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Abstract

This paper is a sequel to the one in this same session
which surveys recent results on the role of convexity in
Hamilton-Jacobi theory. We describe here how value
functions in optimal control can be represented as up-
per and lower envelopes involving so-called kernel func-
tions. Particularly noteworthy is a lower envelope for-
mula given in terms of the dualizing kernel, which is
a value function in its own right with many surprising
and attractive properties.

1 Introduction

We continue our survey and development of Fully Con-
vex (FC) optimal control problems that was begun in
our companion paper. We assume the reader is fa-
miliar with the notation and assumptions introduced
there, and those assumptions are in effect throughout
this paper as well.

Recall that the basic model has the form
i {o(a(0) + [ (a0 50} [ o) =} (1)
0

where the minimization takes place over the arc space
AL[0, 7] of absolutely continuous functions, and the ini-
tial cost function g : R" — IR := (—o0, +00] and La-
grangian function L : R™ x R™ — IR are both assumed
to be convex, lower semicontinuous, and proper. The
convexity in L is in both variables (z,v) jointly, which
on the one hand is quite special, but on the other hand,
leads to a harmonious and symmetric theory while still
covering many important applications. The extended-
real-valuedness of g and L serve as a modelling tool and
assure that problems in optimal control are covered.

Fundamental to many issues in optimal control is the
value function V(7,€), which is the infimum value in
(1) with the time 7 and terminal state £ viewed as pa-
rameters. Our companion paper dealt with V' directly
as a solution to the Hamilton-Jacobi equation. Here
we describe ways of representing V' in terms of better
behaved functions, called kernel functions. The ter-
minology comes from a far-reaching analogy between
minimizing a sum of functions and integrating a prod-
uct of functions.

The kernel functions act in regard to the solution of
the Hamilton-Jacobi equation as the fundamental so-
lution in linear ODE theory acts in the variation of
constants formula, or as the Green’s function acts in
the representation of solutions to linear elliptic PDE’s.
The kernels contain two types of parameters, one that
in effect trivializes the boundary conditions, and the
second over which the differential equation is satis-
fied inside the domain. The sought-after solution of
the original differential equation is represented through
employing an operation to the first set of parameters
“matching up” the boundary condition, while at the
same time, preserving the solution to the differential
equation property in the second parameter. In linear
ODE the operation is just matrix multiplication, and
in elliptic PDE theory it is integration. In FC theory
the operation is sup or inf convolution. The use of sup
or inf depends on whether the representation is an up-
per (inf) or lower (sup) envelope, and also dictates the
nature of the kernel. We shall soon see there are many
advantages to the lower representation since the ker-
nel associated with that envelope has many agreeable
properties.

2 Kernel functions and envelopes

2.1 The upper formula

The upper envelope formula relies on a kernel function
E :[0,00) x R" x IR" — IR that treats both endpoints
as parameters. Specifically, E(7,¢’,€) is the infimum
value of the optimization problem

inf{/OTL(:c(t),j:(t))dt |2(0) = ¢, a(r) = g} )

when 7 > 0, and at 7 = 0is 0 if £ = £ and +o0
otherwise. Note that the optimization problems (1)
and (2) coincide if g in (1) is taken as

o(E") = {o it e = ¢,

oo otherwise.

We call E the fundamental kernel in analogy with fun-
damental matrices of ODE theory. The following the-
orem is elementary and evident from the definitions.

Theorem 2.1 (upper envelope representation)
For each (1,€) € [0,00) x R", the value function V



1s expressed in terms of E by the formula

virg = ot {9(€)+E(r¢.9)}.

'eR"

In fact the upper formula holds for any g. It is called
an upper envelope because V sits below a collection of
functions indexed by &’ and is the pointwise infimum
over this collection.

One of the main examples covered by FC theory is
linear control problems with hard control control con-
straints. There, in particular, the fundamental ker-
nel F may not be finite for a given (7,¢’,¢). In fact,
E(r,&',€) is finite precisely when there is an arc z(-)
that goes from &’ to & over the interval [0, 7] having
the integral [JL(x(t),d(t))dt4 finite. An assumption
requiring F finite everywhere would amount to global
controllability that would preclude many applications.
It could happen that V(7€) takes on +oo as well,
which is the case when E(7,¢,€) is +oo for all £ sat-

isfying ¢(£') < oo.

The appearance of 400 in V and E is well-handled in
the general FC theory and is not really an impediment
there, but it clearly becomes troublesome in any practi-
cal situation. This motivates an alternative description
for V' that approximates from below with finite values.

2.2 The lower envelope formula

The lower formula relies on a kernel which introduces
parameters in a different manner than the fundamental
kernel. The dualizing kernel K : [0,00) X R" x IR" —
IR is another instance of the type of value function V'
defined through (1), in this case with g taken as the
linear function g(¢') = (n,&’) where 7 is introduced as
a new parameter. That is, K(7,£,n) is the infimum
value of

ir(lf){(n,:t(())} + /L(m(t), a(t))dt ‘ z(r) = 5} .
z(- 0

In view of Theorem 2.1, we could just as well take the
formula

K(r&m = jof {.¢)+ B0} )

¢eR™

as the definition of K.

The convexity assumptions on L imply that E(7,£,§)
is convex in (€',¢), and since (3) can be rewritten as

—K(r.¢,—n) = sup {(.€) — E(r,€.9)},
¢'eRn

it follows that n — K(7,&,n) is concave and is closely
related to the Legendre-Fenchel conjugate of & +—
E(r,&',€). This suggests further that the upper for-
mula (2) can be dualized, and that is in fact the case,
which is the substance of the following theorem.

Theorem 2.2 (lower envelope representation)
For each (1,€) € [0,00) x R"™, the value function V
is expressed in terms of K by the formula

V(rg = sw {K(rn&m—g'm} @)

neR™

It is a lower envelope because V sits above a collection
of functions indexed by 7 and is the pointwise supre-
mum over this collection. Since (4) involves the con-
jugate g*, we call K the dualizing kernel.

Unlike the fundamental kernel E, the dualizing kernel
is always finite-valued (under our assumptions) — see
Theorem 3.2 below. The next section shows that the
dualizing kernel has other appealing properties as well.

3 The dualizing kernel

3.1 Double Hamilton-Jacobi equation

By definition, the dualizing kernel is a value function
in the variables (7,€) for each fixed 1, but in fact it
is also a value function in (7,7) of yet another varia-
tional problem for each parameter £. A consequence of
duality theory is that —K(7,&,n) is the infimum value
of

LI(lf)’{ /OTE(y(t),y(t))dt — (& y(7) ’y(O) = n}v

where L is the dual Lagrangian. Thus K satisfies a
double Hamilton-Jacobi equation, one associated to &
as the state variable and 7 as a parameter, and another
with the dual Hamiltonian and the roles of £ and 7 re-
versed. Moreover, K also has a surprising differentiable
property in t.

Theorem 3.1 The kernel K(71,€,m) is continuously
differentiable with respect to T and satisfies, for T > 0,

—H(&n')  forall n' € 9K (7,&,n),
9K (r,&m) = i
7H(£l>77) fOT’ all gl S 87]K(T7€777)a

K(07§77’) = <£a77>a

where 0K /Ot is interpreted as the right partial deriva-
tive when T = 0.

The issue of whether K is uniquely determined as the
solution to one of the HJ equations in the last theorem
has only been resolved recently by Galbraith [3]; the
growth assumptions we have placed on the Hamiltonian
is more general than earlier viscosity theory allowed.
The uniqueness of K satisfying both of the equations
and some further regularity was proved in our original

paper [2].



3.2 Continuity and differentiability properties
As already mentioned, the fundamental kernel F may
take on +o0’s, but K does not. This section sug-
gests that K’s further structural makeup could make it
more practically useful for numerical computation than
E. Continuity and differentiability properties of K are
stated in the next two theorems.

Theorem 3.2 The dualizing kernel K is locally Lip-
schitz (and in particular, is finite) on [0, 00) x R" X< IR™.
For each 7 > 0, the map § — K(7,&,1n) is convezx for
each n € R", and n — K(7,&,1n) is concave for each
Ee R".

Theorem 3.3 For each (7,£,m) €
the directional derivative

dK(1,§,m)(0,w,C)
= lim 7 { K (7 4+ 10,€ + hw,n + h¢) = K(m.€0)}

(0,00) x R" x IR",

exists in all directions (0, ,w, (), and is equal to

Qk(T, ga 77) + maX{<77/’ (“J> | 77' € afK(Tv 55 77)}
+ min{(¢',¢) |¢' € 9,K(T,&m)}.

The quantity k(1,£,m) is the common value of H(&,n')
with ' € 0:K(1,&,m), and H(E',n) with § €
877K(T7 §7 77) N

3.3 Propagation of the Legendre-Fenchel con-
jugate formula

Theorem 2.2 has an interesting interpretation that
sheds light on the nature of the evolution of solutions to
the Hamilton-Jacobi equation. Recall that the bound-
ary conditions are V(0,¢) = g¢(§) and K(0,&,n) =
(&,m). Thus the lower formula at 7 = 0 reduces to

9(6) = sup {(&.m) —g"(m },
neRrR™
which of course is just the recovery formula of a convex
function from its Legendre-Fenchel conjugate. Theo-
rem 2.2 says that this formula is propagated forward in
7 by replacing the bilinear function (£,7) — (£,n) by
the convex/concave function (&,n) — K(7,&,n).

4 Subgradient formula

In control applications, the subgradients of V' are per-
haps more important than the values of V itself, and
so it is highly desirable if these can be obtained in a
straightforward manner. The dualizing kernel shows it-
self again as an important entity because the subgradi-
ents of V' can be obtained from K through solving the
finite-dimensional optimization problem contained in
the lower envelope formula (4). It is not clear how one
could obtain a similar type of characterization through
the subgradients of F.

Theorem 4.1 For every (1,€) € [0,00) x R"™, one has

ov(r,€) =\ J{0.cK(rem |ne M0},
where
M(7,§) = argmaxn{K(T,&n) - g*(n)}

is the set of n achieving the mazimum in (4). In other
words, we have (o,n') € OV (1,€) if and only if

, n' € 9K (1,&,m),
dn e M(r,€&) with { o fH(f,ﬂ/)-

The previous theorem raises further questions about
the nature of the optimization problem in (4), and in
particular whether optimal solutions exist. The follow-
ing result addresses this issue.

Theorem 4.2 For any (1,€) € (0,00,) x R", the fol-
lowing properties in the lower envelope formula are
equivalent:

(a) the argmazx set M (1,€) is nonempty and compact;

(b) for every B € IR, the upper level set

{n|K(r,&m) —g"(n) > B8}
18 compact;

(c) & belongs to the interior of the set

{€|V(r,€) < oo}

5 Example prototype

Of course one should not expect the kernels to easily
be calculated in all case, since nonlinear equations gen-
erally do not have closed form solutions. However, this
section considers a certain type of Lagrangian in which
expressions for the kernels £ and K can be easily for-
mulated, in which case the envelope formulas become
more explicit.

Consider a Lagrangian L : IR" x IR" — IR of the form
L(Z‘,U) = LO(U - A.T),

where A is an n X n matrix and Lg is a proper convex
function on IR™ that is Isc and coercive. For example, L
could come from the dynamics in a Linear-Quadratic
Regulator (LQR) problem with hard constraints (see
Section 2 of our companion paper), in which case Lo (w)
is the infimum in v of v Ru taken over the set {u : u €
U, w = Bu} (by convention, the inf over the empty set
is 400).



Define ¥ : [0,00) x R" — IR by

T T
U(rn) = / Ho(e ™ n) dt,
0

this expression being finite and convex in 7. Then the
dualizing kernel is given by

K(r,&n) = (e ™" m) — U(r,n)

and the fundamental kernel is given by
E(T? 5/7 g) = q)(7-5 e_TAE - 5/)7

where ® : [0,00) x R" — IR is the function defined
by taking ®(7,:) to be the (proper, lsc and coercive)
convex function conjugate to ¥(r,-) for each 7. Thus,
for initial function g : IR™ — IR one has the upper
envelope representation

V(r,§) = infe {g(€) + @(r,e A~ €) ],
and the lower envelope representation

V(r,€) = sup, { (€ m) = U(rm) — g (n)}.

One may note directly in this prototypical example that
E(t,-,-), 7 > 0is not necessarily finite everywhere, but
that K always is.

6 Conclusion

The FC problem formulation covers a particular type
of nonlinear optimal control problem that extends the
LQR model. The popularity of the LQR model lies
in the fact that explicit solutions are available in feed-
back form, whereas in general no explicit representation
could be expected. The reasoning behind the deriva-
tion of these properties in LQR relies on the nature of
quadratic functions, of course, but the essential ingre-
dient needed for a global representation is just the joint
convexity of the Lagrangian. This weaker assumption
allows a control designer much greater freedom in han-
dling control constraints, while at the same time, main-
tains global features of the problem and offers formulas
for the solution.
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