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1. Introduction

Fundamental to optimal control and the calculus of variations are value functions V :
[0,∞)× IRn → IR := [−∞,∞] of the type

V (τ, ξ) := inf
{
g
(
x(0)

)
+

∫ τ

0

L
(
x(t), ẋ(t)

)
dt

∣∣∣x(τ) = ξ
}
, V (0, ξ) = g(ξ), (1.1)

which propagate an initial cost function g : IRn → IR forward from time 0 in a manner
dictated by a Lagrangian function L : IRn × IRn → IR. The possible extended-real-
valuedness of g and L serves in the modeling of the constraints and dynamics involved in
this propagation, such as restrictions on x(0) and on ẋ(t) relative to x(t). The minimization
takes place over the arc space A1

n[0, τ ], in the general notation that Ap
n[τ0, τ1] consists of

all absolutely continuous x(·) : [τ0, τ1] → IRn with derivative ẋ(·) ∈ Lp
n[τ0, τ1].

Value functions of the “cost-to-go” type, which propagate a terminal cost function
backward from a time T , are covered by (1.1) through time reversal; this is the usual setting
in optimal control. The fact that problems in optimal control can be treated in terms of
an integral functional as in (1.1) for a choice of an extended-real-valued Lagrangian L has
been recognized since [1] and has long been the subject of developments in nonsmooth
optimization; for more on how control fits in, see e.g. [2], [3], [4]. This is parallel to,
and subsumes, the notion that differential equations with controls can be treated in terms
of differential inclusions with the controls suppressed. Value functions are of interest in
optimal control especially because of potential connections with feedback rules.

An important issue in Hamilton-Jacobi theory is the extent to which V can be char-
acterized in terms of the Hamiltonian function H : IRn × IRn → IR associated with L, as
defined through the Legendre-Fenchel transform by

H(x, y) := supv

{
〈v, y〉 − L(x, v)

}
. (1.2)

Under the properties of this transform, H(x, y) is sure to be convex in y. When L(x, v)
is convex, proper and lower semicontinuous in v, as is natural for the existence of optimal
arcs in (1.1), the reciprocal formula holds that

L(x, v) = supy

{
〈v, y〉 −H(x, y)

}
, (1.3)

so L and H are completely dual to each other.

It is well recognized that a function V given by (1.1) can fail to be smooth despite
any degree of smoothness of g and L, or for that matter, H. Much of modern Hamilton-
Jacobi theory has revolved around this fact, especially in coming up with generalizations
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of the Hamilton-Jacobi PDE that might pin down V , which of course was the historical
motivation for that equation. Except for the case in which H is independent of x, little
attention has been paid to ascertaining circumstances in which V (τ, ξ) is convex in ξ for
each τ ≥ 0, and to exploring the consequences of such convexity. The convex case merits
study for several reasons, however.

Convexity is a crucial marker in classifying optimization problems, and it’s often
accompanied by interesting phenomena of duality. It can provide powerful support in
matters of computation and approximation. Moreover, it has a prospect here of enabling
V to be characterized via H in other ways, complementary to the Hamilton-Jacobi PDE,
such as versions of the method of characteristics in which convex analysis can be brought
to bear. Efforts in the convex case could therefore shed light on topics in nonsmooth
Hamilton-Jacobi theory that so far have been overshadowed by PDE extensions.

The convexity of V (τ, ξ) in ξ entails, for τ = 0, the convexity of the initial function
g, but what does it need from the Lagrangian L? The simplest, and in a certain sense
the only robust assumption for this is the joint convexity of L(x, v) in x and v, which
corresponds under (1.2) and (1.3) to pairing the natural convexity of H(x, y) in y with
the concavity of H(x, y) in x. This is what we work with, along with mild conditions of
semicontinuity and growth that can readily be dualized.

In optimal control, problems of convex type have roughly the same status within gen-
eral control theory that linear differential equations have in the general theory of differen-
tial equations. They form the backbone for many control applications, covering traditional
linear-quadratic control and its modifications to incorporate constraints and penalties (cf.
[5]), but also numerous problem models in areas such as economics and operations research.

From the technical standpoint, our convexity assumptions ensure that the optimiza-
tion problem appearing in (1.1) fits the theory of generalized problems of Bolza of convex
type as developed in Rockafellar [1], [6], [7], [8]. That duality theory, dating from the
early 1970’s and based entirely on convex analysis [6], hasn’t previously been utilized in
the Hamilton-Jacobi setting. It had to wait for advances toward handling robustly, by
means of subgradients, not only the convexity of V (τ, ξ) in ξ but also its nonconvexity in
(τ, ξ). Such advances have since been made through the labor of many researchers, and
the time is therefore ripe for investigating the Hamilton-Jacobi aspects of convexity and
duality beyond the very special Hopf-Lax case treated in the past, where L and H don’t
depend on the x argument.

Relying on the background of variational analysis in [10], we make progress in several
ways. We demonstrate the existence of a dual value function Ṽ , propagated by a dual
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Lagrangian L̃, such that the convex functions V (τ, ·) and Ṽ (τ, ·) are conjugate to each
other under the Legendre-Fenchel transform for every τ . We use this in particular to
derive a subgradient Hamilton-Jacobi equation satisfied directly by V , and a dual one
for Ṽ , despite the unboundedness of these functions and their pervasive ∞ values. At
the same time we establish a new subgradient form of the “method of characteristics” for
determining these functions from the Hamiltonian H.

Central to our approach is a generalized Hamiltonian ODE associated withH, which is
actually a differential inclusion in terms of subgradients instead of gradients. By focusing
on Vτ = V (τ, ·) as a convex function on IRn that varies with τ , we bring to light the
remarkable fact that the graph of the subgradient mapping ∂Vτ evolves through nothing
more nor less than its “drift” in the (set-valued) flow in IRn×IRn induced by this generalized
Hamiltonian dynamical system.

Our treatment of V , although limited to the convex case, contrasts with other work in
Hamilton-Jacobi theory which, in coping with∞ values, has requiredH(x, y) to be a special
kind of globally Lipschitz continuous, convex function of y for each x; see Frankowska [11],
[12] and Clarke et al. [13], where∞ is admitted directly, or Bardi and Capuzzo-Dolcetta [14;
Chap. V, §5], where ∞ is suppressed by nonlinear rescaling (a maneuver incompatible with
maintaining convexity). These authors take H(x, y) to be positively homogeneous in y, but
a standard trick (passing from Lipschitzian running costs to a Mayer formulation) allows
extension to a somewhat broader class of Hamiltonians (of unknown characterization).

While the interior of the set of points where V < ∞ could be empty, we prove that
if it isn’t, then properties of semidifferentiability, Clarke regularity and local Lipschitz
continuity hold for V on that open set under our assumptions. Also, we identify through
duality the situations in which coercivity or global finiteness is preserved for all τ > 0.

For simplicity and to illuminate clearly the new features stemming from convexity, we
keep to the case of a time-independent Lagrangian L, although extensions of the results
to accommodate time dependence ought to be possible.
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2. Hypotheses and Main Results

In formulating the conditions that will be invoked throughout this paper, we abbreviate
lower semicontinuous by “lsc” and refer to an extended-real-valued function as proper when
it’s not the constant function ∞ yet nowhere takes on −∞. Thus, a function f : IRn → IR

is proper if and only if its effective domain dom f :=
{
v

∣∣ f(v) < ∞
}

is nonempty and,
on this set, f is finite. Equivalently, f is proper if and only if its epigraph, the set
epi f :=

{
(v, s)

∣∣ s ∈ IR, f(v) ≤ s
}
, is nonempty and contains no (entire) vertical lines.

Convexity of f corresponds to the convexity of epi f , while lower semicontinuity of f
corresponds to the closedness of epi f . Convexity of f implies convexity of dom f , but
lower semicontinuity of f need not entail closedness of dom f (as for instance when f(v)
approaches ∞ as v approaches the boundary of dom f from within).

We denote the Euclidean norm by | · | and call f coercive when it is bounded from
below and has f(v)/|v| → ∞ as |v| → ∞. Coercivity of a proper nondecreasing function
θ on [0,∞) means that θ(s)/s → ∞ as s → ∞. For a proper convex function f on IRn,
coercivity is equivalent to the finiteness of the conjugate convex function f∗ on IRn under
the Legendre-Fenchel transform, f∗(y) := supv{〈v, y〉 − f(v)

}
.

Basic Assumptions (A).

(A0) The initial function g is convex, proper and lsc on IRn.

(A1) The Lagrangian function L is convex, proper and lsc on IRn × IRn.

(A2) The set F (x) := domL(x, ·) is nonempty for all x, and there is a constant ρ such

that dist(0, F (x)) ≤ ρ
(
1 + |x|

)
for all x.

(A3) There are constants α and β and a coercive, proper, nondecreasing function θ on

[0,∞) such that L(x, v) ≥ θ
(
max

{
0, |v| − α|x|

})
− β|x| for all x and v.

The joint convexity of L with respect to x and v in (A1) contrasts with the more
common assumption of convexity merely with respect to v. It is vital to our duality-based
methodology. In combination with the convexity in (A0), it ensures that the functional

Jτ

(
x(·)

)
:= g

(
x(0)

)
+

∫ τ

0

L
(
(x(t), ẋ(t)

)
dt (2.1)

is convex on A1
n[0, τ ]. It also, as a side benefit, guarantees that Jτ is well defined. That

follows because L(x(t), ẋ(t)) is measurable in t when L is lsc, whereas L majorizes at least
one affine function on IRn × IRn through its convexity and properness. Then there exist
(w, y) ∈ IRn×IRn and c ∈ IR with L(x(t), ẋ(t)) ≥ 〈x(t), w〉+〈ẋ(t), y〉−c, the expression on
the right being summable in t. The integral thus has an unambiguous value in (−∞,∞],
and so then does Jτ (x(·)).
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In (A2), the mapping F gives the differential inclusion that’s implicit in the Lagrangian
L. Obviously Jτ (x(·)) = ∞ unless the arc x(·) satisfies the constraints:

ẋ(t) ∈ F (x(t)) a.e. t, with x(0) ∈ D := dom g. (2.2)

Note that the graph of F , which is the set domL ⊂ IRn×IRn, is convex by (A1), although
not necessarily closed. Similarly, the initial set D in these implicit constraints is convex by
(A0), but need not be closed. Of course, in the special case where L is finite everywhere,
the graph of F is all of IRn × IRn and the condition ẋ(t) ∈ F (x(t)) trivializes; likewise, if
g is finite everywhere the condition x(0) ∈ D trivializes.

The nonempty-valuedness of F in (A2) means that there are no state constraints
implicitly imposed by L. State constraints are definitely of interest in some applications,
but in order to handle them we would have to pass from our duality framework of absolutely
continuous trajectories to one in which dual trajectories or perhaps even primal trajectories
might have to be merely of bounded variation; cf. [15], [16], [17]. That could be possible,
but the technical complications would be more formidable and additional groundwork
might have to be laid, so we forgo such an extension for now.

The growth condition in (A2) will be seen to imply that the differential inclusion
in (2.2) has no “forced escape time”: from any point it provides at least one trajectory
over the infinite time interval [0,∞). The nonemptiness of F (x) didn’t really have to be
mentioned separately from this growth condition, inasmuch as the distance to ∅ is ∞.

The function L(x, ·) on IRn, which for each x is convex by (A1) and proper by (A2),
is coercive under the growth condition in (A3). Note that this growth condition is much
weaker than the commonly imposed Tonelli-type condition in which L(x, v) ≥ θ(|v|) for a
coercive, proper, nondecreasing function θ. For instance, it covers the case of L(x, v) =
L0(v−Ax)+L1(x) for coercive L0 and a function L1 that does not go down to −∞ at more
than an linear rate, whereas the Tonelli-type condition would not do that unless A = 0
and L1 is bounded from below.

The following consequence of our assumptions sets the stage for our analysis of the
value function V as giving a “continuously moving” convex function on IRn.

Theorem 2.1 (value function convexity and epi-continuity). Under (A), the function

Vτ = V (τ, ·) is proper, lsc and convex on IRn for each τ ∈ [0,∞). Moreover Vτ depends

epi-continuously on τ . In particular, V is proper and lsc as a function on [0,∞)× IRn, and

Vτ epi-converges to g as τ ↘0.

This theorem will be proved in §5. The epi-continuity in its statement refers to the
continuity of the set-valued mapping τ 7→ epiVτ with respect to Painléve-Kuratowski set

5



convergence. It amounts to the following assertion (here, as elsewhere in this paper, we
consistently use superscript ν = 1, 2, . . .→∞ in describing sequences):

whenever τν → τ with τν ≥ 0, one has{
lim infν V (τν , ξν) ≥ V (τ, ξ) for every sequence ξν → ξ,
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,

(2.3)

where the first limit property is the lower semicontinuity of V on [0,∞)×IRn. An exposition
of the theory of epi-convergence of functions on IRn is available in Chapter 7 of [10].

Observe that the epi-convergence in Theorem 2.1 answers the question of how the ini-
tial condition V0 = g should be coordinated with the behavior of V when τ > 0. Pointwise
convergence of Vτ to V0 as τ ↘0 isn’t a suitable property for a context of semicontinuity
and extended-real-valuedness.

Epi-convergence has implications also for the subgradients of the functions Vτ . Recall
that for a proper convex function f : IRn → IR and a point x, a vector y ∈ IRn is a
subgradient in the sense of convex analysis if

f(x′) ≥ f(x) + 〈y, x′ − x〉 for all x′ ∈ IRn. (2.4)

The set of such subgradients is denoted by ∂f(x). (This is, in particular, empty when
x /∈ dom f but nonempty when x ∈ ri dom f , the relative interior of the convex set dom f ;
see [9], [10].) The subgradient mapping ∂f : x 7→ ∂f(x) has graph

gph ∂f :=
{
(x, y)

∣∣ y ∈ ∂f(x)
}
⊂ IRn × IRn. (2.5)

When f is lsc as well as proper and convex, ∂f is a maximal monotone mapping, and
gph ∂f is therefore a globally Lipschitzian manifold of dimension n in IRn × IRn; see [10;
Chapter 12]. Furthermore, epi-convergence of functions corresponds in this picture to
graphical convergence of their subgradient mappings, i.e., Painlevé-Kuratowski set conver-
gence of their graphs; [10; 12.35].

Corollary 2.2 (subgradient manifolds). Under (A), the graph of the subgradient mapping

∂Vτ is, for each τ ∈ [0,∞), a globally Lipschitzian manifold of dimension n in IRn × IRn.

Moreover this set gph ∂Vτ depends continuously on τ .

The epigraphical continuity in the motion of Vτ in Theorem 2.1 thus corresponds
to continuity graphically in the motion of ∂Vτ . Not just “continuous” aspects of this
motion, but “differential” aspects need to be understood, however. For that purpose the
Hamiltonian function H in (1.2) is an indispensable tool.
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A better grasp of the nature ofH under our assumptions is essential. Because L(x, ·) is
lsc, proper and convex under (A1) and (A2), the reciprocal formula in (1.3) does hold, and
every property of L must accordingly have some exact counterpart for H. The following
fact will be verified in §3. It describes the class of functions H such that, when L is defined
from H by (1.3), L will be the unique Lagrangian for which (A1), (A2) and (A3) hold,
and for which H is the associated Hamiltonian expressed by (1.2).

Theorem 2.3 (identification of the Hamiltonian class). A function H : IRn× IRn → IR is

the Hamiltonian for a Lagrangian L satisfying (A1), (A2) and (A3) if and only if H(x, y)
is everywhere finite, concave in x, convex in y, and the following growth conditions hold,

where (a) corresponds to (A3), and (b) corresponds to (A2):

(a) There are constants α and β and a finite, convex function ϕ such that

H(x, y) ≤ ϕ(y) + (α|y|+ β)|x| for all x, y.

(b) There are constants γ and δ and a finite, concave function ψ such that

H(x, y) ≥ ψ(x)− (γ|x|+ δ)|y| for all x, y.

The finite concavity-convexity in Theorem 2.3 implies that H is locally Lipschitz
continuous; cf. [9; §35].

Concave-convex Hamiltonian functions first surfaced as a significant class in connec-
tion with generalized problems of Bolza and Lagrange of convex type; cf. [6]. In the study
of such problems, a subgradient form of Hamiltonian dynamics turned out to be crucial in
characterizing optimality. Only subgradients of convex analysis are needed in expressing
such dynamics. The generalized Hamiltonian system is

ẋ(t) ∈ ∂yH(x(t), y(t)), −ẏ(t) ∈ ∂̃xH(x(t), y(t)), (2.6)

with ∂yH(x, y) the usual set of ‘lower’ subgradients of the convex function H(x, ·) at y,
but ∂̃xH(x, y) the analogously defined set of ‘upper’ subgradients of the concave function
H(·, y) at x. A Hamiltonian trajectory over [τ0, τ1] is an arc (x(·), y(·)) ∈ A1

2n[τ0, τ1] that
satisfies (2.6) for almost every t. The associated Hamiltonian flow is the one-parameter
family of (generally) set-valued mappings Sτ for τ ≥ 0 defined by

Sτ (ξ0, η0) :=
{
(ξ, η)

∣∣ ∃ Hamiltonian trajectory over [0, τ ] from (ξ0, η0) to (ξ, η)
}
. (2.7)

Details and alternative expressions of the dynamics in (2.6) will be worked out in §6.
Appropriate extensions to nonsmooth Hamiltonians H(x, y) that aren’t concave in x, and
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thus correspond to Lagrangians L(x, v) that aren’t jointly convex in x and v, can be found
in [3], [18], [19], and [20]. Hamiltonian trajectories are featured as necessary conditions in
these works, but as will be recalled in Theorem 4.1 below, our assumptions yield symmetric
relationships between the x and y elements. Here, we confine ourselves to stating how,
under our assumptions, the graph of the subgradient mapping ∂Vτ , namely

gph ∂Vτ :=
{
(ξ, η)

∣∣ η ∈ ∂Vτ (ξ)
}
⊂ IRn × IRn, (2.8)

evolves through such dynamics from the graph of the subgradient mapping ∂V0 = ∂g.

Theorem 2.4 (Hamiltonian evolution of subgradients). Under (A), one has η ∈ ∂Vτ (ξ) if

and only if, for some η0 ∈ ∂g(ξ0), there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ ]
with (x(0), y(0)) = (ξ0, η0) and (x(τ), y(τ)) = (ξ, η). Thus, the graph of ∂Vτ is the image

of the graph of ∂g under the flow mapping Sτ :

gph ∂Vτ = Sτ (gph ∂g) for all τ ≥ 0. (2.9)

It will be shown in Theorem 6.3 that in the circumstances of Theorem 2.4, x(·) is an
optimal trajectory for the minimization problem defining V (τ, ξ) in (1.1). At the same
time, y(·) is optimal for a certain dual problem, and such optimality of x(·) and y(·) is
actually equivalent to the condition in Theorem 2.4.

Theorem 2.4 is the basis for a generalized method of characteristics for determining
V uniquely from g and H. It will be proved in §6, where the method will be laid out in
full. Especially noteworthy is the global nature of the complete description in Theorem
2.4, which is a by-product of convexity and underscores why the convex case deserves
special attention. The classical method of characteristics (which requires the continuous
differentiability of g and H) gives an equivalent description of V satisfying the Hamilton-
Jacobi equation, but is valid only locally.

Subbotin [21] pioneered a global characteristic method for quite general nonlinear
problems by introducing a (nonunique) characteristic inclusion, the weak invariance (via-
bility) of which he used to define the concept of a minimax solution to the Hamilton-Jacobi
equation. In such a general situation, one solution of the differential inclusion plays the
role of a characteristic trajectory, whereas under our convexity assumptions, every solution
of (2.6) plays such a role. Further recent work in generalized characteristics for nonlinear
first order PDEs can be found in [22] and [23].

To go from the characterization in Theorem 2.4 to a description of the motion of Vτ

in terms of a generalized Hamilton-Jacobi PDE, we need to bring in subgradients beyond
those of convex analysis. The notation and terminology of the book [10] will be adopted.
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Consider any function f : IRn → IR and let x be any point at which f(x) is finite. A
vector y ∈ IRn is a regular subgradient of f at x, written y ∈ ∂̂f(x), if

f(x′) ≥ f(x) + 〈y, x′ − x〉+ o(|x′ − x|). (2.10)

It is a (general) subgradient of f at x, written y ∈ ∂f(x), if there is a sequence of points
xν → x with f(xν) → f(x) for which regular subgradients yν ∈ ∂̂f(xν) exist with yν → y.

These definitions refer to ‘lower’ subgradients, which are usually all that we need. To
keep the notation uncluttered, we take ‘lower’ for granted, and in the few situations where
‘upper’ subgradient sets (analogously defined) are called for, we express them by

∂̃f(x) = −∂[−f ](x), ˜̂
∂f(x) = −∂̂[−f ](x). (2.11)

For a convex function f , ∂̂f(x) and ∂f(x) reduce to the subgradient set defined earlier
through (2.4). In the case of the value function V , the “partial subgradient” notation

∂ξV (τ, ξ) =
{
η

∣∣ η ∈ ∂Vτ (ξ)
}

for Vτ = V (τ, ·)

can thus, through Theorem 2.1, be interpreted equally in any of the senses above.

Theorem 2.5 (generalized Hamilton-Jacobi equation). Under (A), the subgradients of V

on (0, τ)× IRn have the property that

(σ, η) ∈ ∂V (τ, ξ) ⇐⇒ (σ, η) ∈ ∂̂V (τ, ξ)

⇐⇒ η ∈ ∂ξV (τ, ξ), σ = −H(ξ, η).
(2.12)

In particular, therefore, V satisfies the generalized Hamilton-Jacobi equation:

σ +H(ξ, η) = 0 for all (σ, η) ∈ ∂V (τ, ξ) when τ > 0. (2.13)

This theorem will be proved in §7. By the first equivalence in (2.12), the equation
in (2.13) could be stated with ∂̂V (τ, ξ) in place of ∂V (τ, ξ) (or in terms of the proximal
subgradients emphasized in the book of Clarke, Ledyaev, Stern and Wolenski [24]), but we
prefer the ∂V version because general subgradients dominate in the variational analysis
and subdifferential calculus in [10]. The ∂̂V version would effectively turn (2.13) into the
one-sided ‘viscosity’ form of Hamilton-Jacobi equation used for lsc functions by Barron and
Jensen [25] and Frankowska [12], in distinction to earlier forms for continuous functions
that rested on pairs of inequalities, cf. Crandall, Evans and Lions [26]. The book of Bardi
and Capuzzo-Dolcetta [14] gives a broad view of viscosity theory in its current state,
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including the relationships between such different forms. A Hamilton-Jacobi equation is
called a Hamilton-Jacobi-Bellman equation when H is expressed by the max in (1.2).

The extent to which (2.13) (or its viscosity version) and the initial condition on V0

might suffice to determine V uniquely isn’t fully understood yet in the framework of lsc
solutions that can take on ∞ when τ > 0. So far, the strongest result directly available
in such a framework is the one obtained by Frankowska [12]; for problems satisfying our
convexity assumptions, it only covers the case where L(x, v) is the indicator δC(v − Ax)
corresponding to a differential inclusion ẋ(t) ∈ Ax(t)+C for some matrix A and nonempty,
compact, convex set C. Through a Mayer reformulation, her result could be made to cover
the case where a finite, convex function of (x, v) is added to this indicator. How far one
could go by such reformulation—and nonlinear rescaling to get rid of ∞—with the results
presented by Bardi and Capuzzo-Dolcetta [14; Chap. V, §5] is unclear.

The arcs y(·) that are paired with the arcs x(·) in the Hamiltonian dynamics are
related to the forward propagation of the conjugate initial function g∗, satisfying

g∗(y) := supx

{
〈x, y〉 − g(x)

}
, g(x) := supy

{
〈x, y〉 − g∗(y)

}
, (2.14)

with respect to the dual Lagrangian L̃, satisfying

L̃(y, w) = L∗(w, y) = supx,v

{
〈x,w〉+ 〈v, y〉 − L(x, v)

}
,

L(x, v) = L̃∗(v, x) = supy,w

{
〈x,w〉+ 〈v, y〉 − L̃(y, w)

}
.

(2.15)

The reciprocal formulas here follow from (A0) and (A1). We’ll prove in §5 that the value
function Ṽ defined as in (1.1), but with g∗ and L̃ in place of g and L, has Ṽτ conjugate to
Vτ for every τ . This duality will be a workhorse in our analysis of other basic properties.

An advantage of our assumptions (A) is that they carry over symmetrically to the
dual setting. Alternative assumptions could fail in that respect. To put this another way,
the class of Hamiltonians that we work with, as described in Theorem 2.3, is no accident,
but carefully tuned to obtaining the broadest possible results of duality in Hamilton-Jacobi
theory (here in the time-independent case).
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3. Elaboration of the Convexity and Growth Conditions

Conditions (A1), (A2) and (A3) can be viewed from several different angles, and a better
understanding of them is required before we can proceed. Their Hamiltonian translation
in Theorem 2.3 has to be verified, but also they will be useful as applied to functions other
than L, so a broader, not merely Lagrangian, perspective on them must be attained.

We’ll draw on some basic concepts of variational analysis, and convex analysis in
particular. For any nonempty subset C ⊂ IRn, the horizon cone is the closed cone

C
∞ := lim sup

λ↘ 0

λC =
{
w ∈ IRn

∣∣ ∃xν ∈ C, λν ↘0, with λνxν → w
}
.

When C convex, C∞ is convex and, for any x̄ ∈ riC (the relative interior of C) it consists
simply of the vectors w such that x̄+λw ∈ C for all λ > 0. When C is convex and closed,
C∞ coincides with the “recession cone” of C. See [9, §6], [10, Chap. 3].

For any function f : IRn → IR, f 6≡ ∞, the horizon function f∞ is the function having
as its epigraph the set (epi f)∞, where epi f is the epigraph of f itself. This function is
always lsc and positively homogeneous. When f is convex, f∞ is convex as well and, for
any x̄ ∈ ri(dom f), is given by f∞(w) = limλ→∞ f(x̄+ λw)/λ. When f is convex and lsc,
f∞ is the “recession function” of f in convex analysis. Again, see [9, §6], [10, Chap. 3].

It will be important in the context of conditions (A1), (A2) and (A3) to view L not
just as a function on IRn × IRn but in terms of the associated function-valued mapping
x 7→ L(x, ·) that assigns to each x ∈ IRn the function L(x, ·) : IRn → IR. A function-valued
mapping is a ‘bifunction’ in the terminology of [9].

Definition 3.1 [8] (regular convex bifunctions). A function-valued mapping from IRn to

the space of extended-real-valued functions on IRn, as specified in the form x 7→ Λ(x, ·) by

a function Λ : IRn × IRn → IR, is called a regular convex bifunction if

(a1) Λ is proper, lsc and convex as a function on IRn × IRn;

(a2) for each w ∈ IRn there is a z ∈ IRn with (w, z) ∈ (dom Λ)∞;

(a3) there is no z 6= 0 with (0, z) ∈ cl(dom Λ∞).

Proposition 3.2 [8] (bifunction duality). For Λ : IRn × IRn → IR, suppose that the

mapping x 7→ Λ(x, ·) is a regular convex bifunction. Then for the conjugate function

Λ∗ : IRn × IRn → IR, the mapping y 7→ Λ∗(·, y) is a regular convex bifunction.

Indeed, conditions (a2) and (a3) of Definition 3.1 are dual to each other in the sense

that, under (a1), Λ satisfies (a2) if and only if Λ∗ satisfies (a3), whereas Λ satisfies (a3) if

and only if Λ∗ satisfies (a2).
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Proof. This was shown as part of Theorem 4 of [8]; for the duality between (a2) and (a3),
see the proof of that theorem.

Lemma 3.3 [8] (domain selections). For a function Λ : IRn×IRn → IR satisfying condition

(a1) of Definition 3.1, condition (a2) is equivalent to the existence of a matrix A ∈ IRn×n

and vectors a ∈ IRn and b ∈ IRn such that(
x, Ax+ |x|a+ b

)
∈ ri(dom Λ) for all x ∈ IRn. (3.1)

Proof. See the first half of the proof of Theorem 5 of [8] for the necessity. The sufficiency
is clear because (3.1) implies

(
x, Ax+ |x|a

)
∈ (dom Λ)∞ for all x ∈ IRn.

Proposition 3.4 (Lagrangian growth characterization). A function L : IRn × IRn → IR

satisfies (A1), (A2) and (A3) if and only if the mapping x 7→ L(x, ·) is a regular convex

bifunction. Specifically in the context of Definition 3.1 with Λ = L, (A1) corresponds to

(a1), and then one has the equivalence of (A2) with (a2) and that of (A3) with (a3).

Proof. When Λ = L, (A1) is identical to (a1). Assuming this property now, we argue the
other equivalences.

(A2) ⇒ (a2). For any w ∈ IRn and any integer ν > 0 there exists by (A2) some
vν ∈ F (νw) with |vν | ≤ ρ(1 + ν|w|). Let xν = νw and λν = 1/ν. We have (xν , vν) ∈
domL = dom Λ and λν(xν , vν) = (w, (1/ν)vν) with (1/ν)|vν | ≤ ρ(1+|w|). The sequence of
pairs λν(xν , vν) is therefore bounded in IRn×IRn and has a cluster point, which necessarily
is of the form (w, z) for some z ∈ IRn. Furthermore (w, z) ∈ (dom Λ)∞ by definition. Thus,
(a2) is fulfilled.

(a2) ⇒ (A2). Applying Lemma 3.3, we get the existence of a matrix A and vectors a
and b such that Ax+ |x|a+ b ∈ F (x) for all x. Then dist(0, F (x)) ≤ |A||x|+ |x||a|+ |b|,
so we can get the bound in (A2) by taking ρ ≥ max{|b|, |A|+ |a|}.

(A3) ⇒ (a3). Let (x̄, v̄) ∈ ri(domL) = ri(dom Λ). For any (w, z) we have Λ∞(w, z) =
limλ→∞ Λ(x̄ + λw, v̄ + λz)/λ. On the basis of (A3) this yields, in the notation [s]+ =
max{0, s},

Λ∞(w, z) ≥ lim
λ→∞

λ−1
[
θ
(
[|v̄ + λz| − α|x̄+ λw|]+]

)
− β|x̄+ λw|

]
= lim

λ→∞

[
λ−1θ

(
λ[|λ−1v̄ + z| − α|λ−1x̄+ w|]+]

)]
− β|λ−1x̄+ w|

]
=

{
−β|w| if [|z| − α|w|]+ = 0,
∞ if [|z| − α|w|]+ > 0.

Hence dom Λ∞ ⊂
{
(w, z)

∣∣ |z| ≤ α|w|
}
. Any (0, z) ∈ cl(dom Λ∞) then has |z| ≤ α|0|, hence

z = 0, so (a3) holds.
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(a3) ⇒ (A3). According to Proposition 3.2, condition (a3) on the mapping x 7→ Λ(x, ·)
is equivalent to condition (a2) on the mapping y 7→ Λ∗(·, y). By Lemma 3.3, the latter
provides the existence of a matrix A and vectors a and b such that

(Ay + |y|a+ b, y) ∈ ri(dom Λ∗) for all y ∈ IRn.

Any convex function is continuous over the relative interior of its effective domain, so the
function y 7→ Λ∗(Ay+|y|a+b, y) is (finite and) continuous on IRn (although not necessarily
convex). Define the function ψ on [0,∞) by ψ(r) = max

{
Λ∗(Ay + |y|a + b, y)

∣∣ |y| ≤ r
}
.

Then ψ is finite, continuous and nondecreasing. Because

Λ(x, v) = Λ∗∗(x, v) = supz,y

{
〈x, z〉+ 〈v, y〉 − Λ∗(z, y)

}
under (a1), we have

Λ(x, v) ≥ supy

{
〈x, Ay + |y|a+ b〉+ 〈v, y〉 − Λ∗(Ay + |y|a+ b, y)

}
≥ supy

{
− |x|(|A||y|+ |y||a|+ |b|) + 〈v, y〉 − ψ(|y|)

}
= supy

{
− |x||y|(|A|+ |a|)− |x||b|+ |v||y| − ψ(|y|)

}
= −|x||b|+ supr≥0

{
r
[
|v| − (|A|+ |a|)|x|

]
− ψ(r)

}
= ψ∗

(
[ |v| − (|A|+ |a|)|x| ]+

)
− |b||x|,

where again [s]+ := max{0, s}. Let α = |A| + |a|, β = |b| and θ = ψ∗ on [0,∞). Then
the inequality in (A3) holds for L = Λ. The function θ has θ(0) = −ψ(0) (finite) and is
the pointwise supremum of a collection of affine functions of the form s 7→ rs− ψ(r) with
r ≥ 0 and ψ(r) always finite. Hence θ is convex, proper, nondecreasing and in addition
has lims→∞ θ(s)/s ≥ r for all r ≥ 0, which implies coercivity.

Proposition 3.5 (Lagrangian dualization). If the Lagrangian L : IRn× IRn → IR satisfies

(A1), (A2) and (A3), then so too does the dual Lagrangian L̃ : IRn × IRn → IR in (2.15).

Indeed, (A1) for L yields (A1) for L̃ and the reciprocal formula in (2.15), and then (A2) for

L corresponds to (A3) for L̃, whereas (A3) for L corresponds to (A2) for L̃. Furthermore,

the dual Hamiltonian

H̃(y, x) := supw

{
〈x,w〉 − L̃(y, w)

}
(3.2)

associated with L̃ is then related to the Hamiltonian H for L by

H̃(y, x) = −H(x, y). (3.3)
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Proof. Combine Proposition 3.4 with Proposition 3.2 to get the dualization of (A1), (A2)
and (A3) to L̃. Note next that since L(x, ·) is by (A1), (A2) and (A3) a proper, lsc, convex
and coercive function on IRn, its conjugate function, which is H(x, ·), is finite on IRn. The
joint convexity of L(x, v) in x and v corresponds to H(x, y) being not just convex in y, as
always, but also concave in x; see [9; 33.3] or [10; 11.48]. For the Hamiltonian relationship
in (3.3), observe through (2.15) and the formula (1.2) for H that

L̃(y, w) = supx,v

{
〈x,w〉+ 〈v, z〉 − L(x, v)

}
= supx

{
〈x,w〉+H(x, y)

}
. (3.4)

Fix any y and let h(·) = −H(·, y), noting that h(·) is a finite convex function on IRn.
According to (3.4), we have L̃(y, ·) = h∗(·), and from (3.3) we then have h∗∗(·) = H̃(y, ·).
The finiteness and convexity of h ensures that h∗∗ = h, so that H̃(y, ·) = −H(·, y) as
claimed in (3.3).

Proof of Theorem 2.3. Finite convex functions correspond under the Legendre-Fenchel
transform to the proper convex functions that are coercive. Having H(x, ·) be a finite
convex function on IRn for each x ∈ IRn is equivalent therefore to having H be the Hamil-
tonian associated by (1.2) with a Lagrangian L such that L(x, ·) is, for each x ∈ IRn,
a proper, convex function that is coercive; the function L is recovered from H by (1.3).
Concavity of H(x, y) in x corresponds then to joint convexity of L(x, v) in x and v, as
already pointed out in the proof of Proposition 3.5; see [9; 33.3] or [10; 11.48].

Thus in particular, any finite, concave-convex function H is the Hamiltonian for some
Lagrangian L satisfying (A1), while on the other hand, if L satisfies (A3) along with (A1)
(and therefore has L(x, ·) always coercive) its Hamiltonian H is finite concave-convex.

It will be demonstrated next that in the case of a Lagrangian L satisfying (A1),
condition (A3) is equivalent to the growth condition in (a). This will yield through the
duality in Proposition 3.5 the equivalence (A2) with the growth condition in (b), and all
claims will thereby be justified. Starting with (a), define ψ(r) = max

{
ϕ(y)

∣∣ |y| ≤ r
}

to get a finite, nondecreasing, convex function ψ on [0,∞). The inequality in (a) yields
H(x, y) ≤ ψ(|y|) + (α|y|+ β)|x| and consequently through (1.3) that

L(x, v) ≥ supy

{
〈v, y〉 − ψ(|y|)− (α|y|+ β)|x|

}
= sup

r≥0
sup
|y|≤r

{
〈v, y〉 − ψ(|y|)− (α|y|+ β)|x|

}
= supr≥0

{
|v|r − ψ(r)− (αr + β)|x|

}
= ψ∗

(
[ |v| − α|x| ]+

)
− β|x|,

where ψ∗ is coercive, proper and nondecreasing on [0,∞). Taking θ = ψ∗, we get (A3).
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Conversely from (A3), where it can be assumed without loss of generality that α ≥ 0,
we can retrace this pattern by estimating through (1.2) that

H(x, y) ≤ supv

{
〈v, y〉 − θ

([
|v| − α|x|

]
+

)
+ β|x|

}
= sup

s≥0
sup
|v|≤s

{
〈v, y〉 − θ

(
[ |v| − α|x| ]+

)
+ β|x|

}
= sups≥0

{
s|y| − θ

(
[s− α|x| ]+

)
+ β|x|

}
,

and on changing to the variable r = s− α|x| obtain

H(x, y) ≤ sup
r≥−α|x|

{
(r + α|x|)|y| − θ

(
[r]+

)
+ β|x|

}
= supr≥0

{
r|y| − θ(r)

}
+ (α|y|+ β)|x| = θ∗(|y|) + (α|y|+ β)|x|,

where θ∗ is finite, convex and nondecreasing. The function ϕ(y) = θ∗(|y|) is then convex
on IRn (see [9; 15.3] or [10; 11.21]). Thus, we have the growth condition in (a).

4. Consequences for Bolza Problem Duality

The properties we have put in place for L and H lead to stronger results about duality for
the generalized problems of Bolza of convex type. These improvements, which we lay out
next, will be a platform for our investigation of value function duality in §5.

The duality theory in [1] and [7], as expressed over a fixed interval [0, τ ], centers (in
the autonomous case) on a problem of the form

(P) minimize J
(
x(·)

)
:=

∫ τ

0

L
(
x(t), ẋ(t)

)
dt+ l

(
x(0), x(τ)

)
over x(·) ∈ A1

n[0, τ ],

where the endpoint function l : IRn × IRn → IR is proper, lsc and convex, and on the
corresponding dual problem

(P̃) minimize J̃
(
y(·)

)
:=

∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt+ l̃

(
y(0), y(τ)

)
over y(·) ∈ A1

n[0, τ ],

where the dual endpoint function l̃ : IRn × IRn → IR is generated through conjugacy:

l̃(η, η′) = l∗(η,−η′) = supξ′,ξ

{
〈η, ξ′〉 − 〈η′, ξ〉 − l(ξ′, ξ)

}
,

l(ξ′, ξ) = l̃∗(ξ′,−ξ) = supη,η′

{
〈η, ξ′〉 − 〈η′, ξ〉 − l̃(η′, ξ)

}
.

(4.1)
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A major role in characterizing optimality in the generalized Bolza problems (P) and
(P̃) is played by the generalized Euler-Lagrange condition

(ẏ(t), y(t)) ∈ ∂L(x(t), ẋ(t)) for a.e. t, (4.2)

which can also be written in the dual form (ẋ(t), x(t)) ∈ ∂L̃(y(t), ẏ(t)) for a.e. t. The
Euler-Lagrange conditions are known to be equivalent in turn to the generalized Hamil-
tonian condition (2.6) being satisfied over the time interval [0, τ ]; cf. [6]. They act in
combination with the generalized transversality condition

(y(0),−y(τ)) ∈ ∂l(x(0), x(τ)), (4.3)

which likewise has an equivalent dual form, (x(0),−x(τ)) ∈ ∂l̃(y(0), y(τ)). The basic facts
about optimality are the following.

Theorem 4.1 [1], [6] (optimality conditions). For any functions L and l that are proper,

lsc and convex on IRn × IRn, the optimal values in (P) and (P̃) satisfy inf(P) ≤ − inf(P̃).
Moreover, for arcs x(·) and y(·) in A1

n[0, τ ], the following properties are equivalent:

(a) (x(·), y(·)) is a Hamiltonian trajectory satisfying the transversality condition;

(b) x(·) solves (P), y(·) solves (P̃), and inf(P) = − inf(P̃).

Proof. Basically this is Theorem 5 of [1], but we’ve used Theorem 1 of [6] to translate
the Euler-Lagrange condition to the Hamiltonian condition.

Theorem 4.1 gives us the sufficiency of the Hamiltonian condition and transversality
condition for optimality of arcs in (P) and (P̃), but not the necessity. We can get that to the
extent we are able to establish that optimal arcs do exist for these problems, and inf(P) =
− inf(P̃). Criteria for that have been furnished in [7] in terms of certain “constraint
qualifications,” but this is where we can make improvements now in consequence of our
working assumptions.

The issue concerns the fundamental kernel E : [0,∞) × IRn × IRn → IR defined for
the Lagrangian L by

E(τ, ξ′, ξ) := inf
{∫ τ

0

L
(
x(t), ẋ(t)

)
dt

∣∣∣x(0) = ξ′, x(τ) = ξ
}
,

E(0, ξ′, ξ) :=
{

0 if ξ′ = ξ,
∞ if ξ′ 6= ξ,

(4.4)

where the minimization is over all arcs x(·) ∈ A1
n[0, τ ] satisfying the initial and terminal

conditions. At the same time it concerns the dual fundamental kernel associated with the
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dual Lagrangian L̃, namely the function Ẽ : [0,∞)× IRn × IRn → IR defined by

Ẽ(τ, η′, η) := inf
{∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt

∣∣∣ y(0) = η′, y(τ) = η
}
,

Ẽ(0, η′, η) :=
{

0 if η′ = η,
∞ if η′ 6= η,

(4.5)

with the minimization taking place over y(·) ∈ A1
n[0, τ ]. The constraint qualifications in

[7] are stated in terms of the sets

Cτ :=
{
(ξ′, ξ)

∣∣E(τ, ξ′, ξ) <∞
}
, C̃τ :=

{
(η′, η)

∣∣ Ẽ(τ, η′, η) <∞
}
. (4.6)

They revolve around the overlap between these sets and the sets dom l and dom l̃. In this
respect the next result provides vital information.

Proposition 4.2 (growth of the fundamental kernel). Suppose (A1), (A2) and (A3) hold.

Then the following properties of E(τ, ·, ·) hold for all τ ≥ 0 and guarantee that for all ξ

and ξ′ the functions E(τ, ξ′, ·) and E(τ, ·, ξ) are proper, lsc, convex and coercive:

(a) E(τ, ·, ·) is proper, lsc and convex on IRn × IRn.

(b) There is a constant ρ(τ) ∈ (0,∞) such that

dist
(
0,domE(τ, ξ′, ·)

)
≤ ρ(τ)(1 + |ξ′|) for all ξ′ ∈ IRn,

dist
(
0,domE(τ, ·, ξ)

)
≤ ρ(τ)(1 + |ξ|) for all ξ ∈ IRn.

(c) There are constants α(τ), β(τ), and a coercive, proper, nondecreasing function

θ(τ, ·) on [0,∞) such that

E(τ, ξ′, ξ) ≥ θ
(
τ, [ |ξ| − α(τ)|ξ′| ]+

)
− β(τ)|ξ′|

E(τ, ξ′, ξ) ≥ θ
(
τ, [ |ξ′| − α(τ)|ξ| ]+

)
− β(τ)|ξ|

}
for all ξ′, ξ ∈ IRn.

Proof. When the mapping x 7→ L(x, ·) is a regular convex bifunction, both of the map-
pings ξ′ 7→ E(τ, ξ′, ·) and ξ 7→ E(τ, ·, ξ) are regular convex bifunctions as well, for all
τ ≥ 0. For τ > 0, this was proved as part of Theorem 5 of [8]. For τ = 0, it is obvious
from formula (4.5). On this basis we can appeal to Proposition 3.2 for each of the three
function-valued mappings. In the conditions in (a) and (b), we get separate constants to
work for E(τ, ξ′, ·) and E(τ, ·, ξ), but then by taking a max can get constants that work
simultaneously for both, so as to simplify the statements.

Corollary 4.3 (growth of the dual fundamental kernel). When L satisfies (A1), (A2) and

(A3), the function Ẽ likewise has the properties in Proposition 4.2.

Proof. Apply Proposition 4.2 to L̃ instead of L, using the fact from Proposition 3.5 that
L̃, like L, satisfies (A1), (A2) and (A3).
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Corollary 4.4 (reachable endpoint pairs). Under (A1), (A2) and (A3), the sets Cτ and

C̃τ in (4.6) have the following property for every τ > 0:

(a) The image of Cτ under the projection (ξ′, ξ) 7→ ξ′ is all of IRn. Likewise, the image

of Cτ under the projection (ξ′, ξ) 7→ ξ is all of IRn.

(b) The image of C̃τ under the projection (η′, η) 7→ η′ is all of IRn. Likewise, the image

of C̃τ under the projection (η′, η) 7→ η is all of IRn.

Proof. We get (a) from the property in Proposition 4.2(b). We get (b) then out of the
preceding corollary.

Some generalizations of the conditions in Proposition 4.2 to the case of functions E
coming from Lagrangians L that are not fully convex are available in [27].

Theorem 4.5 (strengthened duality for Bolza problems). Consider (P) and (P̃) under

the assumption that the Lagrangian L satisfies (A1), (A2) and (A3), whereas the endpoint

function l is proper, lsc and convex.

(a) If there exists ξ such that l(·, ξ) is finite, or there exists ξ′ such that l(ξ′, ·) is finite,

then inf(P) = − inf(P̃). This value is not ∞, and if it also is not −∞ there is an optimal

arc y(·) ∈ A1
n[0, τ ] for (P̃). In particular the latter holds if an optimal arc x(·) ∈ A1

n[0, τ ]
exists for (P), and in that case both x(·) and y(·) must actually belong to A∞

n [0, τ ].

(b) If there exists η such that l̃(η, ·) is finite, or there exists η′ such that l̃(·, η′) is finite,

then inf(P) = − inf(P̃). This value is not −∞, and if it also is not ∞ there is an optimal

arc x(·) ∈ A1
n[0, τ ] for (P). In particular the latter holds if an optimal arc y(·) ∈ A1

n[0, τ ]
exists for (P̃), and in that case both x(·) and y(·) must actually belong to A∞

n [0, τ ].

Proof. Theorem 1 of [7] will be our vehicle. The conditions referred to as (C0) and
(D0) in the statement of that result are fulfilled in the case of a finite, time-independent
Hamiltonian (cf. p. 11 of [7]), which we have here via Theorem 2.3 (already proved in §3).

If l satisfies one of the conditions in (a), it is impossible in the face of Corollary 4.4(a)
for there to exist a hyperplane that separates the convex sets dom l and domE(τ, ·, ·).
By separation theory (cf. [9,§11]), this is equivalent to having riCτ ∩ ri dom l 6= ∅ and
aff Cτ ∪ dom l = IRn × IRn, where ‘ri’ is relative interior as earlier and ‘aff’ denotes affine
hull. According to part (b) of Theorem 1 of [7], this pair of conditions guarantees that
inf(P) and − inf(P̃) have a common value which is not ∞, and that if this value is also not
−∞, then (P̃) has a solution y(·) ∈ A1

n[0, τ ]. We know on the other hand that whenever
inf(P) <∞ and (P) has a solution x(·) ∈ A1

n[0, τ ], we have J(x(·)) finite in (P) (because
neither l nor the integral functional in (2.1) can take on −∞), so that inf(P) is finite.
It follows then from Theorem 4.1 that x(·) and y(·) satisfy the generalized Hamiltonian
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condition, i.e., (2.6). Because H is finite everywhere, this implies by Theorem 2 of [6] that
these arcs belong to A∞

n [0, τ ]. This proves (a). The claims in (b) are justified in parallel
by way of Corollary 4.4(b) and part (a) of Theorem 1 of [7].

Corollary 4.6 (best-case Bolza duality). Consider (P) and (P̃) under the assumption

that L satisfies (A1), (A2) and (A3), whereas l is proper, lsc and convex. Suppose l

has one of the finiteness properties in Theorem 4.5(a), while l̃ has one of the finiteness

properties in Theorem 4.5(b). Then −∞ < inf(P) = − inf(P̃) <∞, and optimal arcs x(·)
and y(·) exist for (P) and (P̃). Moreover, any such arcs must belong to A∞

n [0, τ ].

Proof. This simply combines the conclusions in parts (a) and (b) of Theorem 4.5.

5. Value Function Duality

The topic we treat next is the relationship between V and the dual value function Ṽ

generated by L̃ and g∗:

Ṽ (τ, η) := inf
{
g∗

(
y(0)

)
+

∫ τ

0

L̃
(
y(t), ẏ(t)

)
dt

∣∣∣ y(τ) = η
}
, Ṽ (0, η) = g∗(η), (5.1)

where the minimum is taken over all arcs y(·) ∈ A1
n[0, τ ]. Henceforth we assume (A0),

(A1), (A2) and (A3) without further mention. Because L̃ and g∗ inherit these properties
from L and g, everything we prove about V automatically holds in parallel form for Ṽ .

It will be helpful for our endeavor to note that V can be expressed in terms of E.
Indeed, from the definitions of V and E in (1.1) and (4.4) it’s easy to deduce the rule that

V (τ, ξ) = infξ′

{
V (τ ′, ξ′) + E(τ − τ ′, ξ′, ξ)

}
for 0 ≤ τ ′ ≤ τ. (5.2)

By the same token we also have, through (5.1) and (4.5), that

Ṽ (τ, η) = infη′

{
Ṽ (τ ′, η′) + Ẽ(τ − τ ′, η′, η)

}
for 0 ≤ τ ′ ≤ τ. (5.3)

Theorem 5.1 (conjugacy). For each τ ≥ 0, the functions Vτ := V (τ, ·) and Ṽτ := Ṽ (τ, ·)
are proper and conjugate to each other under the Legendre-Fenchel transform:

Ṽτ (η) = supξ

{
〈ξ, η〉 − Vτ (ξ)

}
, Vτ (ξ) = supη

{
〈ξ, η〉 − Ṽτ (η)

}
. (5.4)

Hence in particular, the subgradients of these convex functions are related by

η ∈ ∂Vτ (ξ) ⇐⇒ ξ ∈ ∂Ṽτ (η) ⇐⇒ Vτ (ξ) + Ṽτ (η) = 〈ξ, η〉. (5.5)
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Proof. Fix τ > 0 and any vector η̄ ∈ IRn. Let l(ξ′, ξ) = g(ξ′)− 〈ξ, η̄〉. The corresponding
dual endpoint function l̃ has l̃(η′, η) = g∗(η′) when η = η̄, but l̃(η′, η) = ∞ when η 6= η̄.
In the Bolza problems we then have

− inf(P) = supξ

{
〈ξ, η̄〉 − V (τ, ξ)

}
, inf(P̃) = Ṽ (τ, η̄). (5.6)

Because dom l has the form C× IRn for a nonempty convex set C, namely C = dom g, the
constraint qualification of Theorem 4.5(a) is satisfied, and we may conclude that− inf(P̃) =
inf(P) > −∞. This yields the first equation in (5.4)—in the case of η = η̄—and ensures
that Vτ 6≡ ∞ and Ṽτ > −∞ everywhere. By the symmetry between (L̃, g∗) and (L, g), we
get second equation in (5.4) along with Ṽτ 6≡ ∞ and Vτ > −∞ everywhere.

The subgradient relation translates to this context a property that is known for sub-
gradients of conjugate convex functions in general; cf. [9; 11.3].

Proof of Theorem 2.1. Through the conjugacy in Theorem 5.1, we see at once that Vτ

is convex and lsc, and of course the same for Ṽτ . The remaining task is to demonstrate
the epi-continuity property (2.3) of V . It will be expedient to tackle the corresponding
property of Ṽ at the same time and appeal to the duality between V and Ṽ in simplifying
the arguments. By this approach and by passing to subsequences that tend to τ either
from above or from below, we can reduce the challenge to proving that

(a) whenever τ ≥ 0 and τν ↘ τ, one has{
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,
lim infν Ṽ (τν , ην) ≥ Ṽ (τ, η) for every sequence ην → η;

(b) whenever τ > 0 and τν ↗ τ, one has{
lim supνV (τν , ξν) ≤ V (τ, ξ) for some sequence ξν → ξ,
lim infν Ṽ (τν , ην) ≥ Ṽ (τ, η) for every sequence ην → η,

(5.7)

since these “subproperties” yield by duality the corresponding ones with V and Ṽ reversed.

Argument for (a) of (5.7). Fix any τ̄ ≥ 0 and ξ̄ ∈ domVτ̄ . We’ll verify that the first
limit in (a) holds for (τ̄ , ξ̄). Take any τ̂ > τ̄ . By Corollary 4.4(a), the image of the set
Cτ̂−τ̄ = domE(τ̂ − τ̄ , ·, ·) under the projection (ξ′, ξ) 7→ ξ′ contains ξ̄. Hence there exists
ξ̂ such that E(τ̂ − τ̄ , ξ̄, ξ̂) < ∞. Equivalently, there is an arc x(·) ∈ A1

n[τ̄ , τ̂ ] such that∫ τ̂

τ̄
L(x(t), ẋ(t))dt <∞ with x(τ̄) = ξ̄ and x(τ̂) = ξ̂. Then too for every τ ∈ (τ̄ , τ̂) we have

E(τ − τ̄ , ξ̄, x(τ)) ≤
∫ τ

τ̄
L(x(t), ẋ(t))dt <∞ and therefore by (5.2) that

V (τ, x(τ)) ≤ V (τ̄ , ξ̄) + α(τ) for α(τ) :=
∫ τ

τ̄

L(x(t), ẋ(t))dt.
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Consider any sequence τν ↘ τ̄ in (τ̄ , τ̂). Let ξν = x(τν). Then ξν → ξ̄ and we obtain

lim supν V (τν , ξν) ≤ lim supν

{
V (τ̄ , ξ̄) + α(τν)

}
= V (τ̄ , ξ̄),

as desired. To establish the second limit in (a) as consequence of this, we note now that
the conjugacy in Theorem 5.1 gives Ṽ (τν , ·) ≥ 〈ξν , ·〉 − V (τν , ξν). For any η̄ and sequence
ην → η̄ this yields

lim infν Ṽ (τν , ην) ≥ lim infν

{
〈ξν , ην〉 − V (τν , ξν)

}
≥ 〈ξ̄, η̄〉 − V (τ̄ , ξ̄). (5.8)

But ξ̄ was an arbitrary point in domV (τ̄ , ·), so we get the rest of what is needed in (a):

lim infν Ṽ (τν , ην) ≥ supξ

{
〈ξ, η̄〉 − V (τ̄ , ξ)

}
= Ṽ (τ̄ , η̄). (5.9)

Argument for (b) of (5.7). Fix any τ̄ > 0 and ξ̄ ∈ domVτ̄ . We’ll verify that the first
limit in (a) holds for (τ̄ , ξ̄). Let ε > 0. Because V (τ̄ , ξ̄) < ∞, there exists x(·) ∈ A1

n[0, τ̄ ]
with x(τ̄) = ξ̄ and g(x(0)) +

∫ τ̄

0
L(x(t), ẋ(t))dt < V (τ̄ , ξ̄) + ε. Then for all τ ∈ (0, τ̄),

V (τ, x(τ)) ≤ g(x(0)) +
∫ τ

0

L(x(t), ẋ(t))dt

≤ V (τ̄ , ξ̄) + ε− α(τ) for α(τ) =
∫ τ̄

τ

L(x(t), ẋ(t))dt.

Consider any sequence τν ↗ τ̄ in (0, τ̄). Let ξν = x(τν). Then ξν → ξ̄ and we have

lim supν V (τν , ξν) ≤ lim supν

{
V (τ̄ , ξ̄) + ε− α(τν)

}
≤ V (τ̄ , ξ̄) + ε.

We’ve constructed a sequence with ξν → ξ̄ with this property for arbitrary ε, so by diag-
onalization we can get a sequence ξν → ξ̄ with lim supν V (τν , ξν) ≤ V (τ̄ , ξ̄), as required.
Fixing such a sequence and returning to the inequality Ṽ (τν , ·) ≥ 〈ξν , ·〉 − V (τν , ξν), we
obtain now for every sequence ην → η̄ that (5.8) holds, and hence by the arbitrary choice
of ξ̄ ∈ domVτ̄ that (5.9) holds as well.

The duality theory for the Bolza problems in this setting also provides insights into
the properties of the optimal arcs associated with V .

Theorem 5.2 (optimal arcs). In the minimization problem defining Vτ (ξ) = V (τ, ξ), an

optimal arc x(·) ∈ A1
n[0, τ ] exists for any ξ ∈ domVτ . Every such arc x(·) must actually

belong to A∞
n [0, τ ] when ξ is such that ∂Vτ (ξ) 6= ∅, hence in particular if ξ ∈ ri domVτ .

Proof. Although the theorem is stated in terms of V alone, its proof will rest on the
duality between V and Ṽ . We’ll focus actually on proving the Ṽ version, since that ties
in better with the foundation already laid in the proof of Theorem 5.1.
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Returning to the problems (P) and (P̃ ) that proof, we make further use of Theorem
4.5. We showed that our choice of the function l implied inf(P̃) = − inf(P) > −∞ in
(5.6), but we didn’t point out then that it also guarantees through Theorem 4.5(a) that
an optimal arc y(·) exists for (P̃) if, in addition, inf(P̃ ) <∞. Thus, an optimal arc exists
for the problem defining Ṽ (τ, η̄) as long as Ṽ (τ, η̄) < ∞. Likewise then, an optimal arc
exists for the problem defining V (τ, ξ̄) for any ξ̄ such that V (τ, ξ̄) <∞.

Next we use the fact that a vector ξ̄ belongs to ∂Ṽτ (η̄) if and only if η̄ ∈ dom Ṽτ and ξ̄
furnishes the maximum in the expression for − inf(P) in (5.6). (This is true by (5.4) and
(5.5) of Theorem 5.1.) For such a vector ξ̄, V (τ, ξ̄) has to be finite, so that there exists,
by the argument already furnished, an optimal arc x(·) for the minimizing problem that
defined V (τ, ξ̄). That arc x(·) must then be optimal for (P). Theorem 4.5(a) tells us in
that case that x(·) and the optimal arc y(·) for (P̃) are in A∞

n [0, τ ].

To finish up, we merely need to recall that a proper convex function ϕ has subgradients
at every point of ri domϕ, in particular.

6. Hamiltonian Dynamics and Method of Characteristics

The generalized Hamiltonian ODE in (2.6) now enters the discussion. This dynamical
system can be written in the form

(ẋ(t), ẏ(t)) ∈ G(x(t), y(t)) for a.e. t (6.1)

for the set-valued mapping

G : (x, y) 7→ ∂yH(x, y)×−∂̃xH(x, y), (6.2)

which derives from the subgradient mapping (x, y) 7→ ∂̃xH(x, y)× ∂yH(x, y). The latter
has traditionally been associated in convex analysis with H as a concave-convex function
on IRn × IRn. It is known to be nonempty-compact-convex-valued and locally bounded
with closed graph (since H is also finite; see [9; §35]). Hence the same holds for G.

Through these properties of G, the theory of differential inclusions [28] ensures the
local existence of a Hamiltonian trajectory through every point. The local boundedness of
G makes any trajectory (x(·), y(·)) over a time interval [τ0, τ1] be Lipschitz continuous, i.e.,
belong to A∞

n [τ0, τ1]. Another aspect of the Hamiltonian dynamics in (2.6), or (6.1)–(6.2),
is that H(x(t), y(t)) is constant along any trajectory (x(·), y(·)). This was proved in [6].

Nowadays there are other concepts of subgradient, beyond those of convex analysis,
that can be applied to H without separating it into its concave and convex arguments.
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The general definition in §2 directly assigns a subset ∂H(x, y) ⊂ IRn × IRn to each point
(x, y) ∈ IRn × IRn. An earlier definition for this purpose, which was used by Clarke in his
work on Hamiltonian conditions for optimality in nonconvex problems of Bolza (see [29]
and its references), relied on H being locally Lipschitz continuous and utilized what we now
recognize as the set con ∂H(x, y) in such circumstances. (Here ‘con’ designates the convex
hull of a set.) A more subtle form of ‘partial convexification’ of ∂H(x, y), involving only
the x argument in a special way, has been featured in more recent work on Hamiltonians
in nonconvex problems of Bolza; cf. [18], [19], and [20].

As a preliminary to our further analysis of the Hamiltonian dynamics, we provide a
clarification of the relationships between these concepts.

Proposition 6.1 (subgradients of the Hamiltonian). On the basis of H(x, y) being finite,

concave in x and convex in y, one has

con ∂H(x, y) = ∂̃xH(x, y)× ∂yH(x, y), (6.3)

this set being nonempty and compact. In terms of the set D consisting of the points (x, y)
where H is differentiable (the complement of which is of measure zero), one has

con ∂H(x, y) = ∂H(x, y) = {∇H(x, y)} for all (x, y) ∈ D. (6.4)

The gradient mapping ∇H is continuous relative to D, so that H is strictly differentiable

on D. Elsewhere,

con ∂H(x, y) = con
{

(w, v)
∣∣∣ ∃ (xν , yν) → (x, y) with ∇H(xν , yν) → (w, v)

}
. (6.5)

Proof. Formula (6.5) is well known to hold for the subgradients of any locally Lipschitz
continuous function; cf. [10; 9.61]. The special property coming out of the concavity-
convexity of H is that the set-valued mapping

TH : (x, y) 7→ [−∂̃xH(x, y)]× ∂yH(x, y) = ∂x[−H](x, y)× ∂yH(x, y) (6.6)

is maximal monotone; cf. [10; 12.27]. The points (x, y) where TH is single-valued are the
ones where ∂̃xH(x, y) and ∂Hy(x, y) both reduce to singletons, a property which corre-
sponds to H(·, y) being differentiable at x while H(x, ·) is differentiable at y; then ac-
tually H is differentiable (jointly in the two arguments) at (x, y); cf. [9; 35.6]. Thus,
the subset of IRn × IRn on which TH is single-valued is D, and on this set we have
TH(x, y) = (−∇xH(x, y),∇yH(x, y)). Then by maximal monotonicity, TH is continuous
on D with

TH(x, y) = con
{

(−w, v)
∣∣∣ ∃ (xν , yν) → (x, y) with ∇H(xν , yν) → (w, v)

}
;
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see [10; 12.63, 12.67]. We thereby obtain (6.3) from (6.5) and at the same time have (6.4),
from which H must be strictly differentiable on D by [10; 9.18].

Corollary 6.2 (single-valuedness in the Hamiltonian system). The mapping G in the

differential inclusion (6.1)–(6.2) has the form

G(x, y) =
{
(v,−w)

∣∣ (w, v) ∈ con ∂H(x, y)
}

(6.7)

and is single-valued almost everywhere. Indeed, G(x, y) =
{
(∇yH(x, y),−∇xH(x, y))

}
at

all points where the Hamiltonian H is differentiable, whereas in general,

G(x, y) = con
{

(v,−w)
∣∣∣ ∃ (xν , yν) → (x, y) with

(∇yH(xν , yν),−∇xH(xν , yν)) → (v,−w)
}
.

(6.8)

Despite the typical single-valuedness of G, situations exist in which there can be more
than one Hamiltonian trajectory from a given starting point. The flow mappings Sτ for
this system, as defined in (2.7), can well have values that are not singleton sets, and
indeed, can even be nonconvex sets consisting of more than finitely many points. It’s
rather surprising, then, that they nonetheless capture with precision the behavior of the
Lipschitzian manifolds gph ∂Vτ in Corollary 2.2. We’re prepared now to prove this fact.

Proof of Theorem 2.4. Fix τ > 0 along with any ξ̄ and η̄. The relation η̄ ∈ ∂Vτ (ξ̄) is
equivalent by Theorem 5.1 to ξ̄ ∈ ∂Ṽτ (η̄), or to having ξ̄ ∈ argmaxξ

{
〈ξ, η̄〉 − Vτ (ξ)

}
. We

saw in the proof of Theorem 5.2 that this corresponded further, in terms of the special
Bolza problems (P) and (P̃) introduced in the proof of Theorem 5.1, to the existence of
optimal arcs x(·) for (P) and y(·) for (P̃) such that x(τ) = ξ̄.

On the other hand, because− inf(P) = (P̃) for these problems, we know from Theorem
4.1 that arcs x(·) and y(·) solve these problems, respectively, if and only if (x(·), y(·))
is a Hamiltonian trajectory over [0, τ ] satisfying the generalized transversality condition
(y(0),−y(τ)) ∈ ∂l(x(0), ξ̄). Since l(ξ′, ξ) = g(ξ′) − 〈ξ, η̄〉 by definition in this case, the
transversality condition comes down to the relations y(0) ∈ ∂g(x(0)) and y(τ) = η̄.

In summary, we have η̄ ∈ ∂Vτ (ξ̄) if and only if there is a trajectory (x(·), y(·)) over
[0, τ ] such that x(τ) = η̄, y(0) ∈ ∂g(x(0)) and y(τ) = η̄.

Further details about the evolution of the subgradient mappings ∂Vτ = ∂ξV (τ, ·) can
now be recorded. The equivalence in the next theorem came out in the preceding proof.

Theorem 6.3 (optimality in subgradient evolution). A pair of arcs x(·) and y(·) gives a

Hamiltonian trajectory over [0, τ ] that starts in gph ∂g and ends at a point (ξ, η) ∈ gph ∂Vτ

if and only if
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(a) x(·) is optimal in the minimization problem in (1.1) that defines V (τ, ξ), and

(b) y(·) is optimal in the minimization problem in (5.1) that defines Ṽ (τ, η).

Corollary 6.4 (persistence of subgradient relations). When a Hamiltonian trajectory

(x(·), y(·)) over [0, τ ] has y(0) ∈ ∂g(x(0)), it has y(t) ∈ ∂ξV (t, x(t)) for all t ∈ [0, τ ].

We turn now, however, to the task of broadening Theorem 2.4 to cover not only the
evolution of subgradients but also that of function values. For this, the graph of ∂Vτ in
IRn × IRn has to be replaced by an associated subset of IRn × IRn × IR.

Proposition 6.5 (characteristic manifolds for convex functions). Let f : IRn → IR be

convex, proper and lsc, and let

M =
{
(x, y, z)

∣∣ y ∈ ∂f(x), z = f(x)
}
⊂ IRn × IRn × IR. (6.9)

Then M is an n-dimensional Lipschitzian manifold in the following terms. There is a

one-to-one, locally Lipschitz continuous mapping

F : IRn →M, F (u) = (P (u), Q(u), R(u)),

whose range is all of M and whose inverse is Lipschitz continuous as well, in fact with

F−1(x, y, z) = x+ y for (x, y, z) ∈M.

The components of F are given by

P (u) = argminx

{
f(x) + 1

2 |x− u|2
}
, Q = I − P, R = f◦P, (6.10)

where P and Q, like F−1, are globally Lipschitz continuous with constant 1, and R is

Lipschitz continuous with constant r on the ball
{
u

∣∣ |u| ≤ r
}

for each r > 0.

Proof. The mapping u 7→ (P (u), Q(u)) is well known to parameterize the graph of ∂f
in the manner described; cf. [10; 12.15]. With this parameterization, the component
z = R(u) must be f(P (u)), so the additional issue is just the claimed Lipschitz property
of this expression. According to the formulas for P and Q in (6.10) we have

R(u) = p(u)− 1
2 |Q(u)|2 for p(u) := minx

{
f(x) + 1

2 |x− u|2
}
. (6.11)

The function p is smooth with gradient ∇p(u) = Q(u); see [10; 2.26]. Hence R is locally
Lipschitz continuous, but what can be said about its Lipschitz modulus? Because P and
Q are Lipschitz continuous with constant 1 and satisfy P +Q = I, they are differentiable

25



at almost every point u, their Jacobian matrices satisfying ∇P (u) + ∇Q(u) = I and
having norms at most 1. At any such point u, R is differentiable as well, with ∇R(u) =
Q(u)−∇Q(u)Q(u) = ∇P (u)Q(u), so that |∇R(u)| ≤ |∇P (u)||Q(u)| ≤ |Q(u)| ≤ |u|. Thus,
|∇R(u)| ≤ r on the ball

{
u

∣∣ |u| ≤ r
}
, and consequently R is Lipschitz continuous with

constant r on that ball.

The set M in (6.9) will be called the (first-order) characteristic manifold for f , and
the mapping F its canonical parameterization.

Proposition 6.6 (recovery of a function from its manifold). Let M be the characteristic

manifold of a convex, proper, lsc function f . Then M uniquely determines f as follows:

(a) The image C of M under the projection (x, y, z) 7→ x, namely C = dom ∂f , satisfies

ri dom f ⊂ C ⊂ cl dom f and thus has riC = ri dom f and clC = cl dom f .

(b) For every x in C, the vectors (x, y, z) ∈M all have the same z, which equals f(x).

(c) For every x ∈ clC \C and any a ∈ riC, one has x+ ε(a− x) ∈ riC for all ε ∈ (0, 1]
and f(x+ ε(a− x)) → f(x) as ε↘0.

(c) For every x /∈ clC, f(x) = ∞.

Proof. These facts are evident from the definition of M , the well known existence of
subgradients at points of ri dom f , and the way that f can be recovered fully from its
values on ri dom f ; see [9; §7, §23].

Proposition 6.7 (convergence of characteristic manifolds). A sequence of convex, proper,

lsc functions fν on IRn epi-converges to another such function f if and only if the associated

sequence of characteristic manifolds Mν in IRn × IRn × IR converges (in the Painlevé-

Kuratowski sense) to the characteristic manifold M for f .

Proof. Attouch’s theorem on convex functions (cf. [10; 12.35]) says that fν epi-converges
to f if and only if gph ∂fν converges to gph ∂f and, for at least one sequence of points
(xν , yν) ∈ gph ∂fν converging to a point (x, y) ∈ gph ∂f , one has fν(xν) → f(x). On the
other hand, epi-convergence of convex functions entails the latter holding for every such
sequence of points (xν , yν). The convergence of the characteristic manifolds is thus hardly
more than a restatement of these facts of convex analysis.

Our goal in these terms is to describe how the characteristic manifold for Vτ evolves
from that of g. We introduce the following extension of the Hamiltonian system (6.1)–(6.2),
which we speak of as the characteristic system associated with H:

(ẋ(t), ẏ(t), ż(t)) ∈ Ḡ(x(t), y(t)) for a.e. t (6.12)

26



for the set-valued mapping Ḡ defined by

Ḡ(x, y) :=
{
(v, w, u)

∣∣ (v, w) ∈ G(x, y), u = 〈v, y〉 −H(x, y)
}
. (6.13)

The trajectories (x(·), y(·), z(·)) of this system will be called characteristic trajectories.
Like G itself, Ḡ is nonempty-closed-convex-valued and locally bounded with closed graph,
so a characteristic trajectory exists, at least locally, through every point of IRn× IRn× IR.
The corresponding flow mapping for each τ ∈ [0,∞) will be denoted by S̄τ :

S̄τ : (ξ0, η0, ζ0) 7→{
(ξ, η, ζ)

∣∣∣ ∃ characteristic trajectory (x(·), y(·), z(·)) over [0, τ ] with

(x(0), y(0), z(0)) = (ξ0, η0, ζ0), (x(τ), y(τ), z(τ)) = (ξ, η, ζ)
} (6.14)

Theorem 6.8 (subgradient method of characteristics). Let Mτ be the characteristic man-

ifold for Vτ = V (τ, ·), with M0 the characteristic manifold for g = V0. Then

Mτ = S̄τ (M0) for all τ ≥ 0. (6.15)

Moreover Mτ , as a closed subset of IRn × IRn × IR, depends continuously on τ .

Proof. The continuity of the mapping τ 7→ Mτ is immediate from Proposition 6.7 and
the epi-continuity in Theorem 2.1. The evolution of ∂Vτ through the drift of its graph in
the underlying system (6.1)–(6.2) has already been verified in Theorem 2.4, so the only
issue here is what happens when the z component is added as in (6.12)–(6.13). We have

ż(t) = 〈ẋ(t), y(t)〉 −H(x(t), y(t)) = L(x(t), ẋ(t)) (6.16)

when (ẋ(t), ẏ(t)) ∈ G(x(t), y(t)), since that relation entails ẋ(t) ∈ ∂yH(x(t), y(t)), which
is equivalent to the second equation in (6.16) because the convex functions H(x(t), ·) and
L(x(t), ·) are conjugate to each other. The arc x(·) is optimal for the minimization problem
that defines V (τ, ξ), so that

V (τ, ξ) = g(x(0)) +
∫ τ

0

L(x(t), ẋ(t))dt = z(0) +
∫ τ

0

ż(t)dt = z(τ).

The trajectory (x(·), y(·), z(·)) does, therefore, carry the point (x(0), y(0), z(0)) ∈ M0 to
the point (x(τ), y(τ), z(τ)) ∈Mτ . Conversely, of course, (6.16) is essential for that.

Theorem 6.8 provides a remarkably global version of the method of characteristics,
made possible by convexity. It relies on the one-to-one correspondence between lsc, proper,
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convex functions and their characteristic manifolds in Proposition 6.5 and on the preser-
vation of such function properties over time, as in Theorem 2.1. By transforming the
evolution of functions into the evolution of the associated manifolds, one is able to reduce
the function evolution to the drift of those manifolds in the characteristic dynamical system
associated with the given Hamiltonian H, or Lagrangian L.

In contrast, the classical method of characteristics requires differentiability at every
turn and, in adopting the implicit (or inverse) function theorem as the main tool, is
ordinarily limited to local validity. The characteristic manifold M0 associated with g has
to be a smooth manifold, and g must therefore be C2. The Hamiltonian H has to be C2 as
well, so that the mappings S̄τ are single-valued and smooth. But even these assumptions
are not enough to guarantee that the characteristic dynamics will carry M0 into smooth
manifolds Mτ . The trouble is that the functions Vτ are defined by minimization, and that
operation, in its inherent failure to preserve differentiability, simply does not fit well in the
framework of classical analysis.

A generalized “method of characteristics” for value functions has also been developed
by Subbotin [30], [21], but in a different framework from ours, namely one focused on
bounded control dynamics and not convexity, and not revolving around the Hamiltonian
function H and its dynamical system. This is also the case in [22] and [23].

7. Hamilton-Jacobi Equation and Regularity

The time has come to move beyond subgradients of convex analysis and establish properties
of the subgradient mapping ∂V as a whole.

Proof of Theorem 2.5. Our first goal is to prove the equivalence of the conditions
η ∈ ∂ξV (τ, ξ) and σ = −H(ξ, η) with having (σ, η) ∈ ∂̂V (τ, ξ) when τ > 0. Here ∂ξV (τ, ξ)
is the same as ∂̂ξV (τ, ξ), since the function V (τ, ·) = Vτ is convex.

Let η̄ ∈ ∂ξV (τ̄ , ξ̄) with τ̄ > 0. We need to show that (−H(ξ̄, η̄), η̄) ∈ ∂̂V (τ̄ , ξ̄), or in
other words that

V (τ, ξ)− V (τ̄ , ξ̄) + (τ − τ̄)H(ξ̄, η̄)− 〈ξ − ξ̄, η̄〉 ≥ o
(
|(τ, ξ)− (τ̄ , ξ̄)|

)
. (7.1)

By Theorem 2.4 there is a Hamiltonian trajectory (x(·), y(·)) over [0, τ̄ ] that starts in gph ∂g
and goes to (ξ̄, η̄). Through the local existence property of the Hamiltonian system, this
trajectory can be extended to a larger interval [0, τ̄ + ε], in which case y(τ) ∈ ∂ξV (τ, x(τ))
for all τ ∈ [0, τ̄ + ε] by Corollary 6.4, so that

V (τ, ξ) ≥ V (τ, x(τ)) + 〈ξ − x(τ), y(τ)〉 for all ξ ∈ IRn when τ ∈ [0, τ̄ + ε]. (7.2)
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We have V (τ, x(τ)) = g(x(0)) +
∫ τ

0

[
〈ẋ(t), y(t)

〉
−H(x(t), y(t))

]
dt by Theorem 6.8, where

H(x(t), y(t)) ≡ H(x(τ̄), y(τ̄)) because H is constant along Hamiltonian trajectories. Hence

V (τ, x(τ)) = V (τ̄ , ξ̄)− (τ − τ̄)H(ξ̄, η̄) +
∫ τ

τ̄

〈ẋ(t), y(t)〉dt when τ ∈ [0, τ̄ + ε]. (7.3)

Also
∫ τ

τ̄
〈ẋ(t), y(t)〉dt = 〈x(τ), y(τ)〉 − 〈x(τ̄), y(τ̄)〉 −

∫ τ

τ̄
〈x(t), ẏ(t)〉dt, so in combining (7.3)

with (7.2), we see that the left side of (7.1) is bounded below by the expression

−〈ξ − ξ̄, η̄〉+ 〈ξ − x(τ), y(τ)〉+ 〈x(τ), y(τ)〉 − 〈x(τ̄), y(τ̄)〉 −
∫ τ

τ̄

〈x(t), ẏ(t)〉dt

= 〈ξ − ξ̄, y(τ)− η̄〉+ 〈ξ̄, y(τ)− η̄〉 −
∫ τ

τ̄

〈x(t), ẏ(t)〉dt

= 〈ξ − ξ̄, y(τ)− y(τ̄)〉 −
∫ τ

τ̄

〈x(t)− x(τ̄), ẏ(t)〉dt.

This expression is of type o
(
|(τ, ξ)− (τ̄ , ξ̄)|

)
because x(·) and y(·) are continuous and ẏ(·)

is essentially bounded on [0, τ̄ + ε]. Thus, (−H(ξ̄, η̄), η̄) ∈ ∂̂V (τ̄ , ξ̄) as claimed.

To argue the converse implication, we consider now any pair (σ̄, η̄) ∈ ∂̂V (τ̄ , ξ̄). Such
a pair satisfies

V (τ, ξ) ≥ V (τ̄ , ξ̄) + (τ − τ̄)σ̄ + 〈ξ − ξ̄, η̄〉+ o
(
|(τ, ξ)− (τ̄ , ξ̄)|

)
. (7.4)

In particular η̄ ∈ ∂̂ξV (τ̄ , ξ̄) = ∂ξV (τ̄ , ξ̄), and we therefore have, as just explained, the
existence of a Hamiltonian trajectory (x(·), y(·)) for which (7.3) holds. Specializing (7.4)
to ξ = x(τ) and using the expression in (7.3) for V (τ, x(τ)), we obtain

V (τ̄ , ξ̄)−(τ − τ̄)H(ξ̄, η̄) +
∫ τ

τ̄

〈ẋ(t), y(t)〉dt

≥ V (τ̄ , ξ̄) + (τ − τ̄)σ̄ + 〈x(τ)− x(τ̄), η̄〉+ o
(
|(τ, x(τ))− (τ̄ , x(τ̄))|

)
,

where the final term is of type o(|τ − τ̄ |) because x(·) is locally Lipschitz continuous. Then

(τ − τ̄)(σ̄ +H(ξ̄, η̄)) ≤
∫ τ

τ̄

〈ẋ(t), y(t)− y(τ̄)〉dt+ o(|τ − τ̄ |),

with the integral term likewise being of type o(|τ − τ̄ |). Necessarily, then, σ̄+H(ξ̄, η̄) = 0.

We turn now to showing that ∂V (τ, ξ) = ∂̂V (τ, ξ) for all ξ when τ > 0. Since
∂̂V (τ, ξ) ⊂ ∂V (τ, ξ) in general, only the opposite inclusion has to be checked. Suppose
(σ, η) ∈ ∂V (τ, ξ). By definition, there are sequences (τν , ξν) → (τ, ξ) and (σν , ην) → (σ, ν)
with V (τν , ξν) → V (τ, ξ) and (σν , ην) ∈ ∂̂V (τν , ξν). We have seen that the latter means
σν = −H(ξν , ην) and ην ∈ ∂ξV (τν , ξν). Then σ = −H(ξ, η) by the continuity of H.
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On the other hand, the sets Cν = gph ∂ξV (τν , ·) converge to C = gph ∂ξV (τ, ·) by
Corollary 2.2. Hence from having ην ∈ ∂ξV (τν , ξν) we get η ∈ ∂ξV (τ, ξ). The pair (σ, η)
thus satisfies the conditions we have identified as describing the elements of ∂̂V (τ, ξ).

Through the duality in Theorem 5.1, the statements in Theorem 2.5 are valid equally
for the dual value function Ṽ . From this we obtain the following.

Theorem 7.1 (dual Hamilton-Jacobi equation). The dual value function Ṽ satisfies

σ −H(ξ, η) = 0 for all (σ, ξ) ∈ ∂Ṽ (τ, η) when τ > 0. (7.5)

Indeed, for τ > 0 one has (σ, ξ) ∈ ∂Ṽ (τ, η) if and only if (−σ, η) ∈ ∂V (τ, ξ).

Proof. In translating Theorem 2.5 to the context of Ṽ , as justified by Theorem 5.1, we
bring into the scene the dual Hamiltonian H̃(y, x) = −H(x, y) corresponding (in Propo-
sition 3.5) to the dual Lagrangian L̃. The vectors (σ, ξ) ∈ ∂Ṽ (τ, η) are characterized by
ξ ∈ ∂ηṼ (τ, η) and σ = −H̃(η, ξ) = H(ξ, η). Invoking the conjugacy between V (τ, ·) and
Ṽ (τ, ·) in Theorem 5.1, specifically the relation (5.5), we get the subgradient equivalence.
Then (7.5) is immediate from the Hamilton-Jacobi equation already in Theorem 2.5.

We take up next the issue of what additional properties of continuity, differentiability,
etc., the value function V is guaranteed to have beyond the convexity and epi-continuity
in Theorem 2.1. We begin with a characterization of the interior of the set

domV =
{
(τ, ξ) ∈ [0,∞)× IRn

∣∣V (τ, ξ) <∞
}
.

Proposition 7.2 (domain interiors). In terms of Vτ = V (τ, ·), one has that

(τ, ξ) ∈ int domV ⇐⇒ τ > 0, ξ ∈ int domVτ .

Proof. It’s evident that “⇒” holds. We focus therefore on “⇐.” Consider τ̄ > 0 and
ξ̄ ∈ int domVτ̄ . The epi-convergence of Vτ to Vτ̄ as τ → τ̄ in Theorem 2.1 entails through
the convexity of these functions that Vτ converges pointwise to Vτ̄ uniformly on all compact
subsets of int domVτ̄ ; cf. [10; 7.17]. In particular this convergence holds on some open
neighborhood U of x̄ in domVτ̄ , so for some open interval I around τ̄ we have U ⊂ domVτ

for all τ ∈ I. Then I × O is an open subset of domV containing (τ̄ , ξ̄), and we conclude
that (τ̄ , ξ̄) ∈ int domV .

The argument just given shows further that V is continuous on the interior of domV ,
but we’re headed toward showing that V is in fact locally Lipschitz continuous there. The
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agreement between ∂V (τ, ξ) and ∂̂V (τ, ξ) in Theorem 2.5 will have a part in this, and it
will yield other strong properties besides.

Recall that a locally Lipschitz continuous function is subdifferentially regular (in the
sense of Clarke regularity of its epigraph) when all its subgradients are regular subgradi-
ents, or equivalently, its subderivatives and regular subderivatives coincide everywhere; for
background, see [10; Chapters 8 and 9]. The subderivative function for V at a point (τ, ξ)
is defined in general by

dV (τ, ξ) : (τ ′, ξ′) 7→ dV (τ, ξ)(τ ′, ξ′) := lim inf
ε↘ 0

(τ ′′,ξ′′)→(τ ′,ξ′)

V (τ + ετ ′′, ξ + εξ′′)− V (τ, ξ)
ε

.

To say that V is semidifferentiable at (τ, ξ) is to say that, for all (τ ′, ξ′), this lower limit
exists actually as the full limit

lim
ε↘ 0

(τ ′′,ξ′′)→(τ ′,ξ′)

V (τ + ετ ′′, ξ + εξ′′)− V (τ, ξ)
ε

.

Then dV (τ, ξ)(τ ′, ξ′) must be finite and continuous as a function of (τ ′, ξ′); cf. [10; 7.21].

Theorem 7.3 (regularity consequences). On int domV , the subgradient mapping ∂V is

nonempty-compact-convex-valued and locally bounded, and V itself is locally Lipschitz

continuous and subdifferentially regular, moreover semidifferentiable with

dV (τ, ξ)(τ ′, ξ′) = max
{
〈ξ′, η〉 − τ ′H(ξ, η)

∣∣∣ η ∈ ∂ξV (τ, ξ)
}
. (7.7)

Indeed, V is strictly differentiable wherever it is differentiable, which is at almost every

point of int domV , and relative to such points the gradient mapping ∇V is continuous.

Proof. The points (τ, ξ) ∈ int domV have been identified in Corollary 7.2 as the ones
with τ > 0 and ξ ∈ int domV (τ, ·). Because V (τ, ·) is convex, the mapping ∂ξV (τ, ·)
is nonempty-compact-valued and locally bounded on int domV (τ, ·), as already known
through convex analysis; cf. [6; §24]. These properties carry over to the behavior of ∂ξV

on int domV because of the epi-continuous dependence of V (τ, ·) on τ in Theorem 2.1; see
[6; §24] again. The local boundedness of ∂ξV , when joined with the formula σ = −H(ξ, η)
in Theorem 5.1 and the continuity of H, gives us the nonempty-compact-valuedness and
local boundedness of ∂V .

The local boundedness of ∂V on int domV implies that V is Lipschitz continuous
there locally; cf. [10; 9.13]. Then from having ∂̂V (τ, ξ) = ∂V (τ, ξ) in Theorem 2.5 we get
the subdifferential regularity of V on int domV and the convexity of ∂V (τ, ξ) (because
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∂̂V (τ, ξ) is always convex). Local Lipschitz continuity and subdifferential regularity yield
semidifferentiability by [10; 9.16]. Formula (7.7) specializes the semiderivative formula in
that result to V by way of the description of ∂V (τ, ξ) in Theorem 2.5.

By virtue of being locally Lipschitz continuous, V is differentiable almost everywhere
on int domV . In the presence of subdifferential regularity, the differentiability is strict
and the gradient mapping has the stated continuity property; see [10; 9.20].

Elementary examples illustrate the possible nondifferentiability of V . The simplest
is to let H = 0, in which case V (τ, ξ) = g(ξ), and thus any nondifferentiability in g is
propagated forward for all time. A similar effect is provided in the one-dimensional case
(n=1) by H(x, y) = −y, which yields V (τ, ξ) = g(τ + ξ). If g is nondifferentiable at some
point ξ̄, then V is likewise nondifferentiable at every (τ, ξ) on the line τ + ξ = ξ̄.

To see the trouble from another angle, letH(x, y) = ψ(x), where ψ is any finite concave
function. Then, no matter what the choice of convex g, one has V (τ, xi) = g(ξ) − τψ(ξ).
When g is finite, so too is V , but even when g is differentiable, V need not be unless ψ
is differentiable. This example underscores that singularities may appear in V even with
smooth initial data.

As a complement to Theorem 7.3, we develop further information about int domV ,
utilizing Proposition 7.2 to translate the issue into an investigation of when int domVτ 6= ∅.
It will be convenient to work with the calculus of relative interiors and the fact that, for
a convex set C in a space IRd, one has intC 6= ∅ if and only aff C = IRd (i.e., C isn’t
included in any hyperplane in IRd), in which case intC = riC (cf. [10; Chapter 2]).

Additional motivation for the following result, besides facilitating use of Theorem 7.3,
comes from the fact that the set domVτ =

{
ξ
∣∣V (τ, ξ) <∞

}
is the reachable set at time

τ , giving the points ξ = x(τ) reached by arcs x(·) ∈ A1
n[0, τ ] that start in dom g and have

finite running cost
∫ τ

0
L(x(t), ẋ(t))dt.

Proposition 7.4 (relative interiors of reachable sets). For every τ ∈ [0,∞) one has

∅ 6= ri domVτ =
{
ξ
∣∣ ri dom g ∩ ri domE(τ, ·, ξ) 6= ∅

}
. (7.8)

Here ri domVτ reduces to int domVτ if and only if there exists ξ ∈ domVτ such that

dom g∪domE(τ, ·, ξ) does not lie in a hyperplane, that being true then for all ξ ∈ domVτ .

Proof. Let Dτ = domVτ so D0 = dom g. Clearly Dτ is the image under (ξ′, ξ) 7→ ξ of
C := domE(τ, ·, ·) ∩ [D0 × IRn], all these sets being convex and nonempty. Then, under
the same projection mapping, riDτ is the image of riC; cf. [10; 2.44]. For each ξ the
convex set domE(τ, ·, ξ) is nonempty by Corollary 4.4; likewise for each ξ′ the convex set
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domE(τ, ξ′, ·) is nonempty. The rule for relative interiors in product spaces (cf. [10; 2.43])
says then that

ri domE(τ, ·, ·) =
{
(ξ′, ξ)

∣∣ ξ′ ∈ ri domE(τ, ·, ξ)
}

=
{
(ξ′, ξ)

∣∣ ξ ∈ ri domE(τ, ξ′, ·)
}
. (7.9)

This relative interior meets the set ri[D0 × IRn] = riD0 × IRn, as seen from the second of
the expressions in (7.9) by taking any ξ′ ∈ riD0 and then any ξ ∈ ri domE(τ, ξ′, ·). The
rule for relative interiors of intersections (cf. [10; 2.42]) then yields

riC = [ri domE(τ, ·, ·)] ∩ [riD0 × IRn].

Returning to the observation that Dτ is the projection of riC, and utilizing the first of
the expressions in (7.9), we get (7.8).

For the claim about interiors, we have to show that the stated condition on a point
ξ ∈ Dτ is equivalent to the nonexistence of a hyperplane M ⊃ Dτ . Fix any ξ̄ ∈ Dτ and any
ξ̄′ ∈ D0 with (ξ̄′, ξ̄) ∈ domE(τ, ·, ·). A vector ζ gives a hyperplane M =

{
ξ
∣∣ 〈ξ, ζ〉 = α

}
that includes Dτ if and only if ζ 6= 0 and ±ζ ∈ NDτ (ξ̄), this being the normal cone to Dτ at
ξ̄. Likewise, a vector ζ ′ gives a hyperplane M ′ =

{
ξ′

∣∣ 〈ξ′, ζ ′〉 = α′
}

that includes both D0

and domE(τ, ·, ξ̄) if and only if ζ ′ 6= 0 and both ±ζ ′ ∈ ND0(ξ̄
′) and ±ζ ′ ∈ Ndom E(τ,·,ξ̄)(ξ̄′).

(Here we appeal to the fact that ξ̄′ belongs to both D0 and domE(τ, ·, ξ̄).) From the
calculus of normals to convex sets (cf. [9; §23], [10; Chapter 6]), the cone Ndom E(τ,·,ξ̄)(ξ̄′)
is the projection of the cone Ndom E(τ,·,·)(ξ̄′, ξ̄):

±ζ ′ ∈ Ndom E(τ,·,ξ̄)(ξ̄
′) ⇐⇒ ∃ ζ with ± (ζ ′, ζ) ∈ Ndom E(τ,·,·)(ξ̄

′, ξ̄);

this relies on the nonemptiness of domE(τ, ·, ξ) for all ξ ∈ IRn (cf. Corollary 4.4), which
in turn ensures that ζ ′ must be nonzero in this formula when ζ 6= 0. Further calculus,
utilizing the set relations that were developed above in determining riDτ , reveals that
±ζ ∈ NDτ

(ξ̄) if and only if (0,±ζ) ∈ NC(ξ̄′, ξ̄), and on the other hand that

NC(ξ̄′, ξ̄) = Ndom E(τ,·,·)(ξ̄
′, ξ̄) +ND0×IRn(ξ̄′, ξ̄),

where ND0×IRn(ξ̄′, ξ̄) = ND0
(ξ̄′)× {0}.

Thus, having a ζ 6= 0 such that ±ζ ∈ NDτ (ξ̄) corresponds to having a ζ ′ 6= 0 such that
±ζ ′ ∈ ND0(ξ̄

′) and ±(ζ ′, ζ) ∈ Ndom E(τ,·,·)(ξ̄′, ξ̄). This yields the claimed equivalence.

Corollary 7.5 (interiors of reachable sets). If int dom g 6= ∅, then for every τ ∈ [0,∞),

∅ 6= int domVτ =
{
ξ
∣∣ int dom g ∩ domE(τ, ·, ξ) 6= ∅

}
.
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Proof. For convex sets C1 and C2 with intC2 6= ∅, one has riC1 ∩ riC2 6= ∅ if and only
if C1 ∩ intC2 6= ∅. Then too, C1 ∪ C2 cannot lie in a hyperplane.

Corollary 7.6 (propagation of finiteness).

(a) If g is finite on IRn, then V is finite on [0,∞)× IRn.

(b) If L is finite on IRn × IRn, then V is finite on (0,∞)× IRn.

Proof. We get (a) immediately from Corollary 7.5 as the case where int dom g = IRn. We
get (b) by observing that, for τ > 0, domE(τ, ·, ·) is all of IRn × IRn when L is finite.

Corollary 7.7 (propagation of coercivity).

(a) If g is coercive, then Vτ is coercive for every τ ∈ [0,∞).

(b) If L is coercive, then Vτ is coercive for every τ ∈ (0,∞).

Proof. We rely on the fact that a proper convex function is coercive if and only if its
conjugate is finite [10; 11.5]. The claims are justified then by the duality between Vτ and
Ṽ in Theorem 5.1 and that between L and L̃ in (2.15).
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