SOME PROPERTIES OF PIECEWISE SMOOTH FUNCTIONS!

R. T. Rockafellar?

Abstract: Piecewise smooth equations are increasingly important in the numerical treatment
of complementarity problems and models of equilibrium. This note brings out a property of the
piecewise smooth functions that enter such equations, for instance through penalty expressions.
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Dedication: It is a great pleasure to contribute to a volume in honor of Lucien Polak, a
long-time friend. While focused on numerical methodology, he has been a strong proponent
of the broad view of optimization in which nonlinear programming is only one component in
a framework that includes control problems, semi-infinite programming, min-max optimization,
and other challenges. His insistence on building a middle ground between conceptual algorithms
and implementations, by providing a theory of how to coordinate the various epsilons through
innovative approaches to optimality criteria has deeply influenced my thinking.

1 Introduction

Piecewise smooth functions have received considerable attention in the last few years because
of applications to solution methodology in optimization, particularly in connection with com-
plementarity problems and variational inequalities more generally. Some of that attention has
been directed toward special penalty expressions and their usage, but fundamental research on
piecewise smoothness has been conducted as well. Basic background and developments in the
subject can be found in [1], [2], [3], [4], [5], [6], [7], [8], and more recently for example in [9].

Intuitively, the notion of a piecewise smooth function is meant to capture the idea of a
function whose domain can be partitioned locally into finitely many “pieces” relative on which
smoothness holds, and continuity holds across the joins of the pieces. Here smoothness refers to
continuous differentiability. The definition of piecewise smoothness, going back to [1], sidesteps
direct mention of such pieces, however, since that would raise technically troublesome issues such
as their boundary properties and interrelationships. Instead, it works with collections of smooth
functions that are defined universally in a local sense, beyond any boundaries of possible pieces.

This definition of piecewise smoothness is helpful and convenient but conceivably could be
in conflict with the intuitive notion in some respects. For instance, might it be possible for a
function to be piecewise smooth on an open set O in IR" with n > 2 and actually smooth at all
but one point z € O, without in fact being smooth on all of O? If so, we would seem to have
something like piecewise smoothness with just one piece, and yet not have smoothness.

The purpose of this brief note is to demonstrate that the situation just described is impossible,
and further to shed more light on the structure of piecewise smoothness in general.
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2 Definitions and Results

Definition 1. A function f on an open set O C IR" is said to be piecewise smooth if it is
continuous on O and for each T € O there is a finite collection { f;},.; of C' functions defined
on a neighborhood of T such that, for some € > (0, one has

f(z) € { fi(z)|i € I} when |z —Z| < e. (1)
in which case the notation is used that

I(x) ={iel|f(z) = fi(z)}.

Such a collection is said to form a local representation for f at T, and it is called minimal if no
subcollection forms such a representation.

Note that a local representation at T serves also as a local representation at each = in some
neighborhood of z.

The featured result, stated below as Theorem 1, will be attained by way of a pair of lemmas
having some independent interest. We will go on then, in Theorem 2, to show how the same
techniques are able to reconcile even more broadly the intuitive notion of piecewise smoothness
with its formulation in Definition 1.

Lemma 1. Suppose f is piecewise smooth on O and that { f;},., is a minimal local representa-
tion for f at the point £ € O. Then for every i € I there is an open set O; such that T € clO;
and f = f, on Oz

Proof. Let € be such that (1) holds for the open ball at Z of radius €; denote that ball by B,
assuming without loss of generality that c1B C O. For each i € I, let C; = {z € B| f(z) =
fi(z)} and O; = B \ U, C;. Because f and f; are continuous, Cj is closed relative to B and
therefore O; is open. Furthermore T € cl O;, for if not the set J;; C; would cover a neighborhood
of z and f; would be superfluous in the local representation, contradicting minimality. O

Lemma 2. Let f be piecewise smooth on O, and let { f;},.,; be any local representation for f
at T € O. If f is differentiable at T, then there exists i € I(Z) such that V f(z) = V f;(Z).

Proof. Without loss of generality we can take the local representation to be minimal. Then in
particular, f(z) = f;(Z) for every i € I. Denote the linear functions (Vf(Z),-) and (V f;(Z),-)
by g and g;. Our aim is to show that g = g; for some 7, and we can accomplish that producing
an open set on which g and g; agree.

Let € be such that (1) holds. Consider any w € IR" and any sequence of values 7 \.0. For
each v large enough that |7"w| < ¢, there exists ¢ € I with f(Z + 77w) = f;(Z + 7™"w). Because
1 is finite, we can suppose, by passing to a subsequence if necessary, that the same ¢ works for
every v. Then we have

f@+7w) - f(@) _ fil@+7m"w) — fi(Z)

= for all v.
TV ™

Hence, on taking limits on both sides, we have g(w) = g;(w).



This shows that { g;},.; is a local representation of g. Reducing I to a subset J if necessary,
we can arrange that { g;},.; is a minimal representation. Then Lemma 1 applies, and we are
finished. o

The first part of the proof of Lemma 2 essentially reproduces a result in [4, Proposition 2.1],
namely that any piecewise smooth function f represented at Z by a collection { f; };cs is direction-
ally differentiable, with its directional derivative function being piecewise linear and represented
by the collection of (linear) directional derivative functions associated with the functions f; that
are active at . The new contribution is to feed this into an invocation of Lemma 1. Variants of
Lemmas 1 and 2 can be seen also in [3, Prop. 4.1.1 and Prop. 4.1.3].

Theorem 1. Suppose f is piecewise smooth on O C IR" with n > 2, and in fact that f is
smooth on O \ {z} for some T € O. Then f must be smooth on O. Moreover for any local
representation { f;},.,; that is minimal at z, one has V f(z) = V f;(z) for all i € I.

Proof. Consider a minimal local representation {f;};cr at T and a ball B = {z| |z — Z| < &}
in which it operates. For each i € I, let D; = {z € B| f(z) = fi(z), Vf(z) = Vfi(z)}. Observe
that every point z € B\ {Z} belongs to at least one of the sets D; by Lemma 2 (as applied to x
instead of 7).

For each ¢ € (0,&) let S; be the sphere {z||x — Z| = €}. On S, the mapping V[ is
continuous; it agrees with V f; on D; N S,, with these sets covering S, by the observation already
made. Because V f; is continuous on D;, which contains z, we have

limsup Vf(S.) C {Vfi(z)|i € I}.
e \0
Here the image sets V f(S.) are connected, because connectedness is preserved under continuous
mappings and the spheres S, are themselves connected; here we use the assumption that n > 2.
It follows that the sets V f(S.), which are uniformly bounded, must converge to a particular
element of { Vf;(Z)|i € I} (inasmuch as small neighborhoods of {Vf;(Z)|i € I} isolate its
finitely many points). Thus, V f has a continuous extension from O \ {Z} to O.
By way of the mean value theorem, as applied over segments [T, Z +7w]|, this ensures that f is
differentiable at Z, hence in fact C* on O. This justifies the first claim in the theorem. Applying
Lemma 1, we then get the second claim as well. O

Beyond the situation addressed in Theorem 1, there are other insights provided by our pat-
terns of argument.

Definition 2. A function f on an open set O in IR" will be called smooth relative to P, a closed
subset of O, if P = cl(int P), f is smooth on int P, and the gradient mapping V f on int P can
be extended continuously to P.

Theorem 2. If f is piecewise smooth on O, then any point T € O has a neighborhood covered
by a finite collection of closed sets {P;};cr in O such that T € P; and f is smooth relative to P;.

Proof. Consider a minimal local representation {f;};c; as in Lemma 1 and corresponding sets
C; and O; in the proof of Lemma 1, noting that intC; D O; # (). Take P; = clint C;. Then
obviously P; = clint P; as well, and Z € P; because T € clO;. Moreover P; C clC;, so f agrees
with f; on P;. We have f; smooth relative to P;, and therefore f is smooth relative to P;.
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Finally it must be established that the sets P; cover a neighborhood of z. This will be done
for the ball B in the proof of Lemma 1. Suppose there were a point zy € B not belonging to any
P;. Then some closed ball By around zy within B would be disjoint from int C; for every ¢ € I.
Since By, like B, is covered by the sets C;, it must actually be covered by the sets C; \ int C;,
which are closed relative to By and have empty interior. By the Baire category theorem, however,
it is impossible for a compact set with nonempty interior to be expressed as the union of finitely
many (or even countably many) closed subsets having empty interior. The contradiction confirms
that every point of B belongs to at least one P;. O

Theorem 2 implies of course that f is continuously differentiable on an open set O’ C O that
has the same closure as O. That property of piecewise smoothness was previously obtained in [3,
Prop. 4.1.5], likewise with an argument that appeals to the Baire category theorem.
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