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1. Introduction

A major goal of Hamilton-Jacobi theory is the characterization of value functions that
arise from problems of optimal control and the calculus of variations in which endpoints
are treated as parameters. The value function V : [0, 00) x IR" — IR := [—00, o0] is defined

from a Lagrangian L : IR" x IR" — IR and an function ¢ : R" — IR by

T

V(r.€) = inf{g (x(0)) +/L(:c(t),j;(t))dt [a(r) =€} for 750,

0 (1.1)
V(0,8) == g(&),

with the minimization taking place over all the arcs (i.e., absolutely continuous functions)
x(+) : [0,7] — IR"™ that reach £ at time 7. Here V(7,-) is viewed as an evolving function
on IR"™ which starts as g and describes how ¢ is propagated forward to any time 7 in a
manner dictated by L.

Similarly, value functions can be considered that describe how g is propagated back-
ward from a future time 7', and such a “cost-to-go” formulation is common in optimal
control. From a theoretical perspective, of course, backward models are equivalent to for-
ward models through time reversal and do not require separate treatment in basic theory.
The expression of control problems in terms of a Lagrangian L in which control parameters
do not appear is parallel to the expression of control dynamics in terms of differential in-
clusions and has generated a substantial literature in nonsmooth optimization, going back
to around 1970. More about that can be found in our companion paper [1], which is the
springboard for the efforts here.

In the classical context of the calculus of variations, g and L would be smooth (i.e.,
continuously differentiable). For applications such as in control, however, it is important
to allow g and L to be nonsmooth and even to take on oo, because infinite penalties can
systematically be used in incorporating constraints. Under the assumption that g and L
are lower semicontinuous (Isc) and proper (i.e., not identically co, and nowhere having the
value —00), the integrand ¢ — L(z(t), &(t)) is measurable, and the functional J[z(-)] being
minimized is well defined. (The usual convention of “inf addition” is followed, in which co
dominates in any conflict with —oco.) Then J[z(-)] = oo unless the arc x(-) satisfies the
constraints:

z(0) € D, where D := {z|g(z) < oo},

(1.2)
i(t) € F(z(t)) ae. t, where F(z):= {v|L(z,v) < c0}.

The customary tool for characterizing value functions is the Hamilton-Jacobi PDE in

one form or another. It revolves around the Hamiltonian function H associated with L,
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which is defined through the Legendre-Fenchel transform by

H(z,y) := supv{<v,y> — L(x, v)} (1.3)

Because V typically lacks smoothness, even when g and L are smooth, various generaliza-
tions of the classical PDE have been devised, the foremost being “viscosity” versions. The
recent book of Bardi and Capuzzo-Dolcetta [2], with its helpful references, provides broad
access to that subject. Viscosity theory is able to characterize V' in situations far from
classical, and sometimes even when V' takes on co, but uniqueness results are still lacking
in many situations of interest for us here, due to the failure of V' to satisfy the continuity,
boundedness or growth conditions that current results demand.

In this paper, instead of working with a generalized Hamilton-Jacobi PDE for V,
we develop basic “envelope representations,” which characterize V' as the pointwise inf
or sup of a family of more elementary functions. In cases where a description of V' as
a unique Hamilton-Jacobi solution of some sort can indeed be furnished, now or in the
future, these formulas become PDE solution formulas. For state-independent Hamilto-
nians, H(z,y) = Ho(y), they reduce to Hopf-Lax formulas. We aim at contributing to
Hamilton-Jacobi theory by opening a way for such classical formulas to be extended to
state-dependent Hamiltonians, while exploring representations of value functions in their
own right, especially as a potential means of determining value functions and their sub-
gradients through optimization without having to deal with a separate Hamilton-Jacobi
equation for each choice of the cost function g.

We look at two kinds of envelope formulas: upper and lower. Both kinds have long
been known in the Hopf-Lax setting but haven’t systematically been sought outside of
that. Upper envelope formulas, involving pointwise minimization, are elementary and easy
to obtain very generally. However, in order for them to express V on (0, c0) as the envelope
of a family of finite functions, not to speak of smooth or subsmooth functions, significant
restrictions are necessary. Lower envelope formulas, involving pointwise maximization,
arise by dualization and therefore thrive only in the presence of convexity, as with the
original Hopf formula itself. In compensation for assumptions of convexity, though, they
offer a number of unusual and attractive features.

Our focus will primarily be on lower envelope formulas, because of their special po-
tential, but we will also investigate properties enjoyed by upper envelope formulas under
the convexity assumptions we impose.

Convex analysis [3] will heavily be used, but mostly through the results obtained in
our preceding paper [1]. To the extent that broader variational analysis is required, we
rely on the book [4].



After introducing the duality scheme and deriving the basic envelope formulas in §2
in terms of the ‘fundamental kernel” and the ‘dualizing kernel’, we concentrate in §3 on the
dualizing kernel and its characterization by a double Hamilton-Jacobi equation. The lower
envelope formula for V in terms of the dualizing kernel and the properties of that kernel
developed in §3 and also in §4, where connections with subgradients of V' are brought out,
constitute the paper’s main results. To complete the picture, relationships with standard

Hopf-Lax formulas are discussed in §5,

2. Envelopes and Convexity

Upper envelope formulas rely on the “double” value function E : [0,00) x R" x IR" — IR
that corresponds to two-endpoint, i.e., Lagrangian, minimization problems for L:

T

B(r,¢.€) = int{ /OL(x(t),x'(t))dt 2(0) = ¢, w(r) =€} for 7 >0,
B0.¢,9= {0 Moot

oo otherwise,

(2.1)

where the minimization is over all the arcs z(-) that go from & at time 0 to £ at time 7.

Theorem 2.1 (upper envelope representation). The value function V is expressed in

terms of E/ by the formula

V(r¢) = infé/{g(ﬁ') + E(r, 5',5)} for 7> 0. (2.2)

Moreover when T > 0, an arc z(-) achieves the minimum in the problem defining V (7,§)
in (1.1) if and only if it achieves the minimum in the problem defining E(t,£',¢) in (2.1)

for some choice of £’ yielding the minimum in (2.2).
Proof. Elementary and evident. 0

We will call E the fundamental kernel associated with L. The “kernel” term comes
from the far-reaching analogy between minimizing a sum of functions and integrating a
product of functions. Formula (2.2) gives a transform whereby g is converted to V (7, -)
for 7 > 0. It is an “upper envelope” formula because it expresses V as the pointwise
infimum of a certain family of functions on [0, 00) x IR, namely the functions e, : (7,§)
g(&') + E(1,¢,€) indexed by &' € D, where D is the effective domain of g as in (1.2). In
some situations £ may be finite or even smooth on (0,00) x R™ x IR", and the same then
holds for these functions e,

Often F takes on oo, though, and the upper envelope representation may be difficult to

exploit directly. Clearly, E(7,£’,€) can’t be finite unless there is an arc x(-) that conforms
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to the differential inclusion in (1.2) and carries £ to £. Thus, extended-real-valuedness of
E is inevitable in applications where the implicit constraints in (1.2) can seriously come
into play.

This motivates a search for alternative envelope representations in which troublesome
infinite values can be bypassed. Such representations will be generated by way of the

function K : [0,00) x R" x IR" — IR with

T

K(1,&,n) = inf{(x(O),n) + /L(x(t),j:(t))dt ’ x(1) = f},

0 (2.3)
K(0,&m) = (&),

which we introduce now as the dualizing kernel associated with L. The minimization takes
place over all arcs z(-) : [0,00) — IR"™ that reach £ at time 7.
For fixed n, K(-,-,n) is the value function obtained as in (1.1) but with the linear

function (-,n) in place of g. As a consequence of Theorem 1.1, therefore, we have

K(r,¢,n) = infe {(¢',n) + E(r,€,€)}, (2.4)

and indeed, this could serve as well as (2.3) in defining K.

Observe that (2.4) dualizes E by employing a variant of the Legendre-Fenchel trans-
form: —K(71,£,n) is calculated by taking the function conjugate to E(7,-,&) under that
transform and evaluating it at —n. When E(7,-,€) is lsc, proper and convex, it can be

recovered by the reciprocal formula

B(r,€,€) = sup, { K(r.¢.n) = (¢',m) | (2:5)

Our strategy is to use such duality between F and K, along with convexity of g, to translate
the upper envelope representation in Theorem 2.1 into a lower one involving K and the
function ¢* conjugate to g. A prerequisite for this, however, is placing assumptions on L
that will ensure E has the properties needed for (2.5) to be valid.

Such assumptions have been identified in our paper [1]. In stating them, we call a
function f : IR" — IR coercive if f is bounded from below and has f(v)/|v] — oo as
|v| — oo (where | - | is the Euclidean norm). When applied to a proper, nondecreasing

function 0 on [0, 00), coercivity means having 6(s)/s — oo as § — o0.

Basic Assumptions (A).
(AO) The initial function g is convex, proper and Isc on IR".

(A1) The Lagrangian function L is convex, proper and Isc on IR" x IR".
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(A2) The mapping F underlying L in (1.2) is nonempty-valued everywhere, and there
is a constant p such that dist(0, F(z)) < p(1 + |z|) for all z.

(A3) There are constants o and 3 and a coercive, proper, nondecreasing function 6 on
[0,00) such that L(z,v) > 6(max{0, |v| — a|z| }) — B|z| for all z and v.

The meaning of these assumptions has thoroughly been elucidated in [1], so for present

purposes we only need to record some key facts and examples.
An immediate consequence of L(x,v) being, by (Al) and (A2), a convex, proper, lsc

function of v for each x is that L can be recovered from H by

L(z,v) = supy{(v, y) — H(zx, y)} (2.6)

The correspondence between Lagrangians and Hamiltonians is thus one-to-one under our
conditions. For each H of a certain class, the associated L is uniquely determined by (2.6).

The Hamiltonian class is described as follows.

Proposition 2.2 [1] (Hamiltonian conditions). The Hamiltonians for the Lagrangians L
satisfying (A1), (A2) and (A3) are the functions H : IR"™ x IR™ — IR such that

(a) H(z,y) is finite, concave in x, and convex in y (hence locally Lipschitz continuous).

(b) There are constants « and (3 and a finite, convex function ¢ such that
H(z,y) < @(y) + (elyl + B)lz| for all z, y.

(¢) There are constants v and § and a finite, concave function v such that
H(z,y) > ¢(x) = (v|z[ +9)|y| for all z, y.

Proof. This comes from Theorem 2.3 of [1]. Finite concave-convex functions are locally
Lipschitz continuous by [3; 35.1]. O

Example 2.3 (subseparable Lagrangians). Let the Lagrangian have the form
L(z,v) = G(z) + Lo(v — Ax) (2.7)

for A € IR™*"™, a finite convex function G on IR", and a proper convex function Ly on IR"
that is Isc and coercive. Then L satisfies (A1), (A2) and (A3), and its Hamiltonian is

H(z,y) = (Az,y) — G(x) + Ho(y), (2.8)
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where Hy is a finite convex function on IR", namely Hy = L§. Conversely, if H has form
(2.8) for finite convex functions G and Hy, then L has the form (2.7) with Ly = H{ and
falls in the category described.

Detail. This is evident from Proposition 2.2 and the conjugacy between finite convex

functions (always continuous) and proper convex functions that are Isc and coercive. O

Subseparable Lagrangians illustrate also, in a relatively simple case, the way that our
framework of Lagrangians and Hamiltonians connects with control theory. An optimal

control problem with linear dynamics 4(t) = Az(t) + Bu(t) and running cost integral

T
/O {G(x(t)) + F(u(t)) }dt,

with F' convex, proper, lsc and coercive (but possibly taking on co) corresponds the La-
grangian L in (2.7) for
Lo(z) = min {F(u) | Bu = z},

and then the Hamiltonian H in (2.8) has Hy(y) = F*(B*y), where B* is the transpose of
B and F* is the convex function conjugate to F', this function being finite because of the
coercivity of F'. Control constraints are incorporated here through the specification of the
set where F' is finite. Control formats much more general than this, yet still fully convex
and (as may be shown) still fitting with our assumptions, can be found in [5], [6].

Note that if the coercivity condition in (A3) were replaced by a simpler condition like
L(z,v) > 6(]v|), Lagrangians of the type in Example 2.3 would have to have A = 0, and
G would have to be bounded from below.

Of course, there are many more Lagrangians satisfying (A1), (A2) and (A3) than the
ones in Example 2.3. An illustration is L(z,v) = % max {|z|?, [v[P } with p € (1,00), which
for ¢ determined by (1/p) + (1/q) = 1 has

syl when [y| > |z[P~1,

H(z,y) = { (2.9)

jzlly = jlzlP when [y| < |27~

Proposition 2.4 [1] (convexity of the fundamental kernel). Under (A1), (A2) and (A3),
E(1,£,€) is a convex, proper, Isc function of (§',&) for each T > 0. In fact, E(r,-,§) is

proper and coercive for every &, and E(t1,¢,+) is proper and coercive for every &'.
Proof. This is extracted from Proposition 4.2 and Corollary 4.4 of [1]. O

On the basis of this result we do have the reciprocal formula in (2.5) along with the

one in (2.4), and E and K are entirely dual to each other. We are able then to convert
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the envelope formula in (1.1) into one for functions that are likely to be better behaved.
The technique is to apply Fenchel’s duality theorem to the minimization problem in (1.1)
in order to recast it as a maximization problem.

In the next theorem, and henceforth in this paper, we take assumptions (A) for

granted, unless otherwise mentioned.

Theorem 2.5 (lower envelope representation). The dualizing kernel K (1,&,n) is every-
where finite, convex in £ and concave in 1. The value function V' is expressed in terms of
K by the formula

V(r,€) = sup, { K(r,&.n) = g"(n) }. (2.10)

Proof. For any (7,€) € [0,00) x IR", the function f = E(r,-,§) is Isc, proper, convex and
coercive by Proposition 2.4, so its conjugate f* is finite. We have —f*(—n) = K(7,&, 1)
by (2.4), hence K(7,£,n) is finite and concave in 7. On the other hand, the convexity
of E(1,£,€) in (¢/,€) in Proposition 2.4 implies the convexity of K(7,-,n) by the general
principle that when the Legendre-Fenchel transform is applied to one argument of a convex
function of two arguments, the result is concave in the residual argument; see [3; 33.3] or
[4; 11.48]. (The concavity becomes convexity under the changes of sign.)

To obtain the lower envelope representation, we fix £ along with 7 and view the upper
envelope representation in (2.2) as expressing V (7, £) as the optimal value in the problem
of minimizing ¢g(¢') + f(¢') for f = E(7,-,€) as above. By Fenchel’s duality theorem (cf.
[3; 31.1] or [4; 11.41]), one has

inf {g(¢) + (€} = sup, { = /*(=n) — g"(n)} (2.11)

if the relative interiors of the convex sets {n|— f*(-n) > —oo} and {n|g*(n) < +oo}
have a point in common. That criterion is met through the finiteness of f*, which makes
the first set be all of IR". Since the inf in (2.11) gives the left side of (2.10) and the sup in
(2.11) gives the right side, the equation in (2.10) is confirmed. O

For 7 = 0, the lower envelope representation in (2.10) reduces to the Legendre-Fenchel

envelope formula
9(¢) = sup, { (&) — 9" (n)}. (2.12)

which expresses the proper, Isc, convex function g as the pointwise supremum of all the
affine functions majorized by g. For 7 > 0, it can be viewed as extending this formula
forward in time through a Hamilton-Jacobi propagation of those affine functions into a

different family of functions.



In employing the Fenchel duality rule (2.11) as the tool for passing between upper
and lower envelope representations, we are in effect invoking a “minimax principle” in a
manner reminiscent in Hamilton-Jacobi theory of the duality seen in classical Hopf-Lax

formulas (which will be taken up in §5). Indeed, our formulas can be recast as follows.

Theorem 2.6 (envelope formulas in minimax mode). In terms of the dualizing kernel K,

the value function V always has the representation
V(r,€) = infe sup, {g(&') = (€', n) + K(7,,m) }, (2.13)

and this even holds for an arbitrary choice of g : R" — IR. When ¢ is convex, proper and

Isc, however, V' also has the representation
V(7,§) = sup, infs'{g(é”) — (&) + K(T,é,n)} (2.14)

Proof. We get (2.13) by combining the elementary formula (2.2) for V' in terms of E with
the reciprocal formula (2.5) for E in terms of K, which is valid by Proposition 2.4 under
our assumptions. We get (2.14) by combining the representation (2.10) of V' in terms of
K and g* with the definition of ¢* in terms of g. O

All of duality theory in convex optimization, a very highly developed subject, has the
character of a “minimax principle” of course, but there is no single minimax theorem to
invoke that would fit all cases. Everything revolves around the precise conditions under
which “inf” and “sup” can legitimately be interchanged when the simplest compactness
and continuity properties may be absent, as here. Duality of a much deeper kind than in the
proof of Theorem 2.5 will be crucial later, for instance, in ascertaining the circumstances
in which the supremum in (2.10) is attained and how this can be used in determining the
subgradients of V' from those of K (cf. Theorem 4.2 and Corollary 4.3 below). Observe
that this brings out an important advantage of expressing lower envelope representations
as in (2.10) instead of as in (2.14).

The appearance of ¢g* instead of g in (2.10) shouldn’t be regarded as much of a
drawback. In many situations g* can explicitly be determined from g (see [3] and [4;
Chap. 11] for the calculus of conjugates), but even if not, there is much that might be
made of this formula. Depending on the particular structure of g (in terms of operations
like addition and composition), it’s common for g*(7n) to be expressible as the optimal value
in a minimization problem with respect to some other vector, let’s call it ¢, in which 7 is a
parameter. When such an expression is substituted into (2.10), one gets a representation

of V(7,£) as the optimal value in a maximization problem involving both 1 and (.
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Anyway, as a practical matter, optimization formulas for V(7,¢), whether directly
as in (2.10) or with some expansion of the g*(n) term, are generally more favorable for
computation than integration formulas, which become intractable numerically in more than
a few dimensions. Furthermore, for applications such as to feedback in optimal control the
subgradients of V' are at least as important as its values. The lower representation in (2.10)
affords a much better grip on those than does the upper representation in (2.2), because K
is typically far better behaved than F, as will emerge from the results that follow. These
better properties suggest that K may be easier to generate than V in a Hamilton-Jacobi
context, after which the lower envelope representation in Theorem 2.5 might be used to
compute aspects of V' as needed, for instance in feedback. Moreover, the same K would
be able to serve for every V that relies on the Lagrangian L, no matter what the choice of

the initial cost function g.

3. Characterization of the Dualizing Kernel

Turning now to the development of properties of K that underpin the lower envelope repre-
sentation in Theorem 2.5, we begin with a special kind of Hamilton-Jacobi characterization.
Only subgradients in the sense of convex analysis are needed in this characterization, but
other subgradients will soon enter the discussion too, so we go straight to a review of the
full definitions. For background, see [4].

Consider any function f : IR" — IR and let  be any point at which f(z) is finite. A
vector y € R" is a regular subgradient of f at x, written y € Of (z), if

f@') = f(x) +{y, &’ — 2) + o(|2" — =|). (3.1)

It is a (general) subgradient of f at x, written y € df(x), if there is a sequence of points
2¥ — x with f(z¥) — f(z) for which regular subgradients 3 € 0f(z") exist with y* — v.
(We consistently use superscript v for sequences; v — oo0.) When f is convex, the sets
of (x) and Of(x) are the same and agree with the subgradient set of convex analysis,
defined by (3.1) without the “0” term.

These of course are ‘lower’ subgradients; the corresponding regular and general ‘upper’
subgradient sets, defined with the opposite inequality in (3.1) and will be denoted here by
df(x) and Of (x); thus

of = -0 f). (3.2)

This notation is expedient because most situations can be couched in terms of lower sub-

gradients alone, cf. [4], although just now we’ll have something of an exception.
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Regular subgradients have been the mainstay in viscosity theory, but general subgra-
dients are the vehicle for many of the strongest results in variational analysis [4].
In the following theorem, 0¢ K (7,§,n) refers to subgradients of the convex function

K(r,-,m), whereas (i,K (1,&,m) refers to subgradients of the concave function K(7,&,-).

Theorem 3.1 (double Hamilton-Jacobi equation). The kernel K(7,&,n) is continuously

differentiable with respect to T and satisfies, for T > 0,

a_K(T é‘ ) — {H(g’n/) fOI’ aH 77/ € (?fK(T7€777)7
or >V H(¢,n) forall & e€0,K(r,&n), (3.3)

K(0,&n) = (&),

where 0K /Ot is interpreted as the right partial derivative when T = 0. Moreover, K is the

only such function with K(7,&,n) convex in { and concave in 1.

The proof of Theorem 3.1 will be furnished later in this section, after some addi-
tional developments. The continuous differentiability refers to (0K/07)(7,&,n) depending
continuously on (7,£,7n) € [0,00) x R"™ x R".

The double Hamilton-Jacobi equation in (3.3) has been placed in the elementary
picture of subgradients of convex and concave functions and partial derivatives in time,
because that seems most conducive to possible uses of the result. What comparison can
be made with viscosity versions of Hamilton-Jacobi equations, though? And why two
equations instead of one?

The double aspect of the characterization comes from the fact that, through duality,

K has an alternative expression in which the roles of £ and n are interchanged.

Proposition 3.2 (alternative formula for the dualizing kernel). In minimizing over arcs
y(+) : [0,7] — IR", one has
~K (g =t {(y(O) + [ L0, 900)de | 7) = 0}, (3.4

0

where L,(y,w) = L*(—w,y). Moreover L., like L, satisfies (A1), (A2) and (A3), and its

Hamiltonian H, is given by
H.(y,) = sup,, { (1w,) = L.(y,w) } = —H(=a,y). (3.5)

Proof. The duality theory for convex problems of Bolza [7] will be applied in the form
distilled in [1, §4]. The minimization problem that defines K (7,&,n) in (2.3) is

(P) minimize /OTL(x(t),ﬂb(t))dt + 1(z(0),x(7)) over arcs z(-) : [0,7] — R",
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where [(a,b) = (a,n) if b =& but I(a,b) = oo if b # £. The duality theory pairs this with

(P) minimize /OTE(y(t),y'(t))dt +1(y(0),y(7)) over arcs y(-) : [0,7] — IR",

where L(y,w) = L*(w,y) and I(c,d) = I*(c, —d); the latter comes here out as I(c,d) =
—(&,d) if ¢ =7 but I(¢,d) = oo if ¢ # . Because I(-,b) is finite on IR™ for a certain b, and

l(c,-) is finite on IR" for a certain ¢, the optimal values in the two problems are related by

inf(P) = — inf(P); this holds by [1, Corollary 4.6]. Thus,

CK(1,6,1) = mf{ /0

By rewriting in terms of z(t) = y(7 — t), we can convert this to

“K(r,&,1) = mf{/o

It remains only to replace £ by —¢ and the z notation by y again to obtain (3.4).
The fact that L, again satisfies (A1), (A2) and (A3) comes from the fact that L

inherits these properties from L, as demonstrated in [1; Proposition 3.5]. The expression

T

L{y(®),9(0))dt = (&,y()) | y(0) = n}.

T

L(2(t), —2(t))dt — (€, 2(0)) ( (1) = n}.

for the Hamiltonian H, in terms of H arises similarly from that result, which asserts that
the Hamiltonian H for L has H(y,z) = —H(z,y). O

Through results in [1], the value function formulas for K in (2.3) and (3.4) lead to
major conclusions about the subgradients of K and in particular to a viscosity version of
the double Hamilton-Jacobi equation in Theorem 3.1. This time we use 0, ¢K(7,&,7) to
denote subgradients of the function K (-,-,&) on [0,00) x IR", and so forth.

Theorem 3.3 (subgradients of the dualizing kernel). For 7 > 0, one has

(Uv 77/) € a’r,éK(T7 57 77) — (07 77/) € 37’,§K(7—7 57 77)

(3.6)
— 1 €dK(r,&n), oc=—H(),

and on the other hand

(0,8) € DryK(1,6,m) = (0,€)) € Dr K (7,€,7)

i (3.7)
— ed,K(r.&n), o=—H(E n).

Proof. We simply apply [1; Theorem 2.5] first to K(-,-,n), which is the value function
that propagates (-,n) under L as in (2.3), and second to —K (-, —¢, -), which by Proposition
3.2 is the value function that propagates (£, ) under L. O
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Corollary 3.4 (double viscosity equation). For 7 > 0, one has
o+ HEn)=0 forall (o,7) 6@775K(T,§,n), (3.8)
o+ H(E,n)=0 forall (c,&)e€ ém,K(T, £,n). '

It will be established in the next theorem that K is locally Lipschitz continuous. In
view of this, the first of the subgradient equations in (3.8) is equivalent, as shown by
Frankowska [8], to K(-,-,n) being a Hamilton-Jacobi viscosity solution in the sense of
satisfying the upper and lower inequalities of Crandall, Evans and Lions [9], with initial
K(0,-,n7) = (-,n). The second equation has a similar viscosity interpretation relative to a
switch in the roles of the £ and n arguments.

It might be hoped that either of these subgradient equations, by itself, would be
enough to determine K uniquely. That could be true, but unfortunately the existing
results on uniqueness of viscosity solutions are not fully up to the task. The trouble is that
H and K need not satisfy the kinds of growth or boundedness conditions assumed in such
results. Because of the initial condition K(7,&,7n) is certainly neither globally bounded
from above nor globally bounded from below, even for fixed £ or 1. One or the other kind
of boundedness would be needed to apply the latest uniqueness theorem of Ishii [10], for
example. Anyway, the Hamiltonian can grow at rates like those in (2.9), and this can be

problematical as well.

Theorem 3.5 (Lipschitz continuity of the dualizing kernel). The function K is locally

Lipschitz continuous on [0,00) x IR™ x IR".

Proof. By [1; Theorem 2.1] the functions K(-,-,n) are lsc on [0,00) x IR" as value func-
tions in the mode of (2.3). Similarly by this result, as applied in the context of Proposition
3.2, the functions —K (-, —¢&,-) are Isc on [0,00) x IR". Hence the functions K(-,¢,-) are
usc on [0,00) x IR", and it follows in particular that K(7,&,n) is continuous in 7 € [0, 00)
for each (&,7n). Thus, K(7,-,-) converges pointwise to K (7, -,-) whenever 7 — 7 in [0, 00).
The functions K(7,-,-) are finite and convex-concave by Theorem 2.5, and pointwise con-
vergence of such functions on IR™ x IR" implies uniform convergence on bounded sets
(see [3; 35.4]). In consequence, K is continuous on [0,00) x IR™ x IR". Furthermore, the

convergence implies that the mapping

S:(r,&n) = {(,&)| 0 € 9K(r.&m), & €9,K(,&n) } (3.9)

is locally bounded on [0,00) x IR"™ x IR™ and has closed graph (see [3; 35.7]).

12



This yields through the continuity of H (in Proposition 2.2) the closed graph property

and local boundedness on [0,00) x IR™ of the mappings

(1,8) = {(o.0) |0 € 0:K(7,&,m), o =—H(¢7)}
(r,n) — {(o,0') |0 € 0,K(,&m), o=—H(E n)}.

In general, a function f that is finite and Isc on an open set O in a space IRY is Lipschitz

(3.10)

continuous with constant x on any set X C O such that |y| < « for all y € 0f(z) when
x € X; this holds by [4; 9.2, 9.13]. We invoke this now for K(-,-,n) on (0,00) x IR". From
the subgradient characterization in (3.6) of Theorem 3.3 and the local boundedness of the
first mapping in (3.10), on [0, 00) x IR™ rather than just (0,00) x IR", we get that K(-,-,n)
is locally Lipschitz continuous on (0, 00) x IR", and more over that the Lipschitz constants
don’t blow up as 7\.0. Since K (-,-,n) is anyway continuous on [0, 00) x IR", we conclude
it must actually be Lipschitz continuous on [0, 00) x IR".

A parallel argument utilizing the dual formula in Proposition 3.2 shows that the
functions K (-, &, -) are Lipschitz continuous on [0, 00) X IR". The two properties of Lipschitz

continuity combine to give the Lipschitz continuity of K itself on [0,00) x R™ x R". O

The subgradient result in Theorem 3.3 will be complemented now by one about sub-
derivatives. These are defined as follows; see [4] for background. For f : R™ — IR and a
point x where f(x) is finite, the subderivative of f at = for a vector w is

/ j—
df (z)(w) := liminf fo+ew) f(x)

e \0 15

/
w —w

(3.11)

If this ‘liminf’ coincides with the associated ‘limsup’ and thus exists as a full limit, f
is said to be semidifferentiable at x for w, or simply semidifferentiable at x if true for
all w € IR". Semidifferentiability at x corresponds to the difference quotient functions
Acf(z) : w — [f(x + ew) — f(x)]/e converging uniformly on bounded subsets of IR",
as € \.0, to a continuous function of w [4; 7.21]. Differentiability is the case where, in

addition, the limit function df (z) is linear.

Theorem 3.6 (subderivatives of the dualizing kernel). On (0,00) x R" x IR", K is semi-
differentiable everywhere, and its subderivative formula is as follows. For any (1,£,n), the
quantities H(&,n') for g’ € 0¢K (7,€,m) and H(€',n) for ¢ € 0,K(1,€,m) all have the same
value, and in denoting it by k(7,&,n) one has
dK(T’ 57 n)(07w7 C) = - 9k<7—’ 67 /r])
+ max{<77’, w> } n e 0 K(1,¢&, 77)} (3.12)
+ min{(¢',¢) | & € 9,K(1,&,m)}.
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Proof. The first part of the proof, devoted to the existence of the common value k(7,&,7),
will be the basis later for knowing that K is continuously differentiable in 7 as claimed
in Theorem 3.1 but not yet justified. Let K, = K(-,-,n). Since K, is the value function
that propagates a finite convex function under L, namely (-, n), it is semidifferentiable on
(0,00) x R™ by [1; Theorem 7.3] with formula

dE,(7,6)(0,w) = max{{w, 1) — OH(§,n) [0’ € 0Ky (T,€)}. (3.13)

Likewise for K¢ = —K (-, —¢,-) in the context of Proposition 3.2, K¢ is the value function

that propagates (£, -) under L, and thus is semidifferentiable on (0, 0c0) x IR" with formula

dE*(1,7)(0,¢) = max{(¢',¢) — 0H.(n,¢) | € € 9, K (7,m)},

where H.,(n,&') = —H(—¢',n). In terms of K¢ = K (-,€,-) the latter can be rewritten as

dKe(r,m)(8,¢) = min{(¢',¢) — 0H(¢',n) | €' € 9, Ke(r,m)}, (3.14)
In particular, K has right and left partial derivatives in 7,

(07K /07)(1,€,m) = dK,(7,€)(1,0) = dK¢(7,1)(1,0),
(07 K/or)(1,6,m) = —dIK,(1,€)(=1,0) = —dK¢(7,1)(~1,0),

which by (3.13) must satisfy

(0" K/or)(r,&,m) =min{ — H(&, ') |0 € 0:K(7,€,1)},

L (3.15)
(07 K/or)(r,&,n) = max{ — H(&') |[n' € QK (1,€,m) },
and on the other hand, by (3.14), must satisfy
(07 K/07)(7,€,n) = max{ — H(¢',n) | € € 0,K(r,&,n)}, 5.16)

(07 K/or)(r,&,m) =min{ — H(¢,n) | ¢ € 9,K(r,&,n)}.

We get (0-K/oT)(1,&,mn) < (07K /OT)(T,£,7n) from (3.15) but the opposite inequality
from (3.16). The partial derivative (0K/0T)(7,&,n) therefore exists and is given by all
four expressions on the right in (3.15) and (3.16). In particular, the quantities H (&, n’)
and H (&', n) involved in these expressions must have the same value.

In denoting this common value by k(7,&,n), we have a function that is continuous not
only on (0,00) x IR"™ x IR™ but has a continuous extension to [0,00) x R" x IR". That
follows from the closed graph property and local boundedness on [0,00) x IR"™ x IR" of the
mappings in (3.10), as demonstrated in the proof of Theorem 3.5. Hence (0K /07)(T,&,1n)
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exists even at 7 = 0, when interpreted there as the right partial derivative, and it depends
continuously on (7,£,n) € [0,00) x R" x IR".

Henceforth in proceeding with the proof of Theorem 3.6, we argue solely on the basis
of K(7,&,n) being continuously differentiable in 7 while convex in £ and concave in n. This
will help with something needed eventually in the proof of Theorem 3.1, although a price
must be paid in overlaps with arguments already furnished for Theorem 3.5.

Each of the functions K(7,-,-), being finite and convex-concave, is locally Lipschitz
continuous on R"™ x IR" by [3; 35.1]. The differentiability of K(7,&,n) with respect to 7
entails continuity in 7. Therefore, whenever 7 — 7 in [0, 00) the functions K (7, -, -) converge
pointwise on R" x R" to K(7,-,-). We have already seen in the proof of Theorem 3.6 how
this convergence implies that the mapping S in (3.9) is locally bounded on [0, 00) x IR™ X IR"
with closed graph. This guarantees that the local Lipschitz continuity of the functions
K(r,-,-) is uniform locally with respect to 7 (by virtue of [3; 24.7] as applied in the convex
and concave arguments separately). In taking this together with the continuity of 0K /0,
which ensures the local Lipschitz continuity of K(7,&,n) in 7, we deduce that K is locally
Lipschitz continuous as a function of (7,&,7) € [0,00) x R" x IR".

We work next with the difference quotient functions concerned in generating the sub-

derivatives of K:
K(t+eb, & +ew,n+el)— K(r, €+ ew,n+ &C)

g
+K(T,€+6w,n+6é)—K(T,£,n). (3.17)
g

AEK(T7 57 77) (97 w’ () =

When £\.0, the first expression in the sum in (3.17), as a function of (6,w, (), converges

uniformly over bounded sets to the function

(0,w, () — (OK/O7)(7, &, )0

because of the continuity of K /07 (through a classical argument using the mean value
theorem). The second expression in the sum in (3.17), as a function of (w, {) that is convex-

concave, is known from convex analysis [3; 35.6] to converge pointwise to the function
@¢ —  max  (fwy+ min (€0,
nleaﬁK(Tagan) ileaﬂK(T7§7n)

The convergence must then be uniform over bounded subsets of IR™ x IR"™ (by [3; 35.4]).
Thus, as e \.0, the functions A K(7,£,n) do converge uniformly on bounded sets to the
function described by the right side of (3.12) with & = (0K/07). Hence K is semidifferen-

tiable with this as its formula. O
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Proof of Theorem 3.1. The continuous differentiability of K(7,&,n) has been demon-
strated in the first part of the proof of Theorem 3.6 along with the double formula for
(0K /0T) in (3.3), the common value on the right side of (3.3) being the expression k(7, &, n)
introduced in the statement of Theorem 3.6. The remaining task is to show the uniqueness
in this characterization. Let J(7,&,n) on [0,00) x IR" x IR" be convex in £, concave in 1,
and continuously differentiable in 7, satisfying (3.3). We have to prove that J = K.

As a tool in this endeavor, we can use the fact that J, like K, has the subderivative
properties in Theorem 3.6, since those properties depend only on the facts now being
assumed; see the remark in the middle of the proof of Theorem 3.6 (in the paragraph
starting with “Henceforth”). Thus

dJ (7, & n)(0,w, () =6(8J/07)(7,&,m)
+ max{(n’,w) |n € dcJ(1,&,n)} (3.18)
+ min{<£’,§> ‘ ¢ e 877J(T,§,77)}.

In addition we can take J to be locally Lipschitz continuous, because that property was
likewise seen there to be a consequence of the current assumptions.

Fix (7,&,n). Certainly J(7,&,n) = K(7,&,n) when 7 = 0, so suppose 7 > 0. The infi-
mum in the definition (2.3) of K(-,-,n) as the value function propagating (¢, -) is attained
by an arc x(-) on [0, 7] which moreover is Lipschitz continuous; this holds by [1; Theorem
5.2], which under our assumptions (A) applies to value functions at interior points (7, &) of
their domains. Then too, for any 7/ € (0, 7) and the point £’ = z(7’), the restriction of z(-)
to [0, 7] is optimal for the minimization problem defining K (7/,&’,n) (by the “principle of
optimality”). Thus,

/7

K (7)) = (2(0),n) +/ L(a(s),é(s))dt for 0< 1 <t (3.19)
0
In terms of the functions ¢ : [0, 7] — IR and 9 : [0,7] — IR defined by

p(t) = K(t,z(t),n), () :=J(t2(),n),

we have ¢(0) = K(0,z(0),n) = J(0,2(0),n) = (0), whereas (1) = K(1,§,n) and
(1) = J(1,&,n). Furthermore, ¢ is Lipschitz continuous on [0, 7], because x(-) has this
property and K is locally Lipschitz continuous on [0, c0) x IR" x IR". Likewise ¢ is Lipschitz
continuous on [0, 7]. It follows that ¢ and 1 are the integrals of their derivatives, which

exist almost everywhere. Hence
K& - Jnen = [ ood- [ v (3.20)
0 0
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On the basis of (3.19), we have
¢'(t) = L(z(t),(t)) for a.e. t. (3.21)
On the other hand, the semidifferentiability of J in (3.18) yields

W'(t) = (97/07)(t, x(t),n) + max{(n',&(t)) [0 € e J(t,x(t),n)}.

For each ¢ let y(t) be a vector £ attaining this maximum. Because J satisfies the Hamilton-
Jacobi equations in (3.3), we have (0.J/07)(t,z(t),n) = —H(x(t),y(t)), so that

W'(t) = —H(x(t),y(t) + (y(t), &(t)). (3.22)

Since L(x(t),-) and H(x(t),-) are conjugate convex functions, we know from the reciprocal
Legendre-Fenchel formula in (2.6) that (y(t),4(t)) — H(z(t),y(t)) < L(x(t),&(t)). There-
fore ¢/ (t) < ¢'(t) by (3.22) and (3.21). When this inequality is combined with (3.20), we
arrive at the conclusion that J(7,&,n) < K(71,&,n).

So far, we have established that J < K. To get the opposite inequality, it suffices to
show that —J(7,—&,n) < —K(7,—&,n) for all (1,&,n). But for this we only need appeal to
the alternative value function formula for K in Proposition 3.2 and in such terms reapply

the argument just given. O

4. Additional Kernel Properties and Subgradient Formulas

Other facts about the kernels K and E will now be developed, with emphasis on sub-
gradients and regularity. Connections between subgradients of the value function V and
those of the dualizing kernel K are featured because of their possible use in applications
to feedback in optimal control.

An important role in bringing out such connections is played by the generalized Hamil-

tonian dynamical system associated with H, which has the form

©(t) € Oy H (x(t),y(t)),  —y(t) € 0. H(x(t),y(t)) (4.1)

This dynamical system is the key to characterizing optimality in the theory of generalized
problems of Bolza for the Lagrangian L, where it originated in [11]. More on its properties
and history can be found in [1] and its references. A Hamiltonian trajectory over [0, 7] is

a pair of arcs z(-) and y(-) satisfying (4.1) for almost every ¢.
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Theorem 4.1 (kernel subgradients and Hamiltonian dynamics). The following properties

are equivalent for any T > 0:
(a) 7' € 0K (7,&,m) and £ € 0, K(7,&,m);

(b) nn') € Opr E(1,£,€);
(c) there is a Hamiltonian trajectory (z(-),y(:)) over [0, 7] from (§',n) to (§,7).

Proof. The equivalence between (a) and (b) reflects a general principle about how sub-
gradients behave when partial conjugates are taken, as in the passage between F and K
in (2.4) and (2.5); cf. [4; 11.48].

The equivalence between (a) and (c) will come out of a result in [1; Theorem 2.4] about
the subgradients of value functions V' more generally: one has ' € 0.V (7,€) if and only
if there is a Hamiltonian trajectory (z(-),y(-)) over [0, 7] that starts with y(0) € dg(x(0))
and ends at (£,n’). Since K(-,-,n) is the value function that propagates (-,7n), a function
with constant subgradient (gradient) 1, we deduce that n’ € 0:K(7,&,n) if and only if
there is a Hamiltonian trajectory (x(-), y(-)) over [0, 7] that starts with y(0) = n (any z(0))
and ends at (&,7).

For the remainder, we argue in terms of the dual expression in Proposition 3.2, where
—K(-,—¢,) is the value function that propagates (¢, -) under L., a Lagrangian with Hamil-
tonian with Hamiltonian H, given by (3.5). Invoking the same theorem from [1] in this
setting, we obtain, after the + signs settle down and the trajectories are reversed in time,
the fact that & € &,K (1,&,n) if and only if there is a Hamiltonian trajectory over [0, 7]
that starts at (§’,7n) and ends with x(7) = £ (any y(7)). In putting this together with the

earlier statement, we arrive at the description in (c). O

Theorem 4.2 (determination of value function subgradients). For every T > 0, one has

ov(r&) = J{oreKrem)|ne Mz},

(4.2)
where M(1,§) := argmaxn{K(T,f, n) — g*(n)}.

Therefore, subgradients of V can be determined from those of K by carrying out the

maximization in the lower envelope formula, with

(o,n") € OV (1,§) <= dne M(r,&) with {Zia—g[[;((g:g;)n)’ (4.3)

Proof. Recall from Theorem 3.3 that the subgradients in 9, (K(7,§,7) are of the form
(—H(,n'),n') forn' € 0:K(7,&,n). A similar result was obtained in [1; Theorem 2.5] for V;
its subgradients have the form (—H (&, 1), n’) for ' € 0¢V (7,&). Further, as already noted
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in the proof of Theorem 4.1, it was demonstrated in [1; Theorem 2.4] that ' € 0,V (7,&)
if and only if there is a Hamiltonian trajectory (z(-),y(+)) that starts with y(0) € dg(z(0))
and ends at (&,7').

On the other hand, the condition for 7 to belong to M(7,§), i.e., to maximize
K(1,&,m) — g*(n), can be expressed in subgradient terms as 0 € 577K(T,§,77) — dg*(n).
(This is both necessary and sufficient for optimality because g* is a convex function
while K(7,&,+) is a finite concave function; see [3; §31].) Equivalently, there exists some
¢ e 577K(7',€,77) N dg*(n). But for conjugate convex functions we have £ € dg*(n) if
and only if n € dg(£’). In view of Theorem 4.1, then, we have n € M (r,§) if and only if
there is a Hamiltonian trajectory (z(),y()) that starts with y(0) € dg(«(0)) and ends at
(&,m'). This is the same as the condition derived in terms of V', so we conclude that the

subgradient formula in the theorem is correct. 0

Theorem 4.2 puts the spotlight on the maximizing set M (7, &) in the lower envelope
formula (1.5) and raises questions about the nature of this subproblem of maximization,

in particular whether the maximum is actually attained. We address these questions next.

Theorem 4.3 (compactness and attainment in the lower envelope formula). For any 7 > 0
and &, the following properties in the lower envelope formula are equivalent:

(a) the set M(7,§) = argmax, { K(7,&,1) — g*(n)} is nonempty and compact;

(b) for every B € IR, the upper level set {77 | K(r,&,n) —g*(n) > 5} is compact;

(c) € €int D(7) for the set D(t) = {{|V(7,£) < oo}.

Proof. We return to the proof of Theorem 2.5 and the framework of Fenchel duality in
which it was placed, with f = E(7,-,€) and —f*(—n) = K(7,&,7n). It is well known in
that theory, in terms of the convex sets dom f and dom g (where f and g are finite), that
argmin,, {f*(-=n) +g*(n)} is nonempty and bounded if and only if 0 € int(dom f — dom g)
and the infimum is finite (see for instance [4; 11.41, 11.39(b)].) That is in turn equivalent
to having ridomg Nridom f # () with dom g U dom f not lying in a hyperplane (cf. [4;
2.45]). In [1; Proposition 7.4] this property has been identified with (c). Thus, (a) is
equivalent to (c).

The equivalence between (a) and (b), on the other hand, results from the fact that

the function being maximized is concave and upper semicontinuous; cf. [4; 3.27]. O

Corollary 4.4 (finite value functions). When V is finite on (0, 00) x IR", the maximizing
set M(T,&) is nonempty and compact for every (7,&) € (0,00) x IR". In particular this is

the case when g is finite on IR"™ or on the other hand when L is finite on IR" x IR".
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Proof. The first assertion is justified through condition (c) in Theorem 4.3. The rest cites

elementary circumstances in which V' is know from [1; Cor. 7.6] to be finite. O

We look further now at the fundamental kernel F, first demonstrating a property
of epi-continuity. Epi-continuity, which refers to epigraphs depending continuously on
a parameter in the sense of Painléve-Kuratowski set convergence, was established in [1;
Theorem 2.1] for the dependence of V(7,-) on 7 € [0,00). We’ll apply that result to the

functions E(r,-,-) by way of a reformulation trick.

Proposition 4.5 (fundamental epi-continuity). The function E(r,-,-) : R" x R" — IR

depends epi-continuously on T € [0,00): whenever 7¥ — T with 7¥ > 0 one has

liminf, E(r",£'",€") > E(7,{',§)  for every sequence (£'",£") — (£',€),
limsup, E(r",§'",§") < E(7,¢',§)  for some sequence (£'",&") — (£',€).

Proof. Although E seems to fit a different pattern than V', in being generated as a value
function in terms of a variable pair (¢’, £) of initial and terminal points, instead of an initial
function g and a terminal point £, we can nonetheless obtain results about E from those for
V by an adaptation. The trick is to view E as the value function Vy, : [0,00) x R*" — R

that is generated from the Lagrangian Ly and initial function g5 defined as follows:

/ ;N ) L(z,v) ifv =0,
Ly(z',x,0"v) '_{oo if o £ 0,

(@ z) = 0 ifa =u,
IB\TT) = U oo if ol #

(4.4)

Indeed, under these definitions Vg (7,¢’,€) is the infimum of [ L(x(t), &(t))dt over all
arcs (2'(-),z(-)) € A3,[0,7] such that 2/(0) = x(0), @’(t) = 0 a.e., and 2'(7) = &. The
latter conditions obviously force x(0) to be £’. Note that gy and Ly satisfy our blanket
assumptions (A) (in higher-dimensional interpretation) because L satisfies (A1)—(A3). By
this route, we get justification of our claims through epi-continuity result for value functions
in [1; Theorem 2.1]. O

In our next result, we record a basic relationship between certain effective domains,

which although convex, could in general have empty interior, namely

dOHlE(T, '7 ) = {(5/75) ‘E(Taélvé) < OO};

(4.5)
dom E = {(7,¢,&) |7 >0, E(1,¢,£) < 00}

Proposition 4.6 (domain interior). The following properties are equivalent:
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(a) 7> 0 and (¢,€) € intdom E(T,,+);
(b) (7,¢&,¢) € intdom E.

Proof. This is [1; Proposition 7.2] as applied to the value function V in the reformulation

in the proof of Proposition 4.5. O

In the following theorem, subdifferential regularity is a property that a function has

when its epigraph is closed and Clarke regular; see [4].

Theorem 4.7 (regularity of the fundamental kernel). On intdom FE, the subgradient
mapping OF is nonempty-compact-convex-valued and locally bounded, and FE itself is

locally Lipschitz continuous and subdifferentially regular, moreover semidifferentiable with

dE(Ta 5/75)(7—170‘/7“}) = maX{<wa7II> - <w/,7)> - T/H(fﬂil) (_7]77]/) € af’,EE(Ta glaf)}a

where H(&,n') could be replaced by H(&',n). Indeed, E is strictly differentiable wherever
it is differentiable, which is at almost every point of int dom E, and with respect to such

points the gradient mapping VE is continuous.

Proof. We apply [1; Theorem 7.3], a result for value functions V' in general under our

assumptions, to Vz in the pattern of the proof of Proposition 4.6 above. |

Theorem 4.8 (Hamilton-Jacobi equations for the fundamental kernel). The subgradients
of E on (0,7) x IR"™ x IR" have the property that

(0,—n,n') €E(1,¢,§) = (0,—n,0) € DE(r,¢,€)
777/) S 85',§E(7-7 6/75)7 0= _H(fﬂf) (46)
77/

= (=1
— (_777 ) € 85',§E(T7 6/75)7 0 = _H<€/777)'

In particular, E is a solution to the generalized double Hamilton-Jacobi equation:

o+ H(En') =0

o H(E ) = 0 } for all (o,—n,n) € OE(7,£',€) when T > 0. (4.7)

Proof. We get the equivalence of the first three conditions by applying [1; Theorem 2.5]
to Vy, once again following the pattern of reformulation in the proof of Proposition 4.5,
but for that purpose it is necessary to know the Hamiltonian Hj for the Lagrangian L in
(4.4). This calculates out simply to Hg(z', x,y’,y) = H(x,y). To add the fourth condition
in (4.6), we utilize the subgradient description in Theorem 4.1. Along any Hamiltonian
trajectory, H is constant (as proved in [11]), so if the trajectory goes from (¢, 1) to (§,7)
we must have H(§,n') = H(¢',n). O
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The double Hamilton-Jacobi equation for E isn’t surprising in view of the one for K
in Theorem 3.1. Indeed, each double equation is essentially equivalent to the other by
virtue of the relations in Theorem 4.1. It follows that E is uniquely determined by (4.7)
and the initial condition in its definition (2.1). An earlier viscosity version of the double
equation for E in simpler cases where E is finite can be seen in the book of Lions [12]. In
general cases where F can be discontinuous and take on co, however, the Hamilton-Jacobi
characterization of K has a major advantage over the one for E in Theorem 4.8, due to the
assured finiteness and local Lipschitz continuity of K(7,&,n) (Theorem 3.5), its smoothness
in 7 (Theorem 3.1), and its semidifferentiability everywhere with respect to all arguments
jointly (Theorem 3.6).

5. Application to Hopf-Lax Formulas and Their Generalization

Upper and lower envelope representations of value functions as solutions to Hamilton-
Jacobi equations first appeared in works of Hopf [13] and Lax [14] in very particular
situations where the Hamiltonian H (z,y) is independent actually of x. We inspect the
state-independent case as an example within our framework and then go on to describe
how our results cover an extension of the Hopf-Lax formulas beyond that case. The
aim is to provide further perspective on how our formulas for value functions tie in with

Hamilton-Jacobi theory.

Example 5.1 (formulas of classical Hopf-Lax type). Suppose that L(z,v) = Lo(v) for a
coercive, proper, Isc, convex function Lg : IR" — IR, or that H(x,y) = Hy(y) for a finite
convex function Hy : IR" — IR, these assumptions being equivalent through the conjugacy

relations Hy = L{, Lo = Hj. Then the dualizing kernel is given by

K(Tag,n) = <€777> _THO(n)a (51)
whereas the fundamental kernel is given by
TLo(t7¢—¢]) ifT >0,
E(r,§,§) =40 ifr=0£¢—¢ =0, (5.2)
00 ifr=0,£-¢& #0.
Thus, for any initial function g : IR" — IR one has the upper envelope formula
V(r,€) =infe {g(€) + mLo(r €~ €]) }, (5.3)
while if g is convex, proper, and Isc, one also has the lower envelope formula

V(r,€) = sup, {(&,m) — THo(n) — g"(n) }. (5.4)
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Proof. Conditions (Al), (A2) and (A3) are fulfilled, since this amounts to Example 2.3
with A = 0 and G = 0. The formula for K in (5.1) follows at once from the sec-
ond half of the double Hamilton-Jacobi equation in Theorem 3.1, according to which
(0K/oT)(1,6,m) = —Hp(n). The formula for £ in (5.2) then follows from the general
one for E in terms of K in (2.5). Finally, we get the upper envelope representation from

Theorem 2.1 and the lower envelope representation from Theorem 2.5. O

The duality between the upper and lower envelope representations in this example

can also be seen from the angle that (5.4) can be written as
V(r,:) = (¢" +7Hp)", (5.5)

whereas the right side of (5.3) gives the well known formula of convex analysis for such
a conjugate function in terms of the functions ¢** = ¢g and Hj = Lo (see [4; §11] for
instance). In the traditions of Hamilton-Jacobi theory going back to Hopf [13], ¢* and
H{ don’t appear and the formulas for these functions are substituted instead. The upper

representation comes out then as

V(r.€) = infe sup, {g(¢') + (& = &',m) = THo(n) }. (5.6)

while the lower representation becomes

V(r,€) = sup, infe {g(¢') + (€ = &',m) = THo(n) }. (5.7)

Nowadays, though, with the Legendre-Fenchel transform so well understood, there’s no
reason not to simplify these expressions by writing them with conjugate functions. The
equality between the “inf sup” in (5.6) and the “sup inf” in (5.7) falls into the pattern of
minimax representations of primal and dual optimization problems of convex type for which
there is, by now, an enormous literature; see [3] and [4; Chapter 11]. Generally speaking,
such an equality is deeply involved with convexity and requires other qualifications besides.
Such qualifications are met here because of our assumptions (A).

Although both (5.6) and (5.7) were proposed by Hopf [13] as possible formulas for

solutions to a generalized Hamilton-Jacobi PDE in the mode of
ut(tﬂx)_'_HO(uI(tax)) =0, u<07$) :g(l‘),

the first of these is often called the Lax formula because of its appearance in a special case

in the earlier paper of Lax [14] on hyperbolic conservation laws.
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In work since Hopf, the lecture notes of Lions [12] and Evans [15] have provided further
treatment of Hopf-Lax formulas. The paper of Bardi and Evans [16] deserves particular
mention. Those authors proved that the upper formula in (5.6), or equivalently (5.3), gives
the unique viscosity solution to the Hamilton-Jacobi equation in the case of a finite convex
function Hy and a possibly nonconvex function g that is globally Lipschitz continuous;
alternatively by Evans [15], g can be merely continuous if Hy is coercive. (Coercivity of
Hy corresponds in convex analysis to finiteness of Ly.) In Example 5.1, this formula has
been seen to give the value function V regardless of such extra conditions on g or Hy.

Bardi and Evans [16] also showed that the lower formula (5.4), or equivalently (5.7),
gives the unique viscosity solution as long as g is convex and globally Lipschitz continuous
(which is known in convex analysis to correspond to the effective domain of ¢g* being
bounded). Recently Alvarez, Barron and Ishii [17] have removed these restrictions: the
assertion holds true for all Isc, proper, convex functions g. In the context of Example 5.1,
therefore, it follows that the value function V' is the unique viscosity solution—in the sense
of Barron and Jensen [18] or Frankowska [8], [19] (who employ a subgradient equation in
place of a pair of inequalities involving upper as well as lower subgradients).

In the case of the lower envelope formula, Bardi and Evans [16] don’t actually assume
that Hy is convex but just that it is continuous, and they still are able then to identify
the unique viscosity solution under their strong assumptions on g. Our framework doesn’t
cover that feature, because the case is not one of optimization and there is no value function
V of type (1.1) as a solution candidate.

We demonstrate now that the formulas in Example 5.1 can be extended to a signifi-
cantly larger class of situations connected with optimal control (in the manner explained
after Example 2.3), where the Lagrangian and Hamiltonian aren’t state-independent, while
maintaining their relatively explicit character. Again we emphasize that in the absence of
a uniqueness theorem in Hamilton-Jacobi theory capable of handling all the Hamiltoni-
ans and value functions in our framework these formulas, although they uniquely describe

value functions, can’t yet be claimed to give unique Hamilton-Jacobi solutions.

Example 5.2 (extended Hopf-Lax formulas with linear state dependence). Suppose that
L(z,v) = Lo(v — Az) for a coercive, proper, Isc, convex function Lo : IR" — IR, or that
H(z,y) = (Az,y) + Hy(y) for a finite convex function Hy : IR" — IR, these assumptions
being equivalent through the conjugacy relations Hy = Ly, Lo = Hj. Here A is any n X n
matrix. Let A* be the transpose of A and define V : [0,00) x IR" — IR by

W(r,n) = /O H (e=*"n) dt, (5.8)
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this expression being finite and convex in 1. Then the dualizing kernel is given by

K(r,&,m) = (e"™4&,m) — U(r,n). (5.9)

and the fundamental kernel is given by
B(r,¢,8) = ®(r,e T~ ¢), (5.10)

where ®(7,() = sup, {(¢,n) = ¥(7,n)}, or in other words, ®(r,-) is the convex function
conjugate to W(r,-). Thus, for any initial function g : IR" — IR one has the upper envelope

representation

V(r,€) = infe {g(€) + @(r,e e )}

(5.11)
= infe sup, {g(§) + (e A = €', m) — (i) |,
while if g is convex, proper, and Isc, one also has the lower envelope representation
V(r,€) = sup, {(e 7, m) = W(r.m) — 9" (n)}
(5.12)

= sup, infe {4(¢) + (e 74~ &) — W(rm) .

Proof. Fix (7,&,m) and let k(t) := K(t,&,y(t)) for y(t) := e*~747. From Theorem 3.5,
k is Lipschitz continuous on [0, 7]. We have k(1) = K(7,&,7n) and

k(0) = K(0,€,(0)) = (£,5(0)) = (£, e ™ n) = (e774¢,n). (5.13)

Furthermore, from the semidifferentiability of K in Theorem 3.6 and its differentiability

with respect to 7 we have (almost everywhere)

k(t) = (OK/07)(1,€,y(t)) + min{(¢', §(t)) | €' € 0, K (t,&,y(t))}, (5.14)

where y(t) = A*y(t). For each t € [0,7] let z(¢) denote some vector & for which the

minimum in (5.14) is attained. Then

k(1) =(0K/07)(1,€,y(t)) + (2(t), 5(1)),

(5.15)
where (z(t),9(t)) = (x(t), A"y(t)) = (Ax(t), y(t)).
The second of the Hamilton-Jacobi equations in Theorem 3.1 gives us
(OK/07)(7, & y(t) = —H(x(1),y(t)) = —(Ax(t), y(t)) — Ho(y(?))- (5.15)
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In combining (5.15) and (5.16) we get k(t) = —Ho(y(t)) = —Ho(e*=4"p), hence

k(1) = k(0) — /0 ' Ho(e'"4 ) dt,

with the integral equaling W(7,7) (as seen through time reversal). The desired formula for
K in (5.9) comes out now from (5.13) and the fact that k(7) = K(7,&,n).
The corresponding formula for F in (5.10) is immediate then from (2.5), and the

envelope representations are valid on the basis of Theorems 2.1 and 2.5. O

Example 5.2 may be compared to a recent result of Arisawa and Tourin in [20], extend-
ing the upper envelope formula (5.3) to a very special case of state-dependent Hamiltonians

of concave-convex type. Those authors take IR™ to be IR™ x IR™ and treat

H(z,y) = H(x1,22;91,y2) = (z2,y1) + h(y2)

with h a finite coercive convex function on R™ having minh = h(0) = 0. For that case
they work out a more detailed expression for the fundamental kernel than the one in (5.10).

The formulas in Example 5.2 reduce to the familiar ones in Example 5.1 when A = 0,
of course. The big difference is that with A # 0 they can be applied to optimal control
problems with dynamics & = Az + Bu through the connection laid out in §2 after Example

2.3. Then Hy(y) = F*(B*y) for a finite convex conjugate function F*, hence

U(r,n) ::/F*(B*e_tA*n)dt.
0

In many situations it could well be possible to generate the values and even subgradients
of ¥ numerically. The lower envelope representation of V in (4.12) could then, in light
of Theorems 4.2 and 4.3, furnish an effective way of generating subgradients (or approx-
imate subgradients) of V' for potential use in feedback rules, through solving real-time
optimization subproblems in R".

The case in Example 5.2 is still relatively special within our framework. What might
be said about value functions that come from state-dependent Hamiltonians more generally
under our basic assumptions, as translated through Proposition 2.27 Everything really goes
back to Theorem 2.6. The extent to which the basic formulas (2.13) and (2.14) in Theorem
2.6 can be regarded as “explicit” analogs of the classical Hopf-Lax formulas (5.6) and (5.7)
hinges on how far one can go in obtaining an “explicit” formula for the dualizing kernel
K that we have introduced. This requires an exploration of favorable cases in which the
Hamilton-Jacobi characterization of K in Theorem 3.1 can be made to yield an “explicit”

expression for K.
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Here we have shown that the classical case in Example 5.1, where K is given by (5.1),

can be extended with essentially no loss to the case in Example 5.2, where K is given by

(5.9). Further research might yield other attractive cases. In the end, though, it must be

borne in mind that the notion of what is an explicit expression for a function has evolved

considerably in mathematics, and now is more a matter of whether a formula supports

insightful analysis tied to modern computational methodology.
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