
Nonlinear Optimization and Applications 2, pp. 381–399
G. Di Pillo and F. Giannessi, Editors
Kluwer Academic Publishers B.V., 1999

Extended Nonlinear Programming

R. T. Rockafellar (rtr@math.washington.edu)
Dept. of Mathematics, Box 354350
University of Washington, Seattle, WA 98195–4350

Abstract

Shortcomings of the conventional problem format in nonlinear programming
suggest the need for a broader model that features composite terms. Such
a model, promoting better representation of the problem structures found in
applications, can be adopted with no real sacrifice in computing practicality.

Keywords: Nonlinear programming, extended linear-quadratic programming,
composite optimization, optimality conditions, quadratic approximations

1 Introduction

The basic problem in nonlinear programming, and for that matter in all of finite-
dimensional optimization, is usually explained as having the form

(P0) minimize f0(x) subject to fi(x) =
{≤ 0 for i = 1, . . . , s,

= 0 for i = s+ 1, . . . ,m.

Sometimes a geometric constraint like x ∈ X is included, where X is an orthant
or more generally a box, i.e., a product of closed intervals (whether bounded or
unbounded). For purposes such as the introduction of Lagrange multipliers, however,
X is suppressed in favor of additional equalities or inequalities.

This description is by now so ingrained that many people accept it without ques-
tion. It is thought to provide a good statement of what optimization is about, and
to offer the right model for setting up applications. In that role, it has become the
language of communication between the optimization community and its clients. But
is this really the best we can do?

1

All of optimization revolves around minimizing or maximizing some function over
some feasible set. The issue is what framework is most advantageous for specifying
that function and set, in order to promote effective computation and analysis along
with good modeling in applications. From that angle, an imbalance in (P0) is appar-
ent. The format demands thinking about feasibility in a structured way but offers no
suggestions for representing structure also in the objective. A user is just expected
to produce a finite family of functions and to designate which give the objective, the
equations, and the inequalities.

History has a lot to do with this. The prototype in modern optimization was
linear programming. In a linear programming problem, the constraint and objective
functions are affine, and there is little more to be said. Problem structure in linear
programming has typically been viewed in terms of the sparsity patterns of a coef-
ficient matrix. Nonlinear programming started out as a sort of negation of linear
programming, with functions merely no longer affine. In the early days no need was
felt to be more detailed than that, and no other guidelines were developed.

People took for granted that, for practicality, all the functions in a problem should
be smooth (i.e., continuously differentiable) to whatever degree might be helpful. This
was a much more serious restriction than may have been realized, though, especially
in applying the same standard to the objective as to the constraints. Certain kinds
of nonsmoothness are common in expressing objective structure, and nowadays it’s
known how to handle them quite simply through composite terms which allow the
numerical utilization of underlying smoothness in the problem data to go forward.

Even in a context of smoothness, it’s easy to come up with applications where
composite structure in the objective function provides special support in computation.
In nonlinear least-squares problems, the expression to be minimized has the form

f0(x) = λ1f01(x)
2 + · · ·+ λrf0r(x)

2 (1)

with positive weights λj. This function f0 comes from composing a smooth mapping
x 7→ (f01(x), . . . , f0r(x)) with a convex function (u01, . . . , u0r) 7→ λ1u

2
01 + · · ·+ λru

2
0r.

The numerical methodology revolves around linearizations of the mapping.
For nonsmooth objective structures, a smooth mapping is often in the background

as well, but the conventional format in (P0) doesn’t permit it to be accessed directly.
Nonsmoothness of functions has to be recast as nonsmoothness of sets by way of
inequality constraints. A typical example is “min-max” optimization, where the goal
is to minimize an expression like

f0(x) = max{f01(x), . . . , f0r(x)}. (2)

If f0 has this form in (P0), an additional variable x0 has to be introduced. The
task is translated into the minimization of f̃0(x0, x) = x0 subject to 0 ≥ f̃0j(x0, x) =
f0j(x) − x0 for j = 1, . . . , r and the other constraints already in (P0). Note that f0

in (2) is obtained by composing a smooth mapping x 7→ (f01(x), . . . , f0r(x)) with the
convex, piecewise linear function (u01, . . . , u0r) 7→ max{u01, . . . , u0r}.

2

A similar maneuver would be triggered by a seemingly innocent shift of squares
to absolute values in (1). If the expression to be minimized in (P0) is

f0(x) = λ1|f01(x)|+ · · ·+ λr|f0r(x)|, (3)

one is obliged to introduce extra variables x0j and minimize f̃0(x01, . . . , x0r, x) :=
λ1x01 + · · ·+λrx0r subject to the given constraints on x and the additional conditions
f0j(x) − x0j ≤ 0 and −f0j(x) − x0j ≤ 0 for j = 1, . . . , r. But why should such a
drastic reformulation be required for the f0 in (3), where none was needed for the
f0 in (1)? The two objective functions have almost the same form, except that in
(3) the smooth mapping x 7→ (f01(x), . . . , f0r(x)) is composed with a convex function
(u01, . . . , u0r) 7→ λ1|u01|+ · · ·λr|u0r| that’s piecewise linear.

Penalty expressions offer further illustration. What if we wish to modify (P0) by
replacing the constraint f1(x) ≤ 0 by a objective term, say a “linear” penalty term,

f1(x) ≤ 0 −→ ρ1 max{0, f1(x)} (4)

with penalty parameter ρ1 > 0? Again, this doesn’t fit the conventional format
directly. One has to resort to introducing a new variable ξ1 and passing to the
problem of minimizing f̃0(x, ξ1) = f0(x) + ρ1ξ1 subject to f1(x) − ξ1 ≤ 0, −ξ1 ≤ 0,
and the remaining constraints in (P0) for i = 2, . . . ,m. Objective structure has once
more been converted to constraint structure in order to conform to the model that
people have gotten accustomed to taking as standard. But the penalty expression in
(4) is simply the composition of a smooth function with a convex, piecewise linear
function, so one might hope for an approach that’s less disruptive.

Penalties need not be just “linear,” of course. Expressions with nonlinear pieces
often come up, and the nonsmoothness may then be just of second order. For instance,
an equation fi(x) = 0 in (P0) could be replaced by an objective term θi(fi(x)) in
which θi is a convex penalty function that’s quadratic on an interval around 0 but
switches to affine expressions outside of that interval—without any jumps in the first
derivative, only in the second derivative. Such composite terms arise in particular
in “robust statistical” modifications of least-squares problems which aim at reducing
the influence of outliers. Observe, though, that in this situation it’s not evident any
more how to squeeze the problem into the mold of (P0) with functions that are all
C2, if the given fi’s are all C2.

These difficulties aren’t only technical. They have important consequences for the
mathematical modeling that goes into optimization. People are turned away from
problem formulations that might be very good at representing the right structure
and are forced instead into something less apt and perhaps inappropriate. This is an
issue that deserves more attention from the optimization community than it has so
far received.

The distorting effect of a narrow format is most serious perhaps in the emphasis
of (P0) on constraints that have to be satisfied with no room for penalty or reward.

3

In practice, the constraints encountered in optimization models can be divided into
two categories, “hard” and “soft.” In the “hard” category are constraints that record
immutable requirements on the variables involved, such as nonnegativity and defining
relationships. In the “soft” category are constraints that express properties deemed
desirable, but which might be subject eventually to trade-off with other properties, or
with costs. There are parameters in such constraints that are assigned wishful values,
which might later be altered if the results of optimization aren’t satisfactory. In
many circumstances it might be better to replace soft constraints by objective terms
that directly model a trade-off or gray areas between having an inequality simply be
fulfilled or not fulfilled. The statement of (P0) discourages that, however.

Stochastic programming gives a very telling example. Beginners who have grown
up with (P0) tend to set up a stochastic programming model with exact constraints,
not realizing how costly that can be. Because of uncertainty, a constraint that’s
supposed to be satisfied at a future stage, but is influenced by present decisions, may
be handled much better by introducing penalties for its violation than by insisting
that earlier actions be foolproof.

By now, it’s well understood by theorists that a modeling distinction between
objective and constraints is artificial. While one can take the position that any
optimization problem comes down to minimizing some function over some set, one
can equally well take the position that any optimization problem in n real variables
consists, in principle, just of minimizing some function f over IRn—if f is allowed
to take on ∞. There’s no real difference between including the condition f1(x) ≤ 0
in (P0) as an explicit constraint or representing it implicitly in the objective by a
penalty term θ1(f1(x)) in which θ1(u1) = 0 for u1 ≤ 0 but θ1(u1) = ∞ for u1 > 0.

To promote good modeling, we ought to explain optimization to the world in a
framework in which transitions between such infinite penalties and alternative finite
penalties are easy and attractive. Of course, the framework should also be one that’s
just as conducive, or even more conducive, to capturing and utilizing smoothness
as the conventional one. And, as long as a list is being made, we might ask for
the framework to be better than (P0) at making use of what’s now known about
dualization and Lagrange multipliers. For instance, it should be able to handle a box
constraint x ∈ X without conversion to linear inequality constraints. It should furnish
a way around the current obstacles to dualizing quadratic programming problems.

All this is possible with surprisingly little adjustment. By accepting the notion of
composite terms as a basic modeling tool, one can arrive at a problem format that’s
much more flexible than (P0) and much richer in ways of indicating structure, yet with
essentially no sacrifice in computational practicality. Through only a small investment
in learning how some common composite terms are dualized, in order to associate
them with Lagrange multipliers, one can achieve a new level of standardization in
which problems can be inputted to software without first reformulating them. An
automatic interface can be supplied for invoking numerical packages as they now
exist, but the door is opened also to further algorithmic developments, designed to

4

take full advantage of the special structures that might be represented.

2 Format with Composite Modeling

As a first idea of the kind of extension that might be made—but one which we will
end up simplifying—it could be proposed to replace (P0) by

(P1) minimize θ0(F0(x)) + θ1(F1(x)) + · · ·+ θq(Fq(x)) over x ∈ X,

where X is a subset of IRn and each composite term involves a smooth mapping
Fl : IRn → IRdl and a function θl on IRdl that might take on ∞. The effective domains
Dl := {ul ∈ IRdl | θl(ul) <∞ would give constraints that are implicit in (P1): a point
x is feasible if and only if x ∈ X and Fl(x) ∈ Dl for l = 1, . . . , q. As a special case, a
particular θl might be just the indicator of Dl, i.e., the function that vanishes on Dl

but has the value ∞ everywhere outside of Dl.

Much could be done with this fully composite model, but it seems too great a
leap into inscrutability to be sold easily to users of optimization. It’s too far from
the conventional model for instant comparisons, and it appears to insist on too many
things being specified.

What we propose instead, therefore, is a focus on the following problem format,
which we speak of as extended nonlinear programming , or ENLP:

(P) minimize f0(x) + θ(f1(x), . . . , fm(x)) over x ∈ X.

The feasible solutions to (P) are the vectors x ∈ X with (f1(x), . . . , fm(x)) ∈ D,
where

D = {u ∈ IRm | θ(u) <∞}. (5)

This covers the conventional NLP format in (P0) as the case of X = IRn and

θ(f1(x), . . . , fm(x)) = θ1(f1(x)) + · · ·+ θm(fm(x)), (6)

with the functions θ1, . . . , θs being the indicator of (−∞, 0] but θs+1, . . . , θm being the
indicator of {0}. It also has the virtue of indicating at once how exact constraints
can be replaced by expressions imposing penalties or rewards, since all that’s needed
is the replacement of indicator functions in (6) by other functions θi.

In fact, (P) also encompasses the general composite model (P1) and thus all the
examples that we’ve been discussing. This is because the functions f0, f1, . . . , fm

don’t have to be identified one-by-one with the functions having the same symbol in
(P0), if that’s not convenient. In (P), we could choose to take f0 ≡ 0, and then the
entire objective is a composite expression θ(f1(x), . . . , fm(x)). It’s a small step from
that to specializing into a sum of composite terms as in (P1).

5

For an illustration at an intermediate level, suppose the aim is to minimize a
“max” expression like the one in (2) subject to equations and inequalities like those
in (P0). This amounts to minimizing

θ0(f01(x), . . . , f0r(x)) + θ1(f1(x)) + · · ·+ θm(fm(x)) (7)

over X = IRn with θ0(u01, . . . , u0r) = max{u01, . . . , u0r} and the other θi’s indicators
or (−∞, 0] of {0}, as already seen. We then have an extended nonlinear programming
problem of elementary type in which the f0 in (P) (as opposed to the f0 in (2)) is
just the constant function 0.

In like manner, nonlinear programming problems (P0) with objective functions of
the types in (1) or (3) can be handled as extended nonlinear programming problems
with objective functions as in (7) but through different choices of θ0.

We haven’t yet been clear about the assumptions that should go along with the
designation of (P) as a problem of extended nonlinear programming. As in conven-
tional nonlinear programming, we want the functions fi to be smooth, of course, even
with continuous second derivatives if needed. That’s no longer a real restriction, but
rather a modeling choice. The philosophy is that f0, f1, . . . , fm furnish all the smooth-
ness we wish to build into the problem for the purpose of generating Taylor expansions
and other classical approximations. Anything nonsmooth is to be captured through
the specification of θ.

What should assumed, though, about θ and for that matter about the set X in
(P)? Optimization theory is capable now of treating very general θ and X, but our
goal here isn’t in that direction. Instead, we want a workable compromise between
generality and simplicity, moreover one that concentrates on a systematic and ele-
mentary way of specifying θ and X. That turns out to be much easier than might be
expected, although the solution requires a bit of explaining.

Assumptions. In an extended nonlinear programming problem (P), it will be sup-
posed that

(A1) the functions f0, f1, . . . , fm are smooth,
(A2) the set X in IRn is nonempty and polyhedral (convex), and
(A3) the function θ on IRm is convex, proper and lower semicontinuous, furthermore

representable in the form
θ(u) = sup

y∈Y
{y·u− k(y)} (8)

by means of a nonempty polyhedral set Y in IRm and a smooth function k that is
convex on Y .

The smoothness of the functions fi has already been addressed. The polyhedral
convexity of X may seem unnecessarily limiting, but it’s good enough for many pur-
poses. It covers nonnegativity constraints, upper and lower bounds on variables, and
also situations where one wishes to minimize over a linear subspace of IRn, with IRn

itself as a special case, since linear subspaces are polyhedral sets in particular. Also

6

covered are cases of linear equations where certain variables have to add to 1, or
where defining relationships are expressed between various quantities.

There’s no controversy over how to specify a polyhedral set. Everyone knows how
to do that in more than one way, as convenience dictates. Anything nonpolyhedral
could of course be handled in (P) by other means.

It’s the assumption on θ that may seem mysterious. The mystery will dissipate
with an appeal to elementary convex analysis.

Taking θ to be convex and having ∞ as a possible value isn’t itself controversial.
(An extended-real-valued function is proper if it doesn’t take on −∞ and isn’t just
the constant function ∞.) In all the examples brought out so far, the outer function
in the composite term was convex. One can go a very long way with that. Lower
semicontinuity of θ is equivalent to the epigraph of θ being closed and is a minor
technical requirement. The rest of (A3) is what raises eyebrows.

An expression of θ as in assumption (A3) will be called a dualizing representation.
It will soon be seen that, in all the examples we’ve encountered and a vast array of
others, such an expression of θ is indeed available. Dualizing representations will play
a big role with respect to Lagrange multipliers. There’s much more to them than
that, however.

Many functions θ of interest are only piecewise smooth and therefore difficult
to describe directly, but a dualizing representation (8) furnishes an alternative, if
indirect, description that’s actually quite simple and easy to work with, all the more
so once the implications of it are understood. In order to specify θ through a dualizing
representation, all one has to specify is a polyhedral set Y and a smooth function k
that’s convex on Y . As it turns out, it would be enough most of the time to have k
be quadratic, hence specified in terms of an m ×m positive-semidefinite matrix (in
some cases just the 0 matrix).

This is a crucial observation because it reveals that the structural features so
essential to the nonsmooth functions θ one wants to use in modeling don’t have
to be an impediment in practice. To specify (P), all one has to do is specify the
smooth functions f0, f1, . . . , fm on IRn and k on IRm along with two polyhedral sets
X ⊂ IRn and Y ⊂ IRm. That’s no harder than specifying a conventional nonlinear
programming problem (P), but it does require an appreciation of how θ corresponds
to Y and k. The results coming next address that concern, first in general terms and
then through examples.

Proposition 1. If a function θ has a dualizing representation as in (A3), it auto-
matically satisfies the requirements of being convex, proper and lower semicontinuous.
Moreover Y and k, at least in its restriction to Y , can be recovered then from θ by

Y = {y ∈ IRm | θ∗(y) <∞}, k(y) = θ∗(y) for y ∈ Y,

where θ∗(y) = supu {u·y − θ(y)}. (This θ∗ is the convex function conjugate to θ.)

Proof. Define ψ(y) to equal k(y) for y ∈ Y but ∞ for y /∈ Y . Then ψ is convex
function on IRm that’s proper and lower semicontinuous. According to (8), the con-

7

jugate convex function ψ∗ is θ. It follows then that θ∗ = ψ∗∗ = ψ, as is well known in
convex analysis.

On the basis of Proposition 1 there is a one-to-one correspondence between the
functions θ admitted in assumption (A3) and the pairs (Y, k) described there, except
that only the values of k on Y count. We show now how this correspondence can be
broken down to a term by term description when θ is to some degree separable.

Proposition 2. Suppose that θ(u) = θ1(u1) + · · ·+ θq(uq) for u = (u1, . . . , uq) with
ul ∈ IRdl . Let each θl have a dualizing representation in terms of a polyhedral set
Yl ⊂ IRdl and a smooth function kl that is convex on Yl. Then θ has a dualizing
representation with respect to y = (y1, . . . , yq) and yl ∈ IRdl in terms of

Y = Y1 × · · · × Yq, k(y) = k1(y1) + · · ·+ kq(yq). (9)

Proof. This is just of matter of recognizing that

q∑
l=1

sup
yl∈Yl

{ul·yl − kl(yl)} = sup
y∈Y

{u·y − k(y)}

under (9). Note that the components ul and yl can be vectors or, in the case of
dimension dl = 1, merely scalars.

Let’s proceed now with some examples of dualizing representations, taking the cue
from Proposition 2 that it’s enough to consider individual terms. One-dimensional
terms are a good place to begin.

We’ve seen that inequality constraints fi(x) ≤ 0 correspond to objective terms
θi(f(x)) in which θi(ui) is 0 when ui ≤ 0 but ∞ when ui > 0. The dualizing
representation for such θ is obtained by taking ki ≡ 0 on Yi = [0,∞). For equality
constraints fi(x) = 0, we instead have θi(ui) equal to 0 for ui = 0 but ∞ everywhere
else, and then ki ≡ 0 on Yi = (−∞,∞). A linear penalty term as in (4) with
θi(ui) = ρi max{0, ui} comes out, however, as corresponding to ki ≡ 0 on Yi = [0, ρi].
Likewise, such a penalty term for an equality constraint, with θi = ρi|ui|, has ki ≡ 0
on Yi = [−ρi, ρi].

It’s valuable to observe that in these cases, where the function ki doesn’t really
enter, the effect of replacing a classical constraint by a linear penalty term is to replace
an unbounded interval Yi by a truncated one. We’ll see later that this corresponds
to introducing bounds on Lagrange multipliers. In general, for ki ≡ 0 on Yi = [σi, ρi]
one gets θi(ui) = ρiui for ui ≥ 0, and θi(ui) = σiui for ui ≤ 0, regardless of the signs
of σi and ρi.

What can happen with ki 6≡ 0? A simple case is a term like those in the least-
squares setting of (1), with θ0j(u0j) = λju

2
0j, λj > 0. The dualizing representation

is obtained then with k0j(y0j) = (1/4λj)y
2
0j on Y0j = (−∞,∞). If we kept the same

function k0j(y0j) but truncated the interval to Y0j = [−ρj, ρj], however, we would
get the piecewise linear-quadratic function θ0j that has the formula λju

2
0j on the

8

interval of u0j values where the derivative of this term is between −ρj and ρj, i.e.,
where αj ≤ u0j ≤ βj with αj = −ρj/2λj and βj = ρj/2λj, but is extrapolated linearly
outside that interval, with formula λjα

2
j−ρj[u0j−αj] to the left and λjβ

2
j +ρj[u0j−βj]

to the right. (These affine pieces take off as tangents from the original quadratic
graph.) Note that this is just the kind of function of interest in “robust statistics.”
The expression for θ0j is readily generalized to the case of k0j(y0j) = (1/4λj)y

2
0j on

an arbitrary interval Y0j = [σj, ρj] ⊂ (−∞,∞). Terms of such type come up in
augmented Lagrangians.

Just with these very simple, one-dimensional dualizing representations, we have
already taken care of all the composite terms mentioned in earlier examples except
for the “max” term in (2). That requires an appeal to higher dimensions: we get

θ(u01, . . . , u0r) = max{u01, . . . , u0r) for k ≡ 0 on
Y = {(y01, . . . , y0r) | y0j ≥ 0, y01 + · · ·+ y0r = 1}. (10)

The set Y is polyhedral, as stipulated in (A3). In another example, if Y is any
polyhedral cone in IRm and k(y) = 1

2 |y|2 for the Euclidean norm |y|, then one has
θ(u) = 1

2d(u,K)2 for the polar cone K = Y ∗, with d(u,K) denoting the distance of u
from K.

All the examples so far fit the pattern of k being a purely quadratic convex func-
tion, perhaps identically 0. As seen from Proposition 2, if that holds for the individual
terms in θ, whatever they might be, it also holds for θ as a whole. This case is par-
ticularly deserving of attention, and we give it special notation:

θ = θY Q when θ(u) = sup
y∈Y

{u·y − 1
2y·Qy} (11)

for a polyhedral set Y ⊂ IRm and a symmetric, positive-semidefinite matrix Q ∈
IRm×m (possibly Q = 0). When Y is a box and Q is diagonal, one has a decomposition
of θY Q into one-dimensional terms.

Note from Proposition 1 that although Y and the values of the quadratic form
y·Qy for y ∈ Y can be recovered from θ in (11), this wouldn’t be enough to pin down
Q uniquely unless Y has nonempty interior. Situations where Y has empty interior
do arise, as for instance in (10).

Proposition 3. Any function θ of the form θY Q in (11) is piecewise linear-quadratic,
in the sense that its effective domain D in (5) is polyhedral (in particular closed and
convex) and can be partitioned into a finite collection of polyhedral subsets, with
respect to each of which the formula for θ is a polynomial of degree at most 2.

Indeed, D is a polyhedral cone which is polar to {y |Qy = 0, Y + y ⊂ Y }. For
D to be the whole space (so that θ is finite everywhere), it is necessary and sufficient
therefore that the latter cone (likewise polyhedral) contain no y 6= 0.

Proof. For the first assertion, see Theorem 11.14(b) of [1]. The rest was proved in
Proposition 2.4 of [2].

9

It follows for instance that when Y is bounded or Q is positive-definite, the feasible
set in (P) is the polyhedral set X. Otherwise the condition (f1(x), . . . , fm(x)) ∈ D
could come into play in determining feasibility. Because D is a polyhedral cone, this
condition can in theory be expressed by constraints 0 ≥ ∑m

i=1 αkifi(x) = gk(x) for a
collection of coefficient vectors (αk1, . . . , αkm) (chosen to generate the cone polar to
D in Proposition 3). This sheds light on the nature of the feasible set in an extended
nonlinear programming problem (P), revealing that it’s neither more nor less general
in principle than the kind of feasible set in a conventional problem (P0)—but that’s
also somewhat beside the point. The focus isn’t merely on constraints any more, and
because of the possibility of D having to be broken down into many pieces to get
a direct description of θ, one may have to rely anyway on the dual description of θ
furnished by Y and Q.

If we concentrate on functions θ of form θY Q in (11) and at the same time restrict
f0 to be quadratic and f1, . . . , fm to be affine in (P) we get extended linear-quadratic
programming , or ELQP for short:

(Q) minimize c·x+ 1
2x·Px+ θY Q(b− Ax) over x ∈ X,

where A ∈ IRm×n and P ∈ IRn×n (symmetric). This kind of model goes back to
Rockafellar and Wets [3], where it was introduced for the sake of penalty modeling
and algorithm development in stochastic programming. The topic was expanded
in [2], where many special cases of ELQP were worked out and applications were
made to continuous-time optimal control. Other aspects of ELQP methodology and
applications can be found in [4], [5], [6], along with [1].

The general nature of (Q), in contrast to conventional quadratic programming,
can be perceived from the case where Y is a box and Q is a diagonal matrix, so that

θY Q(b− Ax) = θ1(b1 − a1·x) + · · ·+ θm(bm − am·x)

for the components bi of b and the vectors ai giving the rows of A. Our discussion of
such one-dimensional terms shows that they can stand for piecewise linear-quadratic
penalty expressions as well as standard linear constraints. Of course, “max” expres-
sions can also be represented, by following the pattern in (10). When P = 0 and
Q = 0 in (Q), one has extended linear programming , ELP, where X can impose upper
or lower bounds on the variables while θ allows for linear penalty.

An important advantage of ELQP over ordinary QP is that problem (Q) can be
dualized without difficulty to get another ELQP problem, as long as P is positive-
semidefinite, so that convexity prevails in (Q). Similarly, an ELP problem dualizes
to an ELP problem. This will be explained near the end of the next section.

10

3 Extended Lagrangian and Multiplier Rule

The dualizing representation in assumption (A3) is the route to the Lagrangian func-
tion we associate with an extended nonlinear programming function (P), namely

L(x, y) = f0(x) + y1f1(x) + · · ·+ ymfm(x)− k(y) for x ∈ X, y ∈ Y. (12)

The sets X and Y are regarded as an integral part of the specification of L. Obviously
(P) is completely determined by its Lagrangian in this sense, because the expression
being minimized over X in (P) is

f(x) = sup
y∈Y

L(x, y) = f0(x) + θ(f1(x) . . . , fm(x)). (13)

The main difference between this extended Lagrangian for (P) and the one asso-
ciated with a conventional nonlinear programming problem (P0) is the presence of
the term −k(y) (which could however be 0) and a general polyhedral set Y instead
of just the special cone IRs

+ × IRm−s that classically expresses the sign requirements
on Lagrange multipliers for constraints fi(x) ≤ 0 or fi(x) = 0. Here, Y will express
requirements on Lagrange multipliers more broadly.

There’s also a difference in the presence of a set X, where for (P0) one would
have X = IRn. This is less important, though, because a set X has often been
brought into discussions of Lagrangians. If one goes to the original paper of Kuhn
and Tucker [7], say, one finds a treatment of how full or partial nonnegativity of x
can be represented in that way, and what it means for the statement of first-order
optimality conditions. That simple modification has also been common in linear and
quadratic programming.

Beyond such special instances of X, little has been made of how to adapt Lagrange
multiplier rules to a constraint x ∈ X, at least within the optimization community at
large, although theorists have long had answers. This is true even though the case of
a box X is very common in numerical optimization. Actually the adaptation is quite
easy, and it’s worth looking at because the same ideas are need for understanding
how to adapt to multiplier vectors y ∈ Y for nonclassical Y .

The only notion that’s needed is that of the normal cone NX(x̄) to a convex set
X at one of its points x̄, as introduced in convex analysis [8], [1]:

v ∈ NX(x̄) ⇐⇒ x̄ ∈ X and v · [x− x̄] ≤ 0 for all x ∈ X. (13)

This is polar to the tangent cone TX(x̄), which for polyhedral X consists of the origin
and all rays of the form {τ [x − x̄] | τ ≥ 0} generated by points x 6= x̄ in X. For a
box X, the description of NX(x̄) is especially simple. Then X is a product of closed
intervals Xj which constrain the components xj of x, and we have

(v1, . . . , vn) ∈ NX(x̄1, . . . , x̄n) for X = X1 × · · · ×Xn

⇐⇒


vj = 0 when x̄j is an interior point of Xj,
vj ≥ 0 when x̄j is the right endpoint (only) of Xj,
vj ≤ 0 when x̄j is the left endpoint (only) of Xj.

(14)

11

When x̄j is both the right and left endpoint of Xj, i.e., Xj is a one-point interval,
there’s no restriction on vj; it can be any number in (−∞,∞). All this holds also for
Y with only a change of notation. In particular, when Y is a box we have

(u1, . . . , um) ∈ NY (ȳ1, . . . , ȳm) for Y = Y1 × · · · × Ym

⇐⇒


ui = 0 when ȳi is an interior point of Yi,
ui ≥ 0 when ȳi is the right endpoint (only) of Yi,
ui ≤ 0 when ȳi is the left endpoint (only) of Yi.

(15)

Theorem 1. In an extended nonlinear programming problem (P), let x̄ be a locally
optimal solution. Suppose that the following constraint qualification is satisfied:

6 ∃ ȳ ∈ Y, ȳ 6= 0, with
{−[ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)] ∈ NX(x̄),

(ȳ1, . . . , ȳm) ∈ ND(f1(x̄), . . . , fm(x̄)).
(16)

Then necessarily

∃ ȳ ∈ Y with
{−[f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)] ∈ NX(x̄),

(ū1, . . . , ūm) ∈ NY (ȳ1, . . . , ȳm) for ūi = fi(x̄)− (∂k/∂yi)(ȳ).
(17)

When (P) is an extended linear-quadratic programming problem (Q), the constraint
qualification need not be invoked.

Proof. See Rockafellar [9] for ENLP and [2] for ELQP.

The constraint qualification in (16) is equivalent to the Mangasarian-Fromovitz
constraint qualification when (P) is a conventional problem (P0). It can be viewed
therefore as an apt extension of that well known condition to our context. When X =
IRn, the first normality condition in (16) reduces to ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄) = 0.
On the other hand, (P0) has D equal to the product of intervals Di = (−∞, 0] for
i = 1, . . . , s and Di = {0} for i = s+ 1, . . . ,m. In that case, by (14) as applied to D,
the second normality condition in (16) requires fi(x̄) = 0 for inequality constraints
with ȳi > 0 but allows fi(x̄) ≤ 0 for inequality constraints with ȳi = 0; for equality
constraints, one must of course have fi(x̄) = 0. In other words, we get the usual
conditions of complementary slackness associated with multipliers in (P0).

The interpretation of the multiplier rule in (17) is similar. If x̄ is an interior point
of X, as for instance when X = IRn, the cone NX(x̄) is just the zero cone {0}. In
asking the gradient expression −[∇f0(x̄) + ȳ1∇f1(x̄) + · · ·+ ȳm∇fm(x̄)] to belong to
NX(x̄), one is asking it to be 0. When x̄ is a boundary point of X, however, the
gradient expression is required to have a certain relationship to x̄. What this might
be can easily be seen for instance when X is a box. Then, according to (14), the
requirement is for the jth component of the gradient sum to be positive, negative or
zero according to the location of x̄j within the jth interval Xj.

The meaning of the requirement (f1(x̄), . . . , fm(x̄)) ∈ NY (ȳ1, . . . , ȳm) in (17) is
simplest when Y is a box Y1 × · · · × Ym. In that case it places a sign restriction on
fi(x̄) that’s tied to the location of the multiplier ȳi within Yi, as seen from (15). Again

12

we have a generalization of the complementary slackness conditions in a nonlinear
programming problem (P0). When Yi = [0,∞), the requirement comes out as ūi ≤ 0
if ȳi = 0 but ūi = 0 if ȳi > 0. When Yi = (−∞,∞), it’s just ūi = 0. For general
intervals Yi, (15) describes a broader version of complementary slackness.

First-order optimality conditions for (P) as in Theorem 1 were first developed in
[9]. The second normality condition in (17) can equivalently be stated in terms of
subgradients of θ, namely as

(ȳ1, . . . , ȳm) ∈ ∂θ(f1(x̄), . . . , fm(x̄)). (18)

When θ is separable as in (6), this comes down to ȳi ∈ ∂θi(fi(x̄)) for i = 1, . . . ,m. An
advantage of the version in (17), however, is a connection with variational inequalities.

Theorem 2. The normality conditions in the multiplier rule (17) in Theorem 1 can
be equivalently be expressed in the form

−∇xL(x̄, ȳ) ∈ NX(x̄), ∇yL(x̄, ȳ) ∈ NY (ȳ). (19)

In terms of z = (x, y), Z = X × Y and F : (x, y) 7→ (∇xL(x, y),−∇yL(x, y)), this is
the variational inequality F (z̄)·[z − z̄] ≥ 0 for all z ∈ Z, the same as

F (z̄) +NZ(z̄) 3 0. (20)

Proof. The equivalence of these various statements is immediate from the definition
of L and the fact that NZ(z̄) = NX(x̄)×NY (ȳ) for z̄ = (x̄, ȳ).

The set Z in the variational inequality of Theorem 2 is, like X and Y , polyhedral.
It’s a box when X and Y are boxes. For variational inequalities over polyhedral sets,
unusually powerful results are available; see e.g. [10].

To explore convexity and duality in extended linear programming, we introduce
now the notion of (P) being a problem of extended convex programming. By that
we’ll mean that the data elements f0, f1, . . . , fm, X and Y in (P) have the property
that, for each y ∈ Y , L(x, y) is convex in x relative to X.

Theorem 3. Suppose (P) is an extended convex programming problem in the gen-
eral sense just defined. Then the expression f0(x) + θ(f1(x), . . . , fm(x)) being mini-
mized in (P) is convex relative to X, and, the normal cone conditions in (17), or the
equivalent versions of them in Theorem 2, are sufficient for x̄ to be a globally optimal
solution, without regard to the constraint qualification (16). Indeed, these conditions
mean that the pair (x̄, ȳ) ∈ X × Y gives a saddle point of L on X × Y :

L(x, ȳ) ≥ L(x̄, ȳ) ≥ L(x̄, y) for all x ∈ X, y ∈ Y. (21)

Furthermore, in this case the mapping F in the variational inequality in Theorem 2
is monotone on Z = X × Y , i.e., one has

[F (z′)− F (z)]·[z′ − z] ≥ 0 for all z, z′ ∈ Z. (22)

13

Proof. The convexity of the function being minimized over X follows from (13) and
the assumed convexity of L(x, y) in x ∈ X, since the supremum of any collection of
convex functions is convex.

To say that L(x, ȳ) ≥ L(x̄, ȳ) for all x ∈ X is to say that for every choice of
x ∈ X the function ϕ(τ) = L((1 − τ)x̄ + τx, ȳ) has ϕ(τ) ≥ ϕ(0) for τ ∈ [0, 1]. The
convexity of L(·, ȳ) relative to X implies that ϕ is convex relative to [0, 1], so that
this inequality on ϕ holds if and only if ϕ′(0) ≥ 0. But ϕ′(0) = ∇xL(x̄, ȳ)·[x − x̄].
Hence we have L(x, ȳ) ≥ L(x̄, ȳ) for all x ∈ X if and only if ∇xL(x̄, ȳ)·[x− x̄] ≥ 0 for
all x ∈ X, or in other words, −∇xL(x̄, ȳ) ∈ NX(x̄).

We always have L(x̄, y) concave in y ∈ Y on the basis of the formula for L in
(12) and the convexity of k on Y that was assumed in (A3). By a parallel argument,
therefore, we have L(x̄, y) ≤ L(x̄, ȳ) for all y ∈ Y if and only if ∇yL(x̄, ȳ) ∈ NY (ȳ).

A minor extension of these two arguments brings out the fact that actually, for
arbitrary choices of x, x′ ∈ X and y, y′ ∈ Y , we have

L(x′, y) ≥ L(x, y) +∇xL(x, y)·[x′ − x],
L(x, y′) ≤ L(x, y) +∇yL(x, y)·[y′ − y],
L(x, y′) ≥ L(x′, y′) +∇xL(x′, y′)·[x− x′],
L(x′, y) ≤ L(x′, y′) +∇yL(x′, y′)·[y − y′].

In multiplying the first and third inequalities by −1 and then adding all four together,
we get 0 ≥ [∇xL(x, y)−∇xL(x′, y′)]·[x′−x]− [∇yL(x, y)−∇yL(x′, y′)]·[y′−y], which
comes out as (22) for z = (x, y) and z′ = (x′, y′).

In the light of Theorem 3, the vectors ȳ paired with x̄ in the first-order optimality
conditions for an extended convex programming problem (P) solve the associated
dual problem

(P∗) maximize g(y) over y ∈ Y, where g(y) = inf
x∈X

L(x, y).

It’s especially interesting to see how this kind of duality works out in extended linear-
quadratic programming.

Theorem 4. In the case of an extended linear-quadratic programming problem (Q),
the Lagrangian is

L(x, y) = c·x+ 1
2x·Px+ b·y − 1

2y·Qy − y·Ax on X × Y (23)

and the first-order optimality conditions take the form

−c− Px̄+ AT ȳ ∈ NX(x̄), b− Ax̄−Qȳ ∈ NY (ȳ), (24)

thus corresponding to a variational inequality (20) with F monotone and affine.
If P is positive-semidefinite along withQ, these conditions are equivalent to having

(x̄, ȳ) be a saddle point of L on X×Y , and they hold if and only if x̄ is optimal in (Q)

14

while ȳ is optimal in the problem dual to (Q). Moreover, that dual problem belongs
again to extended linear-quadratic programming and has the form

(Q∗) maximize b·y − 1
2y·Qy − θXP (ATy − c) over y ∈ Y.

Proof. In (Q) we have θ = θY Q and therefore the Lagrangian in (23). Everything
then follows from Theorem 3 except for the particular form of (Q∗). That emerges
from the description of the general dual problem (P∗) through the fact that

infx∈X{c·x+ 1
2x·Px+ b·y − 1

2y·Qy − y·Ax}
= b·y − 1

2y·Qy − supx∈X{y·Ax− c·x− 1
2x·Px}.

Here y·Ax = x·ATy, so the supremum is θXP (ATy−c) by the definition of the function
θXP (in parallel to that of θY Q in (11)).

For the conclusions of Theorem 4 to be valid, it’s not really essential that P and
Q be positive semidefinite, but just that the expressions x·Px and y·Qy be convex
with respect to x ∈ X and y ∈ Y , respectively. In that more subtle case, though,
the mapping F may only be monotone relative to Z = X × Y rather than the whole
space IRn × IRm. The same extra bit of generality is available also in the following
duality theorem.

Theorem 5. In the case of extended linear-quadratic programming with both the
matrix P and the matrix Q positive-semidefinite, one has

min(Q) = max(Q∗) (with the existence of optimal solutions)

in any of the following circumstances, which in fact are equivalent:
(a) the optimal value in (Q) is finite;
(b) the optimal value in (Q∗) is finite;
(c) feasible solutions exist for both (Q) and (Q∗).

This remains valid even if P and Q are not positive-semidefinite, as long as the
expressions x·Px and y·Qy are convex with respect to x ∈ X and y ∈ Y , respectively.

Proof. For positive-definite P and Q, this theorem was first proved in [3]. It has
subsequently presented in that mode also in [2] and [1]. The following argument
confirms that it holds true also under the weaker conditions of relative convexity.

Without loss of generality it can be supposed, for the purpose at hand, that 0 ∈ X
that 0 ∈ Y . This just amounts to a change of variables: for any choice of x0 ∈ X and
y0 ∈ Y , we can rewrite everything in terms of x′ ∈ X0 = X−x0 and y′ ∈ Y0 = Y −y0.
The shifted Lagrangian L0(x

′, y′) = L(x0 + x′, y0 + y′) on X0 and Y0 gives rise to
primal and dual problems (Q0) and (Q∗

0) in x′ and y′ that are equivalent to (Q) and
(Q∗), as readily can be checked.

Once we have 0 ∈ X and 0 ∈ Y , we know that the affine hulls of X and Y are
subspaces of IRn and IRm, respectively. Through coordinate transformations in these

15

spaces, we can identify these affine hulls with spaces IRn0 and IRm0 of perhaps lower
dimension. Since X and Y , being convex sets, have nonempty interior relative to
their affine hulls, we can in this way reduce the whole issue to the case where X and
Y have nonempty interior. In that case, however, the convexity of x·Px and y·Qy
with respect to x ∈ X and y ∈ Y implies that P and Q are positive-semidefinite. The
earlier result can then be invoked, and its conclusion can be brought over.

4 Solution Methodology

Many of the approaches to solving nonlinear programming problems can be explained
in terms of their Lagrangians and approximations that can be made of them. That’s
true for techniques of the sequential quadratic programming variety and even steep-
est descent, as well as for algorithms based on successive approximations to Karush-
Kuhn-Tucker conditions and the techniques for handling variational inequalities. Be-
cause the extended Lagrangian in (12) is so close to the classical one, it’s tempting
to think that virtually all of those approaches may work also for extended nonlinear
programming with appropriate adjustments in concept and formulation.

For example, around any pair of points x̂ ∈ X and ŷ ∈ Y , the Lagrangian L for
problem (P) has a second-order expansion

L̂(x, y) = L(x̂, ŷ) +∇xL(x̂, ŷ)·[x− x̂] +∇yL(x̂, ŷ)·[y − ŷ]

+1
2 [x− x̂]·∇2

xxL(x̂, ŷ)[x− x̂] + 1
2 [y − ŷ]·∇2

yyL(x̂, ŷ)[y − ŷ]
+[y − ŷ]·∇2

yxL(x̂, ŷ)[x− x̂],

(25)

which reduces algebraically to

L̂(x, y) = d̂+ ĉ·x+ 1
2x·P̂ x+ b̂·y − 1

2y·Q̂y − y·Âx (26)

for a certain choice of constant d̂, vectors ĉ and b̂, and matrices P̂ , Q̂, and Â, with P̂
and Q̂ symmetric and the expression y·Q̂y convex for y ∈ Y . (The latter holds because
Q̂ = ∇2k(ŷ) and the function k is assumed to be convex relative to Y .) Associated
with L̂ and the sets X and Y is an extended linear-quadratic programming problem

(Q̂) minimize ĉ·x+ 1
2x·P̂ x+ θY Q̂(b̂− Âx) over x ∈ X,

(where the constant d̂ has been dropped as unessential). This might be exploited
as an approximation of (P) in some iterative scheme. Moreover X and Y might be
replaced in (Q̂) by X̂ = X ∩ X0 and Ŷ = Y ∩ Y0 for polyhedral neighborhoods X0

of x̂ and Y0 of ŷ, so that such an approximation would have a trust region character,
primally and even dually.

Such ideas offer stimulating prospects for research that could be rewarding for
optimization in practice. The extended problem format could be matched with nu-
merical methods able to take direct advantage of the extra structure that modelers
could bring out in it. Progress could be made in many directions.

16

Here, we can’t go further than speculation about such possibilities. In the mean-
time, it’s important to know that there’s no need to hold back from using the extended
format. We’ll now demonstrate that in the absence of computer codes tailored to ex-
tended nonlinear programming, a technical trick can applied to convert a problem (P)
with θ of type θY Q into a conventional nonlinear programming problem. Not only a
solution x̄ but also an associated multiplier vector ȳ for it in (P) can be obtained then
by calling on existing software to solve the converted problem. Moreover the conver-
sion can be achieved in terms of standardized representations of X, Y and Q so that,
if desirable, it can be carried out automatically in a programming interface which the
user doesn’t even have to be aware of. That wouldn’t be as efficient presumably as a
more direct approach, but could be helpful nevertheless.

Proposition 4. Let θ = θY Q as in (11) with Q positive-semidefinite and consider
any representations of the form

Y = {y |STy ≤ s}, Q = DJ−1DT , (27)

where J is symmetric and positive-definite (for instance J = I). Then

θ(u) = inf
z≥0, w

{s·z + 1
2w·Jw |Sz +Dw = u} for every u. (28)

Proof. For fixed u, let (Q1) be the problem in (z, w) that underlies the right side of
(28). This is the primal problem associated with the saddle point problem for

L1(z, w; y) = s·z + 1
2w·Jw + y·[u− Sz −Dw]

with respect to minimizing in (z, w) with z ≥ 0 but maximizing in y ∈ IRm. The
associated dual problem (Q1)

∗, in the framework of extended linear-quadratic pro-
gramming that’s been presented here, is to maximize over all y ∈ IRm the expression

g(y) = inf
z≥0, w

L1(z, w; y) = inf
z≥0, w

{u·y + z·[s− STy] + 1
2w·Jw − w·[DTy] }.

Since J is symmetric and positive definite, this calculates out to

g(y) =

{
u·y − 1

2 [D
Ty]·J−1[DTy] if y ∈ Y ,

∞ if y /∈ Y .

Thus, the feasible solution set in (Q∗
1) is Y , which is nonempty, whereas the optimal

value in (Q∗
1) is

sup
y∈Y

{u·y − 1
2 [D

Ty]·J−1[DTy] } = sup
y∈Y

{u·y − 1
2y·[DJ−1DT]y} = θY Q(u).

It follows from the duality facts in Theorem 5, as specialized here, that this value and
the one in (28) are equal; either both are finite, or both are ∞.

17

Theorem 6. Let (P) be a problem of extended nonlinear programming with θ = θY Q

as in (11). Let Y and Q be represented as in (27) and express X = {x |Rx ≤ r}
for some matrix R and vector r. Write F (x) = (f1(x), . . . , fm(x)). Then the optimal
solutions x̄ to (P) are the x̄ components of the optimal solutions (x̄, z̄, w̄) to

(P0)
minimize f0(x) + s·z + 1

2w·Jw subject to
Rx− r ≤ 0, −z ≤ 0, F (x)− Sz −Dw = 0,

which belongs to conventional nonlinear programming. Moreover a multiplier vector
ȳ for the equation constraint in (P0) in the usual sense will be a multiplier vector
associated with x̄ in the sense of the extended Lagrangian for (P).

Proof. The validity of the reformulation is immediate from the expression for θ
achieved in the lemma. The claim about multiplier vectors ȳ comes out of the duality
developed in the proof of the lemma, according to which the multiplier vectors for the
constraint u−Sz−Dw = 0 in (Q1) must, on the basis of Theorem 5, be the optimal
solutions to the dual problem (Q∗

1). Since the maximization in that dual problem
expresses the conjugacy formula

θY Q(u) = sup
y∈IRm

{u·y − ψ(y)} for ψ(y) =

{
1
2y·Qy if y ∈ Y ,
∞ if y /∈ Y ,

such vectors y are precisely the subgradients of θ = θY Q at u. That means in the case
of ū = F (x̄) that they are the elements of ∂θ(F (x̄). But those vectors, as in (18), are
known to be the multiplier vectors ȳ associated with x̄ in the sense of the optimality
condition in Theorem 1 for (P).

Corollary. In a problem (Q) of extended linear-quadratic programming in which Y
and Q are furnished expressions of the kind in (27), the optimal solutions x̄ to (Q)
are the x̄ components of the optimal solutions (x̄, z̄, w̄) to

(Q0)
minimize c·x+ 1

2x·Px+ s·z + 1
2w·Jw subject to

x ∈ X, ,−z ≤ 0, b− Ax− Sz −Dw = 0.

Moreover the multiplier vectors ȳ for the constraint b − Ax − Sz − Dw = 0 in this
reformulated problem are identical to the ones associated with x̄ in (Q). Hence, if P is
positive semidefinite, they are the optimal solutions to the dual problem of extended
linear-quadratic programming, (Q∗).

References

[1] R.T. Rockafellar and R.J-B Wets (1998), Variational Analysis, Springer Verlag,
Berlin.

18

[2] R.T. Rockafellar (1987), “Linear-quadratic programming and optimal control,”
SIAM J. Control Opt. 25, 781–814.

[3] R.T. Rockafellar and R.J-B Wets (1986), “A Lagrangian finite-generation tech-
nique for solving linear-quadratic problems in stochastic programming,” Math
Programming Studies 28, 63–93.

[4] R.T. Rockafellar and R.J-B Wets (1990), “Generalized linear-quadratic problems
of deterministic and stochastic optimal control in discrete time,” SIAM J. Control
Opt. 28, 810–822.

[5] R.T. Rockafellar (1987), “Computational schemes for large-scale problems in
extended linear-quadratic programming,” Math. Programming 48, 447–744.

[6] R.T. Rockafellar and C.-Y. Zhu (1987), “Primal-dual projected gradient algo-
rithms for extended linear-quadratic programming,” SIAM J. Optimization 3,
751–761.

[7] H.W. Kuhn and A.W. Tucker (1951), “Nonlinear programming,” Proceedings of
the Second Berkeley Symposium on Mathematical Statistics and Probability (J.
Neyman, ed.), Univ. of California Press, Berkeley, California, 481–492.

[8] R.T. Rockafellar (1970), Convex Analysis, Princeton University Press, Prince-
ton, New Jersey (available from 1997 also in paperback in the series Princeton
Landmarks in Mathematics).

[9] R.T. Rockafellar (1993), “Lagrange multipliers and optimality,” SIAM Review
35, 183–238.

[10] A.L. Dontchev and R.T. Rockafellar (1996), “Characterizations of strong regu-
larity for variational inequalities over polyhedral sets,” SIAM J. Optimization 6,
1087–1105.

19

