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1. Introduction

This paper is concerned with implicit-function-like results for parameterized variational

inclusions (generalized equations) of the broad form
fw,z)+ F(z) > 0, (1.1)

where w € R? is the parameter, € IR" is the solution, f : R? x R™ — IR™ is a smooth
(i.e., C!) function, and F : IR" = IR™ is a set-valued mapping with closed graph. The

focus is on local properties of the solution mapping
S:we S(w) = {z| f(w,z) + F(z) > 0} (1.2)

at a pair (ws,zs) with z, € S(ws). We investigate Lipschitz-type properties such as
calmness, Aubin continuity, and Lipschitzian localization, as well as graphical properties
connected with generalized differentiation.

It is well understood that in order to make progress in this area the parameterization
has to be “rich enough.” A standard technique for ensuring such richness is to intro-
duce explicitly, alongside of w, the so-called canonical parameters y that correspond to

perturbing the right side in (1.1) to
f(w,2) + F(z) 3y, (1.3)

and then to work with extended mapping S : R? x R™ — IR" given by

S (w,y) = Swy) = {2] fw,2) + F(x) 5 y}. (1.4
Results obtained for S can be specialized to S by taking y = 0. That approach seems

inefficient, though, since the extended inclusion in (1.3) could also be written like (1.1):

f(w,z) + F(z) 30, where @ = (w,y) and f(w,z) = f(w,z) —y. (1.5)
It would be preferable to capture the needed richness of the parameterization through an

assumption on (1.1) itself, moreover in a manner that provides more flexibility by being

merely local. We accomplish that here through the following concept.

Definition 1.1 (ample parameterization). The variational inclusion (1.1) will be called
amply parameterized at a pair (w., x,) € gph S if the partial Jacobian matrix V., f (w., T )

for f with respect to w at (w,x,) has full rank:

rank V,, f (ws, x4) = m, Vof(w,,z,) € R™. (1.6)



Obviously this condition is fulfilled at every point (0, zx) = (W«, Yx, T«) in the graph
of the extended mapping S in (1.4), viewed as in (1.5). Hence ample parameterization can
always be enforced by passing from S to S , in confirmation of the standard technique.

Supplied with this concept, we begin by studying the relationship between S and an

auxiliary mapping S, at (w, x,) of the general type

S*:yHS*(y):{ﬂf*(x)—l—F(x) >y}, (1.7)

where f, denotes any (smooth) first-order approxzimation to f(wy,-) at x, in the sense that
felxy) = f(we, ) and  Vfi(xi) = Vi f(we, xy). (1.8)

Among the prime candidates for f, are the simple restriction f.(x) = f(w.,x) or its
linearization f.(x) = f(ws, x+) + Vaf(ws, z.)(z — ). Our results, however, depend only
on the assumption in (1.7) that (1.8) holds, so in stating them in terms of S, we achieve
a more efficient presentation which emphasizes what is truly essential.

Note that S, can itself be viewed as a solution mapping in this context, namely one
in which there is only a canonical parameterization. Indeed, the choice f.(z) = f(wx,z)
corresponds to S.(y) = S (wy,y). In comparing properties of S and S, we continue a
long tradition coming from the classical implicit function theorem, where F' = 0 and the
mapping w +— {:c ’ flw,x) = O} is compared to the mapping y — {x ‘ flws,z) = y} or its
linearization. Our contribution is to develop the comparison definitively not just for one,
but for several key properties in our general setting, while employing the concept of ample
parameterization to achieve statements that are more succinct and convenient.

Sections 2, 3 and 4 follow this pattern for the properties of calmness, Aubin continuity
and Lipschitzian localization, respectively. In each case, under ample parameterization,
the property in question holds for S if and only if it holds for S.. Even without ample
parameterization, if the property holds for S, it must hold for S as well.

In Section 5 we show, again under ample parameterization, that S is graphically
Lipschitzian if and only if F' is graphically Lipschitzian. Furthermore, we demonstrate in
Section 6 that such equivalence carries over to proto-differentiability of S versus that of F,
and we obtain a corresponding formula for the proto-derivatives, which reveals that they
are given as solutions to an auxiliary variational inclusion.

In Section 7 we specialize to the case of F' being the normal cone mapping N¢ to a
convex set C; that is, the case where (1.1) is a variational inequality. We take advantage
of the fact that N¢ is then graphically Lipschitzian, and when C' is polyhedral, N¢ is

proto-differentiable. From the resulting formula for proto-derivatives, we show that when

2



the derivative mapping is convex-valued the proto-differentiability turns into the stronger
property of semi-differentiability.

Finally, in Section 8 we apply our results to an optimization problem with pertur-
bations only in the cost function. We show that the standard second-order sufficient
optimality condition is equivalent to the combination of optimality at the reference point
and calmness of the stationary point mapping. Moreover the strong second-order sufficient
condition is equivalent to the Lipschitzian localization property of the mapping that gives
local minimizers. A formula for semi-derivatives of this mapping is also provided.

A separate paper [6] is devoted to applications of these results to the perturbation of
saddle points in convex optimization.

Throughout, any norm is denoted by || - || and B,(x) is the closed ball of radius a
centered at x. The graph of a set-valued mapping I" : IR” = IR" is the set gphI' =
{(z,2) € R” x R" |z € I'(2)} and the inverse of T'is ! : . — {z € R” |z € T(2)}.

2. Calmness

To start, we consider a graphically localized version of the “upper-Lipschitz continuity”
property introduced for set-valued mappings by Robinson [21]. For functions, the property
goes back earlier to Clarke [1], who called it “calmness,” and that is the term we prefer
here in line with the recent book [23].

Definition 2.1 (calmness). A mapping I' : IR = IR" is said to be calm at z, for isolated
x, when (z4,x,) € gph ' and there exist neighborhoods U of x, and V of z, along with a

constant «y such that
|z — zu|| < vl|lz — 24| forall zeV and x € I'(z) N U.

This condition implies that I'(z,) NU = {x.}, so z, is an isolated point of I'(z,), hence
the terminology; but calmness can also be defined in a broader sense which reduces to the
present one when x, is isolated point, yet has meaning even when z, is not isolated (cf.
[23; p. 399]). The broader concept will not enter here. For single-valued mappings, there
is no difference.

The calmness in Definition 2.1 was formally introduced by Dontchev [3] as the “local
upper-Lipschitz property at a point in the graph” of a mapping. Earlier, without giving
it a name, Rockafellar [22] characterized it in terms of the graphical derivatives of the set-
valued mapping. That result will be applied in Section 6. For recent studies of calmness
in the context of mathematical programming, see Klatte [9] and Levy [12].

The following theorem for variational inclusions furnishes a general result of implicit

function type for the calmness property.



Theorem 2.2 (criterion for calmness). The mapping S is calm at w, for isolated x, when
the mapping S, is calm at 0 for isolated z,. Under the ample parameterization condition

(1.6), moreover, the two assertions are equivalent.
We will deduce Theorem 2.2 from another result which we state next.

Theorem 2.3 (calmness in composition). Consider a mapping N : IR* = IR"™ of the form
N(w) = {x ’ x € M(h(w,z))} where M : IRP = IR" is set-valued and h : R x R" — RP
is C1. Let (wy,x4) be such that V h(w.,z.) = 0. If M is calm at z, = h(w,,z.) for

isolated x,, then N is calm at w, for isolated ..

Proof. First, since V h(w,,z,) = 0, we know that for any real A > 0 and neighborhoods
W of w,, U of xz, and V of z, there exist positive reals a, b and ¢ such that the balls
B,(wy), By(x), and B.(z.) are contained in W, U and V, respectively, and for any fixed
w € By (w,) the function z +— h(w,x) is Lipschitz continuous on By(x,) with a Lipschitz
constant A. Of course, the radii @ and b can be chosen arbitrarily small, and then ¢ can be
made arbitrary small as well, independently of the initial choice of A\. Let x be an associated
Lipschitz constant of the function w — h(w,x) on B,(w,), independent of x € By(z.).
Suppose M is calm at z, for isolated x, with neighborhoods V' of z, and U’ of z,

and constant . Choose

0<A<1/y. (2.1)

By the property of h just mentioned, there exist a, b and ¢ such that By(z.) C U’ and
B.(z«) C V', and moreover with the property that for any w € B, (w,) the function h(w, -)
is Lipschitz continuous on By(z.) with a Lipschitz constant A. Choose a and b smaller if

necessary so that
Aa + kb < c. (2.2)

Let w € B,(ws) and x € N(w) N By(z). Then € M(h(w,x)) N By(z,). Using (2.2) we
have [|h(w,z) — z.|| = [|h(w,x) — h(wy, z4)|| < Aa + kb < ¢. From the calmness of M we
then have ||z — z.|| < y[|h(w, z) — z.|| < YA||z — z4|| + VE||w — ws||, hence

VK
1—- Xk

[ = @]l < [ = w. |-

This establishes that the mapping N is calm at w, for x, with constant yx/(1 — Ak). O

Theorem 2.3 is a purely metric result and can be formulated in terms only of the
constants involved. Accordingly, there is no real need to have V h(w,,z.) = 0 or even

to have h be differentiable. All that is required, as seen through the proof, is for h to be
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Lipschitz continuous in x with a “sufficiently small” Lipschitz constant. In fact the result
can be stated in a context of metric spaces.
In the proof of Theorem 2.2, still ahead, we will also employ the following lemma,

where the classical implicit function theorem comes in.

Lemma 2.4 (reparameterization). Under the ample parameterization condition (1.6), and
for a function f, satisfying the condition (1.8), there exist neighborhoods U, V' and W of

T, y = 0 and w,, respectively, and a C' function w: U x V — W such that
(i) y+ f(w(z,y),z) = fu(x) for every y € V and x € U,
(i) w(zx,0) = w, and V,w(x,,0) = 0.

Proof. Let B := V,, f(wx, z.); by assumption, this matrix in R™*? has full row rank m.

In terms of the transpose B ', consider the system of equations

w—ws+B' z2=0

2.3
y+f(w,$)—f*(l'):0, ( )

where (w, z) is the variable and (z,y) is the parameter. Clearly, (w.,,0) is a solution of
(2.3) for the parameter choice (z.,0). The Jacobian J at (ws,0,x,0) of the function of
(w, z) on left side of (2.3) has the form

I B
=15 5]

where [ is the identity. It is well known that when B has full row rank the matrix J is
nonsingular. Hence, from the classical implicit function theorem, we conclude that, locally

around (wy, 0, 7,,0), there exists a C! function Q : (z,y) — (w(x,y),¢(z,y)) such that

w(m,y) — Wx + BTC('T?y) =0

2.4
y—i_f(w(a"?y)ax)_f*(ff):o ( )

with Q(z.,0) = (ws,0). This yields (i) and the first condition in (ii). By differentiating
the system we see further that JV,Q(z,y) must vanish locally, and since J is nonsingular

this implies that V,Q(z,y) vanishes locally. In particular, then, V,w(z.,0) = 0. O

Proof of Theorem 2.2. From the definitions of S and S, in (1.2) and (1.7) we have
x € S(w) if and only if x € S, (y) for y = f.(x) — f(w,x). Thus, we can write

S(w) = {z|z € S.(fu(z) - f(w,z))}. (2.5)
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By taking h(w,z) = f.(z) — f(w,z), which has Vh(w.,z.) = 0 by virtue of (1.8), we
can put this in the framework of Theorem 2.3 with M = S,. This lets us conclude that
calmness of S, implies calmness of S.

Assume now that the ample parameterization condition (1.6) holds and consider a
mapping w as guaranteed in Lemma 2.4 with respect to certain neighborhoods U, V' and
W. FixyeV. Ifxe S,(y)NU and w = w(z,y), then w € W and y + f(w,x) = fi(x),
hence z € S(w) NU. Conversely, if x € S(w(z,y)) NU, then clearly = € S.(y) NU. Thus,

S.(y)NU ={z|z € S(w(z,y)NU}. (2.6)

Since calmness of S at w, for isolated x, is local property of the graph of S relative to
the point (w.,x,), this holds if and only if the same holds for the truncated mapping
Sy :w— S(w)NU. That equivalence is valid for S, as well. Applying Theorem 2.3 now

in the context of (2.6) with h = w, we get the desired equivalence for S versus S.. O

3. Aubin property
The idea behind the Aubin property, which Aubin called “pseudo-Lipschitz continuity,”

can be traced back to the original proofs of the Lyusternik and Graves theorems; see [2],
[4], [7], [11] and [23] for discussions. This property is known to correspond, with respect to
taking inverses of mappings, to “metric regularity,” a condition which plays a major role

in optimization.

Definition 3.1 (Aubin property). A mapping I' : IRP = IR" is said to have the Aubin
continuity property at z, for x,. when (z.,x.) € gph D' and there exist neighborhoods U of

x4, and V of z, along with a constant ~ such that
2 2eV, 2 eT(ZYNU = 3F2" eT(Z") with ||z’ —2"| <~|]2" —2"|.

Keeping the pattern of the preceding section, we establish a result about the Aubin

property that is completely parallel to the one about calmness in the preceding section.

Theorem 3.2 (criterion for Aubin property). The mapping S has the Aubin property at
wy for x, when the mapping S, has the Aubin property at 0 for x,. Under the ample

parameterization condition (1.6), moreover, the two assertions are equivalent.

Not only is the statement of Theorem 3.2 completely parallel to that of Theorem 2.2,
the proofs are parallel as well. The key is a composition rule that can be regarded as a

version of the Lyusternik-Graves theorem.



Theorem 3.3 (Aubin property in composition). Consider a mapping N : R* = IR" of
the form N(w) = {z |z € M(h(w,z))} where M : R’ = IR" is set-valued with closed
graph and h : ]Rd x IR" — IRP is C*. Let (wx,x+) be such that V h(w.,,z,) = 0. If M has
the Aubin property at z, = h(ws, x,) for x,, then N has the Aubin property at w, for z..

Proof. Let the mapping M have the Aubin property at z, for z, with neighborhoods V’
of z, and U’ of x, and a constant «y. Let X satisfy (2.1) and choose the constants a,b and
c as in the proof of Theorem 2.3. Choose a smaller if necessary so that

dvka

oy (3.1)

Let w',w"” € By(wy) and let 2" € N(w') N Bya(x.). Then ' € M(h(w',2")) N Bya(x.).
We get from the Aubin property of M the existence of x1 € M (h(w”,x’)) such that
|lz1 — &'|| < Al|h(w, 2") — h(w”,2")|| < vk|lw" —w”|]. Also, through (3.1),

b
o1 = el < s =2/ + 2’ = 2ol < ywllw’ — 0] + |12 = ]| < s(2) + £ <D,

and consequently ||h(w”,z1) — z«|| < Aa + kb < ¢, from (2.2). Hence, from the Aubin
property of M, there exists x5 € M (h(w”,x1)) such that

lz2 = @1 ]| < AA(w”, 1) = h(w", &) | < yA[J21 = 2] < (YA)ys[w" = w”].

By induction, we obtain a sequence xi,zxa,...,Tk,... with 2 € M(h(w”,xr_1)) and

ok =zl < (YA ysflw’ —w

/l”

. Setting x¢ = 2’ and using (3.1), we get

ok — 2l < Jlwo — 2l + ) llaj — 254
j=1

B
I
_

b 2avkK
)\ // < e < b

A\
N | S
<.
I
[en]

hence ||h(w”, xx) — z«|| < Aa + kb < ¢. Then there exists xx11 € M(h(w”,xzx)) such that
ok — zill < AlIR(w", 2x) — h(w”, z-1)]] < Wlax — zp-all < (vA)Pv6llw’ — w"]], and
the induction step is complete.

The sequence {zj} is Cauchy, hence convergent to some z” € B,(x,) C U’. From
the closedness of gph M that has been assumed, and the continuity of A we deduce that
2 € M(h(w”,2"))NU’, hence, ” € N(w"). Furthermore, using the estimate

k k—
YK
e =l < 3 Iy — ayoall € Al = 0’ < 72’ |
j=1 =0
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we obtain, on passing to the limit with respect to k — oo, that ||z — /|| < +/||w" — w"||.
Thus, N has the Aubin property at 0 for z, with constant v = (yx)/(1 — y\). O

Proof of Theorem 3.2. Repeat the argument in the proof of Theorem 2.2, simply re-

placing the composition rule in Theorem 2.3 by the one in Theorem 3.3. O

4. Lipschitzian localization

The Lipschitzian localization property is a looser form of the smooth localization prop-
erty that appears in the classical implicit function theorem. In the context of variational
inequalities, Lipschitzian localization is the property in Robinson’s “strong regularity”
theorem [20]; see [10], [11], [17] and [23] for more on this subject.

Definition 4.1 (Lipschitzian localization). A mapping I" : IR? = IR" is said to have a
single-valued Lipschitzian localization at z,. for x, when (z.,z,) € gphD' and there exist
neighborhoods U of z, and V of z, such that the mapping V' > z — I'(2)NU is single-valued

and Lipschitz continuous.
For this property we have an analog of Theorems 2.2 and 3.2 in the following mode.

Theorem 4.2 (criterion for Lipschitzian localization). The mapping S has a single-valued
Lipschitzian localization at w, for x, when the mapping S, has a single-valued Lipschitzian
localization at 0 for x.. Under the ample parameterization condition (1.6), moreover, the

two assertions are equivalent.
Again we establish this by way of a composition rule.

Theorem 4.3 (Lipschitzian localization in composition). Consider N : R* = IR™ of the
form N(w) = {z |z € M(hw,z))} where M : IR" = IR" is set-valued mapping with
closed graph and h : R x R™ — IRP is C'. Let (w,,x,) be such that Vih(w,, x.) = 0.
If M has a single-valued Lipschitzian localization at z, = h(w,,x.) for z., then N has a

single-valued Lipschitzian localization at w, for x.,.

Proof. Suppose M has a single-valued Lipschitzian localization at z, for x, with neigh-
borhoods U and V' and a constant . In particular then, M has the Aubin property at
z, for x, with the same constant v and consequently, as already proved, N has the Aubin
property at w, for x,. It is sufficient therefore to verify that there exist neighborhoods U’
of z, and W’ of w, such that N(w) N U’ is a singleton for every w € W'.

Observe that we can choose a neighborhood W of w, and shrink U if necessary so that

the Lipschitz constant A of the function h(w,-) on U works for any w € W. Suppose that
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there exist two sequences, z} and z%, converging to z. and a sequence wy, converging to
w,, such that zi € N(wy), i = 1,2, and zj, # 23 for a sufficiently large k so that ¢ € U,
w, € W, and h(wg, k) € V. Since M (h(wy,x%)) NU is a singleton for large k, we have
zt = M(h(wg,zt)) NU, i = 1,2. From the Lipschitz continuity of both M(-) N U and
h(wg, -) we finally obtain

0 # |lzy, — agll < vl h(wk, z3,) — h(wg, 23) || < A2y — 23] < [z, — 2.
This contradiction demonstrates that N has the property claimed. O

Proof of Theorem 4.2. Repeat the argument in the proof of Theorem 2.2, simply re-

placing the composition rule in Theorem 2.3 by the one in Theorem 4.3. O

5. Lipschitzian graphical geometry

Beyond the property of Lipschitzian localization treated in Section 4, there is a more subtle
kind of Lipschitzian behavior which is especially common for solution mappings without
single-valuedness, but which, unlike the Aubin property of Section 3 or even the calmness
property of Section 2, does not revolve around comparing values of the mapping at two
different points. Instead, this property centers on Lipschitzian geometry of the graph of

the mapping. It has strong implications for generalized differentiability.

Definition 5.1 (graphically Lipschitzian mappings). A mapping I' : R = IR" is said
to be graphically Lipschitzian at z, for x., and of dimension k in this respect, when
(z4,2+) € gph D' and there is a change of coordinates in IRP x IR" around (z.,z.) that
is C! in both directions, under which gphT' can be identified locally with the graph in

IR* x RPT™"~* of a Lipschitz continuous mapping defined around a point u, € IR".

Background on graphically Lipschitzian mappings can be found in [23]. As a special
case, of course, if I" has a single-valued Lipschitzian localization around z, € IR, then I'
is graphically Lipschitzian of dimension p at z, for z, = I'(z). The point of Definition
5.1, however, is that many mappings of fundamental interest in variational analysis and
optimization can fail to be single-valued and Lipschitz continuous and yet possess hidden
properties of Lipschitzian character which deserve to be recognized and placed in service.

An important class of graphically Lipschitzian mappings which by no means need to
be single-valued and Lipschitz continuous is furnished by the maximal monotone mappings
F : R" = IR"; the theory of maximal monotonicity is available in detail in Chapter 12 of
[23]. Within this category are the normal cone mappings N¢ associated with the nonempty,

closed, convex sets C' in IR" and more generally the subgradient mappings dy associated
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with the lower semicontinuous, proper, convex functions ¢ on /R". A normal cone mapping
will be the focus in the next section. When F': IR" = IR" is maximal monotone, gph F is
in fact an n-dimensional Lipschitzian manifold in a global sense.

Maximal monotonicity is not the only source of examples. A broad class of normal
cone mappings N¢ and subgradient mappings d¢ for which the graphical Lipschitzian
property prevails without C' or ¢ having to be convex has been developed by Poliquin
and Rockafellar [16] under the heading of “prox-regularity” and more specially “strong
amenability” (see also 10.24 and 13.46 of [23]). Such sets C' and functions ¢ arise very
commonly in optimization. For instance, a set C given by finitely many C? equality
and inequality constraints is strongly amenable at any point satisfying the Mangasarian-
Fromovitz constraint qualification; a function ¢ is sure to be strongly amenable when it is
the sum of the indicator of a strongly amenable set and a function that is C? or the max
of finitely many C? functions. The associated mappings Nc and d¢ then likewise furnish
choices of F' that are graphically Lipschitzian.

The next theorem shows that, under ample parameterization, graphically Lipschitzian
properties of the solution mapping S can be derived from those of F' by way of the natural

correspondence between the graphs of these mappings:
(x,—f(w,x)) € gph FF <= (w,z) € gphS. (5.1)

Theorem 5.2 (criterion for Lipschitzian geometry). Under the ample parameterization
condition (1.6), the mapping S is graphically Lipschitzian of dimension q at w, for z, if
and only if the mapping F' is graphically Lipschitzian of dimension k at x, for y,, where

Ye = — f(wa, x4), g=k+d—m.
Proof. Define Q : R? x R" — R" x R™ by

Qw,z) = (z, - f(w, ). (5.2)

Then from (5.1), gphS = Q~!(gph F'). Under the ample parameterization condition the
Jacobian VQ(wy,x,) of @ at (ws,x,) has full rank n + m; in particular this requires
d+n >n+m,ie., d—m > 0. Therefore, with respect to a neighborhood O of (wy,z.),
Q! has the effect of transforming any graphically Lipschitzian manifold of dimension k
in IR" x IR™ into one of dimension k + (d — m) in R x IR™. The equivalence is now

immediate. O

10



Corollary 5.3 (maximal monotonicity). Under the ample parameterization condition, if
F is a maximal monotone mapping, ' : IR" = IR", then S is graphically Lipschitzian of

dimension d at w, for x,.

Proof. When F'is maximal monotone, it is everywhere graphically Lipschitzian of dimen-
sion n (cf. 12.15 of [23]). Then, by virtue of Theorem 5.2, S is graphically Lipschitzian of

dimension n +d — n = d at w, for z,. O

Corollary 5.4 (strong amenability). Under the ample parameterization condition, if F
is a normal cone mapping N¢ or subgradient mapping Oy for a set C or function ¢ that

is strongly amenable at x,, then S is graphically Lipschitzian of dimension d at w, for x.,.

Proof. Here we rely on the graphically Lipschitzian behavior of such normal cone map-

pings and subgradient mappings as noted prior to the statement of Theorem 5.2. O

In order to tie Theorem 5.2 in with the patterns of equivalence in the preceding

sections, it is worth stating also the following elementary consequence.

Corollary 5.5 (equivalent geometries in approximation). The mapping S, is graphically
Lipschitzian of dimension k at 0 for x, if and only if F' is graphically Lipschitzian of
dimension k at x, for y., where y, = —f.(z). Thus, under the ample parameterization
condition (1.6), S is graphically Lipschitzian of dimension q at w, for x, if and only if S,
is graphically Lipschitzian of dimension k at 0 for x,, where ¢ =k + d — m.

Proof. Theorem 5.2 can be applied to S, as a special kind of solution mapping, which
corresponds to replacing f(w,z) by g(y,z) = f«(x) — y with y as the new parameter, in
IR™ instead of R®. For g, the condition of ample parameterization is satisfied trivially at
(0,z,). Moreover, —g(0,z.) = — f(wx, x«) = y«. Therefore, S, is graphically Lipschitzian
of dimension ¢, at 0 for x, if and only if F' is graphically Lipschitzian of dimension k at
x4 for y,, the relation between ¢, and k being like that between ¢ and k in Theorem 5.2,
except that d is replaced by m. Then ¢, = k+m —m = k.

In combination now with the statement about S and F' in Theorem 5.2, this observa-

tion yields the claimed relationship between S and S.. |

11



6. Generalized differentiation

In the graphical context of Theorem 5.2, there is a powerful geometric notion of generalized
differentiation which can be used even though S may only be set-valued. One says that S

is proto-differentiable at w, for x, when x, € S(w,) and the difference quotient mappings
AL S(wylxy) w — 7S (we +Tw') — 2], T >0,

converge graphically as 7 \.0; in other words, there is a mapping D : RY — R"™ x R™ such
that gph A, S(w, |x,) converges to gph D as 7 — 0. Proto-differentiability was introduced
in [22], and much about it can be found now also in [23]; see [13] and [14] as well, where
special properties in the case of a graphically Lipschitzian mapping are laid out.
Proto-differentiability is closely involved with the tangent cone T, g(wy, ) to gph S
at (ws,x«). This cone is the graph of the mapping DS (wy | x) : RY = R" that in general

is called the graphical derivative of S at w, for z,; by definition,
' € DS(wilz.)(w') = (w',2) € Ty, s(ws, z4). (6.1)

The graphs of the mappings A,S(w.|z,) are the sets 771[gph S — (ws, )], which have
Tyon s(Ws, ) as their outer set limit (“lim sup”) as 7\.0. What makes the property of
proto-differentiability special is that the outer limit is required to equal the inner set limit
(“lim inf”) and thus be a true set limit. As translated to the language of tangent cones,
proto-differentiability of S at w, for z, means that gphS is geometrically derivable at
(Wy, xx). See [23] for more on this subject. Anyway, it is clear that when the graphical
limit D in the definition of proto-differentiability exists it has to be DS(w, | x,), although
the latter has meaning (and uses) even in the absence of proto-differentiability.

The power of proto-differentiability in the presence of Lipschitzian graphical geometry
comes from the tight mode of local approximation it affords, in a manner reminiscent that
of classical differentiability. To appreciate this, consider first the case where S happens to
be single-valued and Lipschitz continuous around w,, with x, the unique element of S(w,).
Proto-differentiability implies then that the mapping D.S(w, | x,) (which in this case could

simply be denoted by DS(w,)) is likewise single-valued and Lipschitz continuous and
S(w) = S(ws) + DS(wslzy)(w — wy) + o |w — wy]), (6.2)
where o(t) denotes a term such that o(¢)/t — 0 as ¢t \.0. This is ordinary differentiability
precisely when the mapping DS(w, |z.) is, in addition, linear.
In general when S and DS(w,|xz,) are single-valued (but DS(w, |z,) might not be
linear), we speak of the property in (6.2) as the semi-differentiability of S at w, for z, =

S(w,). For more discussion of semi-differentiability, see [23].
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In moving next to the case where S is not necessarily single-valued and Lipschitz
continuous but merely graphically Lipschitzian at (w.,x,), it is crucial to observe that
although the type of approximation in (6.2) depends strongly on the particular coordinate
system on the graph, specifically the decomposition into components w and z, the notion
of proto-differentiability does not. Because it is based on set convergence in the graph
space, proto-differentiability is preserved under changes of coordinates. Therefore, proto-
differentiability of a graphically Lipschitzian mapping S corresponds to the tight mode of
local approximation to gph S as in (6.2), but applied obliquely, to a different coordinate
system than the (w,x) system.

Note that the mapping DS(w. |z,) anyway is always positively homogeneous, since
its graph is a cone; one has DS(w. |2.)(0) 2 0 and DS(wy | x,)(Aw') = ADS(wy | 24)(w')
for all w” when X\ > 0.

Proto-differentiability has only been described so far in terms of S, but of course the
concept also applies to F', and this now comes on stage as well. For a pair (x.,y.) € gph F’
we have

Y € DF(z.,y.)(2") <= (2",y) € Typp p (s, ys)- (6.3)

If F happens for example to be single-valued and, at z., is differentiable in the usual
sense, then F is proto-differentiable at x, for y, = F(x,) with DF (x4 |y.) being the usual

derivative mapping (for which DF(z.) is then a simpler notation).

Theorem 6.1 (proto-derivative formula). Under the ample parameterization condition
(1.6), the mapping S is proto-differentiable at w, for x, if and only if the mapping F' is
proto-differentiable at x, for y. = — f(ws, z.). Then

DS(w, | z,)(w') = {z' | g(w',2") + G(2') > 0}, where

6.4
g, z") = Vi f(we, z)w' + Vi f(we, x)x’ and G(z') = DF (v, 1y.) (). (64)

Proof. We appeal again to the setup in the proof of Theorem 5.2, where gphS =
Q Y(gph F) for the mapping @ in (5.2). Because the Jacobian of @ has full rank under
ample parameterization, we can determine the tangent cone T, s(ws,7«) by the general

rule of variational analysis given in 6.7 of [23], obtaining

Typn s (Ws, T4) = {(w',2") | VQ(w.,z,)(w',2') € Tgphp(x*,y*)}. (6.5)

This furnishes through the formulas for DS(w,,z.) and DF(z.,y.) in (6.1) and (6.3)
the formula in (6.4). A parallel formula holds for the corresponding “derivable cones” to

gph S and gph F', which are defined with outer set limits replaced by inner set limits. The
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geometric derivability of gph F' at (x,y.) thus corresponds to the geometric derivability
of gph S at (w,,z.). Hence we have the equivalence between proto-differentiability of S
and that of F. 0

Corollary 6.2 (derivative criterion for calmness). Under the ample parameterization con-
dition (1.6) and the assumption that F' is proto-differentiable at x, for y. = —f(w., z.),

the mapping S is calm at w, for isolated x, if and only if
Vef(we,z )z + DF(z,ly.)(2') 20 = 2’ =0. (6.6)

Proof. According to the characterization of calmness of set-valued mappings developed
in [22; Theorem 4.1] in terms of graphical derivatives, S is calm at w, for isolated z, if
and only if DS(wy|x,)(0) = {0}. This criterion translates to (6.6) through the derivative

formula in Theorem 6.1. O

The especially attractive feature of Theorem 6.1 is that the graphical derivative of the
solution mapping S turns out itself to be a solution mapping in our framework, namely
one that corresponds to ¢ and G in place of f and F, with w’ as the parameter and z’
as the solution. A derivative formula in this pattern was originally exhibited in [22] for a
variational inequality with canonical perturbations. That case will be elaborated below.

To make the best use of Theorem 6.1 and Corollary 6.2, one needs to recognize situ-
ations where F' is proto-differentiable. The example of F' single-valued and differentiable
has already been mentioned. Other examples emerge from the second-order variational
analysis of sets and functions that are fully amenable, this being a refinement of the strong
amenability in [16] that had a role in the preceding section. For the theory of full amenabil-
ity and the graphical derivative formulas it provides, along with examples, we refer to [23]

and restrict ourselves here to recording the following consequence of Theorem 6.1.

Corollary 6.3 (full amenability). Under the ample parameterization condition (1.6), if
F = N¢ or F = 0p for a set C or function ¢ that is fully amenable at x,, then S is not
only graphically Lipschitzian at w, for x, but also proto-differentiable there.

Proof. The graphically Lipschitzian property is implied by Corollary 5.4, inasmuch as
full amenability is a special case of strong amenability. The rest comes out of Theorem 6.1
and the fact, just cited, that F' is proto-differentiable at z, for y, € F(x,) when F' is of
the form described. O
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7. Application to variational inequalities

We concentrate now on the special case where S is the solution mapping for a parameterized
variational inequality,
S(w) = {z| f(w,z) + Ne(x) 3 0} (7.1)

with respect to a nonempty convex set C' C IR" that is polyhedral. This choice allows us to
obtain a quite detailed picture of the geometry of proto-derivatives of S and to provide a
basis for their actual computation. Because of convexity, the vectors ¢ in the normal cone

Nc¢(x) at any = € C are the ones that satisfy
(y, ' —2) <0 forall 2’ € C.

Typically in the literature on variational inequalities this condition, with y = — f(w, x), is
written in place of the condition f(w,z)+ Ne(z) 5 0, but the normal cone version helps
to put things into the right framework of set-valued mappings. When = ¢ C, N¢(z) is
interpreted as (.

Our goal is to apply the theory of the preceding sections to F' = N and make the most
of the special properties that follow from C' being polyhedral. We say that a mapping is
piecewise polyhedral when its graph is the union of a collection of finitely many polyhedral
(convex) sets. If the mapping is single-valued, this is the same as it being piecewise linear
(see 2.48 of [23]). For a vector y, we let y~ = {u|(y,u) = 0}. This notation is used in the
next theorem in defining the cone K, that is known as the critical cone associated with

the variational inequality in (7.1) for w = w, and x = .

Theorem 7.1 (proto-derivatives for variational inequalities). Let F' = N¢ for a poly-
hedral convex set C' C IR" and assume that the ample parameterization condition (1.6)
holds. Then S is both graphically Lipschitzian of dimension d and proto-differentiable at

w, for x,, with its proto-derivatives given by an auxiliary variational inequality, namely

DS(w,z,)(w') = {a' | g(w',2") + Ny _(2') > 0}, where

g(w',z") = Vi flws, 2w 4+ Va flwy, z,)2’ and K, = To(x,) N f(w,, )" (7:2)

Furthermore, the mapping DS(w,|x,) is itself graphically Lipschitzian of dimension d

everywhere and is piecewise polyhedral.

Proof. This mainly constitutes a further specialization of Theorems 5.2 and 6.1 along the
lines of Corollaries 5.4 and 6.3. When F' = N¢ with C polyhedral (and nonempty since
by blanket assumption we are working with a pair (w,,z.) € gph S), we have F' maximal

monotone and everywhere proto-differentiable, with the proto-derivative mapping being
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itself a normal cone mapping; specifically, DF(z,|y.) = Ng, for K, = To(z.) N yi,
which we apply here to y. = — f(wx, ). (This reduction of DF(x, |y.) to a normal cone
mapping depends crucially on C' being polyhedral; for details see [21] or the Reduction
Lemma in [5].)

Because the tangent cones to a polyhedral set C' are themselves polyhedral, the cone
K, is polyhedral and the mapping Nk, is therefore piecewise polyhedral (see [18] or 12.31
of [23]). Recall now the general way that the graph of S corresponded to that of F' through
a mapping @ as in (5.1) and (5.2). In the context of the auxiliary variational inequality
in (7.2), the same holds for gph DS(w.|x.) versus gph Nk, , and furthermore with a
replacement for ) that is a linear mapping. From this it is apparent that gph D.S(w, | x,)
inherits the piecewise polyhedrality of gph N, . O

A proto-derivative formula akin to the one in Theorem 7.1 was originally established
in [22], but in terms of canonical parameters. Here we have extended it in terms of ample
parameterization as well as provided new information about the graph of the derivative

mapping, its piecewise polyhedrality.

Corollary 7.2 (piecewise linear geometry). In the setting of Theorem 7.1, the graph of
DS (w, | zy) is a piecewise linear manifold of dimension d in the sense of being a Lipschitzian

manifold formed as the union of a finite collection of d-dimensional polyhedral sets.

Proof. Theorem 7.1 reveals that DS(w,|x,) is a mapping of the sort to which Corol-
lary 5.2 applies. Hence gph DS(ws |x,) is a d-dimensional Lipschitzian manifold, in fact
“globally” because this graph is a cone and therefore determined by its properties around
the origin. On the other hand, DS(w. |z,) is piecewise polyhedral by Theorem 6.1. That
supplies the piecewise linearity of the Lipschitzian mapping underlying the definition of
the graphically Lipschitzian property (cf. 12.31 of [23] again). In expressing the graph as
the union of a finite collection of polyhedral sets, it can be arranged that none of these

sets is included in any of the others, and they must then all be of dimension d. O

Corollary 7.3 (calmness of variational inequalities). In the setting of Theorem 7.1, the

mapping S is calm at w, for isolated x, if and only if
Vof(ws, )z’ + N (') 50 = 2’ =0.

Proof. We get this immediately from Corollary 6.2. |

Especially of interest for proto-differentiability is the case of Theorem 7.1 where S is

locally single-valued and Lipschitz continuous. When that holds, the proto-differentiability
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turns into a stronger property. A critical role in reaching that conclusion can be played by
the result in Theorem 4.2, this being an extended version of Robinson’s strong regularity
theorem [19]. In other work which is closely related, King and Rockafellar in [8] obtained
a graphical-derivative characterization of single-valuedness for set-valued mappings with a
“subinvertibility” property which in particular can be guaranteed through monotonicity.
The next theorem could largely be derived as a specialization of that work, but because of
a difference in contexts we find it more expedient and illuminating to proceed directly.
Recall here the concept of semi-differentiability that was described for single-valued

S and DS(wy |x,) in terms of the approximation in (6.2).

Theorem 7.4 (single-valuedness relations). Let ' = N¢ for a polyhedral convex set
C C IR" and assume that the ample parameterization condition (1.6) holds. Suppose
further that S is convex-valued around wy, in the sense that S(w) is a convex set for all w

in some neighborhood of w,. Then the following properties are equivalent:
(a) S is single-valued and Lipschitz continuous on some neighborhood of w,
(b) DS(wslx,) is single-valued on some neighborhood of 0 (hence everywhere).

Moreover, then S is semi-differentiable at w, for x,, and DS(w, |x,) is not only Lipschitz

continuous and positively homogeneous but also piecewise linear.

Proof. Since S is convex-valued, it is single-valued and Lipschitz continuous around w;
if and only it has a single-valued Lipschitzian localization at w, for z,. This is critical
because this localization property is all that we are able to relate to DS(wy |z, ), inasmuch
as DS(w, | z,) depends only on the geometry of gph S at (w., ).

The proto-differentiability of S at w, for x,, which we know from Theorem 7.1, re-
duces to the semi-differentiability in (6.2) when S is locally single-valued and Lipschitz
continuous, as noted earlier (see [23]). Furthermore from Theorem 7.1 (and Corollary 7.2),
the mapping DS(w, |z.), being piecewise polyhedral, must be piecewise linear when it is
single-valued (cf. 2.48 and 9.57 of [23]). Thus, (a) implies (b) along with piecewise linear
semi-differentiability.

To complete the proof of the theorem, we must show if (b) holds, then S has a single-
valued Lipschitzian localization at w, for x,. For this purpose we can invoke Theorem
4.2 in order to transform the task into one of showing that an auxiliary mapping S, has
a single-valued Lipschitzian localization at 0 for z,, where S, has the form (1.7)—(1.8), as

in the earlier parts of this paper, except that now F' = N¢g. We specifically choose the
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function f. in (1.8) by fi(z) = f(ws, z4) + Vi f(ws, z4)(x — x4), so that
S.(y) = {z|h(y,x) + Nc(z) > 0}, where
Wy, ) = f(we, 24) + Vo f(we, 2.)(2 — 22) — y.

Because C'is polyhedral, the mapping N¢ is piecewise polyhedral (cf. 12.31 of [23]), and it

(7.3)

follows then, because h is linear, that S, is piecewise polyhedral. Theorem 7.1 is applicable

to S, in place of S, with minor adjustments of notation. It yields the formula
DS, (01z.)(y) = {a'| —y' + Vo f(ws, )2’ + Nk, (z') 3 0} (7.4)

for the same critical cone K, as in (7.2), along with the information that DS, (0lx,) is
piecewise polyhedral.

Crucial now will be the general fact when a set G is polyhedral its tangent cone T (2)
at a point z € G coincides in some neighborhood of the origin with the translated set
G — z. This obviously carries over to piecewise polyhedral sets G as well. Applying it to
G = gph S, at z = (0,z,), and remembering that DS,(0|z,) is the mapping which has
Tyon s, (0,7.) as its graph, we see that gph S, — (0, z,) coincides with gph DS.(0|x.) in a
neighborhood of the origin.

In the light of this, it will suffice for us to demonstrate that DS, (0|z,) is single-
valued when DS(w, |x,) is single-valued, inasmuch as the single-valuedness of DS, (0x,)
in combination with its piecewise polyhedrality will imply its Lipschitz continuity (again
cf. 2.48 and 9.57 of [23]). For arbitrary 3/, is there one and only one z’ satisfying in (7.4)
the condition —y’ + V. f(w,z.)x’ + Nk, (2') 0?7 Under the ample parameterization
condition (1.6), it is possible to write —y’ = V,, f(w., z,)w’ for some w’. The question

then is whether there is one and only one 2’ satisfying
Vo f (Wi, z)w' + Vo f(ws, z)x" + Ng,(2') 3 0.

Through our assumption that D.S(w,|x,) is single-valued, the answer from formula (7.2)

is yes, and we are done. O

Proposition 7.5 (example of convex-valuedness). In particular, the solution mapping S
in (7.1) is convex-valued, as postulated in Theorem 7.4, when f(w,x) is monotone with

respect to x € C, in the sense that
(f(w,2") — f(w,2"), 2" — 2"y >0 for 2’ 2" € C.

Proof. Under this assumption the variational inequality is of monotone type, in which

case its set of solutions is convex, as is well known. O
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8. Application to minimization over a polyhedral set

In this section we specialize further to the case of a parameterized variational inequality
coming out of a minimization problem with fixed linear constraints. This will provide an
illustration also of our results on calmness and show how they are related to second-order
conditions for optimality. Applications to primal-dual aspects of convex optimization in a
format allowing for constraint perturbations will be found in our forthcoming paper [6].

The basic problem we consider here has the form
minimize p(w,z) over x € C, (8.1)

where C' is a nonempty polyhedral (convex) subset of IR™ and the function ¢ : R x R™ is

of class C2. For this problem, parameterized by w, the first-order optimality condition is
—Vepo(w,z) € Ne(z), (8.2)

and the points x satisfying it are the “quasi-optimal” solutions called stationary points.

The mapping from w to such points x has the form
S:w— {z|Vyp(w,z) + No(z) 5 0} (8.3)
and fits our framework as the case of the general mapping S in (1.2) where m = n and
fw,z) =Vaep(w,z),  F(z) = Neo(z). (8.4)

The specialization of F' to the normal cone mapping N¢ for a polyhedral set C' was
already the topic in the preceding section, so what is new here is merely the specialization

of f to V. The assumption that ¢ € C? gives us f € C! as required, with
Vof(w,z) = V2, o(w,z) € R"*, Vef(w,z) = V2 o(w,z) € R™", (8.5)
and the ample parameterization condition (1.6) for a pair (w.,z.) € gph S coming out as
rank V2 o(w., z.) = n. (8.6)

Furnished with this information, it is easy to apply to the stationary point mapping in
(8.3) all the results obtained so far in this paper, in particular the ones in Section 7, in

which the critical cone becomes

K, =To(x) N Vap(w,, z,) " (8.7)
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Rather than recording the details of that, we aim here at exploring certain connections
between second-order optimality and our results on calmness and Aubin property.

Recall that, in partnership with the first-order condition for optimality that we are
now placing on our reference element (w,,z,) in taking it to belong to the graph of the

mapping S in (8.3), the standard second-order necessary condition for local optimality is
(u, V2 p(ws, z,)u) >0 forall u € K, (8.8)
for the critical cone K, in (8.7), whereas the standard second-order sufficient condition is
(u, V2 o(ws, r)u) >0  for all nonzero u € K,. (8.9)

The strong second-order sufficient condition for local optimality is
(u, V2 o(w,,z,)u) >0 for all nonzero u € K, — K,. (8.10)

Because K, is convex, K, — K, is the smallest subspace of IR" that includes K,; it is called

the critical subspace associated with w, and x,.

Theorem 8.1 (calmness of optimal solution mappings). Under the ample parameteriza-
tion condition (8.6), the following properties of the stationary point mapping S in (8.3)

are equivalent at the reference pair (w,z,) € gph S:
(i) the standard second-order sufficient condition (8.9) holds;

(ii) x. is a local minimizer in problem (8.1) for w,, and S is calm at w, for isolated ..

Proof. According to Corollary 7.3 as applied to f = V,p, we have calmness at w, for

isolated z, if and only if
V2, 0w, 2)2 + N (z21y)(2') 20 = 2’/ =0. (8.11)

On the other hand, we have available to us the following description of normal vectors to

a closed convex cone K in terms of the polar cone K*, as applied to K = K,:
veE Nk, (u) <= uwekK, veK; ulv (8.12)
(cf. 11.4(b) of [23]). Therefore, S is calm at w, for isolated x, if and only if
ue K., V2 p(w.z)uec K (u,V: ows,z)u)y=0 = u=0. (8.13)

Let (i) hold. Then of course z, is a local minimizer as described, but is S calm

at w, for z,7 If this were not true, there would exist by (8.11) some u # 0 satisfying
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the conditions in (8.13), and that would contradict the inequality (u, Vi zp(ws, z.)u) >0
known from the supposition in (i) that (8.9) is satisfied .
Conversely now, let (ii) hold. Because z, is a local minimizer, the second-order nec-

essary condition (8.8) must be fulfilled; this can be written as
uwe K, = —V2 glw,,z,)uc K’

The calmness of S, as identified with (8.13), eliminates the possibility of there being a
nonzero u € K, such that the inequality in (8.8) fails to be strict. Thus, the necessary
condition (8.8) turns into the sufficient condition (8.9), and (i) is satisfied. O

We investigate next, in association with the stationary point mapping S in (8.3), the
mapping
Sy iy {:1: | Vep(we, ) + No(z) > y}, (8.14)

which has the form in the general theory of the earlier parts of this paper with f.(z) =
f(wy,z) = Vyp(ws, z). From Theorem 3.2 we know that, under the ample parameteriza-
tion condition (8.6), S has the Aubin property at w, for z, if and only if this mapping S,
has that property at 0 for x,. From Theorem 4.2, likewise under the ample parameteri-
zation condition (8.6), S has a single-valued Lipschitzian localization at w, for z, if and
only if this S, has such a localization at 0 for x.,.

Something else can be brought into this picture. In [5; Theorem 3] we proved that in
a variational inequality like the current one, in which C' is polyhedral, the Aubin property
and the Lipschitzian localization property are equivalent for S and also for S,. On the
other hand, by a result of Poliquin and Rockafellar [17; Theorem 4.5], the strong second-
order sufficient condition (8.10) holds if and only if S, has the Lipschitzian localization

property. By combining these results we arrive at the following characterization.

Theorem 8.2 (Lipschitzian localization of optimal solution mappings). Under the ample
parameterization condition (8.6), the following properties of the stationary point mapping

S in (8.3) are equivalent at the reference pair (wy, ) € gph S:
(i) the strong second-order sufficient condition (8.10) holds at (wy, T+);

(ii) S has a single-valued Lipschitzian localization at w, for ., such that, for all (w,z) €

gph S near (w., x,), x is not only a stationary point but a local minimizer in problem (8.1).

This can be supplemented by a description of the resulting semi-derivatives of the

mapping S.
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Theorem 8.3 (perturbations of local minimizers). In the context of the properties in
Theorem 8.2, the mapping S is semi-differentiable at w,; thus (6.2) holds. Moreover in
this case DS(w. | z) is a piecewise linear mapping such that DS (w. |z,)(w’) is the unique

solution ' to the variational inequality
V2 oW, m)w' + V2 0w, x)z" + N (2') 20, (8.15)
or equivalently, the unique optimal solution to the quadratic programming subproblem
minimize (', V2, 0(w., z,)w') + %(x’, V2 o(w,, z,)z’) over ' € K,. (8.16)

Proof. We apply Theorem 7.4 and then get the description of DS(w, |z.)(w’) through
(8.15) by specializing formula (7.2) of Theorem 7.1. Next, we observe that (8.15) is the
first-order optimality condition for the problem in (8.16), and, because of the second-order

sufficiency we have at hand, it gives local minimizers. 0
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