Chapter 1

CONVEX ANALYSIS IN THE
CALCULUS OF VARIATIONS

R. T. Rockafellar

Abstract Convexity properties are vital in the classical calculus of variations, and many
notions of convex analysis, such as the Legendre-Fenchel transform, have their
origin there. Conceptual developments in contemporary convex analysis have
in turn enriched that venerable subject by making it possible to treat a vastly
larger class of problems effectively in a “neoclassical” framework of extended-
real-valued functions and their subgradients.
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1. CLASSICAL LAGRANGE PROBLEMS

The calculus of variations is the oldest branch of optimization, dating from
over three hundred years ago. Most books on that subject are steeped in tradi-
tional thinking and show little influence of convex analysis as we now know it
elsewhere in optimization. Nevertheless convexity properties have an essential
role in the calculus of variations. They can be seen as deeply affecting the
statement of necessary and sufficient conditions for optimality and, through
investigations of the existence of solutions, the very way that problems ought to
be posed. Concepts emerging from convex analysis have furthermore led to the
development of a mathematical framework so sturdy and broad that traditional
statements in the calculus of variations can be stretched in their interpretation
so as to cover problems of optimal control and much more than ever might
have been imagined. This article aims at explaining in basic terms why—and
how—that has come about.
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The fundamentdlagrange problenm the calculus of variations, with respect
to a fixed intervalry, 1] and fixed endpoint§, and¢;, has the form:

minimize Jo[x] := [['L(t, x(t), &(t))dt

(Po) subject tox(7) = &o, x(m1) = &1,

for a functionL : [r, 1] x R" x IR" — IR which is assumed to be con-
tinuously differentiable. The minimization takes place in a space of functions
x : [m, 1] — IR", calledarcs with &(t) denoting the derivative of(¢). But

what space should that be? The simplest and seemingly most natural choice is

C}[mo, 7] = space of continuously differentiable arcs.

The integral functionally is well defined on this space and even continuously
Fréchet differentiable under a standard choice of norm. Interms of the gradients
of L(t,z,v) with respect tar andwv, the directional derivatives are given by

Jglars w] = / :[mw, 2(t), 2(8)), w(t) + (VoL(t (1), &(1)), (1)) dt,
(1)

where(-, -) denotes the canonical inner product/itf. A classical argument
yields the fact that if an are is optimal in(Py) (where for purposes of this
article we always interpret optimality gtobal optimality), theEuler-Lagrange
conditionmust hold:

d

%VUL(tvx(wv{t(t)) = sz(tv‘fE(wv{t(t))’ (2)

along with theWeierstrass conditian

L(t,z(t),v) > L(t, (t), &(t)) + (VoL(t, 2(t), (t)), v — @(t)) forall v,
(3)

which in turn entails théegendre condition
V2 L(t,z(t),(t)) is positive semi-definite (4)

whenL(t, z(t), v) is twice differentiable with respect tg so that the Hessian
matrix V2, L(t, z(t), #(t)) exists. Already here, convexity enters implicitly in
important ways.

First and most obvious is the connection between the Legendre condition
and possible convexity of the functigfi{v) = L(¢, z(t),v). Whenf is twice
differentiable, itis a convex function if and only ifits HessR®A f (v) is positive
semi-definite for allb. Of course, the Legendre condition (4) asserts positive
semi-definiteness only far = (¢), but still it has suggestive potential. The
strengthened form of the Legendre condition in which positive semi-definiteness
is replaced by positive definiteness, would, in the presence of continuous twice
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differentiability, imply thatf is strongly convex on a neighborhood oft).
In this sense, convexity is close by. In fact the Weierstrass condition, which
supersedes the Legendre condition, brings it even closer.
To see this aspect of the Weierstrass conditiony(et= V, L(t, 2:(t), ©(t))
and again considef(v) = L(¢,x(t), v) for fixed ¢, so thaty(t) = V f(&(t))
and (3) can be written as

f) = f(@@) + (y(t), v —2(t)) forall v. ()

Theright side of the inequality is an affine functiofv); the inequality says that
f(v) > a(v) everywhere, and that these functions agree-ati(t). Unlike the
Legendre condition, this is not just a one-point property but a global property.
Convexity is brought in because (5) would automatically holfli§ a convex
function, whereas it seems puzzlingly strong ifs not convex. Indeed, let

f = convex hull of f,

this being the greatest convex function majorizedfbyFrom our knowledge
that (5) holds fory(t) = V£(i(t)), it can be verified thaf is a finite convex
function which is differentiable at(¢) and has the same gradient therefas
i.e., the vector(t). Thus, the real content of the Weierstrass condition (3) is
in the relations

F@) = f@), V@) = V@) (6)

In other words, it says something about how the optimality of an:aneplies
that L acts alonge as if it were replaced by its convex hull in theargument.

The issue of convexity or convexification @f(¢, x,v) with respect tov
has significance also from a different perspective. When can we be sure that
an optimal arc even exists in problef®,)? It may be anticipated that the
existence of an optimal arc depends on some kind of compactness property
of the sublevel set$z | Jy[z] < a}, a € IR, but such compactness must be
tuned to the space over which the minimization takes placeCApd, 7] is
for that reason a poor choice. Often in textboakS, 1] is replaced by the
spaceCl[ry, 1] consisting of the arcs : [ry, 1] — IR" that arepiecewise
continuously differentiable; elementary examples abound in which solutions
can be found i€} [ro, 7] but notinCl[ro, 7], and this has long been recognized.
ButC} [0, 71] fares no better tha®y. [y, 71] in attempts to establish the existence
of solutions in general. We know now that to get existence we have to pass to a
far more general space and introduce both coercivitycamgexityassumptions
on the behavior of.(t, z, v) with respect ta.

Let |v| stand for the Euclidean norm ofc IR"™. The functionL is said to
satisfy theTonelli growth conditiorif

L(t,z,v) > 6(|v|) forall (t,z,v) € [r0,71] x R" x R" (7)
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for a nondecreasing functigh: [0, c0) — (—o0, 00) that is coercive, i.e., has
0(s)/s — oo ass — oo. Forp € [1, 0] let

AP 1y, 7] = space of absolutely continuous areswith @ € £? [, 71].

Thus, AL [ry, 71] consists simply of all absolutely continuaus [y, 1] — R™,
whereasAS° [y, 1] consists of all Lipschitz continuous: [y, 71] — R". Of
course an are in any of these spaces is only differentiable almost everywhere,
so that the integrand(t, z(t), ©:(t)) itself is only defined almost everywhere—
but that is enough to make sense of the functiohalprovided that its value

is interpreted aso in the eventuality thak (¢, z(t), ¢(t)) is not bounded from
above by an integrable function af

Theorem 1. Let problem(7,) be placed in the arc spacdl [y, m1]. If the
function L satisfies the Tonelli growth condition, addt, x, v) is convex with
respect tav, then the minimum i(P) is attained.

This fact suggests that! [y, 1] should be adopted as the arc space without
further ado, but unfortunately there are impediments to that. On this larger
space the functionaly lacks adequate differentiability, except in very special
circumstances, and the traditional derivation of optimality conditions collapses.
A fallback instead ofdl [y, 71] is AS°[79, 71], On which the directional deriva-
tive formula (1) persists under our working assumptiond.on

Theorem 2. Let problem(P,) be placed in the arc spacd;°[ry, 71]. Then,

for an arcz that is optimal in(7), the Euler-Lagrange equation (2) and the
Weierstrass condition (3) must hold in the following interpretation: there is an
arc y, likewise inAS°[r, 71|, such that for almost evettyc [r, 71| one has

y(t) = VoL(t,2(t),2(1),  y(t) = VoLt 2(t),2(1)),  (8)
L(t, x(t),v) > L(t,a(t),&(t)) + (y(t), v — &(t)) forall v (9)

Note that the formulation of the Euler-Lagrange condition in (8) is preferable
to the version in (2) even whefP,) is placed inC}[r, 71], in which casey
too belongs taC} [, 1]. It makes explicit the differentiability property of
V.L(t,z(t),z(t)) in t that is tacit in the original statement (2). The grsaid
to beadjoint to z, deserves the added attention anyway.

Note also that the Weierstrass condition (9), which still implies the Legendre
condition (4), once more holds automatically whefn, x, v) is convex inv, for
the reasons already noted. Without such convexity, (9) can again be seen as a
condition relating the functiorf(v) = L(t, z(t), v) to its convex hull. But the
discussion of this issue is incomplete without bringing the so-called canonical
from of the Euler-Lagrange condition into the picture, which we do next.

In further analysis of the first equation in (8), let us step back from the
consideration of arcs x and y and look at the equatica V,L(t,z,v) as a
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relation between vector variablggndv in IR™ for given(t, z) € [y, 71] x IR™.
Suppose we are able to invoke the implicit function theorem in order to solve
this equation uniquely fos as a function of¢, x, y); the technical assumption
needed for this locally is that the mapping— V,L(¢, x,v) is continuously
differentiable and has nonsingular Jacobian, or in other words/tftat:, v)

is twice differentiable i, with the Hessiarv2, L(t, z, v) being nonsingular
and depending continuously ¢t x, v). Let the solution mapping be denoted
by v = h(t,z,y), and let

H(t,x,y) = (y,v) — L(t,x,v) with h(t,z,y) substituted forv.  (10)

Formulas for the derivatives dff can be obtained from the implicit function
theorem; one has

vyH(ta .’E, y) = h(t’ :l:a y)a
Vi H(t,z,y) = =V, L(t, 2, h(t, z,y)).

Then, on returning to the context of arcs, we can express the Euler-Lagrange
condition (8) in the form

a(t) = VyH(t,2(t),y(t),  y(t) = =V H(t,2(t),y(),  (11)

and recognize that this constitutes an ordinary differential equation in the form
of 2(t) = F(t, z(t)) for z(t) = (z(t),y(t)). The conversion of (8) to an ODE
is obviously both illuminating and advantageous.

The functionH is known as théHamiltonianassociated with., which in
contrastis itself often called theagrangian the process of obtaining (¢, z, y)
from L(t, z, v) by way of the implicit function theorem in the manner described
is theLegendre transfornfwith respect to the variable with(t, x) fixed). The
relations (11) are thelamiltonian equations

Unfortunately, in this traditional development there is a serious flaw which
textbooks seldom address. The nonsingularity assumptiaréph (¢, x, v) on
which the Legendre transform depends is local. Indeed, it is often envisioned
merely along the: trajectory being tested for optimality, where it comes down
to the nonsingularity o¥2, L(¢, z(t), 2(t)) and therefore the positive definite-
ness of this Hessian, since we already know from the Legendre condition (4)
thatV2, L(t,z(t), 2(t)) must be positive semi-definite. Thus, if this approach
through the Legendre transform is adopted, the HamiltoAahreatens to be
defined only in a local sense in relation to a particulérajectory, and only to
the extent thal.(¢, z(t),v) is strongly convex i aroundv = #(t). Further-
more, it can be seen from such local convexity that the prescriptiof for
(10) then implies

H(t,z(t),y(t)) = local max of (y(t),v) — L(t,z(t),v) in v around(t),
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with the local max being attained when= (t). Another angle, however, is
that the Weierstrass condition says

global max of (y(t),v) — L(t,z(t),v) in v is attained ati(t).

Obviously this situation is perplexing and unsatisfactory. An answer in part
could be to insist tha¥/2, L(t,=,v) be positive definite for al(t,z,v) €

[10, 1] X IR™ x IR"™, so as to avoid the awkward localization, but that would be
unpleasantly restrictive.

Convex analysis will come to the rescue with a superior definition of the
Hamiltonian functionH. That definition will rely instead on the Legendre-
Fenchel transform, which reduces to the Legendre transform in the presence
of continuous second-order differentiability with positive definite Hessians, but
actually makes sense even without any differentiability. Before getting to that,
however, it is good to complement the discussion of necessary conditions by
taking a brieflook at how convexity supports sufficient conditions for optimality.

Theorem 3. Let problem(P) be placed in the arc spacd?[r, 1] for any
p € [1, 0], and suppose thak (¢, z, v) is convex with respect tac, v). If the
Euler-Lagrange condition in form (8) holds for aregndy withz € AP [y, 71]
andy € Al [ro, 1], thenz is optimal in(Pp).

The proof of this result is elementary but also illuminating because it opens
doorsto generalization. The convexityloft, =, v) notjust inv but with respect
to (x, v) yields the gradient inequality for the functidrt, -, -) that, when used
to compare the pairz(t), #(t)) from the arce with a pair(2/(t), 2’(t)) coming
from an alternative are’, says in the context of (8) that

L(t,2'(t),2'(t)) = L(t,2(t), 2(t)) + (9 (), 2'(¢) —z(t)) +(y(t), &' (t) — (1))
On integrating both sides of this inequality we get

Jol2'] = Jolz] + (y(m1), 2'(m1) — 2(m1)) = (y(70), 2'(70) = x(70))-

Whenz', like x, satisfies the endpoint constraint$ry) = &g, 2'(11) = &1, we
obtainJy[z'] > Jy[x] and thus the global optimality af.

Observe that under the convexity hypothesisioin Theorem 3,.J; is a
convex functional on the arc space in question.

Theorem 3 does not give the most general form of sufficient condition in
the calculus of variations. In the classical theory that would be a hard-to-
verify criterion known as the Jacobi condition, involving second derivatives
of the functionalJ, for which there is an integral expression based on second
derivatives ofL. By contrast, the condition in Theorem 3, although not as
comprehensive, is simple to use and still covers many applications. But books
usually neglect to mention it.
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Variants of the optimality conditions in Theorems 2 and 3 for problems
beyond(P,), having boundary conditions other thatry) = & andz(m) =
&1, are well known and easily obtained. If the first endpoint ¢f fixed but the
second endpoint is free, the conditigfr; ) = 0 has to be added, whereas if the
free endpoint is the first instead of the second, the requiremetitjs = 0. If
both endpoints are free but a cost tefm(), z(71)) is added to the integral
in the functionalJy being minimized, one has to have

(y(70), —y(m1)) = Vi(z(70), 2(11))-

Mixtures of such possibilities can also be handled, involving an endpoint cost
term inJp but also a system of constraints ofry) andx(7;), not only equa-
tions but perhaps also inequalities. In every such case, optimality entails a
certain relation betweefx(7), z(m)) and(y (), y(m1)), known historically

as atransversality conditionClassical theory does not provide a universal way
of expressing transversality conditions, but a simple, unifying scheme does
come out of the modern developments described below.

Besides these variants on how to treé&ty) andx () in (Py) there can be
constraints of equality or inequality type, or both, imposedc6t) andi(t),
separately or jointly. When all such complications are allowed simultaneously
in the problem statement, one gets a formulation that marked the high point in
the calculus of variations before the advent of optimal control, callBdlaa
problem

It is also possible to consider problems in which the intepuglr | is not
fixed but subject to optimization as well, but we will skip over thatin the interests
of simplicity.

2. NEOCLASSICAL BOLZA PROBLEMS

The classical framework for the calculus of variations has led to many suc-
cesses, most notably in applications to physics. Its shortcomings, such as have
been pointed out above, were not really apparent until “optimization” arose
in the 1950’s as a practical subject with a numerical orientation. Inequality
constraints came to be viewed not just as an occasional necessity in problem
formulation, but rather as a dominant feature affecting the analysis of solutions
and the design of algorithms for finding them. Penalty expressions with discon-
tinuities in derivatives entered the stage that way too. Methods of differential
calculus were no longer enough, whether in connection with such expressions
or in coping with the geometry of sets specified by systems of inequality con-
straints. On the other hand, convexity properties of sets and functions took on
a new significance, and fascinating phenomena of duality came to light.



For the calculus of variations, the most revolutionary development was the
emergence of optimal control theory. A typical problem of optimal control is
(P1)

minimize Jy[x,u] := [T fo(¢t, z(t), u(t))dt + h(z(r)) subjectto

70

, t
z(70) = &o, (t)zf( z(t),u(t)), ut) €Ut z(t), z(n) € E,

where the minimization takes place over pditsu) comprised of arcs: :

[10, 1] — IR™ andcontrolfunctionsu : [y, 71] — IR™ that satisfy the specified
constraints. Forinstance, one could require A [7o, 1] andu € L9 [0, 71],
interpreting the constraints(t) = f(¢,z(t),u(t)) andu(t) € U(t,x(t)) as
holding for almost every. The setdU(t,z(¢)) and E could be defined by
equations and inequalities, but we need not go into that. There could likewise
be a conditione(t) € X (t), called a state constraint, but we may regard that as
implicit in the description of the region wheté(t, z:(t)) # 0.

The challenge of working with such formulations involving controls led to
new results like the Pontriagin “maximum principal,” which expresses neces-
sary conditions for optimality akin to the Euler-Lagrange equation and Weier-
strass condition, but is limited to situations whéfé&, x(¢)) does not actually
depend onx(t).

The attitude in the early days of control theory was that problems in optimal
control could be regarded as generalizations of problems in the calculus of
variations in which the differential equatiat(t) = f(¢, z(t),u(t)) provides
additionalinterestand capabilities. Inthe elementary case wtiere, u) = v,
the differential equation reducest¢t) = u(t), problem(?;) comes down to
a certain classical problem of Bolza.

The utterly different point of view that we explain next, about how optimal
control and the calculus of variations can be seen as fitting together, emerged
instead from discoveries made in applying convex analysis to optimization more
generally. It focuses on the seemingly much simpler problem model

71

(P)  minimize J[z] = / L(t, 2(t), #(t))dt + l(z(r0), (1)),
70

where the minimization is over a space of arcs, e.g AZ[, 71] for some

p € [1,00]. This is called ayeneralizedBolza problem, but at first that may

sound paradoxical. Shouldr{’P) rather be called a simplified Bolza problem,

since no contraints are apparent in it?

The key source of generality {{P) lies in the great breadth of the class of
functionsL and! that are now admitted. No longer is it tacitly assumed that
these functions are differentiable to whatever order might be deemed useful.
To the contrary, they need not be continuous or even finite everywhere. They
are allowed to take-oo as a value, in particular as a means of representing
constraints by imposing infinite penalties when they are violated.
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For that reasor(;P) covers not only classical Bolza problems but also prob-
lems in optimal control likéP;). To capturgP; ), one would take

and on the other hand
L(t,x,v) = inf{ fo(t,z,u) |u € U(t,z) satisfyingf(¢t,z,u) = v}, (13)

where the convention is used that the infimum of an empty set of numbers is
+o00. The suppression of control variables in passing in this way ffBm) to

(P) loses nothing because, once an arfgas been identified as solvir@),

a corresponding control functiancan be obtained by selecting, for eacht
which & (t) exists, a vecton(t) in the set

argmin{ fo(t,z(t),w) |u € U(t, x(t)) satisfyingf (¢, z(t),u) = &(t)}.

(14)
Of course, in validating such an approach a number of technical issues have to
be resolved. The functiondlin (P) has to be well defined whérand L come
out of formulas like those in (12) and (13), and there has to be assurance that,
whenu(t) is selected from the set in (14) this can be done so as to make the
resulting function: belong to the right function space. But such issues have by
now all been worked out to satisfaction.

Theradical departure from classical theory in investigating generalized Bolza
problems(P) without the customary restrictions dnand! started in 1970 in
[10] under the alternative assumption that, -, -) and! are convex, which
makes the Bolza functional itself be convex. By that time, researchers in
convex analysis were well accustomed to working with infinite penalty repre-
sentations of constraints (see e.g. [8]) and had realized that many conditions
usually stated in terms of gradients could, for convex functions without differ-
entiability, be articulated instead with “subgradients.” It was a natural step to
try this out in the calculus of variations by studying the fully convex case of
(P) and looking for subgradient versions of the Euler-Lagrange condition and
the Hamiltonian equations.

Inthe intervening years, a huge effort has gone into expanding the territory of
this type of “nonsmooth” analysis beyond convex functions, so that subgradient
conditions in Bolza problems could be established more generally. The doctoral
thesis of Clarke [1] gave the first big advance, which eventually led to his book
[2]. Many others have also gotten involved, and much research is still ongoing;
see [14] and its commentaries.

To explain this major development further, let us review some basic ideas
that underlie that literature of convex and nonsmooth analysis, in which notation
and terminology are oriented asymmetrically toward minimization. A function
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¢ : IR" — IR (wherelR = [—o0, oo]) haseffective domain
dom p = {v] p(v) < oo}

and is calledoroper if it is finite on this set, and this set is nonempty (or in
other words, ifp(v) < oo for somev andy(v) > oo for everyv). The proper
functions are thus the extended-real-valued functionRbmbtained by taking

a finite function on a nonempty subsgtof IR" and extending it by giving it
the valuexc everywhere outside af.

Theepigraphof ¢ is the setepi p = {(v,a) € R" x R | p(v) > a}. ltisa
closed set if and only ip is lower semicontinuous (Isc) and, more importantly
for indicating the motivation behind epigraphs, it is a convex set if and only
if ¢ is a convex function. For extended-real-valued functions, the epigraph is
a better carrier of geometric information than the graph, because it belongs to
IR" x IR, a vector space, whereas the graph merely belongg'te IR.

Minimizing ¢ over IR" is equivalent to minimizinge over dom ¢; this is
the principle of infinite penalization The minimum is attained ip is proper
and its sublevel setsv | p(z) < «} are compact. Whem is Isc, these sets
are closed, so for them to be compact only boundedness is required, and that
can be enforced by a growth condition. The same notions can be invoked for
functions in infinite-dimensional spaces rather than jiast but then a more
sophisticated assessment of compactness is needed.

In (P) itis natural to take_(t, -, -) and! to be proper functions of®" x IR"
that are Isc, but how shoulb(t, -, -) depend ort? This question, more subtle
than might be anticipated, was the first big challenge in putting prolfejn
on a firm technical footing. For one thing, integrabt, z(¢), ©(¢)) has to be
Lebesgue measurable as a functionfafr anyx € Al [y, 1], but that can fail
under the assumption merely tHat, x, v) is Lebesgue measurableifor each
(x,v) € R™ x IR"™, or thatL is Lebesgue measurable with respecttta:, v).

The answer, confirmed from many different angles, has turned out to be that,
in combination withL(t, z,v) being Isc with respect tz,v), L should be
measurable with respect to the hybsidield generated by the Lebesgue sets in
thet argument and the Borel sets in the v) argument. With these properties,

L is said to be aormal integrand

The concept of a normal integrand was developed originally in the case of
convex functions dependent on an additional parameter belonging to a measure
space. Thus, itis an innovation attributable to the rise of convex analysis. A full
discussion of normal integrands, their history and properties (including various
equivalent definitions), is given in Chap. 14 of [14].

With L takento be a normal integrand, the functiohal (P) can be given the
following rigorous definition when recalling that, for any Lebesgue measurable
function 3 on [y, 71] that is majorized by a function € £1[rg, 0] majorizing
B, the integral[! 5(t)dt has a well defined value ip-oo, 0o). This mirrors
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the fact that the sum of two numbers[inco, 0o) is a well defined number in
[—00, 00). Accordingly, for anyz € Al[r, 7], the value of/[z] in (P) is a
well defined number ifi-co, co) as long ad.(t, z(t), ©(t)) is majorized by an
integrable function and(xz(7y), z(m1)) < co. When these conditions are not
met, J[z] is defined as equal tso. Itis immediate then that

(x(t),z(t)) € dom L(t,-,-) fora.e.t,

Jlg] <00 = {(m(ﬁ)),w(ﬁ))edoml.

The principle of infinite penalization reveals therefore that the constraints on
the right are implicit in the minimization in proble(®).

Once(P) has been interpreted in this manner, it is possible to move on to
the question of whether a solution arc exists. In view of the classical result in
Theorem 1, it may be expected that the right space for thi4lisy, 7] and
that the convexity ofL(¢, z,v) in v will be required. Something additional
will be needed to reflect the relaxation of the fixed endpoint constrairifin
by the endpoint term if?). On the other hand, while the Tonelli growth
condition (7) might still be serviceable, it is really too severe for many of
the targeted applications. For example, Lagrangian functiooeming from
control problems, via (13), have a hard time satisfying it.

Theorem 4. Let problem(7P) be placed in the arc spacd,. [y, 1]. Suppose
the function is Isc and the functioi is a normal integrand such thdt(¢, z, v)
is convex with respect toand the following growth condition is fulfilled:

{L(t,x,v) > 0(max{0, [v] — at)|z| — B(t)}) —v(t)|z] — o(t), (15)
l(zo,21) > Oo(w0) — O1(21),

for integrable functionsy, 3,+, 0 : [r, 71] — [0, oc] and nondecreasing func-
tionsé, 0y, 0 : [0,00) — [0, oo] such that
0(s) Oo(s)

, . . 01(s)
lim —= = oo, lim = oQ, lim
s—o0 8 s—00 8§ §s—00 8§

< 00. (16)

If at least one arcr € Al [1o, 71] exists withJ[z] < oo, then the minimum in
(P) is finite and attained.

This result comes out of [9], where in fact the growth conditiorlas stated
in a slightly broader dual form which allowsto depend ort. Note that this
condition imposes a coercive penalty ©ft) to the extent that a bound of the
form |z(t)] < a(t)|x(t)| + B(t) is transgressed by the afc It covers the
Tonelli condition (7) as a very special case, namely the one where the functions
a, B,y andd are= 0. In the growth condition o, the coercivity in the first
argument but counter-coercivity in the second argument could be reversed, i.e.,
one could assume instead th@ty, 1) > 6y (z1)—61 (z¢) without undermining
the conclusions.
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The cited paper [9] furthermore provides criteria under which the generalized
Bolza problem(P) can rightly be considered to reflect, through formulas like
(13), an optimal control problem with respect to ar@nd control functions.

The means of recovering an optimafrom an optimak: are furnished there as
well.

For a“Lagrangian” functiotd in the vast class envisioned f@P), is there an
associated “Hamiltonian” functioil ? A powerful and convincing answer to
this question is available through convex analysis. To understand it in clearest
terms, let us begin by considering again an arbitrary fungtiod?™ — IR. The
Legendre-Fenchel transforof convex analysis assigns g as itsconjugate
the functionp* : IR™ — IR defined by

©*(y) = sup,{(v,y) — p(v)},

and as itdiconjugatethe function conjugate tp*, which is

™" (v) = sup,{(v,y) —¢"(y) }.

Regardless of any assumptions gnboth ¢* and** are convex and Isc. If
@ = oo, then obviouslyy* = —oco andp*™* = oo, whereas ifp Z oo but
fails to majorize any affine function, one ha$ = co and¢p™ = —oo. In
the remaining and most important case, wheris proper and majorizes an
affine function (the latter being known to follow from the former wheiis
convex), bothy* andy** are proper and moreover™ is the greatest proper,
Isc, convex function majorized by. Thus in particular, ify is Isc, proper
and convex, the same holds fof, and thenp™ = ¢. In this manner the
Legendre-Fenchel transform induces a one-to-one correspondence within the
collection of all Isc, proper, convex functions @™. A further observation
is that if ¢ is twice continuously differentiable with Hessian matrices that are
positive definite, the Legendre-Fenchel transform reduces essentially to the
older Legendre transform. The details behind these facts can be found in [8]
(or [14]).

Itis natural from this perspective to define, for any [, 71| x R" x R" —
IR, the associated Hamiltonidi : [ro, 71] x IR" x IR™ — IR by

H{(t, z,y) = sup,{(v,y) — L(t, z,v)}. (17)

Then H(t,z,y) is convex iny and, for any(¢, z) such thatL(t, z, v) is Isc,
proper and convex with respectipit obeys the reciprocal formula

L(t,z,v) = sup,{(v,y) — H(t,z,y)}. (18)

On the other hand, wheh(t, x, -) lacks convexity, but at least is proper and
majorizes an affine function, the expressiow igiven by the right side of (18)
is the “Isc convex hull” ofL(t, z, -) and is proper. In that case we encounter,
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therefore, convexification of the kind already viewed in the classical context in
connection with the Weierstrass condition.

This approach to what the Hamiltonian for probléf) should be was
first proposed in [11], in the days when only convex analysis offered a means
by which optimality conditions could be stated without resorting to gradients,
which of course for functions liké& andi might well not exist. It was essential
then to assumé (¢, z, v) to be convex not only with respect tobut with re-
spect to(x, v). In Hamiltonian terms, that corresponds to havi@, =, y) be
concave inc in addition to being, as always, convexin

It was for convex functions that robust substitutes for gradients were initially
developed, so we focus now on that case here. A vector/R" is called a
subgradientf a convex functionp : IR" — IR at a point if

o) > p(v) + (y, v' —v) forall v € R™. (19)

The set of such subgradienjds denoted byy(v) and is always closed and
convex, but perhaps empty. Interestingly(v) consists of a singlgif and only

if © is finite and differentiable at, in which casey = V(v). Furthermore,
wheng is also Isc and proper, the set-valued subgradient mappirg)y(v)
and the corresponding mapping- d¢*(y) forthe Isc, proper, convex function
©* conjugate tap, are the inverses of each other:

y € dp(v) <= v € Jp*(y).

An extensive calculus is available for determining subgradients of convex func-
tions in taking advantage of the formulas that may be used to construct such
functions. Subgradients can similarly be defined for a funcggidhat is con-
cave instead of convex by reversing the inequality in (19); the notatiothen
supplant®y.

To save words, let us now speak formally of thy convexcase of problem
(P) as the one in whicli (¢, -, -) andl are Isc, proper and convex @ x IR",
with L being a normal integrand that in addition satisfies the following minor
technical condition:L(¢, z,v) > a(t,z,v) for an expression(t, z, v) that is
affine in(x, v) and summable in. (The latter is assured for instance under the
growth condition onZ in (15).) Then in particular] is a well definedconvex
functional fromA’ [y, 71] to IR that nowhere has the valuex.

Consider further in this setting the subsétsand C;, of IR" x R" that
express the two kinds of endpoint constraints implicit/); specifically, let
C; consist of all(xg, 1) such that(xg, z¢) < oo (i.e.,C; = dom) and letCy,
consist of all(xg, z1) such that

32 € AL[ro, 7] With (70) = w0, #(m1) = @1, /TlL(t,:n(t),jc(t))dt < .

JT0



14
Note that these sets;, and(C';, are convex, and that
Jz] <oo = (z(1),z(n)) € C;NCL # 0. (20)

We will want to look also at theelative interiorsof C; andC/,, which are their
interiors relative to their affine hulls (cf. [8] or [14]). In a constraint qualification
introduced below, the issue will be whether not ofyandC/, themselves have
nonempty intersection, as in (20), but also their relative interiors have nonempty
intersection.

Theorem 5. In the fully convex case of proble{#®), placed in the arc space
Allmo, 7], letz € Al[r, 1] be an arc that is feasible in the sense of having
J[z] < oco. If there is an arey € Al [r, 7] satisfying the generalized Euler-
Lagrange condition

(1), y(t)) € OuwL(t, x(t), &(t)) (21)

for almost every € |7y, 71] and also the generalized transversality condition

(y(10), —y(71)) € Al(x(70), 2(11)), (22)

thenx is optimal. Conversely, the existence of such anjasmecessary for the
optimality ofz if the relative interiors of”; andC';, have nonempty intersection.

Here the Euler-Lagrange condition (21) can be written equivalently as the
generalized Hamiltonian condition

(t) € OyH(tx(t),y(t),  —§(t) € DH(t,x(t),y(t)).  (23)

The sufficiency of the generalized Euler-Lagrange and transversality condi-
tions in this theorem was brought out in [10], and the necessity (much harder
to prove) in [12]. The equivalence between the Euler-Lagrange condition and
the Hamiltonian condition (23) was demonstrated in [11]. These works further
reveal that the adjoint argsolves a certaidual problem, which developed in
a certain way out of the convex functions conjugaté (s -, -) andl. This dual
problem again fits the generalized Bolza format. (One of the many virtues of
the notion of normal integrand, incidentally, is that in passing to the conjugate
of L(t, -, -) for eacht one gets another normal integrand.)

The optimality conditions in Theorem 5 can be elaborated in fine detail when
particular structures are given farand!/. A remarkable feature is the way that
a very wide range of endpoint formulations and corresponding transversality
conditions can all be combined in the single subgradient relation (22). But
Theorem 5 only covers proble(f®) in the fully convex case.

Can subgradients be defined in for amuch broader class of functions in such a
manner that the subgradients of convex analysis, as just described, are recovered
when the functions are convex, but ordinary gradients are obtained when the
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functions are smooth? Andis it possible that way to derive necessary conditions
for optimality resembling those in Theorem 5 even for Bolza problgfjghat
are not fully convex? Yes.

A breakthrough in that direction was made in Clarke’s thesis [1], as already
mentioned. Subsequently the topic were extensively developed further by him
and many other researchers, with modifications here and there in the concepts,
the most important being the recognition of the need to relinquish certain con-
vexifications that seemed altogether natural at the start of the theory, but later
got in the way. In that respect key contributions were made by Mordukhovich;
cf. for instance [7].

This larger subject and its history are too much to explain here, but some
references can be given. The theory of subgradients in current form is presented
comprehensively in the book [14]. Recent achievements in characterizing op-
timality in terms of subgradient conditions that extend the ones in Theorem 5
can be found for example in [13], [5], [4], [6]. [3]-

Even today, though, there continue to be new developments in the setting
of full convexity, too. In this vein can be mentioned the recent results in the
Hamilton-Jacobi theory associated with generalized Bolza prob{@émscf.

[15], [16], where the duality theory in [12] has strongly been utilized.
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