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Abstract

This paper describes some recent results in Hamilton-
Jacobi theory that hold under strong convexity as-
sumptions on the data. Generalizations of linear-
quadratic control models satisfy such assumptions, for
example. The results include a global method of char-
acteristics and a strong duality theory.

1 Introduction

Convexity assumptions in optimization and optimal
control theory play a role analogous to the role of lin-
earity in functional analysis and ordinary differential
equation theory. This is underlined by two themes: (1)
properties that hold locally in general cases have global
versions under convexity assumptions, and (2) the pres-
ence of convexity offers dual problem formulations that
unite important concepts and offer symmetrical results.
This paper and its companion summarize recent results
in [1] and [2] on how strong convexity assumptions can
be exploited in Hamilton-Jacobi theory.

1.1 Problem formulation

Many important issues in optimal control and the cal-
culus of variations revolve around a value function
V :[0,00) x R" — IR := [—00,00] of the type

V(re) = int{g(@(0) + [iL(a(t), 2(t)dt |2(r) = £}
V(0,6) = 9(6),

which propagates an initial cost function ¢ : R" — IR
forward from time O in a manner dictated by a La-
grangian function L : R™ x R" — IR. The possible
extended-real-valuedness of g and L serves in the mod-
eling of the constraints and dynamics involved in this
propagation, as will be illustrated by an example in
Section 2. The minimization takes place over the arc
space Al [0, 7] of absolutely continuous functions that
map into R".

The complete technical assumptions will be given in
Section 4, but we emphasize that convexity will play a
major role in our results. In particular we shall assume
L is convex jointly in the variables (z,v), and g will
also be assumed to be convex. We call such variational
problems Fully Convex (FC).

The theoretical advantage of the FC formulation comes
from the fact that it closely resembles a calculus of vari-
ations problem, and thus results from that extensive
and classical subject provide a roadmap for investiga-
tion. Assumptions in the state variable can be easily
formulated and brought to the forefront, since the FC
formulation focuses on finding only the optimal arcs. If
the problem comes from an optimal control model, the
issue of capturing other control information such as a
feedback law is isolated to another stage of the process.
Once the optimal velocities are known, however, find-
ing the optimal control reduces to a finite-dimensional
optimization problem.

1.2 The Hamilton-Jacobi equation
If V is smooth, then it satisfies the Hamilton-Jacobi
(HJ) equation

ZV(1,6) = —H (€, VeV (1,6)), (1)

where H : R" x IR™ — IR is the Hamiltonian defined
by

(o) = swp { )~ Lo .

veR™

It is well appreciated that smoothness of solutions to
(1) will only happen under very special circumstances,
but that a general solution concept can nonetheless be
used to characterize V' as the solution to (1). It is also
well appreciated that numerical methods that approx-
imate the nonsmooth solution are difficult to imple-
ment practically. The Hamilton-Jacobi equation aris-
ing in the FC model is a nonlinear first-order PDE that
has particular structure that has not yet been fully ex-
ploited.

2 Notable example: linear-quadratic control
with hard control constraints

Perhaps the most widely-used state-based optimal con-
trol model is the Linear-Quadratic Regulator (LQR).
This problem has quadratic costs and linear dynamics,
and is of the form

inf{x(O)TP:r(O) + /OT{x(t)TQx(t) +u(t)" Ru(t)} dt}



where the minimization is over z(-) in AL[0, 7] with
x(7) = € and measurable u(-) : [0, 7] — IR™ that satisfy

&(t) = Az(t) + Bu(t) a.e. t€]0,7]. (2)

The matrices A, B, P, @, and R are all of the appro-
priate dimension with P, @), and R positive definite.

The LQR problem can be equivalently described in our
problem formulation by setting

L(z,v) := inf{mTQm +u Ru: v=Ar+ Bu}. (3)

Then for a given z(-) € AL[0, 7], one has

/OT L(z(t),4(t)) dt < oo

if and only if there exists a measurable u(-) satisfying
(2), and moreover, the infimum and the optimal state
trajectories in the FC problem will coincide with those
in the LQR problem. Note that L as given in (3) is
convex in (z,v), although it may not be differentiable
nor finite everywhere (by convention, the inf over the
empty set is +00). Finally, if an optimal velocity o is
found at a particular time and state Z, then an optimal
control @ is a point achieving the inf in (3) that defines
L(z,v).

The LQR formulation’s main advantage is the ease and
manner in which solutions can be obtained. In fact,
there exists a differentiable map K : [0, 7] — M, xm s0
that a feasible pair (z(-),u(-)) solves the LQR problem
if and only if x(t) = K(¢t)u(t). The matrix-valued map
K is found through solving a Riccati equation, which
can be done relatively easily, at least in low dimensions.
Note that this characterizes the optimal solutions.

The FC problem formulation captures important fea-
tures of LQR while introducing much greater flexibility.
We illustrate by considering a natural generalization of
LQR by simply adding a control constraint u(t) € U
to (2), where U C IR™ can be taken closed and con-
vex. Such hard constaints on the control function wu(-)
are typical in applications where bounds on the input
are unavoidable. The methodology of LQR now breaks
down, and in particular there is no longer an obvious
utilization of the solution to a Riccati equation, nor is
a linear feedback law to be expected. But note if the
constraint v € U is added to the infimum in (3), the
resulting function L is still jointly convex, and hence
can be treated in the FC framework.

If recourse to solutions of the Riccati equation is no
longer available, then the Hamilton-Jacobi equation
must be dealt with directly, an intimidating task for
general nonlinear problems. But, as we shall see, the
FC case has very special features that potentially open
up a much greater utilization of the HJ equation.

3 Convex Analysis and Duality

After a brief review of concepts from convex analysis,
this section introduces the dual data and its problem
formulation, and then states results obtained by Rock-
afellar from the 1970’s. The latter results hold under
the assumptions that will be imposed in Section 4.

Suppose f : R" — IR is convex, lower semicontinuous,
and proper. The subgradient set df(Z) of f at a point
Z is the set of vectors y € IR" that satisfy

f(x) > f(Z) +(y,xr—2) VoecR"

Associated with f is its Legendre-Fenchel conjugate
f*: R" — IR, another convex, lower semicontinuous,
and proper function, given by

F*(y) = sup {{y,z) — f(x)}.

rzeR™

The Legendre-Fenchel transform f** of f* merely re-
covers f, and thus convex functions naturally come in
pairs. Furthermore the subgradients of f and f* are
related by

yeof(x) & x€df(y),

which says that the subgradient mappings of conjugates
are inverse to each other.

Notice that the Hamiltonian H as a function of its sec-
ond argumment is the Legendre-Fenchel transform of
the second argument of L. In FC theory, where convex-
ity of L in both variables is assumed, the full conjugate
of L also plays a significant role. The dual Lagrangian

L(y,w) is defined as L*(w,y):

L(y,w) := ( s)lgz%{(w,x) + (y,v) — L(x,v)}

A certain symmetry in the assumptions on L and é
will be pointed out in the next section. Of course L
has its own Hamiltonian H, but it turns out that

H(yax) = —H(l‘,y), (4)

and so this is not a new piece of data entering the pic-
ture. Joint convexity in L corresponds to x — H(x,y)
being concave for each fixed y, and y — H (z,y) convex
for each fixed z, and our assumptions will imply H is
always finite. For such H, OH (z,y) denotes the Clarke
generalized gradient in both variables (x,y), but this
simplifies in the special case of concave/convex H to
the product

aH($7y) = 81H($,y) X ayH(xvy)7

where 0,H(z,y) is the convex subgradient in y and
O, H(z,y) is the concave supergradient in = (= the



negative of the convex subgradient of the map x —
—H(z,y)).

Just as L and g gave rise to a so-called primal varia-
tion problem that is used to define V, the data L and
g(n) = g*(n) give rise to a dual variational problem,
defined by

V() = inf {5(y(0)) + I L(y(®),9(0)dt | y(r) = n},
V(0,1) = (),

This problem is not the dual problem as introduced in
[4], but is closely related and uses the same data.

Rockafellar in a series of papers [3]-[7] developed a the-
ory under full convexity assumptions. These results
mainly focused on optimality conditions, an existence
theory, and duality, and play a major role in under-
standing the nature of the FC variation problem and
in proving the main results stated in this paper. They
are summarized in the following two theorems.

Theorem 3.1 (Rockafellar)
The following are equivalent for a given pair of arcs

x(+) and y(-) satisfying x(7) = & and y(7) = 1.

(a) x(-) solves the primal problem and y(-) solves the
dual problem.

In (b)-(e), (z(-),y(-)) in addition are assumed to satisfy
the transversality condition y(0) € dg(z(0)), which has
the equivalent form x(0) € 0g(y(0)).

(b) y(-) is a multiplier for x(-) that solves the primal
problem:

(9(t),y(t)) € BupL(2(t),2(t)).

(c) x(-) is a multiplier for y(-) that solves the dual
problem:

(&(t), 2(t)) € DywL(y(t),9(1))-

(d) (x(-),y(") is a primal Hamiltonian trajectory:
(—9(t),2(t)) € 0oy H (2(t),y(t)).

(e) (y(),2(-)) is a dual Hamiltonian trajectory:

(=&(t),9(1)) € Dy H (y(1), 2(t)).

Another key result under our convexity assumptions is
the constancy of the Hamiltonian:

Theorem 3.2 ([3]) For (2(-),y()) as in the last The-
orem, the map t — H (x(t),y(t)) is constant.

4 Assumptions

We now state precisely the assumptions that are in
effect throughout the paper. We first have the

Endpoint Assumption.

(AO) The initial function g is convex, proper and
lower semicontinuous on IR".

If one of the functions L, L, H, and H are known,
then all the other functions are completely determined.
Thus the assumptions encoding dynamic constraints
and running costs can be given for any one of the four
functions, and it is worth seeing the various relation-
ships among them since one form may be more easily
verfiable in a particular case.

4.1 Assumptions - Lagrangian form
We shall assume

(A1) The Lagrangian function L is convex, proper
and lower semicontinuous on R"™ x R".

(A2) The set F(x) := domL(z,-) is nonempty
for all x, and there is a constant p such that
dist(0, F(z)) < p(1 + |z|) for all z.

(A3) There are constants « and 3 and a coercive,
proper, nondecreasing function 6 on [0,00) such that
L(z,v) > §(max{0, [v| — alz| }) — Blz| for all z and
V.

The dual Lagrangian also satisfies a set of assumptions
(A1)-(A3) equivalent to (A1)-(A3), and these are being
labelled in the same manner as above except with L re-
placed by L. General considerations immediately give
that (A1) is equivalent to (A1), but our assumptions
are tailored in such a manner that further symmetry is
maintained. In fact, L satisfies (A2) (resp. (A3)) if and
only if L satisfies (A3) (resp. (A2)).

4.2 Assumptions - Hamiltonian form

It is sometimes easier to verify the assumptions in terms
of the Hamiltonian, and so we state these next. There
is a direct ordered relationship with the Lagrangian
form given above, with (A1) and (al) equivalent, and
similarly with (A2) and (a2), (A3) and (a3).

(al) The Hamiltonian function H(z,y) is every-
where finite on IR™ x IR", concave in x, convex in y.

(a2) There are constants « and § and a finite, con-
vex function ¢ such that

H(z,y) < o(y) + (aly| + B)|z| for all z, y.

(a3) There are constants v and § and a finite, con-



cave function 1 such that

H(z,y) > ¥(x) — (v|z| + 6)|y| for all z, y.

In view of (4), analogous dual Hamiltonian assump-
tions on H have the same relationship to (al)-(a3) as
the dual Lagrangian assumptions (A1)-(A3) have to
(A1)-(A3).

4.3 Example
Suppose L is given as in (3), then H has the form

H(z,y) = (y,Az) -2z Qu+ supu{<y, Bu) —u'" Ru}
= (y,Azx) — 2 Qr + 1y  BR™'BTy.

It is an easy matter to verify that (al)-(a3) hold in this
case. If the hard constraint u € U is added to the data,
then this constraint is added to the sup in the above
formula, and H has the form

H(z,y)= (y,Az) —2"Qu+ 1y ' BR™'By
—1 inf lu— BBy,

where |w||% := w' Rw. It is immediate that H in this
case still satisfies (al)-(a3).

5 Main results

We now turn to the new results about the value func-
tion V that are consequences of all the hypothesized
convexity. The first result contains some structural reg-
ularity properties.

Theorem 5.1 For each fixed T > 0, the value function
V(&) :=V(1,€) is conver, proper, and lower semicon-
tinuous. Moreover, V. depends epi-continuously on .

The epi-continuity statement means that whenever
T; — T as i — oo with 7, > 0, one has

hm inf V(TM gz) > V(T7 5)
for every sequence & — &, and

limsupV (1, &) < V(7,§)

1—00
for some sequence &; — £.

The next two results are the striking features of FC
problems that have no analogue in general nonlinear
theory. They assert that the subgradients and func-
tion values of the value function V' can be found by a
global “method of characteristics”. We emphasize that
this method operates globally for 7 > 0. For general
nonlinear problems, the characteristic method will be

valid only locally, and it is usually difficult to estimate
the size of the region where it is operational.

We have already encountered Hamiltonian trajectories
in the optimality conditions in Theorem 3.1. In a direct
analogy to classical Hamilton-Jacobi theory, these same
arcs are the characteristic curves that determine V' and
its subgradients. A little more notation helps to state
the results. Define the reachable set S-(£,n) at time
7 > 0 emanating from an initial point (£,n) € R" x
IR™ as the set of terminal points (¢',n) € R" x R"
of a Hamiltonian trajectory. To be precise, (¢/,7) €
S:(&,m) if and only if there exists an arc (z(-),y(-))
satisfying

and

(2(0),5(0)) = (&,m) and  (x(7),y(r)) = (£, 7).

The following result says that the graph of the subgra-
dient mapping of g is propagated into the subgradient
mapping of V; by Hamiltonian trajectories.

Theorem 5.2 For all 7 > 0, one has
S;(gph dg) = gph V.

That is, for a Hamiltonian trajectory (x(),y()) de-
fined on [0,7], one has y(0) € dg(x(0)) if and only if
y(r) € OV (x(7)).

The next result requires further concepts of subgradi-
ent beyond that of convex analysis in order to “differ-
entiate” V in both variables (7, &) jointly. Certainly V
will hardly ever be convex in (7,€), and for this rea-
son HJ theory was not developed for FC earlier in the
70’s - further developments in variational analysis were
required.

Consider any function f : IR™ — IR and let = be any
point at which f(z) is finite. A vector y € R" is a
regqular subgradient of f at x, written y € 0f(x), if

f@) = f@)+ (y, 2" — 2) + o2’ — ).

It is a (general) subgradient of f at x, written y €
Of(x), if there is a sequence of points x; — x with
f(z;) — f(z) for which regular subgradients y; €
3f(:cz) exist with y; — y. For a convex function f,
df () and df (z) reduce to the convex subgradient, and
hence there is no ambiguity in using the same notation.
In the case of the value function V, the “partial sub-
gradient” notation

OeV(r,8) = {n|nedv: (&)}

can be interpreted equally in any of the senses above.



Theorem 5.3 The subgradients of V on (0,7) x R"
have the property that

(0,m) €OV(1,€) <= (ovn) € IV (7,€)
= n€GV(r,§), o=—-H(n).

In particular, therefore, V satisfies the generalized
Hamilton-Jacobi equation:

oc=—H(&n) foral (o,m)e€dV(r,E)

when T > 0.

Again one may note the equivalence of the above prop-
erties, which is another hallmark of convexity.

The natural question of whether V is uniquely deter-
mined as the solution to the generalzed HJ equation
(plus boundary conditions) was only resolved recently
by Galbraith [8], [9]. One of the achievements of vis-
cosity theory was the resolution to this uniqueness is-
sue under certain situations, but our assumptions are
not covered by that theory. Different techniques were
developed in [8], [9] to prove uniqueness in which full
convexity assumptions are exploited.

6 Value function conjugacy

This last section contains results that further illustrate
the rich structure of the FC formulation. First note
that L and L satisfy the same assumptions, and thus
the results stated above for V are equally valid for V.
Recall that V,(-) := V(r,-) and V,(-) := V(r,-) are
convex, and the next result states that in fact they are
conjugate.

Theorem 6.1 For each 7 > 0, one has

V() =Vi(n) foral neR"

Many attributes that are imposed on convex functions
have counterpart dual properties, and thus the previous
theorem offers a convenient tool to derive properties of
V through those of V. As an illustration, differentiabil-
ity of a finite convex function f is equivalent to strict
convexity of f* on the set where {y : 9f*(y) # 0}. Now
if L is strictly convex, it is easy to show V, is strictly
convex. This simple observation and Theorem 6.1 leads

immediately to the following regularity result.

Corollary 6.2 If L is finite and differentiable, then V
is Ct on [0,00) x R™ (for any g).

Another illustration is the propagation of finiteness and
coercivity. Recall that a function 8 : R™ — IR is

coercive by definition if lim|,|_,. 0(2)/|z| = 4+o00. The
coercivity of a convex function f is equivalent to f*
being finite everywhere.

Our assumptions are such that the following proposi-
tion is relatively easy to prove.

Proposition 6.3 (a) If g is finite on R", then V is
finite on [0,00) x R™.

(b) If L is finite on R™ x IR"™, then V is finite on
(0,00) x R".

The next corollary now follows immediately from The-
orem 6.1 and Proposition 6.3.

Corollary 6.4 (a) If g is coercive on IR", then V;
is coercive on IR"™ for all T > 0.

(b) If L is coercive on IR™ x IR"™, then V. is coercive
on R"™ for all T > 0.
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