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1 Introduction

In numerical work, a measure of “conditioning” of a problem is typically conceived as an upper
bound on the ratio of the size of solution (output) error to the size of data (input) error. The measure
is linked to some sort of well-posedness property and may further serve, through its reciprocal, to
describe the perturbation distance of the given problem from ill-posedness.

At its simplest, this pattern seen is when solving Ax = y for x in the case of X = Y = IRn and a
nonsingular matrix A ∈ IRn×n; the data input then is y and the solution output is A−1y. In terms of
errors δx in output corresponding to errors δy in input, one has the tight estimate ‖δx‖ ≤ ‖A−1‖‖δy‖
for the absolute size of errors and, on the other hand, (‖δx‖/‖x‖) ≤ ‖A‖‖A−1‖(‖δy‖/‖y‖) for the
relative size of errors. The condition number of A is traditionally defined from the second estimate,
with cond A = ‖A‖‖A−1‖, but the first estimate adds to the overall view of “conditioning” as well
because of the Eckart-Young theorem [12], which says that

inf
{
‖B‖

∣∣∣A + B singular
}

=
1

‖A−1‖
.

This is the prototype for a theorem giving an upper bound on how far a given mapping, in this case
A, may be perturbed before good numerical behavior in the problem breaks down.

In recent years perturbation results of this form have attracted the interest of researchers working
in the complexity of algorithms. For such results in numerical analysis, see e.g. [6] and [5]. In
optimization, the distance to ill-posedness in the sense of constraint inconsistency plays an important
role in the complexity study of interior point methods; see [27], [13], [15], [25] and the references
therein. There is a rapidly growing literature on conditioning of various optimization problems such
as linear [4], nonlinear [34], semidefinite [24], stochastic [33], semi-infinite [2], and quadratic [35]
programming problems. A major challenge is the extent to which the conditioning paradigm in the
Eckart-Young result, where the radius of good behavior is the reciprocal of a constant associated
with an estimate of absolute error sizes, persists in more general circumstances.

A broad framework for studies of conditioning has emerged in the methodology of variational
analysis, which allows a focus on set-valued mappings (with single-valuedness as a special case).
For Banach spaces X and Y , a set-valued mapping F from X to Y , indicated by F : X →→ Y , is
identified with a graph set gph F ⊂ X×Y , and has effective domain dom F = {x ∈ X |F (x) 6= ∅}
and effective range rge F = { y ∈ Y | ∃x with F (x) 3 y}. Its inverse F−1 : Y →→ X, obtained by
reversing all pairs in the graph, has dom F−1 = rge F and rge F−1 = dom F . Single-valuedness of
F on a set D, signaled with the notation F : D → Y , means that F (x) reduces to exactly one
element y for each x ∈ D; when F is neither single-valued nor empty-valued at a point x, it is called
multi-valued at x.

In the unrestricted picture of such possibilities for F as well as for F−1, the basic problem to be
studied is that of solving a “generalized equation”:

PF (y) for given y, determine x such that F (x) 3 y.

The data input is the vector y ∈ Y and the solution output is some x ∈ F−1(y), or perhaps the
entire solution set F−1(y) ⊂ X.

A vast array of problems is obviously covered by this generalized equation model in PF (y).
Beyond ordinary equation solving, there are applications to finding solutions to constraint systems
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(feasibility problems) and to variational inequalities, which in particular may characterize optimality
or equilibrium. Everything depends ultimately on the specific structure of F and what can be done
with it, but on the abstract level much can be learned by trying to see what can be said about
conditioning in its very essence. Global perturbation results like those for solving Ax = y must be
relinquished for local results that refer to some particular ȳ ∈ Y and x̄ ∈ F−1(ȳ), and are derived
by analyzing the graph of F around (x̄, ȳ). Nonetheless, the way may be cleared for a deeper
understanding of well-posedness and complexity issues in computation.

The key to this is found in “regularity” properties of F that correspond to “Lipschitz-like”
properties of F−1. Such properties can take on several forms, in each case associating with F and
the reference pair (x̄, ȳ) a constant called a regularity modulus. Finiteness of that modulus means
that the generalized equation problem is, from a certain perspective, well-posed. It is possible then
to formulate the question of how far the given problem is from problems that, in this same sense,
are ill-posed, and to see whether that distance is given by the reciprocal of the designated regularity
modulus. Such a result describes the radius of the largest ball (in perturbation space) in which good
behavior is assured and thus yields what we may conveniently call a perturbation radius theorem.

In a previous paper [11], we went down that path with the property of metric regularity of
F , arriving at substantial extensions of the Eckart-Young theorem and articulating them further
for some special problem formats. Our goal now is to follow through, as far as possible, with the
related properties which we systematize as strong metric regularity, metric subregularity and strong
metric subregularity of F (but also have other names). Whereas metric regularity of F is tied to
the Aubin property of F−1, the basic seed of all Lipschitz continuity behavior in the two-point
sense, subregularity of F is tied to the calmness of F−1, a Lipschitz-type property in the one-point
sense, which localizes Robinson’s “upper Lipschitz” continuity. All these concepts are already used
extensively, under various names, in the stability analysis of variational problems; for background
material, basic results, and references; see the recent monographs [1], [14], [20] and [32].

It will be demonstrated that perturbation radius theorems closely parallel to those developed
for ordinary regularity in [11] are obtainable for strong regularity and strong subregularity. Metric
subregularity, however, although considered in many papers (not always in clear terminological dis-
tinction from metric regularity), is an unstable property for which radius theorems in the proposed
pattern are inherently unavailable.

First on our agenda will be a brief review of metric regularity and its known role, along with
some observations about extensions making use of sublinearity. Then will come an elucidation of
why metric subregularity fails to lead to a parallel theory as far as conditioning and well-posedness
are concerned. The main contributions of a positive nature will follow in sections devoted to
strong regularity and strong subregularity. Finally, applications to variational inequalities will be
described. Specializations to individual circumstances can ultimately be carried out in terms of
calculus rules in variational analysis that have been built up for set-valued mappings and their
graphical derivatives and coderivatives, as in [32].

2 Background in Metric Regularity

The norms in the Banach spaces X and Y will both be denoted by ‖ · ‖, and the closed unit balls
by IB; the same also for the dual spaces X∗ and Y ∗ when they come into play. More generally,
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IBr(a) will be the closed ball of radius r centered at a; thus IBr(a) = a + rIB. (It will always be
clear from the context which space is involved.) The distance in X (or any other space) between a
point x and a set C will be denoted by d(x, C); thus, d(x, C) = inf{ ‖x− x′‖ |x′ ∈ C}.
Definition 2.1 (metric regularity). A mapping F : X →→ Y is metrically regular at x̄ for ȳ if
F (x̄) 3 ȳ and there exists κ ∈ [0,∞) with neighborhoods U of x̄ and V of ȳ such that

d(x, F−1(y)) ≤ κd(y, F (x)) for all x ∈ U, y ∈ V. (2.1)

The infimum of the set of values κ for which this holds is the modulus of metric regularity, denoted
by reg F (x̄| ȳ). (The absence of metric regularity is signaled by having reg F (x̄| ȳ) = ∞.)

The inequality (2.1) has direct use in providing an estimate for how far a point x is from being a
solution to the general equation problem for F and the data y; the expression d(y, F (x)) measures
the “residual” when F (x) 63 y. Smaller values of κ correspond to more favorable behavior. Metric
regularity requires a uniformity in such estimates with respect to local perturbations of both x̄ and
ȳ, the robustness of which is influenced by the size of reg F (x̄| ȳ).

In the case of F (x) = Ax + a for nonsingular A ∈ IRn×n and a ∈ IRn, one gets reg F (x̄| ȳ) =
‖A−1‖. This and many other examples and applications are laid out in detail in our paper [11].

The concept of metric regularity has a long history. It already appeared indirectly in the
work of Lyusternik in the 1930’s and more explicitly in the work of Graves in the 1950’s. It has
had a valuable role of optimization since the 1960’s, in particular as a constraint qualification for
developing optimality conditions; for a recent survey see [17].

The estimation inequality (2.1) supports the interpretation of metric regularity as a condition of
well-posedness of the generalized equation F (x) 3 ȳ in reference to its solution x̄, with reg F (x̄| ȳ)
as the associated condition number . That idea is enhanced by the following fact (cf. [17], [32]);
recall here that a set is said to be locally closed at one of its points if some neighborhood of that
point has closed intersection with the set.

Theorem 2.2 (characterization by the inverse Aubin property). For a mapping F : X →→ Y , let
F (x̄) 3 ȳ. Then F is metrically regular at x̄ for ȳ if and only if its inverse F−1 : Y →→ X has the
Aubin property at ȳ for x̄, i.e. there exists κ ∈ [0,∞) along with neighborhoods U of x̄ and V of ȳ
such that

F−1(y′) ∩ U ⊂ F−1(y) + κ‖y′ − y‖IB for all y, y′ ∈ V. (2.2)

Moreover, the infimum of all such κ equals reg F (x̄| ȳ).

In the notation of [32], the infimum of all κ for which (2.2) holds is lip F−1(ȳ |x̄); in such terms,
Theorem 2.2 says that

lip F−1(ȳ |x̄) = reg F (x̄| ȳ).

The modulus reg F (x̄| ȳ) thus quantifies the extent to which Lipschitz behavior, in its most basic
manifestation, is present locally in the response of solutions to data perturbations.

Lipschitz properties of single-valued mappings G : X → Y are important in ascertaining what
happens to metric regularity under perturbations. For such mappings, there is no need to write the
Lipschitz modulus as G(x̄| ȳ) with ȳ = G(x̄); we simply set

lip G(x̄) = lim sup
x,x′→x̄
x 6=x′

‖G(x)−G(x′)‖
‖x− x′‖

.
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Having lip G(x̄) < ∞ is equivalent to having G be Lipschitz continuous around x̄. When G(x) =
Ax + a, for some A ∈ L(X, Y ) (the space of continuous linear mappings from X to Y ), one has
lip G(x̄) = ‖A‖.

A generalized equation F (x) 3 ȳ with solution x = x̄ can be perturbed by adding to F a
mapping G with G(x̄) = 0, so as to get a generalized equation (F + G)(x) 3 ȳ still having solution
x = x̄. What is the effect of such a perturbation on the modulus of metric regularity with respect
to x̄ and ȳ? This question is answered by a fundamental estimate.

Theorem 2.3 [11] (perturbation estimate for metric regularity). Consider a mapping F : X →→ Y
and any (x̄, ȳ) ∈ gph F at which gph F is locally closed. If reg F (x̄| ȳ) < κ < ∞ and if G : X → Y
is a mapping such that G(x̄) = 0 and lip G(x̄) < λ < κ−1, then

reg(F + G)(x̄| ȳ) < (κ−1 − λ)−1 =
κ

1− λκ
.

As noted in [17], it was known to Milyutin already in the 60’s that an estimate like this for
single-valued F can be derived by modifying the original proof of a theorem of Lyusternik from
the 30’s; a technique in [17] could be used to translate such an estimate to set-valued F . Closer
to Theorem 2.3 than Lyusternik’s theorem, however, is a result of Graves from the 50’s, which he
stated as a nonlinear analogue of the Banach open mapping principle. With the development of
optimization theory in the 60’s and 70’s, this kind of result evolved into what is now called the
Lyusternik-Graves theorem, which is mainly used to obtain a constraint qualification which leads
to necessary conditions for optimality. More about the contributions of Lyusternik and Graves is
provided in [8].

Theorem 2.3 yields the following relation between the regularity modulus of the mapping F and
its perturbation F + G, involving the Lipschitz modulus of G.

Corollary 2.4. Consider a mapping F : X →→ Y and any (x̄, ȳ) ∈ gph F at which gph F is locally
closed and reg F (x̄| ȳ) < ∞. If reg F (x̄| ȳ) > 0, then for any G : X → Y such that G(x̄) = 0 and
reg F (x̄| ȳ) · lip G(x̄) < 1, one has

reg(F + G)(x̄| ȳ) ≤ (reg F (x̄| ȳ)−1 − lip G(x̄))−1.

If reg F (x̄| ȳ) = 0, then reg(F + G)(x̄| ȳ) = 0 for any G : X → Y with lip G(x̄) < ∞.

Corollary 2.4 reveals in particular that the metric regularity of a mapping F is inherited by, or
can be determined from, any “strict first-order approximation” at the points in question. Recall
that a mapping F0 : X →→ Y is called a strict first-order approximation to F at x̄ if

F = F0 + G with G : X → Y satisfying G(x̄) = 0 and lip G(x̄) = 0. (2.3)

Corollary 2.5 (stability under strict first-order approximations). If a mapping F0 : X →→ Y is a
strict first-order approximation to a mapping F : X →→ Y at x̄, where gph F is locally closed at
(x̄, ȳ), then F is metrically regular at x̄ for ȳ if and only if F0 is metrically regular at x̄ for ȳ, and
indeed

reg F (x̄| ȳ) = reg F0(x̄| ȳ).
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Corollary 2.6 (partial strict linearization). Let F = f +M for a continuous single-valued mapping
f : X → Y and a mapping M : X →→ Y with closed graph, and let ȳ ∈ F (x̄). Suppose f is strictly
differentiable at x̄. Then

reg F (x̄| ȳ) = reg(f0 + M)(x̄| ȳ) for the linearization f0(x) = f(x̄) + Df(x̄)(x− x̄).

Detail. The mapping F0 = f0 + M is a strict first-order approximation to F , so Corollary 2.5 is
applicable.

The classical case of a strict linearization of F itself corresponds to having M be the zero mapping
in Corollary 2.6, so F = f and the first-order approximation is F0(x) = F (x̄)+DF (x̄)(x− x̄). Then

reg F (x̄| ȳ) = reg DF (x̄), where DF (x̄) ∈ L(X, Y ).

A consequence of Theorem 2.3 in part, but resting on additional arguments, is our main result
in [11] about the perturbation distance to the failure of metric regularity.

Theorem 2.7 [11] (radius theorem for metric regularity). For a mapping F : X →→ Y and any
(x̄, ȳ) ∈ gph F at which gph F is locally closed, one has

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not metrically regular at x̄ for ȳ
}
≥ 1

reg F (x̄| ȳ)
. (2.4)

When dim X < ∞ and dim Y < ∞, one is sure actually to have

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not metrically regular at x̄ for ȳ
}

=
1

reg F (x̄| ȳ)
, (2.5)

and then moreover the infimum is unchanged if taken with respect to affine mappings G of rank 1.

The Eckart-Young theorem is the immediate corollary when X = Y = IRn and F (x) = Ax. The
case of reg F (x̄| ȳ) = 0 is also covered under the convention ∞ = 1/0. Indeed, when reg F (x̄| ȳ) = 0,
then, by Corollary 2.4, F + G is metrically regular at x̄ for any G with lip G(x̄) < ∞.

The general inequality in (2.4) comes directly from the estimate in Theorem 2.3, but obtaining
the equality in the finite-dimensional case requires separate work. When Theorem 2.7 was proved in
[11], it seemed possible that the equation in (2.5) might hold even without the assumption of finite-
dimensionality. Mordukhovich [23] subsequently showed this is true at least for a significant class
of infinite-dimensional mappings, but recently Ioffe [18] settled the issue in general by exhibiting
an infinite-dimensional mapping F for which the inequality in (2.4) is strict.

The equality (2.5) can still be obtained in infinite dimensions if the mapping F acting between
Banach spaces is, in addition, sublinear, that is, gph F ⊂ X × Y is a convex cone. Specifically, the
results in [11] about such a mapping yield the following fact, not explicitly stated until now.

Theorem 2.8 (radius theorem for sublinear mappings). For any F : X →→ Y that is sublinear with
closed graph, one has

inf
G∈L(X,Y )

{
‖G‖

∣∣∣F + G not metrically regular at 0 for 0
}

=
1

reg F (0|0)
, (2.6)
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and consequently also

inf
G:X→Y
G(0)=0

{
lip G(0)

∣∣∣F + G not metrically regular at 0 for 0
}

=
1

reg F (0|0)
. (2.7)

where moreover the infimum in each case is unchanged if taken with respect to affine mappings G
of rank 1.

Proof. According to [11, Theorem 2.9], the equation in (2.6) is valid with “nonsingular” in place of
“metrically regular” and holds true when G is restricted to being of rank 1. For sublinear mappings,
the two properties are the equivalent, as observed in [11, Example 2.1]. The combination of (2.6)
with the general inequality (2.4) gives (2.7).

Through our observation about strict first-order approximations, this special fact leads to radius
conclusions in infinite dimensions even for some mappings that aren’t sublinear.

Corollary 2.9 (feasibility mappings). Let F (x) = f(x) + K for a continuous function f : X → Y
that is strictly differentiable at x̄ and a closed, convex cone K ⊂ Y , and let ȳ = f(x̄), in which case
ȳ ∈ F (x̄). Then

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not metrically regular at x̄ for ȳ
}

=
1

reg F (x̄| ȳ)
, (2.8)

where moreover the infimum is unchanged if taken with respect to affine mappings G of rank 1.

Proof. First, let F0(x) = f0(x) + K with f0(x) = ȳ + Df(x̄)(x − x̄). This mapping, with closed
graph, is a strict first-order approximation to F at x̄ for ȳ. Hence reg F (x̄| ȳ) = reg F0(x̄| ȳ) by
Corollary 2.5. In the same way, for any G : X → Y with G(x̄) = 0, we have F0 + G as a first-order
approximation to F + G at x̄ for ȳ, so that reg(F + G)(x̄| ȳ) = reg(F0 + G)(x̄| ȳ) and the metric
regularity of F + G at x̄ for ȳ is equivalent to that of F0 + G.

Next, let F00 be the mapping whose graph is obtained from that of F0 by shifting (x̄, ȳ) to (0, 0);
specifically F00(x

′) = DF ()(x′)+K, where x′ corresponds to x−x̄. Then reg F0(x̄| ȳ) = reg F00(0|0),
and furthermore reg(F0+G)(x̄| ȳ) = reg(F00+G0)(0|0) for any mapping G : X → Y with G(x̄) = 0
and its counterpart G0 : X → Y with G0(0) = 0, related by G0(x

′) = G(x̄ + x′). Again F00 has
closed graph, but in addition F00 is sublinear, so that Theorem 2.8 is applicable and we have

inf
G0:X→Y
G0(0)=0

{
lip G0(0)

∣∣∣F00 + G0 not metrically regular at 0 for 0
}

=
1

reg F00(0|0)
. (2.9)

The equivalences brought to light have shown that the right side of (2.9) is identical to 1/ reg F (x̄| ȳ),
and on the other hand that F00 +G0 not being metrically regular at 0 for 0 is the same as F +G not
being metrically regular at x̄ for ȳ, under the indicated correspondence between G0 and G, which
has the property that lip G0(0) = lip G(x̄). Thus, (2.9) yields the targeted equation (2.8). The
reduction of the infimum to affine mappings carries through in parallel.

Feasibility mappings can be studied in a much broader setting than Corollary 2.9. Many other
results about them were presented in our paper [11].
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The finite-dimensional case enjoys a characterization of metric regularity and its modulus
through graphical differentiation, and that opens the way to an extensive calculus. Graphical
differentiation is defined through the general notion of the tangent cone TG(z̄) and normal cone
NG(z̄) to a set G at a point z̄ ∈ G, by taking G ⊂ X × Y and z̄ = (x̄, ȳ). For F : X →→ Y , the
graphical derivative of F at x̄ for ȳ, where ȳ ∈ F (x̄), is the mapping DF (x̄| ȳ) : X →→ Y defined by

u ∈ DF (x̄| ȳ)(w) ⇐⇒ (w, u) ∈ Tgph F (x̄, ȳ),

whereas the coderivative is the mapping D∗F (x̄| ȳ) : Y ∗ →→ X∗ defined by

v ∈ D∗F (x̄| ȳ)(z) ⇐⇒ (v,−z) ∈ Ngph F (x̄, ȳ).

The theory of tangent and normal cones in finite-dimensional spaces, which suffices for our applica-
tions here, is available in the book [32]. Infinite-dimensional extensions of coderivative concepts are
available in [23]; the definitions are more complicated and the results involving them rely to some
extent on compactness restrictions.

When F is single-valued, DF (x̄| ȳ) and D∗F (x̄| ȳ) simplify in notation to DF (x̄) and D∗F (x̄).
When F is continuously differentiable, these mappings reduce to the usual derivative and its adjoint.

Coderivatives were employed by Mordukhovich to develop key parts of the following character-
ization; see [32] for more background on this subject.

Theorem 2.10 (coderivative characterization of metric regularity). In the case of dim X < ∞
and dim Y < ∞, and as long as gph F is locally closed at (x̄, ȳ), one has F metrically regular at x̄
for ȳ if and only if D∗F (x̄| ȳ)−1(0) = {0}, and in fact

reg F (x̄| ȳ) = ‖D∗F (x̄| ȳ)−1‖+ = sup
v∈IB

 sup
z∈D∗F (x̄ | ȳ)−1(v)

‖z‖

 .

3 Metric Subregularity

With the platform of metric regularity in place, we are ready to turn to the related concept of
subregularity and how it compares.

Definition 3.1 (metric subregularity). A mapping F : X →→ Y is metrically subregular at x̄ for ȳ
if F (x̄) 3 ȳ and there exists κ ∈ [0,∞) along with neighborhoods U of x̄ and V of ȳ such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x) ∩ V ) for all x ∈ U. (3.1)

The infimum of the set of values κ for which this holds is the modulus of metric subregularity, denoted
by subreg F (x̄| ȳ). (The absence of metric subregularity is signaled by having subreg F (x̄| ȳ) = ∞.)

The main difference with the metric regularity in Definition 2.1 is that the data input ȳ is now
fixed and not perturbed to a nearby y. Often the intersection with V in (3.1) can be omitted, so
as to bring the inequality more in line with the earlier one in (2.1). This issue will be taken up in
Proposition 3.4.

The term “subregularity” is new here. This property has itself been called metric regularity in
some places, but that could lead to serious misunderstandings, particularly in view of its unstable
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behavior in contrast to that of true metric regularity, which will be brought out in Theorem 3.5.
We hope that our terminological distinction will help in avoiding such misunderstandings.

Metric subregularity has especially been studied in connection with feasibility problems and
their associated mappings, which commonly of the form

F (x) =
{

f(x) + K if x ∈ C,
∅ if x /∈ C,

(3.2)

with f single-valued and K a closed, convex cone (cf. Corollary 2.9). (Then F−1(y) consists of all
x ∈ C such that y − f(x) ∈ K, which can be viewed as the vector inequality f(x) ≤K y in the
partial ordering of Y induced by K.) The constants κ in this case furnish error bounds on constraint
systems. More on that subject can be seen, for instance, in the conference volume [22].

Theorem 3.2 (characterization by inverse calmness). For a mapping F : X →→ Y , let F (x̄) 3 ȳ.
Then F is metrically subregular at x̄ for ȳ if and only if its inverse F−1 : Y →→ X is calm at ȳ for
x̄, i.e. there exists κ ∈ [0,∞) along with neighborhoods U of x̄ and V of ȳ such that

F−1(y) ∩ U ⊂ F−1(ȳ) + κ‖y − ȳ‖IB for all y ∈ V. (3.3)

Moreover, the infimum of all such κ equals subreg F (x̄| ȳ).

Proof. Assume first that (3.3) holds. To say that x ∈ F−1(y)∩U and y ∈ V is to say that x ∈ U
and y ∈ F (x)∩ V . For such x and y, the inclusion in (3.3) requires the ball x + κ‖y− ȳ‖IB to have
nonempty intersection with F−1(ȳ). Then d(x, F−1(ȳ)) ≤ κ‖y − ȳ‖. Thus, for any x ∈ U , we must
have d(x, F−1(ȳ)) ≤ inf {κ‖y − ȳ‖ | y ∈ F (x) ∩ V }, which is (3.1). This shows that (3.3) implies
(3.1) and inf{κ |U, V, κ satisfying (3.3)} ≥ inf{κ |U, V, κ satisfying (3.1)}, the latter being by
definition subreg F (x̄| ȳ).

For the opposite direction, we have to demonstrate that if subreg F (x̄| ȳ) < κ < ∞, then (3.3)
holds for some choice of neighborhoods U and V . Consider any κ′ with subreg F (x̄| ȳ) < κ′ < κ.
For this κ′, there exist U and V such that d(x, F−1(ȳ)) ≤ κ′d(ȳ, F (x) ∩ V ) for all x ∈ U . Then
we have d(x, F−1(ȳ)) ≤ κ′‖y − ȳ‖ when x ∈ U and y ∈ F (x) ∩ V , or equivalently y ∈ V and
x ∈ F−1(y) ∩ U . Replacing κ′ by the larger value κ, we see that for such x and y there must be a
point of x′ ∈ F−1(ȳ) having ‖x′ − x‖ ≤ κ‖y − ȳ‖. Hence we have (3.3), as required.

Calmness of F−1 at ȳ for x̄ is a version, localized to x̄, of Robinson’s property of upper Lipschitz
continuity in [29]; F−1 has that property at ȳ if there exists κ ∈ [0,∞) along with a neighborhood
V of ȳ such that

F−1(y) ⊂ F−1(ȳ) + κ‖y − ȳ‖IB for all y ∈ V. (3.4)

This corresponds to taking U = X in (3.3), in which case a choice of x̄ plays no role. Particular
motivation comes from the following fact, proved by Robinson in [29].

Example 3.3 [29] (piecewise polyhedral case of upper Lipschitz continuity). Suppose X and Y
are finite-dimensional and gph F is the union of finitely many convex sets that are polyhedral (or
equivalently, this holds for gph F−1). Then F−1 is upper Lipschitz continuous at every ȳ ∈ dom F−1.

Robinson’s result complements the classical Hoffman lemma, which says that F−1 is Lipschitz
continuous relative to its effective domain dom F−1 when gph F is itself a polyhedral convex set.
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As for “calmness,” Clarke [3] was apparently the first to use that term in variational analysis,
initially for a property of value functions in optimization in connection with multiplier rules and pe-
nalization, but in later work also for single-valued mappings more generally. Properties of calmness
of single-valued and set-valued mappings are reviewed in [32].

The characterizations in Theorems 2.1 and 3.1 make clear that subregularity is a weaker condi-
tion than regularity. We definitely have

subreg F (x̄| ȳ) ≤ reg F (x̄| ȳ)

in general, even though this might not be obvious from the look of (3.1), which has F (x)∩V where
(2.1) only has F (x). In fact, for many of the mappings F that occur in applications, there’s no need
at all to mention a neighborhood V of ȳ in the description of subregularity and calmness. This is
established by our next result.

Proposition 3.4 (simplifying criterion). Let F (x̄) 3 ȳ for a mapping F : X →→ Y such that

lim inf
x→x̄

x∈dom F

F (x) 3 ȳ. (3.5)

Then metric subregularity of F at x̄ for ȳ is equivalent simply to the existence of κ ∈ [0,∞) along
with a neighborhood U of x̄ such that

d(x, F−1(ȳ)) ≤ κd(ȳ, F (x)) for all x ∈ U, (3.6)

whereas the calmness of F−1 at ȳ for x̄ can be identified with the existence of κ ∈ [0,∞) and a
neighborhood U of x̄ such that

F−1(y) ∩ U ⊂ F−1(ȳ) + κ‖y − ȳ‖IB for all y ∈ Y. (3.7)

Proof. Obviously (3.1) is implied by (3.6). The proof of the subregularity claim can therefore be
completed by demonstrating that if (3.1) holds for some U and V ; then, because of the assumption
in (3.5), the seemingly stronger condition in (3.6) must hold with respect to a possibly smaller
substitute U ′ for U .

Given (3.1), we can choose within V a neighborhood of the form V ′ = IBε(ȳ), and next by (3.5)
choose within U a neighborhood U ′ such that F (x)∩ V ′ 6= ∅ for all x ∈ U ′. Then d(ȳ, F (x)∩ V ) =
d(ȳ, F (x)) when x ∈ U ′. Hence from the fact that (3.1) continues to hold when U and V are
replaced by the smaller sets U ′ and V ′, we obtain (3.6) for U ′.

Similarly, (3.7) entails the calmness in (3.3), so attention can be concentrated on showing that
we can pass from (3.3) to (3.7) under an adjustment in the size of U . We already know from
Theorem 3.2 that the calmness condition in (3.3) leads to the metric subregularity condition in
(3.1), and further, from the argument just given, that such subregularity in the presence of our
additional assumption in (3.5) yields the condition in (3.6). But that condition can be plugged into
the argument in Theorem 3.2 by taking V = Y , so as to get the corresponding calmness property
with V = Y but with U replaced by something smaller. This gives (3.7).

Mappings of the type in (3.2) with f continuous fit the criterion in Proposition 3.4 in particular,
as do the mappings in Example 3.3.

The natural question to be asked about metric subregularity is whether it enjoys stability prop-
erties resembling those of metric regularity. The answer is no!
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Theorem 3.5 (instability of metric subregularity). There exist mappings F : X →→ Y such that F
metrically subregular at x̄ for ȳ and yet

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not metrically subregular at x̄ for ȳ
}

= 0 <
1

subreg F (x̄| ȳ)
. (3.8)

Indeed, even with X = Y = IR and F of closed graph, there are cases where subreg F (x̄| ȳ) < ∞
but subreg(F + G)(x̄| ȳ) = 0 for a mapping G having G(x̄) = 0 and lip G(x̄) = 0. Thus, metric
subregularity can even fail to be preserved under strict first-order approximations.

Proof. In IR × IR, let gph F be the set of all (x, y) such that x ≥ 0, y ≥ 0, xy = 0. Then
F−1(0) = [0,∞) ⊃ F−1(y) for all y, so F−1 is calm at ȳ = 0 for x̄ = 0, moreover “globally” so with
κ = 0. Therefore by Theorem 3.2, subreg F (0|0) = 0.

Consider, however, the mapping G : IR → IR defined by G(x) = −x2, for which G(0) = 0 and
lip G(0) = 0. The perturbed mapping F +G has (F +G)−1 single-valued everywhere: (F +G)−1(y) =

0 when y ≥ 0, and (F + G)−1(y) =
√
|y| when y ≤ 0. This mapping isn’t calm at 0 for 0. Hence by

Theorem 3.2 again, F + G isn’t metrically subregular; we have subreg(F + G)(0|0) = ∞.

In view of Theorem 3.5, it’s impossible to have a perturbation radius theorem for metric sub-
regularity in the mold of the one for metric regularity in Theorem 2.7. The radius of good behavior
could well be 0! Subregularity therefore falls short in this important respect as a workable concept
of conditioning for numerical purposes.

Another major drawback of metric subregularity, in contrast to metric regularity, is the lack of a
“norm” characterization of subreg F (x̄| ȳ) along the lines of the formula in Theorem 2.10. Without
such a formula, there is little hope of a viable calculus of estimates for this property. However,
a sufficient condition for calmness, developed in [16] in terms of neighboring coderivatives, could
perhaps be invoked for F−1 in the light of Theorem 3.2.

To conclude this section, we point out other properties which are, in a sense, derived from metric
regularity but, like metric subregularity, lack stability under small Lipschitz perturbations. One of
these properties relates to linear openness. It is well known that the metric regularity condition
in (2.1) is equivalent to linear openness of F at x̄ for ȳ with constant κ, in the sense of having
neighborhoods U of x̄ and V of ȳ such that

F (x + κr int IB) ⊃ (y + r int IB) ∩ V for all x ∈ U, (x, y) ∈ gph F, r > 0.

If we restrict this linear openness condition to the point (x̄, ȳ), that is, we postulate

F (x̄ + κr int IB) ⊃ ȳ + r int IB for r > 0, (3.9)

we get a property that fails to be preserved when F is replaced by F +G for G(x̄) = 0 and lip G(x̄)
zero. This is demonstrated by the following example2. Let X = Y = IR2, equipped with the
Euclidean norm, and define F : X → Y by taking take F (0, 0) = (0, 0) and for, x = (x1, x2) 6= (0, 0),

F (x1, x2) =
1√

x2
1 + x2

2

(
x2

1 − x2
2

2|x1|x2

)
.

2This example was communicated to the first author by H. Sussmann.
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Then F satisfies (3.9) at x̄ = 0, ȳ = 0, with κ = 1, since ‖F (x)‖ = ‖x‖. The function G(x1, x2) =
(0, x3

2) has G(0, 0) = (0, 0) and lip G(0, 0) = 0, but we have (F + G)−1(c, 0) = ∅ when c < 0.
A “metric regularity variant” of the openness property (3.9), equally failing to be preserved

under small Lipschitz perturbations, as shown by this example, is the requirement that

d(x̄, F−1(y)) ≤ κ‖y − ȳ‖ for y close to ȳ.

The same trouble comes up also for an “inner-semicontinuity variant”: there exist neighborhoods
U of x̄ and V of ȳ such that

F−1(y) ∩ U 6= ∅ for all y ∈ V.

Despite these negative observations, we will later see (in Section 5) positive aspects in the
stability behavior of the sharper property we call strong metric subregularity.

4 Strong Metric Regularity

The notion of graphical localization will now become useful. A graphical localization of a mapping
F : X →→ Y at a pair (x̄, ȳ) ∈ gph F is a mapping F̃ : X →→ Y such that

gph F̃ = (U × V ) ∩ gph F for some neighborhood U × V of (x̄, ȳ),

so that, in other words,

F̃ (x) =
{

F (x) ∩ V when x ∈ U ,
∅ when x /∈ U .

The inverse of F̃ then obviously furnishes a graphical localization of F−1 at (ȳ, x̄), with

F̃−1(y) =
{

F−1(y) ∩ U when y ∈ V ,
∅ when y /∈ V .

Our primary interest in this notion will be with single-valuedness properties of such graphical
localizations of F−1, although convex-valuedness of graphical localizations of F will play a role at
one stage as well.

Definition 4.1 (strong metric regularity). A mapping F : X →→ Y is strongly metrically regular at
x̄ for ȳ if the metric regularity condition in Definition 2.1 is satisfied by some κ, U and V such that,
in addition, the graphical localization of F−1 with respect to U and V is nowhere multivalued, i.e.,{

when y ∈ V , there is at most one solution
x ∈ U to the generalized equation F (x) 3 y.

This definition is slightly weaker than the one we furnished in [11], where the localization in
question was required to be single-valued rather than just nowhere multivalued. The two definitions
are equivalent, however, in view of the characterization provided next.
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Theorem 4.2 (characterization by single-valued Lipschitzian inverse). A mapping F : X →→ Y
is strongly metrically regular at x̄ for ȳ if and only if F has the single-valued Lipschitzian inverse
property there. This means F−1 has a graphical localization at (ȳ, x̄) that is single-valued and
Lipschitz continuous on a neighborhood of ȳ; in other words, it refers to the existence of κ ∈ [0,∞)
along with neighborhoods U of x̄ and V of ȳ such that{

the mapping y 7→ F−1(y) ∩ U is single-valued on V
and moreover Lipschitz continuous with constant κ.

Moreover, the infimum of all such Lipschitz constants κ then equals reg F (x̄| ȳ).

Proof. The sufficiency is easy to see: if F−1 has such a single-valued, Lipschitz continuous
localization, it has the Aubin property at ȳ for x̄, in particular. The metric regularity of F follows
then from Theorem 2.2. The necessity follows similarly through Theorem 2.2.

We have already seen in Theorem 2.3 that metric regularity is preserved under small Lipschitz
perturbations and in particular, in Corollary 2.4, that it is unaffected by strict first-order approxi-
mations. To complement those results for the case of strong metric regularity, we develop now an
estimate for what happens to the single-valuedness in Theorem 4.2 under perturbations.

Theorem 4.3 (perturbation estimate for inverse single-valuedness). For a mapping F : X →→ Y ,
suppose that F−1 has the localization property in Theorem 4.2, with Lipschitz constant κ ∈ (0,∞).
Let G : X → Y have G(x̄) = 0 and lip G(x̄) < λ < κ−1. Then (F + G)−1 likewise has the
localization property in Theorem 4.2, but with Lipschitz constant (κ−1 − λ)−1.

Proof. We note first that our hypothesis implies through Theorem 4.2 that reg F (x̄| ȳ) ≤ κ and
gph F is locally closed at (x̄, ȳ), hence by Theorem 2.3 we have that reg(F +G)(x̄| ȳ) ≤ (κ−1−λ)−1.
The desired conclusion will therefore follow, again with the help of Theorem 4.2, by showing that
(F + G)−1 has the localization property in the definition of strong metric regularity.

By assumption we have neighborhoods U and V enjoying the property described in Theorem 4.2;
denote by s(y) the unique element of F−1(y)∩U when y ∈ V . We also have a neighborhood U ′ of x̄
on which G is Lipschitz continuous with constant λ. Because G(x̄) = 0, we can find neighborhoods
U0 = IBδ(x̄) ⊂ U ∩ U ′ and V0 = IBε(ȳ) ⊂ V such that

x ∈ U0, y ∈ V0 =⇒ y −G(x) ∈ V. (4.1)

Consider now the graphical localization of (F + G)−1 corresponding to U0 and V0. Each y ∈ V0

maps to the set (F + G)−1(y) ∩ U0; it will be demonstrated that this set can have at most one
element, and that will finish the proof.

On the contrary, assume that y ∈ V and x, x′ ∈ U , x 6= x′, are such that both x and x′ belong to
(F+G)−1(y). Clearly x ∈ (F+G)−1(y)∩U0 if and only if x ∈ U0 and y ∈ F (x)+G(x), or equivalently
y −G(x) ∈ F (x). The latter, in turn, is the same as having x ∈ F−1(y −G(x))∩U = s(y −G(x)),
where y −G(x) ∈ V by (4.1). Then

0 < ‖x− x′‖ = ‖s(y −G(x))− s(y −G(x′))‖ ≤ κ‖G(x)−G(x′)‖ ≤ κλ‖x− x′‖ < ‖x− x′‖,

which is absurd, and we are done.

The above result is supplemented by Corollary 2.4, where now reg F (x̄| ȳ) refers to the Lipschitz
constant of the single-valued graphical localization of F at (x̄, ȳ).
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Corollary 4.4 (stability under strict first-order approximations). If a mapping F0 : X →→ Y is a
strict first-order approximation to a mapping F : X →→ Y at x̄, then F is strongly metrically regular
at x̄ for ȳ if and only if F0 is strongly metrically regular at x̄ for ȳ. Indeed, the Lipschitz modulus
at ȳ for the graphical localization of F−1 in this property coincides with the one obtained for F−1

0 .

Proof. This is immediately obtained from the case of Theorem 4.3 in which lip G(x̄) = 0. The
modulus claim merely reflects the relation already established in Corollary 2.5; only the combination
with graphically localized single-valuedness is new here.

Corollary 4.5 (stability under partial strict linearizations). Let F = f + M for a single-valued
mapping f : X → Y and a mapping M : X →→ Y , and let ȳ ∈ F (x̄). Suppose f is strictly
differentiable at x̄, and let F0 = f0 + M with f0(x) = f(x̄) + Df(x̄)(x− x̄).

Then F−1 has a graphical localization around (ȳ, x̄) that is single-valued and Lipschitz continuous
on a neighborhood of ȳ if and only if F−1

0 has such a localization. Moreover, the Lipschitz modulus
at ȳ for the localizations in question will be the same in each case.

Proof. We specialize Corollary 4.4 to F0 = f0 + M .

We prove next a perturbation radius theorem for strong metric regularity. Note that this result
lies close to the one for metric regularity in Theorem 2.7.

Theorem 4.6 (radius theorem for strong metric regularity). For a mapping F : X →→ Y that is
strongly metrically regular at x̄ for ȳ, one has

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not strongly metrically regular at x̄ for ȳ
}
≥ 1

reg F (x̄| ȳ)
. (4.2)

When dim X < ∞ and dim Y < ∞, one has

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not strongly metrically regular at x̄ for ȳ
}

=
1

reg F (x̄| ȳ)
, (4.3)

Moreover the infimum is unchanged if taken with respect to affine mappings G of rank 1.

Proof. The combination of Theorem 4.3 with the general inequality for metric regularity in
Theorem 2.7 reveals that “≥” holds in (4.2). The case of reg F (x̄| ȳ) = 0 is covered in this under
the convention that 1/0 = ∞, since, according to Corollary 2.4 taken together with Theorem 4.2,
we have reg(F + G)(x̄| ȳ) = 0 < ∞ for every G : X → Y with G(x̄) = 0 and lip G(x̄) < ∞. The
opposite inequality, along with the final assertion (4.3), is obtained by combining the equality (2.5)
in Theorem 2.7 with the observation that the strong metric regularity is a stronger property than
the metric regularity, and hence the infimum in (4.3) is not greater than the infumum in (2.5).

Although the equation (4.3) can’t be claimed to hold in general, outside of the finite-dimensional
setting, some extensions to an infinite-dimensional may be possible for restricted classes of mappings
F , or more special properties than strong metric regularity, for instance utilizing [23, Theorem 3.4,
Proposition 3.2(c)].
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5 Strong Metric Subregularity

We are ready now to take up the modification of metric subregularity that gets around the serious
instability that was seen in Theorem 3.5.

Definition 5.1 (strong metric subregularity). A mapping F : X →→ Y is strongly metrically sub-
regular at x̄ for ȳ if it is metrically subregular at x̄ for ȳ and, in addition, x̄ is an isolated point
of F−1(ȳ). An equivalent description is that F (x̄) 3 ȳ and there exists κ ∈ [0,∞) along with
neighborhoods U of x̄ and V of ȳ such that

‖x− x̄‖ ≤ κd(ȳ, F (x) ∩ V ) for all x ∈ U. (5.1)

In this definition and the following theorem, the simplifying criterion in Proposition 3.4 allows
the neighborhood V to be replaced by the entire space Y .

Theorem 5.2 (characterization by inverse isolated calmness). A mapping F : X →→ Y is strongly
metrically subregular at x̄ for ȳ if and only if its inverse F−1 has a graphical localization at (ȳ, x̄)
that is single-valued at ȳ itself (with value x̄) and calm there. Specifically, this means the existence
of κ ∈ [0,∞) and neighborhoods U of x̄ and V of ȳ such that

F−1(y) ∩ U ⊂ x̄ + κ‖y − ȳ‖IB when y ∈ V. (5.2)

The infimum of all κ such that the inclusion holds for some U and V is then equal to subreg F (x̄| ȳ).

Proof. Suppose first that the condition in Definition 5.1 is satisfied. Consider any y ∈ V and
x ∈ F−1(y) ∩ U . That entails y ∈ F (x) ∩ V , hence d(ȳ, F (x) ∩ V ) ≤ ‖y − ȳ‖ and consequently
‖x− x̄‖ ≤ κ‖y − ȳ‖ by (5.1). Thus x ∈ x̄ + κ‖y − ȳ‖IB, and we conclude that (5.2) holds. Because
this holds for any κ that works in Definition 5.1, we know that subreg F (x̄| ȳ) ≥ the infimum of all
κ such that (5.2) holds for some choice of U and V .

For the converse, suppose (5.2) holds for some κ and neighborhoods U and V . Consider any
x ∈ U . For arbitrary y ∈ F (x) ∩ V we have x ∈ F−1(y) ∩ U , and therefore x ∈ x̄ + κ‖y − ȳ‖IB
by (5.2), which means ‖x − x̄‖ ≤ κ‖y − ȳ‖. This being true for all y ∈ F (x) ∩ V , we must have
‖x− x̄‖ ≤ κd(ȳ, F (x) ∩ V ). Thus, (5.1) holds, and in particular we have κ ≥ subreg F (x̄| ȳ).

The property of F−1 in (5.2) is “calmness relative to an isolated image point,” in the terminology
we used in [10], although other terms and variants abound. This property in “forward mode”
for a general mapping F appeared as early as 1987; see in [31], where it was characterized in
finite-dimensions in terms of the graphical derivatives of F . That characterization, however, was
embedded in the proof of something which required additional assumptions; the necessity without
those assumptions was later noted in [19] and the sufficiency in [21]. Here, we translate that
derivative characterization of isolated calmness from F to F−1 in order to obtain, via Theorem 5.2,
a criterion for strong metric subregularity.

Theorem 5.3 (derivative characterization of strong subregularity). In the case of dim X < ∞ and
dim Y < ∞, one has F strongly metrically subregular at x̄ for ȳ if and only if DF (x̄| ȳ)−1(0) = {0},
and in fact

subreg F (x̄| ȳ) = ‖DF (x̄| ȳ)−1‖+ = sup
u∈IB

(
sup

w∈DF (x̄ | ȳ)−1(u)

‖w‖
)

.
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Proof. We can work in both directions with the characterization in Theorem 5.2 and the fact
that DF (x̄| ȳ)−1 is the same as D[F−1](ȳ |x̄).

Suppose first that F is strongly subregular at x̄ for ȳ, so that (5.2) holds for some κ, U and
V . By definition, to have w ∈ D[F−1](ȳ |x̄)(v) is to have sequences wν → w, vν → v and τ ν ↘0
such that x̄ + τ νwν ∈ F−1(ȳ + τ νvν). Then x̄ + τ νwν ∈ U and ȳ + τ νvν ∈ V eventually, so that
(5.2) yields ‖(x̄ + τ νwν) − x̄‖ ≤ κ‖(ȳ + τ νvν) − ȳ‖, which is the same as ‖wν‖ ≤ κ‖vν‖. In the
limit, this implies ‖w‖ ≤ κ‖v‖. Thus D[F−1](ȳ |x̄)(0) = {0}, and ‖D[F−1](ȳ |x̄)‖+ ≤ κ, hence
‖D[F−1](ȳ |x̄)‖+ ≤ subreg F (x̄| ȳ).

In the other direction, it’s elementary (because of the assumed finite-dimensionality) that having
D[F−1](ȳ |x̄)(0) = {0} is equivalent to having ‖D[F−1](ȳ |x̄)‖+ < ∞, and on the other hand, that
‖D[F−1](ȳ |x̄)‖+ is the infimum of all κ such that ‖x− x̄‖ ≤ κ‖y − ȳ‖ when (x, y) ∈ gph F is near
enough to (x̄, ȳ). That description fits with (5.2) and completes the proof.

In [7], calmness relative to an isolated image point was called the “local upper-Lipschitz property
at a point in the graph” and observed to be preserved under perturbations of order o(x). By
Robinson’s result about upper Lipschitz continuity recalled in Example 3.3, a “polyhedral” mapping
F is strongly subregular at x̄ for ȳ if and only if x̄ is an isolated point of F−1(ȳ). Theorem 5.3
expresses this principle far more widely.

Strong subregularity of F at x̄ for ȳ does not imply that a localization of F−1 around (ȳ, x̄) is
nonempty-valued; there need not exist neighborhoods U of x̄ and V of ȳ such that F−1(y)∩U 6= ∅
for y ∈ V . In some situations, it could be natural to demand such nonemptiness, but we have
avoided implanting it in the definition of strong subregularity itself, because that would excessively
narrow the concept and remove from the scene of applications some important classes of problems,
such as linear complementarity.

For positively homogeneous mappings, a “norm” formula related to the one in Theorem 2.3 is
available for calculating the modulus of strong subregularity even in infinite dimensions. Recall that
a mapping F : X →→ Y is positively homogeneous when 0 ∈ F (0) and F (λx) ⊃ λF (x) for λ > 0, or
equivalently, when gph F is a cone in X × Y .

Theorem 5.4 [11, Proposition 2.5] (positively homogeneous mappings). For a mapping F : X →→ Y
that is positively homogeneous, one has

subreg F (0|0) = ‖F−1‖+ = sup
‖x‖=1

1

d(0, F (x))
.

The connection between Theorems 5.4 and 5.3 is seen through the fact that, when F is positively
homogeneous with closed graph, we simply have DF (0|0) = F . Theorem 5.3 itself fails for general
F in infinite dimensions, because DF (x̄| ȳ) does not then yield an “adequately uniform” local
approximation to F around (x̄, ȳ).

The class of positively homogeneous mappings includes linear mappings, of course, and for those
we get a special conclusion about injectivity.

Example 5.5 (strong subregularity of linear mappings). For a mapping F ∈ L(X, Y ), strong
subregularity of F at x̄ for ȳ = F (x̄) implies that F is injective, i.e., ker F = {0}, and is equivalent
to injectivity when X < ∞ and Y < ∞.

We look next at perturbations of F by a single-valued mapping G in the pattern that was
followed for the other regularity properties. In line with the developments above, we introduce the
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calmness modulus

clm G(x̄) = inf{λ | ‖G(x)−G(x̄)‖ ≤ λ‖x− x̄‖ for x near x̄ }, (5.3)

noting that G is calm at x̄ for ȳ = G(x̄) if and only if clm G(x̄) < ∞.

Theorem 5.6 (perturbation estimate for strong subregularity). Consider a mapping F : X →→ Y
and a point (x̄, ȳ) ∈ gph F . If subreg F (x̄| ȳ) < κ < ∞ and if G : X → Y is a mapping such that
G(x̄) = 0 and clm G(x̄) < λ < κ−1, then

subreg(F + G)(x̄| ȳ) < (κ−1 − λ)−1 =
κ

1− λκ
.

Proof. Because clm G(x̄) < λ and G(x̄) = 0, there exists a > 0 such that

‖G(x)‖ ≤ λ‖x− x̄‖ when x ∈ IBa(x̄). (5.4)

On the other hand, since subreg F (x̄| ȳ) < κ, we can arrange, by taking a smaller if necessary, that

‖x− x̄‖ ≤ κ‖y − ȳ‖ when (x, y) ∈ gph F ∩ (IBa(x̄)× IBa(ȳ)). (5.5)

Let λ′ = max{1, λ} and consider any

z ∈ IBa/2(ȳ), x ∈ (F + G)−1(z) ∩ IBa/2λ′(x̄).

These relations entail z ∈ F (x) + G(x), hence z = y + G(x) for some y ∈ F (x). From (5.4) and
x ∈ IBa/2λ′(x̄), we have ‖G(x)‖ ≤ λ(a/2λ′) ≤ a/2 (inasmuch as λ′ ≥ λ). Using the fact that
y − ȳ = z − G(x) − ȳ, we get ‖y − ȳ‖ ≤ ‖z − ȳ‖ + ‖G(x)‖ ≤ a/2 + a/2 = a. However, because
z −G(x) ∈ F (x) we also have x ∈ F−1(z −G(x)) ∩ IBa(x̄) and therefore from (5.5),

‖x− x̄‖ ≤ κ‖z − ȳ‖ ≤ κ‖z − ȳ‖+ κ‖G(x)‖ ≤ κ‖z − ȳ‖+ κλ‖x− x̄‖,

hence ‖x− x̄‖ ≤ κ/(1− λκ)‖z − ȳ‖, as required.

A corollary analogous to Corollary 2.4 can immediately be derived from Theorem 5.6:

Corollary 5.7. Consider a mapping F : X →→ Y and any (x̄, ȳ) ∈ gph F with subreg F (x̄| ȳ) < ∞.
If subreg F (x̄| ȳ) > 0, then for any G : X → Y such that G(x̄) = 0 and subreg F (x̄| ȳ)·clm G(x̄) < 1,
one has

subreg(F + G)(x̄| ȳ) ≤ ( subreg F (x̄| ȳ)−1 − clm G(x̄))−1.

If subreg F (x̄| ȳ) = 0, then subreg(F + G)(x̄| ȳ) = 0 for any G : X → Y with clm G(x̄) < ∞.

This result implies that subreg(F + G) = subreg F for any mapping G with clm G = 0. The
latter fact can be posed in parallel to Corollary 2.5. For that purpose, recall that a mapping F0 is
called a (plain, not strict) first-order approximation to F at x̄ if

F = F0 + G with G : X → Y satisfying G(x̄) = 0 and G(x) = o(‖x− x̄‖). (5.6)

The conditions on G correspond in the present context to having clm G(x̄) = 0 and can be compared
in this way to the prescription in (2.3) for a strict first-order approximation, where the requirement
is that lip G(x̄) = 0.
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Corollary 5.8 (stability under first-order approximations). If a mapping F0 : X →→ Y is a first-
order approximation to a mapping F : X →→ Y at x̄, then F is strongly subregular at x̄ for ȳ if and
only if F0 is strongly subregular at x̄ for ȳ, and indeed

subreg F (x̄| ȳ) = subreg F0(x̄| ȳ).

Corollary 5.9 [7] (stability under partial linearizations). Let F = f +M for mappings f : X → Y
and M : X →→ Y , and let ȳ ∈ F (x̄). Suppose f is differentiable at x̄, and let F0 = f0 + M for
f0(x) = f(x̄) + Df(x̄)(x− x̄).

Then F−1 has a graphical localization around (ȳ, x̄) that is single-valued at ȳ (with value x̄)
and calm there, if and only if F−1

0 has such a localization. Moreover the calmness modulus for the
localizations in question will be the same in both cases.

Proof. The mapping F0 = f0 + M fits the definition of being a first-order approximation of F at
x̄, so Corollary 5.8 is applicable.

Note in Corollary 5.9 that F−1 a graphical localization around (ȳ, x̄) that is single-valued at ȳ
(with value x̄) if and only if x̄ is an isolated point of F−1(ȳ). The emphasis in the result is mainly
on the calmness.

Corollary 5.9 covers more than just partial linearizations (and full linearizations, where M in
Corollary 5.9 is the zero mapping and F = f). The rule described is valid even when f lacks
differentiability at x̄, but Df(x̄), interpreted now as the graphical derivative and not required to
be an element of L(X, Y ), is single-valued with

f(x) = f(x̄) + Df(x̄)(x− x̄) + o(‖x− x̄‖). (5.7)

In the finite-dimensional case, this property has been analyzed in detail in [32, Chap. 7] under the
heading of “semidifferentiability.” It is closely related to what has been called “B-differentiability.”

Corollary 5.10 (strong subregularity from polyhedrality). Let X and Y be finite-dimensional and
ȳ ∈ F (x̄), where F = f + M for mappings f : X → Y and M : X → Y such that f is differentiable
at x̄ and gph M is the union of finitely many convex sets that are polyhedral. Let F0 = f0 + M ,
where f0 is the linearization of f at x̄ as in (5.7). Then F is strongly subregular at x̄ for ȳ if and
only if x̄ is an isolated point of F−1

0 (ȳ).

Proof. Because F0 is a first-order approximation of F at x̄, the desired strong subregularity of F
is equivalent to that of F0 by Corollary 5.9. But F0, like M , is a mapping whose graph is the union
of finitely many convex sets that are polyhedral. Through Theorem 5.2 and the result of Robinson
in Example 3.3, therefore, the strong subregularity of F0 at x̄ for ȳ is equivalent to x̄ being an
isolated point of F−1

0 (ȳ).

An important case for Corollary 5.10 is the one in which M is the subgradient mapping associated
with a piecewise linear-quadratic convex function; cf. [32]. The case within that where M is the
normal cone mapping associated with a polyhedral convex set will be taken up in the next section.

In the remaining part of this section we study the radius of strong metric subregularity. We
start with positively homogeneous mappings. In [11, Section 2], positively homogeneous mappings
with ‖F−1‖+ < ∞ were called nonsingular. Nonsingularity of F implies strong subregularity of F
at 0 for 0. In finite dimensions the converse statement holds as well.
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Theorem 5.11 [11, Theorem 2.6] (radius of nonsingularity). For any mapping F : X →→ Y that is
positively homogeneous, one has

inf
G∈L(X,Y )

{
‖G‖

∣∣∣F + G singular
}

=
1

subreg F (0|0)
=

1

‖F−1‖+
= inf

‖x‖=1
d(0, F (x)).

Moreover, the infimum is the same if restricted to mappings G ∈ L(X, Y ) of rank one.

Next comes a radius theorem which parallels those for metric regularity and strong metric
regularity.

Theorem 5.12 (radius theorem for strong metric subregularity). For a mapping F : X →→ Y and
any (x̄, ȳ) ∈ gph F , one has

inf
G:X→Y
G(x̄)=0

{
clm G(x̄)

∣∣∣F + G not strongly subregular at x̄ for ȳ
}
≥ 1

subreg F (x̄| ȳ)
. (5.8)

When dim X < ∞ and dim Y < ∞, one has

inf
G:X→Y
G(x̄)=0

{
clm G(x̄)

∣∣∣F + G not strongly subregular at x̄ for ȳ
}

=
1

subreg F (x̄| ȳ)
, (5.9)

Moreover, the infimum is not changed if taken with respect to affine mappings G of rank 1.

Proof. We start by dealing with some trivial cases. If F is not strongly subregular then the
infumum in (5.8) is 0, whereas by definition subreg F (x̄| ȳ) = ∞, and hence the equality (5.9) does
hold. We can therefore suppose that subreg(F )(ȳ |x̄) < ∞. For another special case, if there is a
neighborhood O of (x̄, ȳ) such that (x, y) ∈ O ∩ gph F implies x = x̄, then subreg F (x̄| ȳ) = 0 and
this localization property will be inherited by F + G for any G with G(x̄) = 0 and clm G(x̄) < ∞.
Thus, (5.9) will again be correct under the convention that 1/0 = ∞. If, on the other hand, there
exists a neighborhood O of (x̄, ȳ) such that (x, y) ∈ O ∩ gph F implies y = ȳ, then from strong
subregularity we have x = x̄, the previous case.

To verify that inequality (5.8) holds in this relation, we can apply Theorem 5.6. Indeed, from
that result the infimum in (5.8) cannot be less than 1/ subreg F (x̄| ȳ).

In the finite-dimensional case, the equality (5.9) is obtained by using the equivalence of the
strong subregularity of a mapping F at x̄ for ȳ with the nonsingularity of its graphical derivative
DF (x̄| ȳ) (Theorem 5.3). Since DF (x̄| ȳ) is positively homogeneous, Theorem 5.11, combined with
Theorem 5.3, translates to

inf
A∈L(X,Y )

{
‖A‖

∣∣∣DF (x̄| ȳ) + A singular
}

=
1

‖DF (x̄| ȳ)−1‖+
=

1

subreg F (x̄| ȳ)
.

For a mapping G of the form G(x) = A(x − x̄) with A ∈ L(X, Y ), elementary calculus gives us
D(F + G)(x̄| ȳ) = DF (x̄| ȳ) + A, hence

inf
G=A(·−x̄)
A∈L(X,Y )

{
clm G(x̄)

∣∣∣D(F + G)(x̄| ȳ) singular
}

=
1

subreg F (x̄| ȳ)
.
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But then, by the above mentioned equivalence of the strong metric subregularity with the nonsin-
gularity of its graphical derivative,

inf
G:X→Y
G(x̄)=0

{
clm G(x̄)

∣∣∣F + G not strongly subregular at x̄ for ȳ
}
≤ 1

subreg F (x̄| ȳ)

asnd the proof of (5.9) is complete.

In view of the final assertion in Theorem 5.12 and the fact that clm G(x̄) ≤ lip G(x̄) when G is
locally Lipschitz continuous around x̄, the radius formula (5.9) can also be written validly as

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not strongly subregular at x̄ for ȳ
}

=
1

subreg F (x̄| ȳ)
.

The parallel with the results in Theorems 2.7 and 4.6 for metric regularity and strong metric
regularity comes out then especially clearly and serves to emphasize all the more the surprising
instability of metric subregularity itself, for which no such statement is possible.

6 Applications to Variational Inequalities

The roots of the strong regularity property lie in efforts to extend the classical inverse and implicit
function theorems in ways demanded by the fact that those theorems, while of great significance for
equations, say nothing directly about “generalized equations” such as those coming from “variational
inequalities,” which are known to be crucial in the expression of optimality conditions, equilibrium
conditions, and many other applications as well. We take up that topic now in connection not
only with the partial linearization result in Corollary 4.5 for strong regularity, but also with the
corresponding result in Corollary 5.9 for strong subregularity.

The generalized equations on which we focus for this purpose have the particular form

f(x) + NC(x) 3 y with x ∈ X, y ∈ Y = X∗ (dual space) (6.1)

in the case of a mapping f : X → X∗, a nonempty, closed, convex set C ⊂ X and its normal cone
mapping NC : X →→ X∗ in the sense of convex analysis, given by

NC(x) =
{
{ y | 〈x′ − x, y〉 ≤ 0, ∀x′ ∈ C} if x ∈ C,
∅ if x /∈ C.

(6.2)

According to the definition of NC , to say that x satisfies (6.1) is to say that

x ∈ C and 〈f(x)− y, x′ − x〉 ≥ 0 for all x′ ∈ C.

This relation is called the variational inequality for f and C with parameter y. (Other kinds
of variational inequalities, with f replaced by a set-valued mapping and NC by a more general
subgradient mapping of convex analysis could be considered as well, but this is the type to which
we limit our attention here.)
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When C = X, the normal cone mapping NC reduces to the zero mapping, so the task of solving
the variational inequality reduces to that of solving the equation f(x) = y for x in terms of y.
The result obtained in that context by taking M = 0 in Corollary 4.5 can thereby be viewed as a
version of the classical inverse function theorem which merely demands strict differentiability of f at
x̄, instead of smoothness (continuous differentiability) around x̄, but in compensation relinquishes
local smoothness of the solution mapping in favor of Lipschitz continuity around ȳ.

In this special case of equation solving, the weaker conclusion of Lipschitz continuity may not
seem worth the advantage of the weaker assumption, and indeed applications may typically have f
smooth anyway. The key fact, however, is that in going beyond equations to variational inequali-
ties, as Corollary 4.5 does, there is little hope of concluding smoothness of the solution mapping,
regardless of any assumption on f . Smoothness is lost because of the nature of NC , but Lipschitz
continuity can be retained, at least.

Historically, attempts to extend the inverse and implicit function theorems to generalized equa-
tions of variational inequality type as in (6.1) have been a prime motivation for regularity studies.
In his seminal paper [28], Robinson proved that, for mappings F = f + NC with f smooth, if
the “linearized” variational inequality at x̄, with f replaced by the linearization f0 in (4.2), has
a solution mapping with a single-valued Lipschitz continuous localization at (ȳ, x̄), then the same
holds for the original variational inequality. In fact, he proved a broader result—an extension of
the implicit function theorem in which f depends on a parameter element p—which has this as an
immediate consequence. Corollary 4.5 covers Robinson’s inverse function result.

In Robinson’s original terminology, “strong regularity” of the variational inequality for f and C
at the elements in question referred to the single-valued Lipschitz continuous localization property of
the solution mapping to the linearized variational inequality. In view of the equivalences in Theorem
4.2 and Corollary 4.5, this property comes down to the same thing as strong metric regularity in
Definition 4.1.

We now have, through the equivalences in Theorem 5.2 and Corollary 5.8, something entirely
analogous for “strong subregularity” of the variational inequality for f and C. This property too can
be confirmed merely by verifying that it holds with respect to a linearization of f , and the pattern
of the classical inverse function theorem is thereby propagated one level further. To summarize, we
combine these observations into the statement of a theorem in which, for simplicity, we take f to
be smooth.

Theorem 6.1 (linearization rules for variational inequalities). In the variational inequality setting
where F = f +NC with f smooth, let x̄ be a solution for ȳ and let F0 = f0+NC for the linearization
f0(x) = f(x̄) + Df(x̄)(x− x̄). Then

(a) F is strongly regular at x̄ for ȳ if and only if F0 is strongly regular at x̄ for ȳ, where moreover
one has

reg F (x̄| ȳ) = reg F0(x̄| ȳ).

(b) F is strongly subregular at x̄ for ȳ if and only if F0 is strongly subregular at x̄ for ȳ, where
moreover one has

subreg F (x̄| ȳ) = subreg F0(x̄| ȳ).

The perturbation radius formulas for strong regularity in Theorem 4.6 and for strong subregu-
larity in Theorem 5.12 can be put together in this context with the insights in Theorem 6.1 so as
to express the radius in terms of the linearized variational inequality.
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Corollary 6.2 (radius formulas for variational inequalities). In the framework and the assumptions
of Theorem 6.1, one has that

(a) if F0 is strongly regular at x̄ for ȳ, then

inf
G:X→Y
G(x̄)=0

{
lip G(x̄)

∣∣∣F + G not strongly regular at x̄ for ȳ
}
≥ 1

reg F0(x̄| ȳ)
, (6.3)

(b) if F0 is strongly subregular at x̄ for ȳ, then

inf
G:X→Y
G(x̄)=0

{
clm G(x̄)

∣∣∣F + G not strongly subregular at x̄ for ȳ
}
≥ 1

subreg F0(x̄| ȳ)
. (6.4)

In both cases, the formulas would be unchanged if G were restricted to being affine, in which case
lip G(x̄) and clm G(x̄) both reduce to the norm of the linear part of G. If dim X < ∞, both
inequalities in (6.3) and (6.4) become equalities.

Note that in these results in which F = f + NC , the perturbation of F to F + G amounts to a
perturbation of f to f + G, since the normal cone mapping NC stays the same.

Especially of interest for many applications is the case where X = Y = IRn and the convex set
C is polyhedral. The two results recalled next can then come into play.

Theorem 6.3 [9] (strong regularity for polyhedral variational inequalities). For F = f + NC in
the case of smooth f and polyhedral C, metric regularity of F at x̄ for ȳ is equivalent to strong
regularity of F at x̄ for ȳ. Thus, F is strongly regular at x̄ for ȳ if and only if reg F (x̄, ȳ) < ∞.

Proof. Specifically, it was proved in [9] that, in the smooth and polyhedral case, metric regularity
of F at x̄ for ȳ automatically implies localized single-valuedness of F−1 around ȳ, and that of course
comes out as strong metric regularity.

In [11] a formula for computing reg F (x̄| ȳ) in the circumstances of Theorem 6.3 was developed
in terms of the coderivative of D∗F (x̄| ȳ), utilizing the fact in Theorem 2.10. Strong regularity can
in principle be confirmed, therefore, by checking whether this formula implies reg F (x̄, ȳ) < ∞.

We can also obtain a more detailed picture of strong metric subregularity for F = f + NC when
f is smooth and C is polyhedral. Let A = Df(x̄) and q̄ = ȳ− f(x̄) + Ax̄. Then, from Theorem 6.1
and by a change of variables,

subreg(f + NC)(x̄| ȳ) = subreg(A + NC)(x̄| q̄).

A further simplification of the formula for the subregularity modulus can be obtained by employing
the so-called critical cone, defined as

K̄ = {u ∈ TC(x̄) |u ⊥ q̄ − Ax̄},

where TC(x̄) is the tangent cone to C at x̄. By Proposition 4.4 in [30] (see also the Reduction
Lemma in [9]), there is a neighborhood O of the origin in IRn× IRn such that for (x, v) ∈ O one has

q̄ − Ax̄ + v ∈ NC(x̄ + x) ⇐⇒ v ∈ NK̄(x). (6.5)

Thus, strong subregularity of A + NC at x̄ for q̄ is equivalent to strong subregularity of A + NK̄ at
0 for 0. Summarizing, we can state the following result.
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Theorem 6.4 (strong subregularity for polyhedral variational inequalities). For F = f + NC in
the case of smooth f : IRn → IRn and polyhedral C ⊂ IRn, strong subregularity of F at x̄ for ȳ is
equivalent to the condition that the origin in IRn is an isolated point of (A + NK̄)−1(0). Moreover,

subreg F (x̄| ȳ) = subreg(A + NK̄)(0|0) = sup
‖x‖=1

1

d(−Ax, NK̄(x))
,

where K̄ is the critical cone and

d(−Ax, NK̄(x)) =
{

infv∈K̄∗,v⊥x ‖Ax + v‖ for x ∈ K̄,
∞ otherwise.

Proof. The first part of the claim specializes Corollary 5.10 to the case of M = NC , while the
second utilizes (6.5) and Theorem 5.4, inasmuch as the mapping A+NK̄ is positively homogeneous.
The last equality follows from the equivalence relation that v ∈ NK̄(x) if and only if x ∈ K̄, v ∈ K̄∗

and x ⊥ v, where K̄∗ is the cone that is polar to the critical cone K̄.

7 Final Remarks

The aim of this paper has been to study regularity properties of set-valued mappings from certain
new perspective which addresses their “stability” and “conditioning.” Our main observation has
been that the regularity properties can be divided into two types. The mappings having a property
of the first type form “open sets” in relation to other mappings, in the sense that the property in
question is stable (persistent, robust) under small perturbations. In contrast, the set of mappings
having a property of the second type contain “dense subsets” of mappings that do not possess this
property, so that the property is prone to failure under arbitrarily small perturbation. It is quite
remarkable that, for mappings of the first type, the “radius” of stability is, as a rule, equal to the
reciprocal of the associated regularity modulus. Apparently it is not just a coincidence that, for the
first class of properties there also is a rich calculus involving various kinds of derivatives, whereas
no such general tools are available for the second class.

In a previous paper [11] we showed that metric regularity is of the first type. Here, we have seen
that metric subregularity, a one-point alternative to the two-point property of metric regularity, is
of the second type. We have demonstrated, though, that when the reference point of the domain
space in the property of metric subregularity is an isolated solution, the resulting sharper property,
which we have called strong metric subregularity, does indeed turn out to be stable in our sense. We
have shown further that when the localized absence of multivaluedness extends to a neighborhood,
furnishing strong metric regularity, that property is stable as well; this is of particular importance
in applications connected with optimization.

The radius theorems we have presented are quite general, but the class of perturbations in it is
large and does not offer fine tuning to various special cases. For instance, these results cannot be used
for evaluating the distance to nonregularity when the perturbations are restricted to subgradient
mappings, such as might come from perturbing the objective function of an optimization problem.
A resent result of Zolezzi [35] gives an estimate in that vein for a quadratic optimization problem. In
a different direction, an extension of the radius theorem for metric regularity of sublinear mappings
(Theorem 2.9 in [11]) for a specific class of perturbations is presented in the manuscript [26].
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These days, moduli of regularity can be seen to have not only a role in stability and error
bounds, but also in evaluations of convergence and complexity of algorithms. Finding efficient ways
for estimating them is another area for future research.
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