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Abstract. A model of multistage stochastic programming over a scenario tree is
developed in which the evolution of information states, as represented by the nodes of
a scenario tree, is supplemented by a dynamical system of state vectors controlled by
recourse decisions. A dual problem is obtained in which multipliers associated with the
primal dynamics are price vectors that are propagated backward in time through a dual dy-
namical system involving conditional expectation. A format of Fenchel duality is employed
in order to have immediate specialization not only to linear programming but extended
linear-quadratic programming. The resulting optimality conditions support schemes of
decomposition in which a separate optimization problem is solved at each node of the
scenario tree.

* This work was supported in part by the National Science Foundation under grant
DMS–9500957.

1



1. Introduction

In all branches of optimization, duality draws on convexity. In stochastic programming,
another important ingredient to duality is dynamical structure. Such structure describes
the evolution of information about the random elements in a problem’s environment, and
to that extent is essential to the very concept of optimization under uncertainty, but it can
also be developed with respect to other ways that the past and future affect the present.
Concepts of “state” and “control” are useful in this. Controls correspond to decisions to
be made, whereas states summarize the current primal or dual status of the system at the
time of making those decisions.

A distinguishing feature of the multistage model of stochastic programming to be
laid out here is that the dynamics of uncertainty, discretized as a scenario tree in which
nodes represent probabilistic states of information, is supplemented by a linear dynamical
system of vectors representing auxiliary aspects of state. The relations in this system
can be treated as constraints to which multiplier vectors are assigned, and those vectors
become dual states in a dual dynamical system.

A forerunner to this model was developed in Rockafellar and Wets [1], but with the
evolution of probabilistic information described by a sequence of fields of measurable sets
in a discrete probability space. The notion of a scenario tree, adopted here instead, adds
concreteness without serious loss of generality. In associating the nodes of the tree with
decision stages, the crucial property of nonanticipativity of decisions is made automatic.
Moreover, the role of conditional expectations in the dynamics of prices is clarified. Inde-
pendently, Korf [2] has found an equivalent expression for that role in the measurability
context of [1], but the scenario tree approach brings it out quite naturally.

Another difference between the model in [1] and the one here is that the framework
of linear or extended linear-quadratic programming has been generalized to the extended
Fenchel duality format, which is more flexible and less cluttered. Simultaneously, some
features of the cost structure in [1], such as ways of writing initial and terminal costs, have
been simplified. The problem should therefore be easier to understand and work with.

A powerful property of the optimality conditions in [1] emerges again here. It is seen
in how the dynamical systems of primal and dual state vectors lead to a decomposition in
which a small-scale optimization problem, depending on those vectors, is solved at each
individual node of the scenario tree in order to obtain the optimal controls. This differs
both from the classical Dantzig-Wolfe type of decomposition (which, in extension to convex
programming, is tied to separability of the Lagrangian in the primal argument for fixed
values of the dual argument) and from Benders decomposition (which concerns cost-to-go
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functions and their subgradients). It relates instead to a characterization of primal and
dual optimal solution pairs as saddle points of a generalized Lagrangian function that is
the sum of two “sub-Lagrangians.” One of these breaks into separate expressions for each
node of the scenario tree, while the other is a bi-affine representation of the dynamics of
the primal and dual state vectors.

Decomposition of this third kind dates back, in deterministic rather than stochastic
settings, to Rockafellar [3], [4]. In stochastic programming computations it has recently
been utilized by Salinger [5]. A corresponding numerical application to the deterministic
case of the model in [1] has been carried out by Eckstein and Ferris [6]. The backward-
forward splitting methods applied by Chen [7] to deterministic problems would be suited
to this kind of decomposition also; for related results on the general convergence of such
methods, see [8].

The Lagrangian saddle point scheme in [1] relies on a “reduced” formulation of the
underlying problem, in which only the controls appear as independent variables. Here,
in further contrast to [1], we look at a “full” formulation in tandem with the reduced
formulation. In that way additional insights are obtained about the interpretation of the
primal and dual state vectors.

2. Scenario Tree and Dynamics

We begin with a scenario tree based on a finite set I of nodes i. One of the nodes, i = 0,
stands for the here-and-now. Every other node i 6= 0 has a unique predecessor node,
denoted by i−, and a transition probability τi > 0, which is the probability that i will be
the successor to i−. The successors to any node i, denoted generically by i+, form the set
I+(i) ⊂ I; the transition probabilities of those nodes add to 1. Thus, i+ can be viewed
as a discrete random variable over I+(i) with distribution given by the probabilities τi+ .
Nodes i with I+(i) = ∅ are called terminal ; they constitute the set T ⊂ I.

In tracing back from any node i through its predecessors to 0, we trace in reverse
a sequence of realizations of the discrete random variables associated with the transition
probabilities. It’s convenient to think of i as standing for this history of realizations, and
to define πi to be the probability of the particular sequence occurring. Such probabilities
are generated recursively by

π0 = 1, πi = τiπi− for i 6= 0. (2.1)

In the case of a node i ∈ T , the history of realizations corresponds to a path from the root
0 of the tree all the way to one of its “leaves” and is called a scenario. The probabilities
πi for i ∈ T obviously add to 1 and provide a distribution for the set of all scenarios.
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In many, or most, situations it may be helpful to view the node set I as partitioned
into subsets Ik designating stages k = 0, 1, . . . , N , where I0 = {0}, IN = T , and the
successor to a node in Ik belongs to Ik+1. Mathematically, however, there’s no actual need
for that, so stage notation will be left out in the interests of simplicity. Further details
about the scenario tree can always be brought in when it matters.

Every information state i ∈ I is viewed as providing the opportunity for a decision
to be made. We model this as the choice of a vector ui ∈ IRni ; the vector u0 gives rise to
the “here-and-now” decision, whereas the vectors ui for i 6= 0 give “recourse” decisions.
Optimization revolves around these elements, which will be termed the controls of the
system, but it’s important that the decision environment in state i be able to be molded
by the decisions taken in the states leading up to i. The mechanism for this is provided
by the introduction for each i ∈ I of a state vector xi ∈ IRdi and letting the states and
controls be governed by a dynamical system

x0 = a (given), xi = Fi(xi− , ui−) for i 6= 0. (2.2)

The optimization environment in information state i is modeled then by a cost expression
fi(xi, ui) (oriented toward minimization), in which the vector xi acts as a parameter ele-
ment supplying the influence from the past. This cost is allowed to be ∞ as a means of
incorporating constraints without having to appeal at once to some particular constraint
structure and its burdensome notation; a vector ui is only considered feasible relative to xi

if fi(xi, ui) < ∞. The forms of Fi and fi will be specialized in due course, but it’s useful
for now to approach the situation more generally.

In attaching Fi, fi and xi by subscript to the information state i, we take the posi-
tion that these elements are known to the decision maker upon reaching i; thus too, the
function fi(xi, ·) giving the costs (and implicit constraints) in choosing ui is known. (Any
random variables that enter the description of fi are regarded as having been built into the
specification of the transition probabilities encountered on the way from 0 to i.) Observe
however that although Fi is supposed to be known upon reaching i, it might not have been
known at the predecessor node i−, when ui− had to be chosen. The explanation again
is that in passing from i− to i the dynamics in (2.2) may involve the realization of some
additional aspect of uncertainty. Alternatively these dynamics can be written as

xi+ = Fi+(xi, ui) for i /∈ T, with x0 = a, (2.3)

in which the role of i+ as a random variable ranging over I+(i) is more apparent.

The stochastic programming problem we consider has two formulations, fundamentally
equivalent yet different, and it will be important to distinguish between them. In the full
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formulation, the problem is

(P+
0 )

minimize
∑
i∈I

πifi(xi, ui) over all xi and ui

subject to the relations (2.2) as constraints.

Implicit in this, as already mentioned, are the conditions fi(xi, ui) < ∞, without which
the expression being minimized would have the value ∞. In the reduced formulation, the
xi’s are regarded as dependent rather than independent variables:

(P−
0 )

minimize
∑
i∈I

πifi(xi, ui) over all ui, where

xi stands for an expression in prior control vectors.

The expressions in question are generated recursively from (2.2).

The two problems are obviously equivalent in the sense that vectors ūi and x̄i furnish
an optimal solution to (P+

0 ) if and only if the controls ūi furnish an optimal solution
to (P−

0 ) and the states x̄i furnish the corresponding trajectory obtained from them by
“integrating” the dynamics (2.2). Both of these formulations are useful. Problem (P−

0 )
has the advantage of being “smaller” and conceptually leaner, but (P+

0 ) promotes the
exploration of dual state vectors yi, which come out as multipliers for the relations in (2.2)
as constraints.

Theorem 1 (basic convexity). As long as the functions fi are convex and the mappings

Fi are affine, both (P+
0 ) and (P−

0 ) are problems of convex optimization—where a convex

function is minimized subject to constraints describing a convex feasible set.

The proof of this fact is elementary; we record the theorem for the perspective it offers,
since convexity will be needed for duality. Note that the convexity depends heavily on the
transition probabilities being unaffected by the decisions that are to be made over time; we
are dealing with constants τi instead of variable expressions τi(xi− , ui−). Problems (P+

0 )
and (P−

0 ) would still make sense if such variable transition probabilities were allowed, with
the πi’s then turning into expressions in prior states and controls as generated through
(2.1) and (2.2). Convexity would be lost, however, and with it the prospect of being able
to use duality-based decomposition methods of solution to compensate for the extremely
large scale of problems in stochastic programming.
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3. Duality Background

From Theorem 1 it’s clear that, for our purposes, the mappings Fi should be affine, but
what structure should be introduced in the cost functions fi to bring out duality most
conveniently? Because the fi’s are extended-real-valued, constraint structure is at stake
as well. We want multistage models of linear programming type to be covered nicely, and
also quadratic programming analogs, for instance. Even in ordinary quadratic program-
ming, however, there is trouble over duality. Unlike the situation in linear programming,
one can’t dualize a quadratic programming problem and expect to get another quadratic
programming problem.

The kind of Lagrangian duality that is available from conventional formulations of
convex programming with equality and inequality constraints is too narrow for the task
now facing us and suffers from the further drawback that such formulations tend to em-
phasize “hard constraints,” whereas the needs of stochastic programming may often be
better served by penalty expressions. The Fenchel scheme of duality comes to the res-
cue here. It’s much more flexible, yet just as explicit in key cases. In particular, it gets
around the quadratic programming difficulty by way of “extended linear-quadratic pro-
gramming,” which handles penalties and even box constraints with ease. The ideas behind
Fenchel duality will be reviewed now as background to presenting, in the next section,
more structured versions of problems (P+

0 ) and (P−
0 ). A fresh treatment of such duality

in more detail is available now in [9, Chap. 11].

Recall that an extended-real-valued convex function φ on IRn is proper if it nowhere
takes on −∞ and is not the constant function ∞. The function φ∗ conjugate to a proper
convex function φ is defined by

φ∗(w) = sup
u∈IRn

{
u·w − φ(u)

}
.

It’s always proper convex and lsc (lower semicontinuous). As long as φ itself is lsc, the
function φ∗∗ conjugate to φ∗ is in turn φ:

φ(w) = sup
w∈IRn

{
u·w − φ∗(w)

}
.

Although it may be hard in some cases to come up with a more explicit formula for φ∗

than the definition, there are cases where it’s easy, and they go a long way toward making
conjugate functions a practical tool in duality schemes.

The extended Fenchel duality scheme that will serve as our basic guide concerns a
proper lsc convex function φ on IRn, another such function ψ on IRm, a matrix D ∈ IRn×m,
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and vectors p ∈ IRn and q ∈ IRm. The primal problem has the form

(P) minimize Φ(u) := p·u+ φ(u) + ψ(q −Du) over u ∈ IRn,

while the dual problem is

(D) maximize Ψ(v) := q·v − ψ∗(v)− φ∗(D∗v − p) over v ∈ IRm,

where D∗ is the transpose of D. Implicit constraints come out of the effective domains
domφ :=

{
u ∈ IRn

∣∣φ(u) < ∞
}

and domψ :=
{
z ∈ IRm

∣∣ψ(z) < ∞
}
. The implicit

feasible set in (P) is the convex set consisting of the vectors u that satisfy

u ∈ domφ, q −Du ∈ domψ. (3.1)

Similarly, the implicit feasible set in (D) is described by

v ∈ domψ∗, D∗v − p ∈ domφ∗. (3.2)

Examples will be considered after the main results about this pairing of problems are
stated.

For problems in this format, the constraint qualifications needed to obtain duality in
general are expressed in terms of the notion of the relative interior “ri” of a convex set.
Such constraint qualifications turn out not to be needed for functions that are piecewise
linear-quadratic. A proper convex function φ is said to fall into that category if domφ is
a polyhedral (convex) set on which φ is given by a linear-quadratic formula, or a union
of finitely many such sets on which φ is given by such formulas. By a linear-quadratic
formula we mean a polynomial function of degree at most 2; linear functions and constant
functions are a special case. For instance if φ is the indicator δU of a polyhedral set U (i.e.,
has the value 0 on U and ∞ elsewhere), then in particular, φ is piecewise linear-quadratic,
although the full generality of the definition isn’t utilized.

An important fact is this: if a proper convex function is piecewise linear-quadratic,
its conjugate function is piecewise linear-quadratic as well. Thus, if φ and ψ are piecewise
linear-quadratic in (P), the same is true of φ∗ and ψ∗ in (D). We refer to this as the
piecewise linear-quadratic case in Fenchel duality.

Theorem 2 (extended Fenchel duality).

(a) The relation inf(P) = sup(D) < ∞ is guaranteed under the primal constraint

qualification that

∃u satisfying u ∈ ri domφ, q −Du ∈ ri domψ. (3.3)
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Then too, unless the common optimal value is −∞ (so (D) has no feasible solution), (D)
is sure to have an optimal solution.

(b) The relation inf(P) = sup(D) > −∞ is guaranteed under the dual constraint

qualification that

∃ v satisfying v ∈ ri domψ∗, D∗v − p ∈ ri domφ∗. (3.4)

Then too, unless the common optimal value is ∞ (so (P) has no feasible solution), (P) is

sure to have an optimal solution.

(c) In the piecewise linear-quadratic case, the primal and dual constraint qualifica-

tions are superfluous and can be replaced simply by the feasibility conditions in (3.1) and

(3.2), respectively. In that case, therefore,

inf(P) = sup(D) unless inf(P) = ∞ and sup(D) = −∞,

(i.e., unless neither (P) nor (D) has a feasible solution). Moreover, when the common

optimal value is finite, both problems have an optimal solution.

Proof. The basic facts in (a) and (b) go back all the way to Rockafellar [10]. The
piecewise linear-quadratic case, while partially covered earlier, was recently established in
its full scope in Rockafellar and Wets [9; cf. 11.42].

Among the special cases to note here, linear programming duality corresponds to
taking φ to be the indicator of IRn

+ and ψ to be the indicator of IRm
− , so that (P) comes

out as minimizing p·u subject to u ≥ 0 and Du ≥ q. Then φ∗ and ψ∗ are the indicators of
IRn

− and IRm
+ , so that (D) consists of maximizing q·v subject to v ≥ 0 and D∗v ≤ p. This

is covered by part (c) of Theorem 2.

The orthants here could be replaced by other convex cones. (The function conjugate
to the indicator of a cone is the indicator of the polar cone.) More interesting for stochastic
programming, however, is the case where IRn is replaced by some box (a product of closed
intervals, bounded or unbounded). When φ = δU , φ∗ is the support function σU of U , and
for a box U that is bounded this means φ∗ is piecewise linear (and easy to write down
explicitly). Even more to the point is the case where ψ is such a support function σV of a
box V , so that ψ∗ = δV . The term ψ(q −Du) in (P) corresponds then to a linear penalty
expression in place of, say, a constraint like q −Du ≤ 0. There are rich possibilities.

A handy tool in this respect is that of the function θV,Q on IRm defined in terms
of a nonempty polyhedral set V ⊂ IRm and a symmetric positive semi -definite matrix
Q ∈ IRm×m (Q = 0 allowed) by

θV,Q(z) = sup
v∈V

{
z·v − 1

2v·Qv
}
. (3.5)
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This means that θV,Q is the convex function conjugate to δV + jQ, where jQ(v) = 1
2v·Qv.

Since δV + jQ falls in the category of piecewise linear-quadratic functions, the same is true
of θV,Q. For various useful choices of V and Q it’s possible to make this linear-quadratic
structure of θV,Q quite explicit. Analogously, functions θU,P can be introduced on IRn as
the piecewise linear-quadratic conjugates of functions δU +jP for a polyhedral set U ⊂ IRn

and symmetric positive semi -definite matrix P ∈ IRn×n.

In taking φ = δU + jP and ψ = θV,Q, so that φ∗ = θU,P and ψ∗ = δV + jQ, we obtain
the following pair of problems from (P) and (D):

(P ′) minimize p·u+ 1
2u·Pu+ θV,Q(q −Du) over u ∈ U,

(D′) maximize q·v − 1
2v·Qv − θU,P (D∗v − p) over v ∈ V.

This is the duality scheme of extended linear-quadratic programming . It too is governed
by part (c) of Theorem 2. Linear programming comes out when U and V are cones while
P and Q are zero matrices. As another example, conventional quadratic programming
would consist of minimizing p·u+ 1

2u·Pu subject to u ∈ U and Du ≥ q, where U is IRn
+ or

perhaps some other box. A problem of such type can’t be dualized within that format, but
in the framework of extended linear-quadratic programming the dual problem consists of
maximizing q·v − θU,P (D∗v − p) over v ≥ 0. (The implicit constraint D∗v − p ∈ dom θU,P

combines with v ≥ 0 to produce the implicit feasible set in this dual.)

Because stochastic programming is our subject here, it’s worth mentioning that piece-
wise linear-quadratic functions of type θV,Q were first introduced in a stochastic program-
ming context, in Rockafellar and Wets [11]. This was motivated by the convenience of such
functions in furnishing penalty expressions in a readily dualizable form. Penalty substi-
tutes for constraints are especially welcome when dealing with uncertainty. The format of
extended linear-quadratic programming in (P ′) and (D′) comes from [11] as well. Exam-
ples of the many special problem statements covered by it were subsequently presented in
[3; §§2,3]; for stochastic programming, see also [12], where the separable case of functions
θV,Q is well described.

Although Fenchel duality isn’t based on Lagrange multipliers, at least of the traditional
variety, a Lagrangian function plays a crucial role nonetheless. This Lagrangian in the
general case of (P) and (D) is

L(u, v) = p·u+ φ(u) + q·v − ψ∗(v)− v·Du

on U × V, where U := domφ, V := domψ∗.
(3.6)
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In the extended linear-quadratic programming format of problems (P ′) and (D′), the
generalized Lagrangian that takes on the right role is

L(u, v) = p·u+ 1
2p·Pu+ q·v − 1

2v·Qv − v·Du on U × V. (3.7)

The Lagrangians associated with extended linear-quadratic programming are thus the func-
tions obtained by restricting some convex-concave linear-quadratic function to a product
of nonempty polyhedral sets.

Note that the Lagrangian in each case isn’t a function with unspecified domain, but
a triple (L,U, V ). This entire triple enters the picture through the way that the objective
functions in the two problems can be recovered from L, U and V by

Φ(u) =
{

supv∈V L(u, v) when u ∈ U
∞ when u /∈ U ,

(3.8)

Ψ(v) =
{

infu∈U L(u, v) when v ∈ V
−∞ when v /∈ V .

(3.9)

It also enters in saddle point characterizations of optimality, as in the next theorem. Recall
that (ū, v̄) is a saddle point of L on U × V when{

ū ∈ U, v̄ ∈ V, and
L(u, v̄) ≥ L(ū, v̄) ≥ L(ū, v) for all u ∈ U, v ∈ V. (3.10)

Theorem 3 (Lagrangians in Fenchel duality). In the circumstances of Theorem 2 in which

inf(P) = sup(D), a pair (ū, v̄) is a saddle point of the Lagrangian L over U × V in (3.6)

if and only if ū is an optimal solution to (P) and v̄ is an optimal solution to (D). This

saddle point property of (ū, v̄) is equivalent to the subgradient conditions

D∗v̄ − p ∈ ∂φ(ū), q −Dū ∈ ∂ψ∗(v̄). (3.11)

Proof. The original saddle point characterization of optimal solutions in Fenchel duality
was developed in [13], where the corresponding subgradient conditions were first given as
well. More recently see also [9; Chap. 11].

The saddle point characterization of optimality assists in interpreting v̄ as a “gener-
alized multiplier vector” associated with the term ψ(q −Du) in (P). This perspective is
opened further in [14].

The formulas in (3.8) and (3.9) for the objectives in (P) and (D) in terms of L, U
and V lead to a general principle that can help us, in more complicated situations in other
notation, to ascertain whether a given optimization problem fits the Fenchel format, and if
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so, what the corresponding dual problem is. All we need to know is whether the function
of u (say) that is being minimized in the given problem can be expressed by the right side
of (3.8) through a function L(u, v) of the type in (3.6)—and that too can be viewed very
broadly: L(u, v) need only be the difference between two lsc proper convex functions of u
and v separately (as restricted to their effective domains U and V ), plus some expression
that’s bi-affine in u and v (i.e., affine in u for fixed v as well as affine in v for fixed u).
Once this has been confirmed, we can identify the dual with the problem of maximizing
the function of v given by the right side of (3.9), and the theorems above can be applied.

The point here is that we can bypass having to write down what the vectors p and
q and the matrix D are in a given case in order to invoke Fenchel duality. The objective
in the dual problem can be deduced straight from the right side of (3.9) without that
distraction. For stochastic programming in particular, that will be the most expedient
approach to dualization.

4. Stochastic Programming Duality

The stage is set now for the specialization of the general stochastic programming problems
(P+

0 ) and (P−
0 ) to models that are able to take advantage of extended Fenchel duality. We

choose the mappings Fi to be linear in the notation

Fi(xi− , ui−) = Aixi− +Biui− (4.1)

for matrices Ai and Bi, so that the vectors xi have the dynamics{x0 = a,
xi = Aixi− +Biui− for i 6= 0. (4.2)

We take the cost functions fi to have the form

fi(xi, ui) = pi·ui + φi(ui) + ψi(qi − Cixi −Diui) (4.3)

for matrices Ci and Di, vectors pi and qi, and lsc proper convex functions φi and ψi on IRni

and IRmi , respectively. As the subscripting by i indicates, all these elements are regarded
as known to the decision maker once the information state i has been reached.

(Affine mappings Fi(xi− , ui−) = Aixi− + Biui− + bi could be handled in place of
the linear ones in (4.2), but the additional notation gets cumbersome. Anyway, no real
generality would be gained, because the vector bi could equally well be incorporated as an
extra column of Bi for which the corresponding component of ui− has to be 1, as secured
implicitly through the specification of the effective domain of the corresponding φi.)
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Let u = {ui}i∈I be the “supervector” of controls ui, and similarly let x = {xi}i∈I .
We have u ∈ IRn := Πi∈IIR

ni and x ∈ IRd := Πi∈IIR
di . Let X : IRn → IRd be the affine

mapping defined by

X(u) = the primal state trajectory generated from u by the dynamics (4.2).

Our stochastic programming problem in its full formulation is then

(P+)
minimize Φ+(x, u) :=

∑
i∈I

πi

[
pi·ui + φi(ui) + ψi(qi − Cixi −Diui)

]
over x and u, subject to x−X(u) = 0,

whereas in its reduced formulation it is

(P−)
minimize Φ−(u) :=

∑
i∈I

πi

[
pi·ui + φi(ui) + ψi(qi − Cixi −Diui)

]
over u, where x = X(u).

In the full version the equations in (4.2) are taken as a system of linear constraints on
the vector variables xi and ui. In the reduced version, though, xi merely stands for an
affine expression in the control vectors associated with the information states leading up
to i. Those expressions can be generated out of (4.2) by a chain of substitutions, but it
won’t actually be necessary to do that in order to make effective use of (P−). The implicit
conditions for feasibility in both problems can anyway be written as

ui ∈ domφi, qi − Cixi −Diui ∈ domψi, x = X(u), (4.4)

whichever point of view is being adopted. Obviously (P+) and (P−) are equivalent in the
sense that inf(P+) = inf(P−) and

(x̄, ū) solves (P+) ⇐⇒ ū solves (P−) and x̄ = X(ū). (4.5)

Dualization will proceed first with the full primal problem (P+). The full dual problem
(D+) obtained in this way will have a reduced form (D−), which will be shown later to be
dual to the reduced problem (P−) with respect to a reduced Fenchel scheme. Let

Li(ui, vi) := pi·ui + φi(u) + qi·vi − ψ∗i (vi)− vi·Diui

on Ui × Vi := [domφi]× [domψ∗i ] ⊂ IRni × IRmi .
(4.6)

Let v = {vi}i∈I in IRm := Πi∈IIR
mi and define

U = Πi∈IUi ⊂ IRn, V = Πi∈IVi ⊂ IRm. (4.7)
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The sets U and V are convex.

In terms of yi ∈ IRdi and y = {yi}i∈I ∈ IRd, we take as the full Lagrangian L+,
associated with (P+), the expression

L+(x, u; y, v) :=
∑
i∈I

πi

[
Li(ui, vi)− vi·Cixi

]
+

∑
i 6=0

πiyi·
[
xi −Aixi−−Biui−

]
+ y0·[x0 − a]

on [IRd × U ]× [IRd × V ].
(4.8)

The vectors yi ∈ IRdi are multipliers in the traditional sense for the equations in (4.2) as
constraints in (P+) (so that, in overview, y is a multiplier for the constraint x−X(u) = 0).
The vectors vi, on the other hand, will act as generalized multipliers, in the sense of Fenchel
duality, for the ψi terms in the objective of (P+).

The principle set down at the end of §3 will guide our effort at dualization. We apply
this principle by thinking of L+(x, u; y, v) as L+(u′, v′) for u′ = (x, u) ∈ U ′ = IRd × U and
v′ = (y, v) ∈ V ′ = IRd × V . Calculating supv′∈V ′ L+(u′, v′) as on the right side of (3.8),
we get the function Φ+ in (P+) as restricted by the dynamics in (4.2): namely, whereas
Φ+(x, u) = ∞ when u /∈ U , we have for u ∈ U that

sup
(y,v)∈IRd×V

L+(x, u; v, y) =
{

Φ+(x, u) when x = X(u),
∞ when x 6= X(u). (4.9)

Next we observe that L+ has the form required for Fenchel duality: it’s the difference
between the lsc proper convex functions

φ+(u′) =
∑
i∈I

φi(ui), (ψ+)∗(v′) =
∑
i∈I

ψ∗i (vi) (4.10)

(not really depending on x and y), as restricted to their effective domains U ′ and V ′, plus
an expression that’s affine in u′ for fixed v′ and affine in v′ for fixed u′. It follows by our
principle that, in the Fenchel duality framework, (P+) is the primal problem associated
with L+ on U ′ × V ′, and moreover that the corresponding dual problem can be obtained
by developing the expression

inf
u′∈U ′

L+(u′, v′) = inf
(x,u)∈IRd×U

L+(x, u; y, v) (4.11)

on the right side of (3.9).

This calculation is facilitated by a notation for conditional expectation in a state i
with respect to its successor states i+. We’ll set

Ei{wi+} :=
∑

i+∈I+(i)

τi+wi+
(4.12)
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when a vector wi+ depends on i+.

The trick now is to rewrite the linear and bilinear terms in L+(x, u; y, v) from the
(i−, i) mode to the (i, i+) mode, in which

xi+ = Ai+xi +Bi+ui for i /∈ T. (4.13)

Denoting the transposes of Ai, Bi and Ci by A∗
i , B

∗
i and C∗

i , it’s easy to see in this way,
through (2.1), that

∑
i 6=0

πiyi·Aixi− =
∑
i/∈T

 ∑
i+∈I+(i)

πi+yi+ ·Ai+xi


=

∑
i/∈T

 ∑
i+∈I+(i)

πiτi+xi·A∗
i+yi+

 =
∑
i/∈T

πixi·Ei{A∗
i+yi+},

∑
i 6=0

πiyi·Biui− =
∑
i/∈T

 ∑
i+∈I+(i)

πi+yi+ ·Bi+ui


=

∑
i/∈T

 ∑
i+∈I+(i)

πiτi+ui·B∗
i+yi+

 =
∑
i/∈T

πiui·Ei{B∗
i+yi+

},

and consequently, for potential use in the context of (4.8), that

−
∑
i∈I

πivi·Cixi +
∑
i 6=0

πiyi·
[
xi −Aixi−−Biui−

]
+ y0·[x0 − a]

=
∑
i/∈T

πixi·
[
yi − Ei{A∗

i+yi+
} − C∗

i vi

]
+

∑
i∈T

πixi·
[
yi − C∗

i vi

]
−

∑
i/∈T

πiui·Ei{B∗
i+yi+} − y0·a.

(4.14)

The vectors xi can be perceived now as multipliers for the constraints associated with the
dynamical system {

yi = C∗
i vi for i ∈ T ,

yi = Ei{A∗
i+
yi+}+ C∗

i vi for i /∈ T , (4.15)

in which the vectors yi can be interpreted as dual states, propagating backward in time
in response to the vectors vi as dual controls. Let Y : IRm → IRd be the affine mapping
defined by

Y (v) = the dual state trajectory generated from v by the dynamics (4.15).
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In expressing L+(x, u; y, v) in terms of the right side of (4.14) in place of the left, and
performing the minimization in (4.11), we now get, as the full dual problem,

(D+)

maximize

Ψ+(y, v) :=
∑
i∈I

πi

[
qi·vi − ψ∗i (vi)− φ∗

(
Ei{B∗

i+yi+}+D∗
i vi − pi

)]
− a·y0

over y and v, subject to y − Y (v) = 0.

Here the equations in (4.15) are taken as a system of linear constraints on the vector
variables yi and vi. In analogy with the foregoing we can immediately also write down a
corresponding reduced dual problem, namely

(D−)

maximize

Ψ−(v) :=
∑
i∈I

πi

[
qi·vi − ψ∗i (vi)− φ∗

(
Ei{B∗

i+yi+}+D∗
i vi − pi

)]
− a·y0

over v, where y = Y (v).

The feasibility conditions can be written for both problems as

vi ∈ domψ∗i , Ei{B∗
i+yi+

}+D∗
i vi − pi ∈ domφ∗i , y = Y (v). (4.16)

It’s clear that (D+) and (D−) are equivalent in the sense that inf(D+) = inf(D−) and

(ȳ, v̄) solves (D+) ⇐⇒ v̄ solves (D−) and ȳ = Y (v̄). (4.17)

Theorem 4 (Fenchel scheme in the full model). The full problems (P+) and (D+) are dual

to each other in the extended Fenchel sense with Lagrangian L+ on [IRd × U ]× [IRd × V ].
In this, the piecewise linear-quadratic case is the one in which all the convex functions φi

and ψi (or equivalently φ∗i and ψ∗i ) are piecewise linear-quadratic. The primal constraint

qualification in (3.3) comes out as the strict feasibility condition

∃ui ∈ ri domφi with qi − Cixi −Diui ∈ ri domψi for x = X(u), i ∈ I, (4.18)

whereas the dual constraint qualification in (3.4) corresponds to the strict feasibility con-

dition

∃ vi ∈ ri domψ∗i with Ei{B∗
i+yi+}+D∗

i vi − pi ∈ ri domφ∗i for y = Y (v), i ∈ I. (4.19)

Proof. The preceding derivation has shown that these problems fit the framework of
Fenchel duality in which φ+ and (ψ+)∗ are the functions in (4.10). In terms of the vector
variable v′ = (y, v) being dual to z′ = (w, z), ψ+ itself is given by

ψ+(w, z) =
{ ∑

i∈I ψi(zi) when w = 0,
∞ when w 6= 0.
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Feasibility in this problem, which in the Fenchel scheme takes the form

(x, u) ∈ domφ+, M(x, u) ∈ domψ+, (4.20)

for a certain affine transformation M , has to correspond to (4.4); it’s apparent that M
must be the transformation that takes (x, u) to (M1(x, u),M2(x, u)) with M1(x, u) the
element w = x−X(u) and M2(x, u) the element z = {zi}i∈I with zi = qi − Cixi −Diui.
The relative interior of a product of convex sets is the product of their relative interiors, so
in replacing domφ+ and domψ+ in (4.20) by ri domφ+ and ri domψ+ we simply replace
the sets domφi and domψi in (4.4) by ri domφi and ri domψi. This confirms that the
strict feasibility conditions in (4.18) do correspond to the constraint qualification obtained
for (P+) through the theory in §3.

In like manner, the strict feasibility conditions in (4.19) can be seen to correspond to
the dual constraint qualification (3.4) as applied to (D+).

The direct connection between the reduced problems (P−) and (D−) can now be
brought to light. For this purpose we define

l(u, v) = common value of both sides of (4.14) when x = X(u) and y = Y (v),

so that
l(u, v) = −

∑
i∈I

πivi·Cixi for x = X(u) (4.21)

but at the same time

l(u, v) = −
∑
i/∈T

πiui·Ei{B∗
i+yi+} − y0·a for y = Y (v). (4.22)

The value l(u, v) is affine in its dependence on u for fixed v, as well as affine in its depen-
dence on v for fixed u. Next we define the reduced Lagrangian L− by

L
−(u, v) :=

∑
i∈I

πiLi(ui, vi) + l(u, v) on U × V, (4.23)

where U and V are given still by (4.7).

Theorem 5 (Fenchel scheme in the reduced model). The reduced problems (P−) and

(D−) are dual to each other in the extended Fenchel sense with Lagrangian L− on U × V .

In this, the piecewise linear-quadratic case is the one in which all the convex functions

φi and ψi (or equivalently φ∗i and ψ∗i ) are piecewise linear-quadratic. Again, the primal
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constraint qualification (3.3) comes out as (4.18), whereas the dual constraint qualification

(3.4) comes out as (4.19).

Proof. Once more we appeal to the principle at the end of §3. The reduced Lagrangian
L− is the difference of the lsc, proper, convex functions

φ−(u) =
∑
i∈I

φi(ui), [ψ−]∗(u) =
∑
i∈I

ψ∗i (ui),

as restricted to the product of their effective domains, namely U×V , plus terms aggregating
to an expression that is affine separately in u and v. Here [ψ−]∗ is conjugate to ψ−(u) =∑

i∈I ψi(ui). On the basis of the two ways of looking at l(u, v) in (4.21) and (4.22), we
calculate that the objective functions specified in (P−) and (D−) have the form

Φ−(u) = sup
v∈V

L
−(u, v), Ψ−(v) = inf

u∈U
L
−(u, v),

so these problems are indeed the ones that correspond in the Fenchel duality format to the
triple (L−, U, V ).

The justification of the constraint qualifications follows the same argument as given
in the proof of Theorem 4.

Theorems 4 and 5 combine immediately with Theorem 2 to give us the following
results for stochastic programming problems in either formulation.

Theorem 6 (stochastic programming duality).

(a) The relation inf(P+) = sup(D+) <∞ is guaranteed by (4.18). Then, unless the

common optimal value is −∞ (so (D+) has no feasible solution), problem (D+) is sure to

have an optimal solution.

(b) The relation inf(P+) = sup(D+) > −∞ is guaranteed by (4.19). Then, unless

the common optimal value is ∞ (so (P+) has no feasible solution), problem (P+) is sure

to have an optimal solution.

(c) In the piecewise linear-quadratic case, the primal and dual constraint qualifica-

tions in (4.18) and (4.19) are superfluous and can be replaced simply by the feasibility

conditions in (4.4) and (4.16), respectively. In that case,

inf(P+) = sup(D+) unless inf(P+) = ∞ and sup(D+) = −∞,

(i.e., unless neither (P+) nor (D+) has a feasible solution). Moreover, when the common

optimal value is finite, both problems have an optimal solution.
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(d) All these results hold equally with the full problems (P+) and (D+) replaced by

the reduced problems (P−) and (D−).

Examples of multistage stochastic programming problems that are covered by the
results in Theorem 6 are easily generated from the examples in §3. Stochastic linear
programming is obtained by choosing

φi(ui) =
{

0 if ui ∈ IRni
+ ,

∞ if ui /∈ IRni
+ , ψi(zi) =

{
0 if zi ∈ IRmi

− ,
∞ if zi /∈ IRmi

− ,

so that
φ∗i (wi) =

{
0 if wi ∈ IRni

− ,
∞ if wi /∈ IRni

− , ψ∗i (vi) =
{

0 if vi ∈ IRmi
+ ,

∞ if vi /∈ IRmi
+ .

This model belongs to the piecewise linear-quadratic case, where the theorems are at their
best. A much broader model in that category is obtained by choosing

φi(ui) =
{

1
2ui·Piui if ui ∈ Ui,
∞ if ui /∈ Ui,

ψi(zi) = θVi,Qi
(zi),

for nonempty polyhedral sets Ui and Vi and symmetric, positive semidefinite matrices Pi

and Qi, with θVi,Qi
defined as in (3.5). In dualizing one then has

ψ∗i (vi) =
{

1
2vi·Qivi if vi ∈ Vi,
∞ if vi /∈ Vi,

φ∗i (wi) = θUi,Pi
(wi).

This is stochastic piecewise linear-quadratic programming.

5. Optimality Conditions and Decomposition

The duality in Theorem 6 has interesting implications for optimality conditions in multi-
stage stochastic programming and how such conditions might be employed in computation.

Theorem 7 (saddle points in stochastic programming).

(a) In the circumstances of Theorem 6 where inf(P+) = sup(D+), one has that

(x̄, ū; ȳ, v̄) is a saddle point

of L+ on [IRd × U ]× [IRd × V ]

}
⇐⇒

{
(x̄, ū) solves (P+),

(ȳ, v̄) solves (D+).

(b) In the same circumstances, where equally inf(P−) = sup(D−), one has that

(ū, v̄) is a saddle point

of L
−

on U × V

}
⇐⇒

{
ū solves (P−),

v̄ solves (D−).
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(c) The two saddle point conditions are both equivalent to the following subgradient

properties being satisfied:

Ei{B∗
i+ ȳi+}+D∗

i v̄i − pi ∈ ∂φi(ūi)

qi − Cix̄i −Diūi ∈ ∂ψ∗i (v̄i)

}
for i ∈ I, with x̄ = X(ū), ȳ = Y (v̄). (5.1)

Proof. This comes from Theorem 3 as applied by way of Theorems 4 and 5. The conditions
in (5.1) fall directly out of the saddle point condition for L+, namely

(x̄, ū) ∈IRd × U, (ȳ, v̄) ∈ IRd × V, and

L+(x, u; ȳ, v̄) ≥ L+(x̄, ū; ȳ, v̄) ≥ L+(x̄, ū; y, v)

for all (x, u) ∈ IRd × U, (y, v) ∈ IRd × V.

The maximization of L+(x̄, ū; y, v) in (y, v) can be seen from the formula for L+ in (4.8) to
come down to separate maximizations in the components yi and vi. This yields the second
set of subgradient relations along with x̄ = X(ū). Likewise, by substituting the alternative
expression in (4.14) into the formula (4.8), one sees that the minimization of L+(x, u; ȳ, v̄)
in (x, u) corresponds to separate minimizations in xi and ui, which furnish the second set
of subgradient conditions along with ȳ = Y (v̄). The fact that (5.1) also describes saddle
points (ū, ū) of L− is evident from (4.6) and (4.17).

To put a good face on the subgradient conditions in (5.1), we introduce now—in terms
of any x̄ and ȳ in IRd, acting as parameter elements—the vectors

p̄i := pi − Ei{B∗
i+ ȳi+

}, q̄i := qi − Cix̄i, (5.2)

and an associated family of subproblems, one for each information state i ∈ I:

(P̄i) minimize p̄i·ui + φi(ui) + ψi(q̄i −Diui) in ui.

The dual problem paired with (P̄i) in the extended Fenchel format is

(D̄i) maximize q̄i·vi − ψ∗i (vi)− φ∗i (D
∗
i vi − q̄i) in vi,

and the corresponding Lagrangian is

L̄i(ui, vi) := p̄i·ui + φi(ui) + q̄i·vi − ψi(vi)− vi·Diui on Ui × Vi. (5.3)

The facts in Theorems 2 and 3 are available for these problems.
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Theorem 8 (problem decomposition by information states). The optimality conditions

in Theorem 7 have the following interpretation:{
x̄ = X(ū), ȳ = Y (v̄), and for each i ∈ I

(ūi, v̄i) is a saddle point of L̄i on Ui × Vi.
(5.4)

Thus, in the piecewise linear-quadratic case in particular, ū = {ūi} solves the reduced

problem (P−) if and only if there exists v̄ = {v̄i}i∈I such that, when x̄ = {x̄i}i∈I and

ȳ = {ȳi}i∈I are taken as the trajectories of primal and dual states generated from these

controls by the dynamics in (4.2) and (4.15), it turns out that, for every i ∈ I,{
ūi is an optimal solution to (P̄i),

v̄i is an optimal solution to (D̄i).

Proof. All we need to observe is that the subgradient conditions in (5.1) are the ones
furnished by Theorem 3, as specialized to the problems (P̄i) and (D̄i). In the piecewise
linear-quadratic case, saddle points correspond always to pairs of optimal solutions, as we
know from Theorem 2.

In practical terms, this decomposition result is especially suited to algorithms that in
some way alternate between, on the one hand, integrating linear dynamical systems to get
states from controls and, on the other hand, solving collections of problems (P̄i), perhaps
in parallel for various information states i ∈ I. Backward-forward splitting algorithms
have just this character; cf. [8]. Other splitting methods can likewise exploit the special
Lagrangian structure in (4.23) without relying necessarily on repeated integration of the
dynamics; cf. [5] and [6]. It usually wouldn’t be required, of course, to solve the corre-
sponding dual problems (D̄i) directly, since almost any method for solving (P̄i) to get ūi

would automatically produce v̄i as an associated multiplier vector.
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