2
yxL(w0, x0, y0), the lineariza-

tion of (3) at (u0, v0, w0, x0, y0) is the linear variational inequality:{
v +∇xL(w0, x0, y0) + A(x− x0) + B>(y − y0) = 0,

−u + g(w0, x0) + B(x− x0) ∈ NY (y).
(4)

We denote by LKKT the map assigning to each (u, v) the set of all pairs (x, y)
that solve (4).

2. THE LOCAL UPPER-LIPSCHITZ PROPERTY
Robinson [31] introduced the following definition. The set-valued map

Γ : IRn → IRm is locally upper-Lipschitz at y0 with modulus M if there is a
neighborhood V of y0 such that

Γ(y) ⊂ Γ(y0) + M‖y − y0‖IB for all y ∈ V. (5)
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In [31] he proved that if F : IRn 7→ IRm is a set-valued map whose graph
is a (possibly nonconvex) polyhedron, then F is locally upper-Lipschitz at
every point y in IRn, moreover with a modulus M that is independent of the
choice of y.

The upper-Lipschitz property is not a completely local property of the
graph of a map, so for the sake of investigating stability under local pertur-
bations we work with the following variant.

Definition 2.1. The map Γ : IRn → IRm is locally upper-Lipschitz with
modulus M at a point (y0, x0) in its graph if there exist neighborhoods U of
x0 and V of y0 such that

Γ(y) ∩ U ⊂ {x0}+ M‖y − y0‖IB for all y ∈ V. (6)

The local upper-Lipschitz property at a point (y0, x0) ∈ gphΓ implies
that Γ(y0)∩U = {x0} for some neighborhood U of x0. Conversely, if Γ(y0)∩
U = {x0} for some neighborhood U of x0, then the local upper-Lipschitz
property at y0 in the Robinson’s sense implies the local upper-Lipschitz
property at the point (y0, x0) ∈ gphΓ; and the latter is in turn equivalent
to the local upper-Lipschitz property of Γ ∩U holding at y0 with respect to
some neighborhood U of x0. Note that Γ(y) ∩ U might be empty for some
y near y0. Of course, if Γ is single-valued and locally upper-Lipschitz at
(y0,Γ(y0)), it need not be Lipschitz continuous in a neighborhood of y0.

Bonnans [2] studied a version of the local upper-Lipschitz property in
Definition 2.1 for solution mappings of variational inequalities under the
name “semistability”. Levy [22] called it the “local upper-Lipschitz prop-
erty at y0 for x0.” Pang [27], in the context of the linear complementarity
problem, introduced a stronger property of a map Γ; in addition to the
condition that Γ is locally upper-Lipschitz at the point (y0, x0) in its graph
(Definition 2.1) he also requires that there exist neighborhoods U of x0 and
V of y0 such that

Γ(y) ∩ U 6= ∅ for all y ∈ V.

The latter is equivalent to the openness of the inverse Γ−1 at (x0, y0).
Throughout we call such maps locally nonempty-valued and upper-Lipschitz
at the point in the graph.

We show first that, for maps defined by solutions to generalized equa-
tions, the local upper-Lipschitz property at a point in the graph is “robust
under higher-order perturbations.” Note that the local openness at a point,
and hence the property introduced by Pang, are not robust in this sense.

Let P = IRd× IRm and consider the map Σ from P to the subsets of IRn

defined by

Σ(p) = {x ∈ IRn | y ∈ f(w, x) + F (w, x)} for p = (w, y), (7)
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where f : IRd × IRn → IRm is a function and F : IRd × IRn → IRm is a
possibly set-valued map. Assume that x0 ∈ Σ(p0) for some p0 = (w0, y0) ∈ P
and that the function f(w0, ·) is differentiable at x0 with Jacobian matrix
∇xf(w0, x0). As in (7), consider the map obtained by the linearization of f :

Λ(p) = {x ∈ IRn | y ∈ f(w0, x0) +∇xf(w0, x0)(x− x0) + F (w, x)}. (8)

The following result was established by Dontchev [6] in a more abstract
setting.

Theorem 2.2. Suppose there exist neighborhoods U of x0 and W of w0

along with a constant l such that, for every x ∈ U and w ∈ W ,

‖f(w, x)− f(w0, x)‖ ≤ l‖w − w0‖. (9)

Then the following are equivalent:
(i) Λ is locally upper-Lipschitz at the point (p0, x0) in its graph;
(ii) Σ is locally upper-Lipschitz at the point (p0, x0) in its graph.

We note that a result closely related to the implication (i) ⇒ (ii), but in
a different setting, is proved in Robinson [32], Theorem 4.1. If the map F is
polyhedral and independent of w, we obtain the following fact by combining
Theorem 2.2 with Robinson’s result in [31] mentioned at the beginning of
this section.

Corollary 2.3. Let the assumptions of Theorem 2.2 be fulfilled, and let
F : IRn → IRm be a polyhedral map. Then the following are equivalent:

(i) there exists a neighborhood U of x0 such that

[f(w0, x0) +∇f(w0, x0)(· − x0) + F (·)]−1(y0) ∩ U = {x0};

(ii) The map Σ is locally upper-Lipschitz at the point (p0, x0) in its graph.

Proof. The map Λ = [f(w0, x0)+∇f(w0, x0)(·−x0)+F (·)]−1 is polyhedral,
hence from [31] it is locally upper-Lipschitz in IRm. Then (i) implies that
Λ is locally upper-Lipschitz at the point (y0, x0) in the graph. Applying
Theorem 2.2, Σ is locally upper-Lipschitz at the point (p0, x0) in its graph.
The converse implication follows again from Theorem 2.2.

Bonnans in [2], Theorem 3.1(a), showed that the local upper-Lipschitz
property at a point in the graph of the solution map of a variational inequal-
ity over a polyhedral set is equivalent to the requirement that the reference
point be an isolated solution of the linearized variational inequality. This
conclusion follows immediately from Corollary 2.3. The precise result, spe-
cialized for the KKT system (3) (where NY is a polyhedral set) is as follows.
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Corollary 2.4. The following are equivalent:
(i) (x0, y0) is an isolated point of the set LKKT(p0);
(ii) The map SKKT is locally upper-Lipschitz at (p0, x0, y0) ∈ gphSKKT.

We note that Corollary 2.4 can be also deduced by the characterization of
the local upper-Lipschitz property at a point in the graph of a map in terms
of its graphical derivative, see Section 3 for an application of this result to
the stationary point map.

Recall that a set-valued map Γ from IRm to the subsets of IRn has the
Aubin property2 at (y0, x0) ∈ gphΓ with constant M if there exist neighbor-
hoods U of x0 and V of y0 such that

Γ(y1) ∩ U ⊂ Γ(y2) + M‖y1 − y2‖IB for all y1, y2 ∈ V.

The following lemma is a particular case of Theorem 1 of Klatte [14],
see also Theorem 4.3 in Robinson [33]; for completeness we present a short
proof.

Lemma 2.5. Suppose x0 is an isolated local minimizer of (1) for p = p0,
and let the Mangasarian-Fromovitz condition hold at (p0, x0). Then the map
X is lower semicontinuous at (p0, x0); that is, for every neighborhood U of
x0 there exists a neighborhood V of p0 such that for every p ∈ V the set
X(p) ∩ U is nonempty.

Proof. The constraint map C defined by (2) has the Aubin property at
(w0, u0, x0) if and only if the Mangasarian-Fromovitz condition holds at
(w0, u0, x0), see e.g., [26], Corollary 4.5. Let a, b and γ be the constants in the
definition of the Aubin property of the map C; that is, for p1, p2 ∈ IBb(p0),

C(p1) ∩ IBa(x0) ⊂ C(p2) + γ(‖p1 − p2‖)IB.

Let U be an arbitrary neighborhood of x0. Choose α ∈ (0, a) in such a
way that x0 is the unique minimizer in IBα(x0) of (1) with p = p0 and
IBα(x0) ⊂ U .

For this fixed α and for p ∈ IBb(p0) consider the map

p 7→ Cα(p) = {x ∈ C(p) | ‖x− x0‖ ≤ α + γ‖p− p0‖}.

It is clear that the map Cα is upper semicontinuous at p = p0. Let us
show that it is lower semicontinuous at p = p0 as well. Take x ∈ Cα(p0) =
C(p0) ∩ IBα(x0). From the Aubin property of the map C, for any p near p0

there exists xp ∈ C(p) such that ‖xp − x‖ ≤ γ‖p − p0‖. Then ‖xp − x0‖ ≤
‖xp − x‖ + ‖x − x0‖ ≤ α + γ‖p − p0‖. Thus xp ∈ Cα(p) and xp → x as
p → p0. Hence Cα is lower semicontinuous at p = p0.

2In [1], J.-P. Aubin used the name “pseudo-Lipschitz continuity”. Following [8], we
prefer to call this concept the Aubin property.
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The problem

minimize g0(w, x) + 〈x, v〉 in x subject to x ∈ Cα(p) (10)

has a solution for every p near p0, because Cα(p) is nonempty and compact.
Moreover, because of the choice of α, x0 is the unique minimizer of this
problem for p = p0. From the Berge theorem (see e.g. Chapter 9, Theorem
3, in [9]), the solution map Xα giving the argmin in (10) is upper semicon-
tinuous at p = p0; in other words, for any δ > 0 there exists η ∈ (0, b) such
that for any p ∈ IBη(p0) the set of (global) minimizers of (10) is nonempty
and included within IBδ(x0). Since Xα(p0) = {x0}, the map Xα is actu-
ally continuous at p0. Let δ′ be such that 0 < δ′ < α. Then there exists
η′ > 0 such that for every p ∈ IBη′(p0) any solution x ∈ Xα(p) satisfies
‖x − x0‖ ≤ δ′ < α + γ‖p − p0‖. Hence for p ∈ IBη′(p0) the constraint
‖x − x0‖ ≤ α + γ‖p − p0‖ is inactive in the problem (10). Then for every
p ∈ IBη′(p0) we have Xα(p) ⊂ X(p) ∩ IBδ′(x0). The proof is now complete.

Recall that the second-order sufficient condition holds at (p0, x0, y0) ∈
gphSKKT if

〈x′,∇2
xxL(w0, x0, y0)x′〉 > 0 for all x′ 6= 0 in the cone

D = {x′ |∇xgi(w0, x0)x′ = 0 for i ∈ I1, ∇xgi(w0, x0)x′ ≤ 0 for i ∈ I2}.

Theorem 2.6. The following are equivalent:
(i) The map SKKT is upper-Lipschitz at the point (p0, x0, y0) in its graph

and is locally nonempty-valued there, and x0 is a locally optimal solution to
problem (1) for p0;

(ii) The strict Mangasarian-Fromovitz condition and the second-order suf-
ficient condition for local optimality hold for (p0, x0, y0).

Proof. Suppose that (i) holds. Then y0 is an isolated point in YKKT(x0, p0).
Noting that YKKT(x0, p0) is convex, we get YKKT(x0, p0) = {y0}. Hence the
strict Mangasarian-Fromovitz condition holds, see [21] for instance. Further,
from Corollary 2.4, there is no (x, y) close to (x0, y0) such that (x, y) ∈
LKKT(p0). Without loss of generality, suppose that I1 = {1, 2, . . . ,m1}
and I2 = {m1 + 1, . . . ,m2} and denote by B1, B2 the submatrices of B
corresponding to the indices I1, I2, respectively. Then the vector (x, y) =
(0, 0) is an isolated solution of the variational system

Ax + B
>
y = 0,

B1x = 0,

B2x ≤ 0, yi ≥ 0, yi(Bx)i = 0 for i ∈ [m1 + 1,m2]. (11)
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Note that there is no restriction here on the sign of yi for i ∈ I1, since y0i > 0
for i ∈ I1. As a matter of fact, (0, 0) is the unique solution to (11), because
the set of solutions to (11) is a cone. Applying the second-order necessary
condition for local optimality of x0 we get

〈x′, Ax′〉 ≥ 0 for all x′ 6= 0 in D.

All we need is to show that this inequality is >. Suppose to the contrary
that there exists a nonzero vector x′ ∈ D with Ax′ = 0. Then the nonzero
vector (x′, 0) is a solution to (11), a contradiction.

If (ii) holds, then it is known that x0 is an isolated local solution of (1)
for p = p0 and y0 is the corresponding unique multiplier vector. Suppose
that the index set I1 associated with (p0, x0) is nonempty and U and W are
neighborhoods of x0 and w0 respectively such that the vectors ∇xgi(w, x)
for i ∈ I1 are linearly independent for all x ∈ U and w ∈ W. From Lemma
2.5, X(p)∩U 6= ∅ for p near p0. Then for all p near p0 and x(p) ∈ X(p) near
x0 there exist yi(p) for i ∈ I1 which are close to the values y0i for i ∈ I1 and
such that

v +∇xg0(w, x(p)) +
∑
i∈I1

yi(p)∇xgi(w, x(p)) = 0.

Note that yi(p) > 0 for all i ∈ I1. Taking yi(p) = 0 for i ∈ I2 ∪ I3, we
obtain that the vector y(p) = (y1(p), . . . , ym(p)) is a Lagrange multiplier for
the perturbed problem which is close to y0. Hence, if U is a neighborhood
of (x0, y0) and p is sufficiently close to p0, then SKKT(p) ∩ U 6= ∅.

If I1 = ∅, then y0 = 0 = YKKT(x0, p0). From Lemma 2.5, X(p)∩U 6= ∅ for
any neighborhood U of x0 provided that p is sufficiently close to p0. Further,
the Mangasarian-Fromovitz condition yields that for p near p0 and x near
x0 the set of Lagrange multipliers YKKT(x, p) is nonempty and contained
in a bounded set, see e.g. Theorem 2.3 in [32]. Suppose that there exist
α > 0, a sequence pk → p0 and a sequence xk → x0 such that ‖y‖ ≥ α
for all y ∈ YKKT(xk, pk), k = 1, 2, . . .. Take a sequence yk ∈ YKKT(xk, pk);
this sequence is bounded, hence it has an accumulation point, say ȳ, and
then ȳ 6= 0. Passing to the limit with k in the KKT system we obtain
that ȳ ∈ YKKT(x0, p0) which means that YKKT(x0, p0) is not a singleton.
This contradicts the strict Mangasarian-Fromovitz condition. Hence, for
any neighborhood Y of y0 = 0, YKKT(x, p) ∩ Y 6= ∅ when p is sufficiently
close to p0 and x ∈ X(p) is sufficiently close to x0. Thus, for a neighborhood
U of (x0, y0) and for p close to p0, SKKT(p) ∩ U 6= ∅ also in this case.

Assume that the map SKKT is not locally upper-Lipschitz at the point
(p0, x0, y0) in its graph. Then, from Corollary 2.4, the system (11) has a
nonzero solution (x′, y′) and this solution can be taken as close to (0, 0) as
desired. With a slight abuse of the notation, suppose that y′ ∈ IRm with
y′i = 0 for i ∈ I3. If x′ = 0, then y′ 6= 0. Note that if y′i 6= 0 for some i ∈ I2,
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then y′i > 0. Since y0i > 0 for i ∈ I1, and y′ is close to zero, the vector
y0 + y′ is a Lagrange multiplier for x0 and p0. This contradicts the strict
Mangasarian-Fromovitz condition. Hence x′ 6= 0. But x′ ∈ D. Multiplying
the first equality in (11) by x′, we obtain 〈x′, Ax′〉 = 0, a contradiction. This
proves the theorem.

Theorem 2.6 can be also derived by combining the equivalence between
the strict Mangasarian-Fromovitz condition and the uniqueness of the La-
grange multiplier with Proposition 6.2 of Bonnans [2], where it is assumed
that (x0, y0) is an isolated solution of (3) and x0 is a local solution to (1)
for p = p0, and then it is shown that the local upper-Lipschitz property of
SKKT at (p0, x0, y0) is equivalent to the second-order sufficient condition at
(p0, y0, x0). In a different setting, Pang [28] considered the KKT system for a
variational inequality and proved (roughly speaking, see Theorem 5 in [28])
that under the strict Mangasarian-Fromovitz condition and a second-order
necessary optimality condition, the map SKKT is locally nonempty-valued
and upper-Lipschitz at the point in its graph if and only if the second-order
sufficient optimality condition holds. For results relating upper-Lipschitz
properties of local minimizers to growth conditions for the objective func-
tion, see Klatte [15].

3. THE STATIONARY POINT MAP
One can get a characterization of the local upper-Lipschitz property at a

point of the stationary point map XKKT in terms of the proto-derivative of
this map by combining results from Levy [22] and Levy and Rockafellar [24].
Namely, it was shown in King and Rockafellar [13], Proposition 2.1, and Levy
[22], Proposition 4.1, that a map has the local upper-Lipschitz property at a
point in its graph if and only if its graphical (contingent) derivative at that
point has image {0} at 0. In our case the graphical derivative is actually the
proto-derivative of XKKT, a formula for which is given in Theorems 3.1 and
3.2 of Levy and Rockafellar [24] (cf. also Theorem 5.1 in Levy [22]).

Theorem 3.1. Let x0 ∈ XKKT(p0), p0 = (v0, u0, w0), be such that the
Mangasarian-Fromovitz condition is fulfilled. Then the following condition
is necessary and sufficient for the map XKKT to be locally upper-Lipschitz
at (p0, x0): there exists no vector x′ 6= 0 which for some choice of

y0 ∈ argmax
{
〈x′,∇2

xxL(w0, x0, y)x′〉
∣∣∣ y with (x0, y) ∈ SKKT(p0)

}
satisfies the KKT conditions for the subproblem having objective function
h0(x′) = 〈x′,∇2

xxL(w0, x0, y0)x′〉 and constraint system
〈∇xg0(w0, x0)− v0, x

′〉 = 0,
〈∇xgi(w0, x0), x′〉 = 0 for i ∈ [1, r],
〈∇xgi(w0, x0), x′〉 ≤ 0 for i ∈ [r + 1,m] with gi(w0, x0)− u0i = 0.
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Proof. According to the cited Theorems 3.1 and 3.2 of Levy and Rockafellar
[24] as specialized to this situation, the vectors x′ that satisfy the KKT con-
ditions for one of the subproblems in question form the image of 0 under the
proto-derivative mapping associated with XKKT at (p0, x0). (The first of the
cited theorems establishes the proto-differentiability.) Applying Proposition
2.1 of King and Rockafellar [13], we see that the nonexistence of a vector
x′ 6= 0 in this set is equivalent to the property we wish to characterize.

On the basis of our Lemma 2.5 and Theorem 3.1 we now are able to get
the following.

Corollary 3.2. Let x0 be an isolated local minimizer of (1) for p0 =
(v0, u0, w0). Suppose that the Mangasarian-Fromovitz condition holds for
(p0, x0), and let the condition in Theorem 3.1 hold as well. Then the so-
lution map X of (1) is locally nonempty-valued and upper-Lipschitz at the
point (p0, x0).

Note that both the local optimality of x0 and the condition in Theorem
3.1 are satisfied if the second-order sufficient condition holds at (p0, x0, y0)
for every choice of a Lagrange multiplier vector y0. Under this stronger form
of the second-order sufficient condition, the property of the solution map X
obtained in Corollary 3.2 can be derived by combining Theorem 3.2 and
Corollary 4.3 of Robinson [32]; for more recent results in this direction see
[3], [16], [36] and [38].

Recall that a map Σ from IRm to the subsets of IRn with (y0, x0) ∈
gphΣ is locally single-valued and (Lipschitz) continuous around (y0, x0) if
there exist neighborhoods U of x0 and V of y0 such that the map y 7→
Σ(y) ∩ U is single-valued and (Lipschitz) continuous on V . Our next result
is related to Theorem 7.2 in Kojima [18]. Kojima showed that, under the
Mangasarian-Fromovitz condition and for C2 perturbations of the functions
in the problem, as long as the reference point is a local minimizer, the
stationary point map is locally single-valued and continuous if and only if
the strong second-order sufficient condition holds. Note that for the case
when the perturbations are represented by parameters, the continuity of
the stationary point map does not imply the strong second-order condition
(consider the example of minx {x4 + vx |x ∈ IR}, v ∈ IR).

The theorem below complements the “only if” part of Kojima’s theo-
rem in the following way: we use a narrower class of perturbations repre-
sented by parameters in canonical form and show that a stronger condition,
namely of the stationary point map being locally single-valued and Lips-
chitz continuous with its values locally optimal solutions, implies both the
Mangasarian-Fromovitz condition and the strong second-order condition for
local optimality.

Theorem 3.3. Suppose that x0 ∈ XKKT(p0), p0 = (v0, u0, w0) and assume
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that the stationary point map XKKT is locally single-valued and Lipschitz
continuous around (p0, x0), moreover with the property that for all (p, x) ∈
gphXKKT, p = (v, u, w) in some neighborhood of (p0, x0), x is a locally
optimal solution to the nonlinear programming problem (1) for p. Then the
following conditions hold:

(i) The Mangasarian-Fromovitz condition holds at (p0, x0);
(ii) The strong second-order sufficient condition for local optimality holds

at (p0, x0); that is, for every y0 ∈ YKKT(x0, p0), if I1 is the set of indices with
positive y0i, then

〈x′,∇2
xxL(w0, x0, y0)x′〉 > 0 for all x′ 6= 0 (12)

in the subspace M = {x′ ∈ IRn |x′ ⊥ ∇xgi(w0, x0) for all i ∈ I1}.

In the proof of the theorem we use the following general result from [6].
Let Γ be a set-valued map from IRn to the subsets of IRm and let x0 ∈ Γ(y0).
The function s : Y → X is said to be a local selection of Γ around (y0, x0)
if x0 = s(y0) and there exists a neighborhood V of y0 such that s(y) ∈ Γ(y)
for all y ∈ V .

Let us consider the maps Σ and Λ defined in (7) and (8) under the
following two conditions:

(A) f is differentiable with respect to x with Jacobian matrix ∇xf(w, x)
depending continuously on (w, x) in a neighborhood of (w0, x0);

(B) f is Lipschitz continuous in w uniformly in x around (w0, x0); that
is, there exist neighborhoods U of x0 and V of w0 and a number l > 0 such
that ‖f(w1, x)− f(w2, x)‖ ≤ l‖w1 − w2‖ for all x ∈ U and w1, w2 ∈ V .

The following result, proved in Dontchev [6], Theorem 4.1 (see also [7],
Theorem 2.4) shows that, similarly to the local upper-Lipschitz property
(and also to the Aubin property, see [6], Theorem 2.4) the existence of a
Lipschitz continuous local selection is robust under (non)linearization:

Theorem 3.4. Consider the maps Σ and Λ defined in (7) and (8) respec-
tively, let x0 ∈ Σ(p0) for some p0 = (w0, y0) ∈ P and let the conditions (A)
and (B) hold. Then the following are equivalent:

(i) Λ has a Lipschitz continuous local selection around (p0, x0);
(ii) Σ has a Lipschitz continuous local selection around (p0, x0).

Proof of Theorem 3.3. The assumption that the stationary point map
XKKT is locally single-valued and Lipschitz continuous in x around (p0, x0)
implies that the feasible map p 7→ C(p) has a Lipschitz continuous local
selection around (p0, x0). Then, from Theorem 3.4 it follows that for every
u near u0 there exists a solution of the linearized system of constraints,

−ui + gi(w0, x0) +∇xgi(w0, x0)(x− x0) ∈ K (13)
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where K, as in the introduction, denotes the convex and closed cone in
IRm of vectors whose first r components are zeros and the remaining m− r
components are nonpositive numbers. The map T : IRn 7→ IRm, defined as

x 7→ T (x) := u0 − g(w0, x0)−∇xg(w0, x0)(x− x0) +K,

has convex and closed graph and the condition (13) means that 0 ∈ IRm

is in the interior of the range of T . Then we can apply the Robinson-
Ursescu theorem, see e.g. [6], Theorem 2.2, obtaining that the constraint
map C is Aubin continuous at (w0, u0, x0); the latter is in turn equivalent
to the Mangasarian-Fromovitz condition. Thus (i) is established. Note that
in obtaining (i) the only condition we use is that XKKT has a Lipschitz
continuous local selection. Actually, it is sufficient to assume that XKKT has
a set-valued local selection which is Aubin continuous.

Let us prove (ii). It is known that, under the Mangasarian-Fromovitz
condition, the set YKKT(x0, p0) is a nonempty polyhedron, and moreover, if
y0 is any extreme point of YKKT(x0, p0) and if Ii for i = 1, 2, 3, are the sets
of indices associated with (p0, x0, y0), then the gradients ∇xg(x0, w0), i ∈ I1,
must be linearly independent. Consider the variational system (3) with the
following value of the parameter vector p = (v, u, w) denoted by pε: v = v0,
ui = u0i for i ∈ I1 ∪ I3, ui = u0i + ε for i ∈ I2, and w = w0, where ε is a
positive number. For a sufficiently small ε > 0 there exist neighborhoods V
of pε and U of x0 such that for every p ∈ V the set XKKT(p)∩U is a singleton
and the map p 7→ XKKT(p)∩U is Lipschitz continuous in V . Choose U and
V smaller, if necessary, so if p ∈ V and x ∈ U , one has −ui +gi(w, x) < 0 for
i ∈ I2∪I3; moreover the vectors ∇xgi(w, x), i ∈ I1, are linearly independent,
and if yi, i ∈ I1, satisfy

v +∇xg0(w, x) +
∑
i∈I1

yi∇xgi(w, x) = 0, (14)

then yi > 0 for i ∈ I1 (the latter being true by the linear independence of
the vectors ∇xgi(w, x) for i ∈ I1 and the fact that y0i > 0 for i ∈ I1).

If p ∈ V and x ∈ XKKT(p) ∩ U , then every associated multiplier vector
y for (3) must satisfy yi = 0 for i ∈ I2 ∪ I3; furthermore, yi for i ∈ I1 must
satisfy (14), so that yi > 0 for i ∈ I1. Denoting by W a neighborhood of y0

such that yi > 0 for i ∈ I1 whenever y ∈ W , we obtain that (x, y) ∈ U ×W
is a solution of the variational system:

v +∇xg0(w, x) +
∑

i∈I1
yi∇xgi(w, x) = 0,

−ui + gi(w, x) = 0, for i ∈ I1,

−ui + gi(w, x) ≤ 0, yi = 0 for i ∈ I2 ∪ I3. (15)

Further, if (x, y) ∈ U × W is a solution of (15) for some p ∈ V , then
x ∈ XKKT(p) ∩ U and, because of the linear independence of ∇xgi(w, x)
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for i ∈ I1, y is uniquely defined and the function p 7→ y(p) is Lipschitz
continuous in V . Thus, the solution map of (15) is locally single-valued and
Lipschitz continuous around (pε, x0, y0). Observe that (x0, y0) is a locally
unique solution of (15) and x0 is a locally optimal solution of (1), both for
p = pε. In particular, the map p 7→ (x(p), y(p)) is locally nonempty-valued
and upper-Lipschitz at the point (pε, x0, y0). From Theorem 2.6 it follows
that the second-order sufficient condition holds at (pε, x0, y0). Noting that
the set I2 associated with (pε, x0, y0) is empty, and ∇2

xxL does not depend
on ε and is affine in y, we see that (12) holds for every y0 ∈ YKKT(x0, p0).

Observe that, from the above proof, Theorem 3.3 remains valid for a
smaller class of perturbations p = (v, u, w) where w = w0 is kept constant.

As indicated by a counterexample of Robinson [32], the statement con-
verse to Theorem 3.3 is false, in general. It has been noted recently, see Liu
[25] and Ralph and Dempe [29], that, under the constant rank condition for
the set of constraints at the reference point, the converse statement holds;
that is the combination of the Mangasarian-Fromovitz condition and the
strong second-order sufficient condition implies that both the solution map
and the stationary point map are locally single-valued and Lipschitz contin-
uous (and B-differentiable). Recall that the set of constraints (2) satisfies
the constant rank condition if there exists a neighborhood W of (w0, x0) such
that for every I ⊂ I1 ∪ I2, rank{∇xgi(w, x) | i ∈ I} is constant for every
(w, x) ∈ W. By combining the above mentioned result with Theorem 3.3
we obtain the following characterization of the Lipschitzian stability of the
stationary point map:

Corollary 3.5. Suppose that x0 ∈ XKKT(p0) and the constant rank condi-
tion holds. Then the following are equivalent:

(i) The stationary point map XKKT is locally single-valued and Lipschitz
continuous around (p0, x0), moreover with the property that for all (p, x) ∈
gphXKKT in some neighborhood of (p0, x0), x is a locally optimal solution
to the nonlinear programming problem (1) for p;

(ii) The Mangasarian-Fromovitz condition and the strong second-order
sufficient condition for local optimality (12) hold for (p0, x0).

In our previous paper [8] we proved that if the solution map, say Σ, of a
variational inequality over a convex polyhedral set has the Aubin property
at (y0, x0) ∈ gphΣ, it must be locally single-valued and Lipschitz continuous
around (y0, x0) (for more recent related results see [11] and [23]). In particu-
lar, if the KKT map SKKT has the Aubin property, it is locally single-valued
and Lipschitz continuous. Here we present an analogue of this result for the
stationary point map XKKT, but under the additional assumptions that the
values of this map are locally optimal solutions.
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Theorem 3.6. Let (p0, x0) ∈ gphXKKT, p0 = (v0, u0, w0), and suppose
that if (p, x) ∈ gphXKKT in some neighborhood of (p0, x0) then x is a locally
optimal solution to (1) for p, that is (p, x) ∈ gphX. Then the following are
equivalent:

(i) The Mangasarian-Fromovitz condition holds for (p0, x0) and the map
XKKT is Aubin continuous at (p0, x0);

(ii) The map XKKT is locally single-valued and Lipschitz continuous around
(p0, x0).

Proof. The implication (ii) ⇒ (i) follows from Theorem 3.3 (note that
the local optimality is not needed in this direction). If we prove that (i)
implies the strong second-order condition for local optimality (12), then
from Theorem 7.2 in Kojima [18] it follows that the map XKKT is locally
single-valued and continuous, hence Lipschitz continuous, and we obtain (ii).

Invoking the argument given in the proof of Theorem 3.3, we choose an
extreme point y0 of YKKT(x0, p0) and consider the KKT system (3) for p =
(v, u, w) in a neighborhood of the value pε whose components are: v = v0,
ui = u0i for i ∈ I1∪ I3, ui = u0i + ε for i ∈ I2, and w = w0. For a sufficiently
small ε > 0 the map XKKT is Aubin continuous at (pε, x0), by the very
definition of the Aubin continuity at (p0, x0). Choose neighborhoods V of pε

and U of x0 such that for every p ∈ V and x ∈ U , one has −ui + gi(w, x) <
0 for i ∈ I2 ∪ I3; moreover the vectors ∇xgi(w, x), i ∈ I1, are linearly
independent, and if yi, i ∈ I1, satisfy (14), then yi > 0 for i ∈ I1. From
the definition of the Aubin continuity one can find neighborhoods U ′ ⊂ U
of x0 and V ′ ⊂ V of pε such that if p′, p′′ ∈ V ′ and x′ ∈ XKKT(p′)∩U ′, then
there exists x′′ ∈ XKKT(p′′) with ‖x′′ − x′‖ ≤ M‖p′ − p′′‖; moreover, U ′ and
V ′ can be chosen so small that x′′ ∈ U for every choice of p′, p′′ ∈ V ′ and
x′ ∈ U ′. Denoting by W a neighborhood of y0 such that y0i > 0 for i ∈ I1,
let (x′, y′) ∈ U ′ × W be a KKT point for (1) for p′, that is, (x′, y′) solves
(3) for p′. Then (x′, y′) must satisfy the system (15) for p′ and the Lagrange
multiplier y′ is unique, from the linear independence of ∇xgi(w′, x′), i ∈ I1.
Let x′′ ∈ XKKT(p′′) be such that ‖x′′ − x′‖ ≤ M‖p′ − p′′‖, and let y′′ be an
associate Lagrange multiplier. Then, from the choice of the neighborhoods
U ′ and V ′, y′′ must satisfy (15) and then y′′i > 0 for i ∈ I1 and y′′i = 0
for i ∈ I2 ∪ I3. Further, since y′, y′′ satisfy (14) for (p′, x′) and (p,′′ x′′),
respectively, and because of the linear independence of ∇xgi(w, x), i ∈ I1 for
p ∈ V ′, x ∈ U ′, there exists a constant c > 0 such that

‖y′′ − y′‖ ≤ c(‖x′′ − x′‖+ ‖p′′ − p′‖) ≤ c(M + 1)‖p′′ − p′‖.

This means that the KKT map SKKT of the problem (1) is Aubin continuous
at (pε, x0, y0).

Applying the characterization of the Aubin property from Theorem 5 in
[8] with I ′1 = I1, I

′
3 = I2 ∪ I3, see Theorem 4.1 in the following section, we
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obtain that

〈x′,∇2
xxL(w0, x0, y0)x′〉 6= 0 for all x′ 6= 0, x ∈ M. (16)

Since every y0 ∈ YKKT(x0, p0) can be represented as a convex combination
of the extreme points of YKKT(x0, p0) and ∇2

xxL is affine in y, we get (16)
for every choice of the Lagrange multiplier y0. Taking into account the
second-order necessary conditions for local optimality of x0 for (1) with pε,
we complete the proof.

4. STRONG REGULARITY

In Robinson’s terminology [30], the KKT system (3) is strongly regular
if the map LKKT defined by the linearization (4) of the KKT system (3) is
locally single-valued and Lipschitz continuous around (q0, x0), q0 = (v0, u0).
In [30] it is proved that if the KKT system (3) is strongly regular, then the
KKT map SKKT is locally single-valued and Lipschitz continuous; moreover,
for the problem (1), the strong second-order sufficient condition for local
optimality together with the linear independence of the gradients of the
active constraints implies the strong regularity.

From the result in [8] mentioned in the preceding section it follows that
the map SKKT has the Aubin property if and only if this map is locally single-
valued and Lipschitz continuous. In [8] we obtained a characterization of the
strong regularity in a form of a “critical face condition.” The precise result
is as follows.

Theorem 4.1 ([8], Theorem 5). The KKT system (3) is strongly regular
for (p0, x0, y0), p0 = (v0, u0, w0) if and only if the following two requirements
are fulfilled:

(a) The vectors ∇xgi(w0, x0) for i ∈ I1 ∪ I2 are linearly independent;
(b) For each partition of {1, 2, . . . ,m} into index sets I ′1, I ′2, I ′3 with I1 ⊂

I ′1 ⊂ I1 ∪ I2 and I3 ⊂ I ′3 ⊂ I3 ∪ I2, the cone K(I ′1, I
′
2) ⊂ IRn consisting of all

the vectors x′ satisfying

〈∇xgi(w0, x0), x′〉
{

= 0 for i ∈ I ′1,
≤ 0 for i ∈ I ′2,

should be such that

x′ ∈ K(I ′1, I
′
2), ∇2

xxL(w0, x0, y0)x′ ∈ K(I ′1, I
′
2)
∗ =⇒ x′ = 0.

Here K∗ denotes the polar to K. For other characterizations of strong
regularity and a detailed discussion of related results, see Klatte and Tammer
[17] and Kummer [19]. In particular, Kummer’s condition is based on a
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general implicit-function theorem for nonsmooth functions, while we use the
equivalence of the Aubin property and the strong regularity established in
[8] and then apply Mordukhovich’s characterization of the Aubin property.
It is not clear to us how one could derive the equivalence between these
various conditions directly.

Relying on the above result, in [8], Theorem 6 we showed that, under
canonical perturbations, the combination of the strong second-order suf-
ficient condition for local optimality with the linear independence of the
gradients of the active constraints is actually equivalent to the requirement
the map SKKT be locally single-valued and Lipschitz continuous with the x-
component being a locally optimal solution. Below, we present a refinement
of this theorem with a short proof.

Theorem 4.2. The following are equivalent:
(i) The map p 7→ S(p) = {(x, y) ∈ SKKT(p) | x ∈ X(p)} is locally single-

valued and Lipschitz continuous around (p0, x0, y0), p0 = (u0, v0, w0);
(ii) The map SKKT is locally single-valued and Lipschitz continuous around

(p0, x0, y0), moreover with the property that for all (p, x, y) ∈ gphSKKT in
some neighborhood of (u0, v0, w0, x0, y0), x is a locally optimal solution to
the nonlinear programming problem (1) for p = (u, v, w);

(iii) x0 is an isolated local minimizer of (1) and the associated KKT sys-
tem (3) is strongly regular around (p0, x0, y0);

(iv) The constraint gradients ∇xgi(w0, x0) for i ∈ I1∪I2 are linearly inde-
pendent and the strong second-order sufficient condition for local optimality
holds for (p0, x0, y0): one has

〈x′,∇2
xxL(w0, x0, y0)x′〉 > 0 for all x′ 6= 0 in the subspace

M = {x′ |x′ ⊥ ∇xgi(w0, x0) for all i ∈ I1}.

Proof. Let (i) hold. Since S(p) ⊂ SKKT(p), the KKT map SKKT has a
Lipschitz continuous local selection around (p0, x0, y0). Consider the Kojima
map associated with the KKT system (3):

F (x, y) =



∇xg0(w0, x) +
∑r

i=1 yi∇xgi(w0, x) +
∑m

i=r+1 y+
i ∇xgi(w0, x)

−g1(w0, x)
.
.
−gr(w0, x)
−gr+1(w0, x) + y−r+1

.

.
−gm(w0, x) + y−m


,
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where y+ = max{0, y} and y− = min{0, y}. Let G(x, y) = F (x, y+g(w0, x)),
where g = (g1, · · · , gm). Then every (x, y) ∈ SKKT(p) for p = (u, v, w0) is a
solution of the equation

G(x, y) =

(
−v
−u

)
.

The continuous map G : IRn+m 7→ IRn+m has the property that its inverse
G−1 has a Lipschitz continuous local selection around (p0, x0, y0). Then
the map G−1 must be locally single-valued, see Lemma 1 in Kummer [20].
Hence SKKT is locally single-valued and Lipschitz continuous and thus (ii)
is established.

The equivalence (ii) ⇔ (iii) follows from Proposition 2 in [8]. The impli-
cation (iii) ⇒ (iv) is a consequence of Theorems 3.3 and 4.1. Finally, (iv)
⇒ (i) is proved in Robinson [30]; for other proofs see [9], p. 370 and [17].

Under the linear independence of the gradients of the active constraints,
the equivalence of (iii) and (iv) follows from a combination of earlier results
of Kojima [18] and Jongen et al. [12]; alternative proofs of this equivalence
have been furnished recently by Bonnans and Sulem [5] and Pang [28].

At the end, as a consequence of Theorem 4.2 we present a characteriza-
tion of the continuous differentiability of the pair solution-Lagrange multi-
plier which complements a basic result due to Fiacco [10]. Using the implicit
function theorem, Fiacco showed that the combination of the linear indepen-
dence of the gradient of the active constraints, the second-order sufficient
condition and the strict complementary slackness implies that the map S
is locally single-valued and continuously differentiable around the reference
point (p0, x0, y0). The following result shows that, for canonical perturba-
tions, these conditions are also necessary for the latter property. Recall that
strict complementary slackness condition holds if there are no zero Lagrange
multipliers associated with active constraints at the reference point; that is,
I2 = ∅.

Corollary 4.3. The following are equivalent:
(i) The map p 7→ S(p) = {(x, y) ∈ SKKT(p) | x ∈ X(p)} is locally single-

valued and continuously differentiable around (p0, x0, y0), p0 = (u0, v0, w0);
(ii) The strict complementary slackness (i.e., I2 = ∅), the linear indepen-

dence of the gradients of the active constraint, and the second-order sufficient
condition for local optimality hold for (p0, x0, y0).

Proof. All we need to prove is that (i) implies the strict complementar-
ity; the rest follows from Theorem 4.2 and Fiacco’s theorem. On the con-
trary, assume that I2 6= ∅ and (i) holds. Let i ∈ I2 and consider the problem
(1) with the following values of the parameter p denoted pε: w = w0, v = v0,
ui = u0i + ε and uj = u0j for j 6= i, where ε is a real parameter from a
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neighborhood of zero. As already noted in the previous proof, since y0i = 0,
for every nonnegative and sufficiently small ε and for some neighborhood W
of (x0, y0) the only element in S(pε) ∩W is (x0, y0). Then the derivative of
x must satisfy

d

dε
x(pε)|ε=0 = 0. (17)

On the other hand, for ε < 0 the corresponding solution x(pε) is feasible,
that is,

−u0i − ε + gi(w0, x(pε)) ≤ 0.

Combining this inequality with the assumed equality −u0i + gi(w0, x0) = 0,
we obtain

−1 +
1
ε
[g(w0, x(pε))− g(w0, x0)] ≥ 0.

Passing to zero with ε and using (17) results in −1 ≥ 0, a contradiction.
This completes the proof.
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