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CONVEX ANALYSIS IN THE
CALCULUS OF VARIATIONS

R. T. Rockafellar

Abstract Convexity properties are vital in the classical calculus of variations, and many
notions of convex analysis, such as the Legendre-Fenchel transform, have their
origin there. Conceptual developments in contemporary convex analysis have
in turn enriched that venerable subject by making it possible to treat a vastly
larger class of problems effectively in a “neoclassical” framework of extended-
real-valued functions and their subgradients.
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1. CLASSICAL LAGRANGE PROBLEMS

The calculus of variations is the oldest branch of optimization, dating from
over three hundred years ago. Most books on that subject are steeped in tradi-
tional thinking and show little influence of convex analysis as we now know it
elsewhere in optimization. Nevertheless convexity properties have an essential
role in the calculus of variations. They can be seen as deeply affecting the
statement of necessary and sufficient conditions for optimality and, through
investigations of the existence of solutions, the very way that problems ought to
be posed. Concepts emerging from convex analysis have furthermore led to the
development of a mathematical framework so sturdy and broad that traditional
statements in the calculus of variations can be stretched in their interpretation
so as to cover problems of optimal control and much more than ever might
have been imagined. This article aims at explaining in basic terms why—and
how—that has come about.
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The fundamentalLagrange problemin the calculus of variations, with respect
to a fixed interval[τ0, τ1] and fixed endpointsξ0 andξ1, has the form:

(P0)
minimize J0[x] :=

∫ τ1
τ0

L(t, x(t), ẋ(t))dt
subject tox(τ0) = ξ0, x(τ1) = ξ1,

for a functionL : [τ0, τ1] × IRn × IRn → IR which is assumed to be con-
tinuously differentiable. The minimization takes place in a space of functions
x : [τ0, τ1] → IRn, calledarcs, with ẋ(t) denoting the derivative ofx(t). But
what space should that be? The simplest and seemingly most natural choice is

C1
n[τ0, τ1] = space of continuously differentiable arcs.

The integral functionalJ0 is well defined on this space and even continuously
Fréchet differentiable under a standard choice of norm. In terms of the gradients
of L(t, x, v) with respect tox andv, the directional derivatives are given by

J ′0[x;w] =
∫ τ1

τ0

[
〈∇xL(t, x(t), ẋ(t)), w(t)〉+ 〈∇vL(t, x(t), ẋ(t)), ẇ(t)〉

]
dt,

(1)
where〈·, ·〉 denotes the canonical inner product inIRn. A classical argument
yields the fact that if an arcx is optimal in(P0) (where for purposes of this
article we always interpret optimality asglobaloptimality), theEuler-Lagrange
conditionmust hold:

d

dt
∇vL(t, x(t), ẋ(t)) = ∇xL(t, x(t), ẋ(t)), (2)

along with theWeierstrass condition:

L(t, x(t), v) ≥ L(t, x(t), ẋ(t)) + 〈∇vL(t, x(t), ẋ(t)), v − ẋ(t)〉 for all v,
(3)

which in turn entails theLegendre condition:

∇2
vvL(t, x(t), ẋ(t)) is positive semi-definite (4)

whenL(t, x(t), v) is twice differentiable with respect tov, so that the Hessian
matrix∇2

vvL(t, x(t), ẋ(t)) exists. Already here, convexity enters implicitly in
important ways.

First and most obvious is the connection between the Legendre condition
and possible convexity of the functionf(v) = L(t, x(t), v). Whenf is twice
differentiable, it is a convex function if and only if its Hessian∇2f(v) is positive
semi-definite for allv. Of course, the Legendre condition (4) asserts positive
semi-definiteness only forv = ẋ(t), but still it has suggestive potential. The
strengthened form of the Legendre condition in which positive semi-definiteness
is replaced by positive definiteness, would, in the presence of continuous twice
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differentiability, imply thatf is strongly convex on a neighborhood ofẋ(t).
In this sense, convexity is close by. In fact the Weierstrass condition, which
supersedes the Legendre condition, brings it even closer.

To see this aspect of the Weierstrass condition, lety(t) = ∇vL(t, x(t), ẋ(t))
and again considerf(v) = L(t, x(t), v) for fixed t, so thaty(t) = ∇f(ẋ(t))
and (3) can be written as

f(v) ≥ f(ẋ(t)) + 〈y(t), v − ẋ(t)〉 for all v. (5)

The right side of the inequality is an affine functiona(v); the inequality says that
f(v) ≥ a(v) everywhere, and that these functions agree atv = ẋ(t). Unlike the
Legendre condition, this is not just a one-point property but a global property.
Convexity is brought in because (5) would automatically hold iff is a convex
function, whereas it seems puzzlingly strong iff is not convex. Indeed, let

f̄ = convex hull of f,

this being the greatest convex function majorized byf . From our knowledge
that (5) holds fory(t) = ∇f(ẋ(t)), it can be verified that̄f is a finite convex
function which is differentiable aṫx(t) and has the same gradient there asf ,
i.e., the vectory(t). Thus, the real content of the Weierstrass condition (3) is
in the relations

f(ẋ(t)) = f̄(ẋ(t)), ∇f(ẋ(t)) = ∇f̄(ẋ(t)). (6)

In other words, it says something about how the optimality of an arcx implies
thatL acts alongx as if it were replaced by its convex hull in thev argument.

The issue of convexity or convexification ofL(t, x, v) with respect tov
has significance also from a different perspective. When can we be sure that
an optimal arc even exists in problem(P0)? It may be anticipated that the
existence of an optimal arc depends on some kind of compactness property
of the sublevel sets{x |J0[x] ≤ α}, α ∈ IR, but such compactness must be
tuned to the space over which the minimization takes place, andC1

n[τ0, τ1] is
for that reason a poor choice. Often in textbooks,C1

n[τ0, τ1] is replaced by the
spaceC̄1

n[τ0, τ1] consisting of the arcsx : [τ0, τ1] → IRn that arepiecewise
continuously differentiable; elementary examples abound in which solutions
can be found in̄C1

n[τ0, τ1]but not inC1
n[τ0, τ1], and this has long been recognized.

But C̄1
n[τ0, τ1] fares no better thanC1

n[τ0, τ1] in attempts to establish the existence
of solutions in general. We know now that to get existence we have to pass to a
far more general space and introduce both coercivity andconvexityassumptions
on the behavior ofL(t, x, v) with respect tov.

Let |v| stand for the Euclidean norm ofv ∈ IRn. The functionL is said to
satisfy theTonelli growth conditionif

L(t, x, v) ≥ θ(|v|) for all (t, x, v) ∈ [τ0, τ1]× IRn × IRn (7)
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for a nondecreasing functionθ : [0,∞) → (−∞,∞) that is coercive, i.e., has
θ(s)/s →∞ ass →∞. Forp ∈ [1,∞] let

Ap
n[τ0, τ1] = space of absolutely continuous arcsx with ẋ ∈ Lp

n[τ0, τ1].

Thus,A1
n[τ0, τ1] consists simply of all absolutely continuousx : [τ0, τ1] → IRn,

whereasA∞n [τ0, τ1] consists of all Lipschitz continuousx : [τ0, τ1] → IRn. Of
course an arcx in any of these spaces is only differentiable almost everywhere,
so that the integrandL(t, x(t), ẋ(t)) itself is only defined almost everywhere—
but that is enough to make sense of the functionalJ0, provided that its value
is interpreted as∞ in the eventuality thatL(t, x(t), ẋ(t)) is not bounded from
above by an integrable function oft.

Theorem 1. Let problem(P0) be placed in the arc spaceA1
n[τ0, τ1]. If the

functionL satisfies the Tonelli growth condition, andL(t, x, v) is convex with
respect tov, then the minimum in(P0) is attained.

This fact suggests thatA1
n[τ0, τ1] should be adopted as the arc space without

further ado, but unfortunately there are impediments to that. On this larger
space the functionalJ0 lacks adequate differentiability, except in very special
circumstances, and the traditional derivation of optimality conditions collapses.
A fallback instead ofA1

n[τ0, τ1] isA∞n [τ0, τ1], on which the directional deriva-
tive formula (1) persists under our working assumptions onL.

Theorem 2. Let problem(P0) be placed in the arc spaceA∞n [τ0, τ1]. Then,
for an arcx that is optimal in(P0), the Euler-Lagrange equation (2) and the
Weierstrass condition (3) must hold in the following interpretation: there is an
arc y, likewise inA∞n [τ0, τ1], such that for almost everyt ∈ [τ0, τ1] one has

y(t) = ∇vL(t, x(t), ẋ(t)), ẏ(t) = ∇xL(t, x(t), ẋ(t)), (8)

L(t, x(t), v) ≥ L(t, x(t), ẋ(t)) + 〈y(t), v − ẋ(t)〉 for all v (9)

Note that the formulation of the Euler-Lagrange condition in (8) is preferable
to the version in (2) even when(P0) is placed inC1

n[τ0, τ1], in which casey
too belongs toC1

n[τ0, τ1]. It makes explicit the differentiability property of
∇vL(t, x(t), ẋ(t)) in t that is tacit in the original statement (2). The arcy, said
to beadjoint to x, deserves the added attention anyway.

Note also that the Weierstrass condition (9), which still implies the Legendre
condition (4), once more holds automatically whenL(t, x, v) is convex inv, for
the reasons already noted. Without such convexity, (9) can again be seen as a
condition relating the functionf(v) = L(t, x(t), v) to its convex hull. But the
discussion of this issue is incomplete without bringing the so-called canonical
from of the Euler-Lagrange condition into the picture, which we do next.

In further analysis of the first equation in (8), let us step back from the
consideration of arcs x and y and look at the equationy = ∇vL(t, x, v) as a
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relation between vector variablesy andv in IRn for given(t, x) ∈ [τ0, τ1]×IRn.
Suppose we are able to invoke the implicit function theorem in order to solve
this equation uniquely forv as a function of(t, x, y); the technical assumption
needed for this locally is that the mappingv 7→ ∇vL(t, x, v) is continuously
differentiable and has nonsingular Jacobian, or in other words, thatL(t, x, v)
is twice differentiable inv, with the Hessian∇2

vvL(t, x, v) being nonsingular
and depending continuously on(t, x, v). Let the solution mapping be denoted
by v = h(t, x, y), and let

H(t, x, y) = 〈y, v〉 − L(t, x, v) with h(t, x, y) substituted forv. (10)

Formulas for the derivatives ofH can be obtained from the implicit function
theorem; one has{

∇yH(t, x, y) = h(t, x, y),
∇xH(t, x, y) = −∇xL(t, x, h(t, x, y)).

Then, on returning to the context of arcs, we can express the Euler-Lagrange
condition (8) in the form

ẋ(t) = ∇yH(t, x(t), y(t)), ẏ(t) = −∇xH(t, x(t), y(t)), (11)

and recognize that this constitutes an ordinary differential equation in the form
of ż(t) = F (t, z(t)) for z(t) = (x(t), y(t)). The conversion of (8) to an ODE
is obviously both illuminating and advantageous.

The functionH is known as theHamiltonianassociated withL, which in
contrast is itself often called theLagrangian; the process of obtainingH(t, x, y)
fromL(t, x, v) by way of the implicit function theorem in the manner described
is theLegendre transform(with respect to thev variable with(t, x) fixed). The
relations (11) are theHamiltonian equations.

Unfortunately, in this traditional development there is a serious flaw which
textbooks seldom address. The nonsingularity assumption on∇2

vvL(t, x, v) on
which the Legendre transform depends is local. Indeed, it is often envisioned
merely along thex trajectory being tested for optimality, where it comes down
to the nonsingularity of∇2

vvL(t, x(t), ẋ(t)) and therefore the positive definite-
ness of this Hessian, since we already know from the Legendre condition (4)
that∇2

vvL(t, x(t), ẋ(t)) must be positive semi-definite. Thus, if this approach
through the Legendre transform is adopted, the HamiltonianH threatens to be
defined only in a local sense in relation to a particularx trajectory, and only to
the extent thatL(t, x(t), v) is strongly convex inv aroundv = ẋ(t). Further-
more, it can be seen from such local convexity that the prescription forH in
(10) then implies

H(t, x(t), y(t)) = local max of 〈y(t), v〉 − L(t, x(t), v) in v around ẋ(t),
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with the local max being attained whenv = ẋ(t). Another angle, however, is
that the Weierstrass condition says

global max of〈y(t), v〉 − L(t, x(t), v) in v is attained atẋ(t).

Obviously this situation is perplexing and unsatisfactory. An answer in part
could be to insist that∇2

vvL(t, x, v) be positive definite for all(t, x, v) ∈
[τ0, τ1]× IRn× IRn, so as to avoid the awkward localization, but that would be
unpleasantly restrictive.

Convex analysis will come to the rescue with a superior definition of the
Hamiltonian functionH. That definition will rely instead on the Legendre-
Fenchel transform, which reduces to the Legendre transform in the presence
of continuous second-order differentiability with positive definite Hessians, but
actually makes sense even without any differentiability. Before getting to that,
however, it is good to complement the discussion of necessary conditions by
taking a brief look at how convexity supports sufficient conditions for optimality.

Theorem 3. Let problem(P0) be placed in the arc spaceAp
n[τ0, τ1] for any

p ∈ [1,∞], and suppose thatL(t, x, v) is convex with respect to(x, v). If the
Euler-Lagrange condition in form (8) holds for arcsx andy withx ∈ Ap

n[τ0, τ1]
andy ∈ A1

n[τ0, τ1], thenx is optimal in(P0).

The proof of this result is elementary but also illuminating because it opens
doors to generalization. The convexity ofL(t, x, v) not just inv but with respect
to (x, v) yields the gradient inequality for the functionL(t, ·, ·) that, when used
to compare the pair(x(t), ẋ(t)) from the arcx with a pair(x′(t), ẋ′(t)) coming
from an alternative arcx′, says in the context of (8) that

L(t, x′(t), ẋ′(t)) ≥ L(t, x(t), ẋ(t))+〈ẏ(t), x′(t)−x(t)〉+〈y(t), ẋ′(t)−ẋ(t)〉.

On integrating both sides of this inequality we get

J0[x′] ≥ J0[x] + 〈y(τ1), x′(τ1)− x(τ1)〉 − 〈y(τ0), x′(τ0)− x(τ0)〉.

Whenx′, like x, satisfies the endpoint constraintsx′(τ0) = ξ0, x′(τ1) = ξ1, we
obtainJ0[x′] ≥ J0[x] and thus the global optimality ofx.

Observe that under the convexity hypothesis onL in Theorem 3,J0 is a
convex functional on the arc space in question.

Theorem 3 does not give the most general form of sufficient condition in
the calculus of variations. In the classical theory that would be a hard-to-
verify criterion known as the Jacobi condition, involving second derivatives
of the functionalJ0 for which there is an integral expression based on second
derivatives ofL. By contrast, the condition in Theorem 3, although not as
comprehensive, is simple to use and still covers many applications. But books
usually neglect to mention it.
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Variants of the optimality conditions in Theorems 2 and 3 for problems
beyond(P0), having boundary conditions other thanx(τ0) = ξ0 andx(τ1) =
ξ1, are well known and easily obtained. If the first endpoint ofx is fixed but the
second endpoint is free, the conditiony(τ1) = 0 has to be added, whereas if the
free endpoint is the first instead of the second, the requirement isy(τ0) = 0. If
both endpoints are free but a cost terml(x(τ0), x(τ1)) is added to the integral
in the functionalJ0 being minimized, one has to have

(y(τ0),−y(τ1)) = ∇l(x(τ0), x(τ1)).

Mixtures of such possibilities can also be handled, involving an endpoint cost
term inJ0 but also a system of constraints onx(τ0) andx(τ1), not only equa-
tions but perhaps also inequalities. In every such case, optimality entails a
certain relation between(x(τ0), x(τ1)) and(y(τ0), y(τ1)), known historically
as atransversality condition. Classical theory does not provide a universal way
of expressing transversality conditions, but a simple, unifying scheme does
come out of the modern developments described below.

Besides these variants on how to treatx(τ0) andx(τ1) in (P0) there can be
constraints of equality or inequality type, or both, imposed onx(t) andẋ(t),
separately or jointly. When all such complications are allowed simultaneously
in the problem statement, one gets a formulation that marked the high point in
the calculus of variations before the advent of optimal control, called aBolza
problem.

It is also possible to consider problems in which the interval[τ0, τ1] is not
fixed but subject to optimization as well, but we will skip over that in the interests
of simplicity.

2. NEOCLASSICAL BOLZA PROBLEMS

The classical framework for the calculus of variations has led to many suc-
cesses, most notably in applications to physics. Its shortcomings, such as have
been pointed out above, were not really apparent until “optimization” arose
in the 1950’s as a practical subject with a numerical orientation. Inequality
constraints came to be viewed not just as an occasional necessity in problem
formulation, but rather as a dominant feature affecting the analysis of solutions
and the design of algorithms for finding them. Penalty expressions with discon-
tinuities in derivatives entered the stage that way too. Methods of differential
calculus were no longer enough, whether in connection with such expressions
or in coping with the geometry of sets specified by systems of inequality con-
straints. On the other hand, convexity properties of sets and functions took on
a new significance, and fascinating phenomena of duality came to light.
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For the calculus of variations, the most revolutionary development was the
emergence of optimal control theory. A typical problem of optimal control is
(P1)

minimize J1[x, u] :=
∫ τ1
τ0

f0(t, x(t), u(t))dt + h(x(τ1)) subject to
x(τ0) = ξ0, ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U(t, x(t)), x(τ1) ∈ E,

where the minimization takes place over pairs(x, u) comprised of arcsx :
[τ0, τ1] → IRn andcontrolfunctionsu : [τ0, τ1] → IRm that satisfy the specified
constraints. For instance, one could requirex ∈ A∞n [τ0, τ1]andu ∈ L∞m [τ0, τ1],
interpreting the constraintṡx(t) = f(t, x(t), u(t)) andu(t) ∈ U(t, x(t)) as
holding for almost everyt. The setsU(t, x(t)) andE could be defined by
equations and inequalities, but we need not go into that. There could likewise
be a conditionx(t) ∈ X(t), called a state constraint, but we may regard that as
implicit in the description of the region whereU(t, x(t)) 6= ∅.

The challenge of working with such formulations involving controls led to
new results like the Pontriagin “maximum principal," which expresses neces-
sary conditions for optimality akin to the Euler-Lagrange equation and Weier-
strass condition, but is limited to situations whereU(t, x(t)) does not actually
depend onx(t).

The attitude in the early days of control theory was that problems in optimal
control could be regarded as generalizations of problems in the calculus of
variations in which the differential equatioṅx(t) = f(t, x(t), u(t)) provides
additional interest and capabilities. In the elementary case wheref(t, x, u) ≡ u,
the differential equation reduces toẋ(t) = u(t), problem(P1) comes down to
a certain classical problem of Bolza.

The utterly different point of view that we explain next, about how optimal
control and the calculus of variations can be seen as fitting together, emerged
instead from discoveries made in applying convex analysis to optimization more
generally. It focuses on the seemingly much simpler problem model

(P) minimize J [x] :=
∫ τ1

τ0
L(t, x(t), ẋ(t))dt + l(x(τ0), x(τ1)),

where the minimization is over a space of arcs, e.g.x ∈ Ap
n[τ0, τ1] for some

p ∈ [1,∞]. This is called ageneralizedBolza problem, but at first that may
sound paradoxical. Shouldn’t(P) rather be called a simplified Bolza problem,
since no contraints are apparent in it?

The key source of generality in(P) lies in the great breadth of the class of
functionsL andl that are now admitted. No longer is it tacitly assumed that
these functions are differentiable to whatever order might be deemed useful.
To the contrary, they need not be continuous or even finite everywhere. They
are allowed to take+∞ as a value, in particular as a means of representing
constraints by imposing infinite penalties when they are violated.
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For that reason,(P) covers not only classical Bolza problems but also prob-
lems in optimal control like(P1). To capture(P1), one would take

l(x0, x1) =
{

g(x1) if x0 = ξ0 andx1 ∈ E,
∞ if not,

(12)

and on the other hand

L(t, x, v) = inf{f0(t, x, u) |u ∈ U(t, x) satisfyingf(t, x, u) = v}, (13)

where the convention is used that the infimum of an empty set of numbers is
+∞. The suppression of control variables in passing in this way from(P1) to
(P) loses nothing because, once an arcx has been identified as solving(P),
a corresponding control functionu can be obtained by selecting, for eacht at
which ẋ(t) exists, a vectoru(t) in the set

argmin{f0(t, x(t), u) |u ∈ U(t, x(t)) satisfyingf(t, x(t), u) = ẋ(t)}.
(14)

Of course, in validating such an approach a number of technical issues have to
be resolved. The functionalJ in (P) has to be well defined whenl andL come
out of formulas like those in (12) and (13), and there has to be assurance that,
whenu(t) is selected from the set in (14) this can be done so as to make the
resulting functionu belong to the right function space. But such issues have by
now all been worked out to satisfaction.

The radical departure from classical theory in investigating generalized Bolza
problems(P) without the customary restrictions onL andl started in 1970 in
[10] under the alternative assumption thatL(t, ·, ·) and l are convex, which
makes the Bolza functionalJ itself be convex. By that time, researchers in
convex analysis were well accustomed to working with infinite penalty repre-
sentations of constraints (see e.g. [8]) and had realized that many conditions
usually stated in terms of gradients could, for convex functions without differ-
entiability, be articulated instead with “subgradients.” It was a natural step to
try this out in the calculus of variations by studying the fully convex case of
(P) and looking for subgradient versions of the Euler-Lagrange condition and
the Hamiltonian equations.

In the intervening years, a huge effort has gone into expanding the territory of
this type of “nonsmooth” analysis beyond convex functions, so that subgradient
conditions in Bolza problems could be established more generally. The doctoral
thesis of Clarke [1] gave the first big advance, which eventually led to his book
[2]. Many others have also gotten involved, and much research is still ongoing;
see [14] and its commentaries.

To explain this major development further, let us review some basic ideas
that underlie that literature of convex and nonsmooth analysis, in which notation
and terminology are oriented asymmetrically toward minimization. A function
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ϕ : IRn → IR (whereIR = [−∞,∞]) haseffective domain

dom ϕ = {v |ϕ(v) < ∞}

and is calledproper if it is finite on this set, and this set is nonempty (or in
other words, ifϕ(v) < ∞ for somev andϕ(v) > ∞ for everyv). The proper
functions are thus the extended-real-valued functions onIRn obtained by taking
a finite function on a nonempty subsetC of IRn and extending it by giving it
the value∞ everywhere outside ofC.

Theepigraphof ϕ is the setepiϕ = {(v, α) ∈ IRn× IR |ϕ(v) ≥ α}. It is a
closed set if and only ifϕ is lower semicontinuous (lsc) and, more importantly
for indicating the motivation behind epigraphs, it is a convex set if and only
if ϕ is a convex function. For extended-real-valued functions, the epigraph is
a better carrier of geometric information than the graph, because it belongs to
IRn × IR, a vector space, whereas the graph merely belongs toIRn × IR.

Minimizing ϕ over IRn is equivalent to minimizingϕ over dom ϕ; this is
theprinciple of infinite penalization. The minimum is attained ifϕ is proper
and its sublevel sets{v |ϕ(x) ≤ α} are compact. Whenϕ is lsc, these sets
are closed, so for them to be compact only boundedness is required, and that
can be enforced by a growth condition. The same notions can be invoked for
functions in infinite-dimensional spaces rather than justIRn, but then a more
sophisticated assessment of compactness is needed.

In (P) it is natural to takeL(t, ·, ·) andl to be proper functions onIRn× IRn

that are lsc, but how shouldL(t, ·, ·) depend ont? This question, more subtle
than might be anticipated, was the first big challenge in putting problem(P)
on a firm technical footing. For one thing, integrandL(t, x(t), ẋ(t)) has to be
Lebesgue measurable as a function oft for anyx ∈ A1

n[τ0, τ1], but that can fail
under the assumption merely thatL(t, x, v) is Lebesgue measurable int for each
(x, v) ∈ IRn × IRn, or thatL is Lebesgue measurable with respect to(t, x, v).
The answer, confirmed from many different angles, has turned out to be that,
in combination withL(t, x, v) being lsc with respect to(x, v), L should be
measurable with respect to the hybridσ-field generated by the Lebesgue sets in
thet argument and the Borel sets in the(x, v) argument. With these properties,
L is said to be anormal integrand.

The concept of a normal integrand was developed originally in the case of
convex functions dependent on an additional parameter belonging to a measure
space. Thus, it is an innovation attributable to the rise of convex analysis. A full
discussion of normal integrands, their history and properties (including various
equivalent definitions), is given in Chap. 14 of [14].

WithL taken to be a normal integrand, the functionalJ in (P)can be given the
following rigorous definition when recalling that, for any Lebesgue measurable
functionβ on [τ0, τ1] that is majorized by a functionγ ∈ L1

1[τ0, τ0] majorizing
β, the integral

∫ τ1
τ0

β(t)dt has a well defined value in[−∞,∞). This mirrors
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the fact that the sum of two numbers in[−∞,∞) is a well defined number in
[−∞,∞). Accordingly, for anyx ∈ A1

n[τ0, τ1], the value ofJ [x] in (P) is a
well defined number in[−∞,∞) as long asL(t, x(t), ẋ(t)) is majorized by an
integrable function andl(x(τ0), x(τ1)) < ∞. When these conditions are not
met,J [x] is defined as equal to∞. It is immediate then that

J [x] < ∞ =⇒
{

(x(t), ẋ(t)) ∈ dom L(t, ·, ·) for a.e. t,
(x(τ0), x(τ1)) ∈ dom l.

The principle of infinite penalization reveals therefore that the constraints on
the right are implicit in the minimization in problem(P).

Once(P) has been interpreted in this manner, it is possible to move on to
the question of whether a solution arc exists. In view of the classical result in
Theorem 1, it may be expected that the right space for this isA1

n[τ0, τ1] and
that the convexity ofL(t, x, v) in v will be required. Something additional
will be needed to reflect the relaxation of the fixed endpoint constraints in(P0)
by the endpoint term in(P). On the other hand, while the Tonelli growth
condition (7) might still be serviceable, it is really too severe for many of
the targeted applications. For example, Lagrangian functionsL coming from
control problems, via (13), have a hard time satisfying it.

Theorem 4. Let problem(P) be placed in the arc spaceA1
n[τ0, τ1]. Suppose

the functionl is lsc and the functionL is a normal integrand such thatL(t, x, v)
is convex with respect tov and the following growth condition is fulfilled:{

L(t, x, v) ≥ θ( max{0, |v| − α(t)|x| − β(t)})− γ(t)|x| − δ(t),
l(x0, x1) ≥ θ0(x0)− θ1(x1),

(15)

for integrable functionsα, β, γ, δ : [τ0, τ1] → [0,∞] and nondecreasing func-
tionsθ, θ0, θ1 : [0,∞) → [0,∞] such that

lim
s→∞

θ(s)
s

= ∞, lim
s→∞

θ0(s)
s

= ∞, lim
s→∞

θ1(s)
s

< ∞. (16)

If at least one arcx ∈ A1
n[τ0, τ1] exists withJ [x] < ∞, then the minimum in

(P) is finite and attained.

This result comes out of [9], where in fact the growth condition onL is stated
in a slightly broader dual form which allowsθ to depend ont. Note that this
condition imposes a coercive penalty onẋ(t) to the extent that a bound of the
form |ẋ(t)| ≤ α(t)|x(t)| + β(t) is transgressed by the arcx. It covers the
Tonelli condition (7) as a very special case, namely the one where the functions
α, β, γ andδ are≡ 0. In the growth condition onl, the coercivity in the first
argument but counter-coercivity in the second argument could be reversed, i.e.,
one could assume instead thatl(x0, x1) ≥ θ0(x1)−θ1(x0)without undermining
the conclusions.
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The cited paper [9] furthermore provides criteria under which the generalized
Bolza problem(P) can rightly be considered to reflect, through formulas like
(13), an optimal control problem with respect to arcsx and control functionsu.
The means of recovering an optimalu from an optimalx are furnished there as
well.

For a “Lagrangian” functionL in the vast class envisioned for(P), is there an
associated “Hamiltonian” functionH? A powerful and convincing answer to
this question is available through convex analysis. To understand it in clearest
terms, let us begin by considering again an arbitrary functionϕ : IRn → IR. The
Legendre-Fenchel transformof convex analysis assigns toϕ, as itsconjugate
the functionϕ∗ : IRn → IR defined by

ϕ∗(y) = supv{〈v, y〉 − ϕ(v)},

and as itsbiconjugatethe function conjugate toϕ∗, which is

ϕ∗∗(v) = supy{〈v, y〉 − ϕ∗(y)}.

Regardless of any assumptions onϕ, bothϕ∗ andϕ∗∗ are convex and lsc. If
ϕ ≡ ∞, then obviouslyϕ∗ ≡ −∞ andϕ∗∗ ≡ ∞, whereas ifϕ 6≡ ∞ but ϕ
fails to majorize any affine function, one hasϕ∗ ≡ ∞ andϕ∗∗ ≡ −∞. In
the remaining and most important case, whereϕ is proper and majorizes an
affine function (the latter being known to follow from the former whenϕ is
convex), bothϕ∗ andϕ∗∗ are proper and moreoverϕ∗∗ is the greatest proper,
lsc, convex function majorized byϕ. Thus in particular, ifϕ is lsc, proper
and convex, the same holds forϕ∗, and thenϕ∗∗ = ϕ. In this manner the
Legendre-Fenchel transform induces a one-to-one correspondence within the
collection of all lsc, proper, convex functions onIRn. A further observation
is that if ϕ is twice continuously differentiable with Hessian matrices that are
positive definite, the Legendre-Fenchel transform reduces essentially to the
older Legendre transform. The details behind these facts can be found in [8]
(or [14]).

It is natural from this perspective to define, for anyL : [τ0, τ1]×IRn×IRn →
IR, the associated HamiltonianH : [τ0, τ1]× IRn × IRn → IR by

H(t, x, y) = supv{〈v, y〉 − L(t, x, v)}. (17)

ThenH(t, x, y) is convex iny and, for any(t, x) such thatL(t, x, v) is lsc,
proper and convex with respect tov, it obeys the reciprocal formula

L(t, x, v) = supy{〈v, y〉 −H(t, x, y)}. (18)

On the other hand, whenL(t, x, ·) lacks convexity, but at least is proper and
majorizes an affine function, the expression inv given by the right side of (18)
is the “lsc convex hull” ofL(t, x, ·) and is proper. In that case we encounter,
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therefore, convexification of the kind already viewed in the classical context in
connection with the Weierstrass condition.

This approach to what the Hamiltonian for problem(P) should be was
first proposed in [11], in the days when only convex analysis offered a means
by which optimality conditions could be stated without resorting to gradients,
which of course for functions likeL andl might well not exist. It was essential
then to assumeL(t, x, v) to be convex not only with respect tov but with re-
spect to(x, v). In Hamiltonian terms, that corresponds to havingH(t, x, y) be
concave inx in addition to being, as always, convex iny.

It was for convex functions that robust substitutes for gradients were initially
developed, so we focus now on that case here. A vectory ∈ IRn is called a
subgradientof a convex functionϕ : IRn → IR at a pointv if

ϕ(v′) ≥ ϕ(v) + 〈y, v′ − v〉 for all v′ ∈ IRn. (19)

The set of such subgradientsy is denoted by∂ϕ(v) and is always closed and
convex, but perhaps empty. Interestingly∂ϕ(v) consists of a singley if and only
if ϕ is finite and differentiable atv, in which casey = ∇ϕ(v). Furthermore,
whenϕ is also lsc and proper, the set-valued subgradient mappingv 7→ ∂ϕ(v)
and the corresponding mappingy 7→ ∂ϕ∗(y) for the lsc, proper, convex function
ϕ∗ conjugate toϕ, are the inverses of each other:

y ∈ ∂ϕ(v) ⇐⇒ v ∈ ∂ϕ∗(y).

An extensive calculus is available for determining subgradients of convex func-
tions in taking advantage of the formulas that may be used to construct such
functions. Subgradients can similarly be defined for a functionϕ that is con-
cave instead of convex by reversing the inequality in (19); the notation∂̃ϕ then
supplants∂ϕ.

To save words, let us now speak formally of thefully convexcase of problem
(P) as the one in whichL(t, ·, ·) andl are lsc, proper and convex onIRn× IRn,
with L being a normal integrand that in addition satisfies the following minor
technical condition:L(t, x, v) ≥ a(t, x, v) for an expressiona(t, x, v) that is
affine in(x, v) and summable int. (The latter is assured for instance under the
growth condition onL in (15).) Then in particular,J is a well definedconvex
functional fromA1

n[τ0, τ1] to IR that nowhere has the value−∞.
Consider further in this setting the subsetsCl andCL of IRn × IRn that

express the two kinds of endpoint constraints implicit in(P); specifically, let
Cl consist of all(x0, x1) such thatl(x0, x0) < ∞ (i.e.,Cl = dom l) and letCL

consist of all(x0, x1) such that

∃x ∈ A1
n[τ0, τ1] with x(τ0) = x0, x(τ1) = x1,

∫ τ1

τ0
L(t, x(t), ẋ(t))dt < ∞.
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Note that these setsCl andCL are convex, and that

J [x] < ∞ =⇒ (x(τ0), x(τ1)) ∈ Cl ∩ CL 6= ∅. (20)

We will want to look also at therelative interiorsof Cl andCL, which are their
interiors relative to their affine hulls (cf. [8] or [14]). In a constraint qualification
introduced below, the issue will be whether not onlyCl andCL themselves have
nonempty intersection, as in (20), but also their relative interiors have nonempty
intersection.

Theorem 5. In the fully convex case of problem(P), placed in the arc space
A1

n[τ0, τ1], let x ∈ A1
n[τ0, τ1] be an arc that is feasible in the sense of having

J [x] < ∞. If there is an arcy ∈ A1
n[τ0, τ1] satisfying the generalized Euler-

Lagrange condition

(ẏ(t), y(t)) ∈ ∂x,vL(t, x(t), ẋ(t)) (21)

for almost everyt ∈ [τ0, τ1] and also the generalized transversality condition

(y(τ0),−y(τ1)) ∈ ∂l(x(τ0), x(τ1)), (22)

thenx is optimal. Conversely, the existence of such an arcy is necessary for the
optimality ofx if the relative interiors ofCl andCL have nonempty intersection.

Here the Euler-Lagrange condition (21) can be written equivalently as the
generalized Hamiltonian condition

ẋ(t) ∈ ∂yH(t, x(t), y(t)), −ẏ(t) ∈ ∂̃xH(t, x(t), y(t)). (23)

The sufficiency of the generalized Euler-Lagrange and transversality condi-
tions in this theorem was brought out in [10], and the necessity (much harder
to prove) in [12]. The equivalence between the Euler-Lagrange condition and
the Hamiltonian condition (23) was demonstrated in [11]. These works further
reveal that the adjoint arcy solves a certaindual problem, which developed in
a certain way out of the convex functions conjugate toL(t, ·, ·) andl. This dual
problem again fits the generalized Bolza format. (One of the many virtues of
the notion of normal integrand, incidentally, is that in passing to the conjugate
of L(t, ·, ·) for eacht one gets another normal integrand.)

The optimality conditions in Theorem 5 can be elaborated in fine detail when
particular structures are given forL andl. A remarkable feature is the way that
a very wide range of endpoint formulations and corresponding transversality
conditions can all be combined in the single subgradient relation (22). But
Theorem 5 only covers problem(P) in the fully convex case.

Can subgradients be defined in for a much broader class of functions in such a
manner that the subgradients of convex analysis, as just described, are recovered
when the functions are convex, but ordinary gradients are obtained when the
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functions are smooth? And is it possible that way to derive necessary conditions
for optimality resembling those in Theorem 5 even for Bolza problems(P) that
are not fully convex? Yes.

A breakthrough in that direction was made in Clarke’s thesis [1], as already
mentioned. Subsequently the topic were extensively developed further by him
and many other researchers, with modifications here and there in the concepts,
the most important being the recognition of the need to relinquish certain con-
vexifications that seemed altogether natural at the start of the theory, but later
got in the way. In that respect key contributions were made by Mordukhovich;
cf. for instance [7].

This larger subject and its history are too much to explain here, but some
references can be given. The theory of subgradients in current form is presented
comprehensively in the book [14]. Recent achievements in characterizing op-
timality in terms of subgradient conditions that extend the ones in Theorem 5
can be found for example in [13], [5], [4], [6], [3].

Even today, though, there continue to be new developments in the setting
of full convexity, too. In this vein can be mentioned the recent results in the
Hamilton-Jacobi theory associated with generalized Bolza problems(P), cf.
[15], [16], where the duality theory in [12] has strongly been utilized.
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