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Abstract

For optimal control problems satisfying convexity conditions in the state as well as the
velocity, the optimal value is studied as a function of the time horizon and other parameters.
Conditions are identified in which this optimal value function is locally Lipschitz continuous
and semidifferentiable, or even differentiable. The Hamilton-Jacobi theory for such control
problems provides the framework in which the results are obtained.
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1 Introduction

A very wide variety of problems in optimal control can be posed in the form of a generalized
problem of Bolza in the calculus of variations,

minimize
∫ τ

0
L(t, x(t), ẋ(t))dt + l(x(0), x(τ)),

by allowing the functions L and l in the formulation to take values in IR = [−∞,∞] instead of
just IR = (−∞,∞). For instance a control problem of the type

minimize
∫ τ

0
f(t, x(t), u(t))dt + h(x(τ)) subject to

ẋ(t) ∈ F (t, x(t), u(t)), u(t) ∈ U(t), x(0) = a, x(τ) ∈ E,

is covered by letting l(b, c) = h(c) if b = a and c ∈ E, but l(b, c) = ∞ otherwise, and letting
L(t, x, v) the infimum of f(t, x, u) over all u ∈ U(t) such that F (t, x, u) 3 v. (When there is no
such u, the infimum is ∞, by definition.)
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1



In this paper, we concentrate on a class of problems that fit this picture, emphasizing convexity
while looking at parameters which influence the solutions. The basic model we adopt is

P(π, τ) minimize g(x(0)) +
∫ τ

0
L(x(t), ẋ(t))dt + h(π, τ, x(τ)) over all x ∈ A1

n[0, τ ],

where A1
n[0, τ ] is the space of absolutely continuous functions x(·) : [0, τ ] → IRn (arcs), and

π is a parameter vector ranging over an open set O ⊂ IRd. Our interest lies in studying the
effects of π and the time parameter τ on the optimal value in P(π, τ). In other words, we aim
at understanding properties of the value function p defined by

p(π, τ) := inf P(π, τ) for (π, τ) ∈ O × (0,∞). (1)

For a function such as p, produced through optimization, continuity cannot usually be ex-
pected, let alone differentiability. However, we will be able to identify some situations where p
does possess directional derivatives in a strong sense, and even cases where p is smooth, i.e., be-
longs to C1. This will be accomplished by relying on convexity assumptions in the state arguments
and utilizing tools in convex analysis and general variational analysis [12].

Basic Assumptions (A).
(A0) The function g is convex, proper and lsc on IRn.
(A1) The function L is convex, proper and lsc on IRn × IRn.
(A2) The set F (x) := {v |L(x, v) < ∞} is nonempty for all x, and there is a constant ρ such

that dist(0, F (x)) ≤ ρ(1 + |x|) for all x.
(A3) There are constants α and β and a coercive, proper, nondecreasing function θ on [0,∞)

such that L(x, v) ≥ θ( max{0, |v| − α|x| })− β|x| for all x and v.
(A4) The function h is finite on O × (0,∞) × IRn, where O is an open subset of IRd, and

h(π, τ, ξ) is convex with respect to ξ.

The joint convexity of L(x, v) in x and v in (A1), combined with the convexity in (A0) and
(A4), is the hallmark of “full” convexity. Control problems enjoying full convexity were first
investigated in depth in the 1970’s, cf. [7], [8], [9], [10], [11]. In such problems, locally optimal
solutions are globally optimal, and there are numerous other features in the global optimization
category as well.

Assumptions (A0)–(A3) come out of the Hamilton-Jacobi theory for fully convex problems of
Bolza as presented in [13] and [14] (see also [15] amd [5]), and they go back even earlier to the
cited work in the 1970’s through [11]. The properness of an extended-real-valued function means
that it does not take on −∞, but is not identically ∞; “lsc” abbreviates lower semicontinuous.
The growth condition in (A3) serves in place of a Tonelli condition (much stronger), which would
be unworkable for control applications. Assumption (A2) imposes a very weak kind of linear
growth on the differential inclusion that underlies the problem. Note that it excludes implicit
state constraints (which would be signaled by F being empty-valued in some regions of IRn).

In terms of the associated Hamiltionian function H, defined through the Legendre-Fenchel
transform by

H(x, y) := supv {v ·y − L(x, v)} (2)

and yielding L back through the reciprocal formula

L(x, v) = supy {v ·y −H(x, y)}, (3)

2



assumptions (A1)–(A3) correspond to H being finite on IRn × IRn with H(x, y) convex in x and
concave in y, and also satisfying certain mild growth conditions which are symmetric with respect
to the x and y arguments; cf. [13, Theorem 2.3].

The connection with Hamilton-Jacobi theory arises through consideration of the auxiliary
problem

Q(τ, ξ) minimize g(x(0)) +
∫ τ

0
L(x(t), ẋ(t))dt over all x ∈ A1

n[0, τ ] having x(τ) = ξ

and its value function

V (τ, ξ) :=
{

inf(Q(τ, ξ)) when τ > 0,
g(ξ) when τ = 0,

(4)

which represents the forward propagation of g with respect to L. In particular, g could be the
indicator function of a given point a: one could have g(ξ) = 0 if ξ = a, but g(ξ) = ∞ if ξ 6= a.

Properties of V under assumptions (A0)–(A3) were recently studied in great detail in [13]
and [14]. Since the behavior of V (τ, ξ) with respect to ξ typically has to be distinguished from
its behavior with respect to τ , it is helpful to introduce the notation

Vτ := V (τ, ·) : IRn → IR (5)

and think of Vτ as an extended-real-valued function on IRn which “moves” as τ goes from 0 to
∞. In [13, Theorem 2.1], it was demonstrated that Vτ is convex, proper and lsc, and depends
epi-continuously on τ (i.e., its epigraph depends continuously on τ in the sense of set convergence,
a topic expounded for instance in [12]).

The “motion” of Vt has been characterized by a generalized Hamilton-Jacobi equation in terms
of the subgradient mapping ∂V of V as a whole. It was proved in [13, Theorem 2.5] that

σ + H(ξ, η) = 0 for all (σ, η) ∈ ∂V (τ, ξ) when τ > 0, (6)

and indeed, the even stronger property holds that

(σ, η) ∈ ∂V (τ, ξ) ⇐⇒ η ∈ ∂Vτ (ξ) and σ = −H(ξ, η). (7)

The subgradients in (6) follow the definition patterns in [12], which omit the convexification step
of Clarke [2], but in the case of V they have actually been shown in [13] to coincide with Clarke’s
subgradients. In (7), ∂Vτ is the subgradient mapping of convex analysis [6] associated with the
convex function Vτ .

In fact, V is the unique solution to (6). This was not known in [13], but was established
subsequently by Galbraith [3], [4], by way of new uniqueness Hamilton-Jacobi theorems extending
beyond the framework of full convexity and also beyond that of viscosity methodology (e.g. as
seen in [1]).

An elementary but fundamental relationship between p and the more basic value function V
will serve as the key to our analysis here. It concerns the subproblem

P̂(π, τ) minimize V (τ, ξ) + h(π, τ, ξ) over all ξ ∈ IRn,

which is aimed at capturing the finite-dimensional aspect of the infinite-dimensional optimization
problem P(π, τ). Note that the convexity of h(π, τ, ·) in (A4) ensures the convexity of the function
of ξ being minimized in P̂(π, τ).
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Proposition 1 (value function reduction). The optimal value function p for P(τ, ξ) is simulta-
neously the optimal value function for P̂(τ, ξ):

p(π, τ) = inf P̂(π, τ) = inf P(π, τ). (8)

Furthermore, optimal solutions to these problems are connected by

x(·) ∈ argminP(π, τ) ⇐⇒ x(·) ∈ argminQ(τ, ξ) for some ξ ∈ argmin P̂(π, τ). (9)

Proof. These relationships are evident from the definitions.

This decomposition, along with properties of V and Q(τ, ξ) developed in [13] and [14] will
furnish the platform for understanding p.

It is known from [13, Theorem 5.2] that argminQ(τ, ξ), the optimal solution set in Q(τ, ξ),
is nonempty whenever the pair (τ, ξ) ∈ (0,∞) × IRn is such that V (τ, ξ) < ∞; moreover, if
∂Vτ (ξ) 6= ∅, every x(·) ∈ argminQ(τ, ξ) must belong toA∞

n [0, τ ], the space of Lipschitz continuous
arcs (having ẋ in L∞n [0, τ ] instead of just L1

n[0, τ ]). Through this result on the existence of
solutions x(·) to Q(τ, ξ), the question of the existence of solutions to P(π, τ) is reduced to that
of the existence of solutions ξ to P̂(π, τ).

Optimality conditions for P(π, τ) likewise can be reduced to those for P̂(π, τ), which in
turn may be derived from convex analysis in terms of subgradients of V and h with respect
to their ξ argument. Hamiltonian trajectories give major support in this, because of their tie
to the subgradients of V . A Hamiltonian trajectory over an interval I ⊂ IR is a trajectory
(x(·), y(·)) ∈ A1

n[I]×A1
n[I] of the generalized Hamiltonian dynamical system

ẋ(t) ∈ ∂yH(x(t), y(t)), −ẏ(t) ∈ ∂x[−H](x(t), y(t)), (10)

where the subgradients are those of convex analysis for the convex functions H(x, ·) and H(·, y).
The differential inclusion (10) is very close to a differential equation, because ∂yH(x, y) and

∂x[−H](x, y) are singletons for almost every (x, y) ∈ IRn× IRn; cf. [13, Proposition 6.1]. One has

η ∈ ∂Vτ (ξ) ⇐⇒
{ ∃ Hamiltonian trajectory (x(·), y(·)) with

y(0) ∈ ∂g(x(0)) and (x(τ), y(τ)) = (ξ, η).
(11)

This prescription, from [13, Theorem 2.4], provides an extended method of characteristics, in
subgradient form, which operates globally for solving the Hamilton-Jacobi equation in (6).

The existence of an arc y(·) satisfying with x(·) the condition in (11) is always sufficient for
having x(·) ∈ argminQ(τ, ξ), and it is necessary if ∂Vτ (ξ) 6= ∅ (which holds in particular if ξ is
in the relative interior of the convex set dom Vτ = {ξ |Vτ (ξ) < ∞}); cf. [13, Theorem 6.3].

Another object that will be crucial in our endeavor is the dualizing kernel associated with
the Lagrangian L, which is the function K on [0,∞)× IRn × IRn defined by

K(τ, ξ, ω) := inf
{
x(0) ·ω +

∫ τ

0
L(x(t), ẋ(t))dt

∣∣∣ x(τ) = ξ
}
. (12)

for τ > 0 and extended to τ = 0 by

K(0, ξ, ω) = ξ ·ω. (13)
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This function, introduced in [14], is known to be finite everywhere, convex with respect to ξ,
concave with respect to ω, and continuously differentiable with respect to τ , and it satisfies a
generalized Hamilton-Jacobi equation of Cauchy type in the strong form

−∂K

∂τ
(τ, ξ, ω) = H(ξ, η) for all η ∈ ∂ξK(τ, ξ, ω), (14)

with (13) as initial condition [14, Theorem 3.1]. The results of Galbraith [3], [4], establish that
K(·, ·, ω) is the unique solution to this Hamilton-Jacobi equation in τ and ξ. Earlier only a
weaker version of uniqueness, depending on the convexity-concavity and a dual Hamiltonian-
Jacobi equation, had been verified in [14]. The dualizing kernel K yields a lower envelope
representation of V :

V (τ, ξ) = supω

{
K(τ, ξ, ω)− g∗(ω)

}
, (15)

cf. [14, Theorem 2.5], where g∗ is the convex function that is conjugate to g under the Legendre-
Fenchel transform,

g∗(y) := supx

{
x ·y − g(x)

}
, g(x) := supy

{
x ·y − g∗(y)

}
. (16)

In our focus on the parametric analysis of problem P(π, τ), we will eventually require certain
other properties besides the ones already listed in (A).

Additional Assumptions (A′).
(A5) The function g on IRn is coercive.
(A6) The function h on O× (0,∞)× IRn has the property that h(π, τ, ξ) is differentiable with

respect to (π, τ) for each ξ, and the gradient in these arguments depends continuously on (π, τ, ξ).

Coercivity of g in (A5) means that g(ξ)/|ξ| → ∞ as |ξ| → ∞; here | · | denotes the Euclidean
norm. This growth condition on g is equivalent to the finiteness of the conjugate function g∗.

The smoothness in (A6) is destined for establishing a property of p called semidifferentiability.
In general for a function f on an open subset of IRm, semidifferentiability means that, at each
point z of that subset, the difference quotient functions

∆εf(z)(z′) := [f(z + εz′)− f(z)]/ε for ε > 0

(which are defined for z′ in a neighborhood of 0 that expands to fill all of IRm as ε↘0) converge
uniformly on bounded sets to a finite function on IRm. This concept is examined from many
angles in [12, 7.21]. The limit function, symbolized by df(z) and thus having values denoted by
df(z)(z′), need not be a linear function, but when it is, semidifferentiability turns into ordinary
differentiability. In the presence of local Lipschitz continuity, semidifferentiability is equivalent
to the existence of one-sided directional derivatives: one simply has

df(z)(z′) = lim
ε↘ 0

[f(z + εz′)− f(z)]/ε.

In particular, any finite convex function on IRn is locally Lipschitz continuous and semidiffer-
entiable everywhere [12, 9.14 and 7.27]. As another example, the dualizing kernel K was itself
shown in [14, Theorem 3.6] to be locally Lipschitz continuous and semidifferentiable with respect
to all of its arguments.
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2 Main Developments

In obtaining the semidifferentiability of p, along with subgradient properties of p that allow the
identification of cases in which p is smooth, several consequences of our assumptions (A4) and
(A6) on the terminal cost function h will be needed. These consequences will be gleaned by the
methodology of variational analysis in [12].

Proposition 2 (joint properties of the terminal function). Assumptions (A4) and (A6) on the
separate functions

hπ,τ = h(π, τ, ·), hξ = h(·, ·, ξ), (17)

guarantee that h has the following properties, involving all of its arguments together.
(a) h is locally Lipschitz continuous on O × (0,∞)× IRn.
(b) h is semidifferentiable on O × (0,∞)× IRn with subderivative formula

dh(π, τ, ξ)(π′, τ ′, ξ′) = ∇hξ(π, τ)·(π′, τ ′) + dhπ,τ (ξ)(ξ
′). (18)

(c) h has its subgradients on O × (0,∞)× IRn given by

∂h(π, τ, ξ) = {(ρ, σ, η) | (ρ, σ) = ∇hξ(π, τ), η ∈ ∂hπ,τ (ξ)}. (19)

(d) h is subdifferentially regular on O × (0,∞)× IRn (i.e., its epigraph is Clarke regular).

Proof. Argument for (a). The finite convexity in (A4) implies that hπ,τ is locally Lipschitz
continuous on IRn for each (π, τ) ∈ O × (0,∞) [12, 9.14]. On the other hand, the smoothness
in (A6) implies that hξ is locally Lipschitz continuous on O × (0,∞) for each ξ ∈ IRn. It is
elementary then that h(π, τ, ξ) is locally Lipschitz continuous with respect to (π, τ, ξ).

Argument for (b). By virtue of (A4), hπ,τ is semidifferentiable on IRn for each (π, τ) ∈
O × (0,∞) [12, 7.27]. To get the semidifferentiability of h itself, utilizing the differentiability in
(A6), we observe that ∆εh(π, τ, ξ)(π′, τ ′, ξ′) can be written as

h(π + επ′, τ + ετ ′, ξ + εξ′)− h(π, τ, ξ + εξ′)

ε
+

h(π, τ, ξ + εξ′)− h(π, τ, ξ)

ε
, (20)

where by the mean value theorem the first term in the sum has the representation

h(π + επ′, τ + ετ ′, ξ + εξ′)− h(π, τ, ξ + εξ′)

ε
= ∇π,τh(π + θπ′, τ + θτ ′, ξ + εξ′)·(π′, τ ′)

for some θ ∈ (0, ε) (depending on the various arguments). The continuous dependence of the
gradient in (A6) allows us to deduce from this representation that, as a function of (π′, τ ′, ξ′)
for each ε, the first term in the sum in (20) converges uniformly, as ε↘0, to the linear function
given by the expression ∇π,τ (π, τ, ξ)·(π′, τ ′). Of course, the second term in the sum in (20), as
a function of ξ′, converges uniformly as ε↘0 because of the semidifferentiability of h in its ξ
argument that comes from (A4). Altogether, then, we do have the convergence property that
is required by the definition of h being semidifferentiable in all of its arguments. The limit
calculations have confirmed also that the semiderivatives are given by (18).
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Argument for (c). In the terminology of [12, 8.3], the regular subgradient set ∂̂h(π, τ, ξ)
consists of all (ρ, σ, η) such that

(ρ, σ, η)·(π′, τ ′, ξ′) ≤ dh(π, τ, ξ)(π′, τ ′, ξ′) for all (π′, τ ′, ξ′).

Through the subderivative formula (18), this comes down to the elements specified on the right
side of (19); the right side is thus ∂̂h(π, τ, ξ). By definition, the general subgradient set ∂h(π, τ, ξ)
is formed by taking all limits of sequences {(ρν , σν , ην)}∞ν=1 with (ρν , σν , ην) ∈ ∂̂h(πν , τ ν , ξν) and
(πν , τ ν , ξν) → (π, τ, ξ) (plus h(πν , τ ν , ξν) → h(π, τ, ξ), but that is automatic here by (a)). Any
such limit (ρ, σ, ξ) must have (ρ, σ) = ∇hξ(π, τ) by the gradient continuity in (A6), and it must
also have η ∈ ∂hπ,τ (ξ); the latter follows because the (finite) convex functions hπν ,τν converge

pointwise to hπ,τ ; see [6, Sec. 24]. Hence ∂h(π, τ, ξ) = ∂̂h(π, τ, ξ).
Argument for (d). Because h is locally Lipschitz continuous (and therefore has no nontrivial

“horizon subgradients” [12, 9.13]), the equality between ∂h(π, τ, ξ) and ∂̂h(π, τ, ξ), just verified,
guarantees the subdifferential regularity of h [12, 8.11].

For the important role it will have in our analysis, we next introduce alongside of P̂(π, τ) the
following dual problem:

P̂∗(π, τ) maximize j(π, τ, η)− V ∗
τ (η) over all η ∈ IRn,

where V ∗
τ is the convex function conjugate to Vτ , and j is the function defined by

j(π, τ, η) = infξ {h(π, τ, ξ) + η ·ξ}. (21)

Here j(π, τ, ·) is the concave conjugate of −h(π, τ, ·), so P̂(π, τ) and P̂∗(π, τ) are optimization
problems dual to each other in the original sense of Fenchel; cf. [6, Sec. 31]. It is interesting to
note, although it will not be needed, that V ∗

τ can be identified with the value function that is
defined like Vτ but for the forward propagation of g∗ with respect to a certain Lagrangian dual
to L; see [13, Theorem 5.1].

Theorem 1 (parametric optimality). For every (π, τ) ∈ O×(0,∞), the optimal value in problem
P̂(π, τ), which is p(π, τ), is finite and agrees with the optimal value in the dual problem P̂∗(π, τ).
The optimal solution sets

X(π, τ) := argmin P̂(π, τ), Y (π, τ) := argmax P̂∗(π, τ), (22)

are nonempty, convex and compact, and they are characterized by

(ξ, η) ∈ X(π, τ)× Y (π, τ) ⇐⇒ η ∈ ∂Vτ (ξ), −η ∈ ∂hπ,τ (ξ). (23)

Proof. The coercivity assumed in (A5) makes Vτ be coercive for every τ ∈ (0,∞); this was
proved in [13, Corollary 7.7]. In P̂(π, τ), we are minimizing the sum of this coercive convex
function (which is also proper and lsc) and the finite convex function h(π, τ, ·). Such a sum is
itself a coercive convex function that is proper and lsc, and its minimum is therefore finite and
attained on a compact set.

The finiteness of hπ,τ entails, on the same grounds, the coercivity of −j and leads us to

the conclusion that the maximum in P̂∗(π, τ) is attained on a compact set. The fact that the
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maximum agrees with the minimum, and that the optimal solutions are characterized by the
subgradient conditions in (23), is a standard feature of Fenchel duality in these circumstances;
cf. [6, Sec. 31].

To proceed further than in Theorem 1, we need to verify for the function being minimized in
P̂(π, τ) a boundedness condition which is central to the theory of finite-dimensional parametric
minimization, as in [12, 1.17].

Proposition 3 (parametric inf-boundedness property). Let (π̄, τ̄) ∈ O × (0,∞), and consider
any ε > 0 small enough that (π, τ) ∈ O × (0,∞) when |π − π̄| ≤ ε and |τ − τ̄ | ≤ ε. Then

∀λ ∈ (0,∞), ∃ γ ∈ (0,∞) such that |ξ| ≤ γ when
{

V (τ, ξ) + h(π, τ, ξ) ≤ λ with
|π − π̄| ≤ ε and |τ − τ̄ | ≤ ε.

(24)

Proof. We know that Vτ is coercive and depends epi-continuously on τ . This implies that the
conjugate convex function V ∗

τ is finite and likewise depends epi-continuously on τ (since epi-
continuity is preserved under the Legendre-Fenchel transform [12, 11.34]). But finite convex
functions epi-converge if and only if they converge pointwise, uniformly on bounded sets [12,
7.18]. It follows that, for any ε > 0 and α > 0, there exist r > 0 and s > 0 such that

V ∗
τ (η′) ≤ V ∗

τ̄ (0) + r|η′|+ s when |η′| ≤ α, |τ − τ̄ | ≤ ε.

When conjugates are taken on both sides with respect to η′, this inequality translates to

Vτ (ξ) ≥ α max{0, |ξ| − r} − V ∗
τ̄ (0)− s when |τ − τ̄ | ≤ ε,

but all we will really need is the consequence that

∀α > 0, ∃ β ∈ IR such that Vτ (ξ) ≥ α|ξ| − β for all ξ when |τ − τ̄ | ≤ ε. (25)

Next we observe that, because h is locally Lipschitz continuous (by Proposition 2(a)), there
is a Lipschitz constant κ for h on the neighborhood of (π̄, τ̄ , 0) defined by |π− π̄| ≤ ε, |τ − τ̄ | ≤ ε,
|ξ| ≤ ε. In particular, that yields

h(π, τ, 0) ≥ h(0, 0, 0)− 2κε (26)

and |h(π, τ, ξ′)−h(π, τ, ξ)| ≤ κ|ξ′−ξ| when |ξ| ≤ ε and |ξ′| ≤ ε. The latter ensures for the convex
function hπ,τ = h(π, τ, ·) that

η ∈ ∂hπ,τ (0) =⇒ |η| ≤ κ (27)

(see [12, 9.14]). The subgradient set in (27) is nonempty (because hπ,τ is finite), and its elements
η are characterized by the inequality hπ,τ (ξ) ≥ hπ,τ (0)+η ·ξ holding for all ξ ∈ IRn. The estimates
in (26) and (27) yield through this inequality the lower bound:

h(π, τ, ξ) ≥ −κ|ξ|+ h(0, 0, 0)− 2κε for all ξ when |π − π̄| ≤ ε and |τ − τ̄ | ≤ ε.

Returning now to (25) and taking α > κ, we see there will exist a constant µ such that

V (τ, ξ) + h(π, τ, ξ) ≥ (α− κ)|ξ| − µ for all ξ when |π − π̄| ≤ ε and |τ − τ̄ | ≤ ε.

Then obviously (24) holds, as needed.
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Theorem 2 (Lipschitz continuity and subgradients of the value function). The function p is
locally Lipschitz continuous on O × (0,∞), and its subgradients obey the rule that

(ρ, σ) ∈ ∂p(π, τ) =⇒
{

(ρ, σ + H(ξ, η)) = ∇hξ(π, τ) for
some (ξ, η) ∈ X(π, τ)× Y (π, τ).

(28)

Proof. Let f(π, τ, ξ) = V (τ, ξ) + h(π, τ, ξ). The property of f in Proposition 3 is known by [12,
1.17] to ensure that the parametric optimal value infξ f(π, τ, ξ), which again is p(π, τ), is lsc in
its dependence on (π, τ). It further yields by [12, 10.13] the estimate

∂p(π, τ) ⊂ {(ρ, σ) | (ρ, σ, 0) ∈ ∂f(π, τ, ξ) for some ξ ∈ argmin P̂(π, τ)}. (29)

Because h is locally Lipschitz continuous by Proposition 2(a), we can apply the subgradient rule
in [12, 10.10] to see that ∂f(π, τ, ξ) ⊂ (0, ∂V (τ, ξ)) + ∂h(π, τ, ξ). Invoking (7) and the subgra-
dient formula in Proposition 2(c), along with the subgradient condition (23) that characterizes
optimality in P̂(π, τ) as well as P̂∗(π, τ), we are able then to pass from (29) to (28).

Another consequence of Proposition 3 is that the mapping (π, τ) 7→ argmin P̂(π, τ) = X(π, τ)
is locally bounded with respect to any compact subset C of {(π, τ) ∈ O × (0,∞) | p(π, τ) ≤ λ},
for any λ. The mapping (π, τ) 7→ argmin P̂∗(π, τ) = Y (π, τ) is locally bounded then on such a
set C as well; this is true because η ∈ Y (π, τ) implies −η ∈ ∂hπ,τ (ξ), and the convex functions
hπ,τ are Lipschitz continuous on a neighborhood of the compact set X(π, τ), locally uniformly
with respect to (π, τ) (by Proposition 2(a)).

It follows from the continuity of the Hamiltonian H that the mapping from (π, τ) in such a
set C to the set of (ρ, σ) described on the right side of (28) is locally bounded. That guarantees
the boundedness of any sequence of subgradients (ρν , σν) ∈ ∂p(πν , τ ν) with (πν , τ ν) → (π, τ)
and p(πν , τ ν) → p(π, τ). Then, however, p has to be locally Lipschitz continuous (because this
boundedness eliminates any nontrivial “horizon subgradients”) [12, 9.13(a)].

The next stage of our analysis requires a minimax representation of the function p.

Proposition 4 (minimax representation). The function k defined by

k(π, τ, ξ, ω) := K(τ, ξ, ω)− g∗(ω) + h(π, τ, ξ) (30)

is finite on O × (0,∞) × IRn × IRn, convex in ξ, concave in ω, and moreover locally Lipschitz
continuous and semidifferentiable with respect to all arguments. It furnishes the representation

p(π, τ) = min
ξ∈IRn

max
ω∈IRn

k(π, τ, ξ, ω) = max
ω∈IRn

min
ξ∈IRn

k(π, τ, ξ, ω). (31)

Furthermore, the associated saddle point set, which is nonempty, convex and compact, has the
form X(π, τ) ×W (π, τ) (for the same X(π, τ) as above, but a set W (π, τ) that is new), and is
characterized by

(ξ, ω) ∈ X(π, τ)×W (π, τ) ⇐⇒


∃ η ∈ Y (π, τ) and ζ ∈ IRn with ω ∈ ∂g(ζ),
and a Hamiltonian trajectory (x(·), y(·)) with
(x(0), y(0)) = (ζ, ω) and (x(τ), y(τ)) = (ξ, η).

(32)
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Proof. The initial claims about k follows from the properties already identified for K, g∗ and
h. For any finite convex-concave function, in this case kπ,τ = k(π, τ, ·, ·), the set of saddle points
is always a product of closed, convex sets. We need to demonstrate this product has the form
described, and is bounded.

Let M(τ, ξ) = argmaxω {K(τ, ξ, ω) − g∗(ω)}. The maximization half of the condition for
a saddle point of kπ,τ is simply the condition that ω ∈ M(τ, ξ). For any such ω, we have
K(τ, ξ, ω)− g∗(ω) = V (τ, ξ) by (15). Hence

k(π, τ, ξ, ω) = V (τ, ξ) + h(π, τ, ξ) when ω ∈ M(τ, ξ). (33)

By subgradient calculus, the elements ω ∈ M(τ, ξ) are characterized by

∃ − ζ ∈ ∂ω[−K](τ, ξ, ω) such that ζ ∈ ∂g∗(ω). (34)

Similarly, let N(π, τ, ω) = argminξ {K(τ, ξ, ω) + h(π, τ, ξ)}, so that the minimization half of the
condition for a saddle point of kπ,τ corresponds to ξ ∈ N(π, τ, ω). That is characterized by 0
being a subgradient of the convex function K(τ, ·, ω) + h(π, τ, ·) at ξ, which through subgradient
calculus [6] correponds to

∃ η ∈ ∂ξK(τ, ξ, ω) such that − η ∈ ∂ξh(π, τ, ξ). (35)

Having (ξ, ω) be a saddle point means having both ξ ∈ N(π, τ, ω) and ω ∈ M(τ, ξ). On the
other hand, the conditions η ∈ ∂ξK(τ, ξ, ω) and −ζ ∈ ∂ω[−K](τ, ξ, ω) in (34) and (35) are, by
[14, Theorem 4.1], jointly equivalent to the existence of a Hamiltonian trajectory (x(·), y(·)) over
[0, τ ] that starts at (ζ, ω) and ends at (ξ, η). The condition ζ ∈ ∂g∗(ω) in (34) is itself equivalent,
through conjugacy, to ω ∈ ∂g(ζ). Applying (11) and the characterization of X(π, τ) and Y (π, τ)
in (23), we obtain the description in (32) of the saddle point set.

This description confirms in particular the nonemptiness of the saddle point set. It yields the
boundedness of W (π, τ) through the fact that the Hamiltonian dynamical system in question
takes bounded sets into bounded sets, either forward or backward in time.

Theorem 3 (semidifferentiability of the value function). The function p is semidifferentiable,
with semiderivative formula of minimax type:

dp(π, τ)(π′, τ ′) = min
ξ∈X(π,τ)

max
η∈Y (π,τ)

{
∇hξ(τ, π)·(τ ′, π′)− τ ′H(ξ, η)

}
= max

η∈Y (π,τ)
min

ξ∈X(π,τ)

{
∇hξ(τ, π)·(τ ′, π′)− τ ′H(ξ, η)

}
.

(36)

Proof. We apply Gol’shtein’s theorem [12, 11.53] to the minimax representation in Proposition
4. The hypothesis of that theorem is satisfied because k is continuous and semidifferentiable,
and the saddle point set is bounded. The direct formula obtained by this route is

dp(π, τ)(π′, τ ′) = min
ξ∈X(π,τ)

max
ω∈W (π,τ)

dk(π, τ, ξ, ω)(π′, τ ′, 0, 0)

= max
ω∈W (π,τ)

min
ξ∈X(π,τ)

dk(π, τ, ξ, ω)(π′, τ ′, 0, 0).
(37)
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We calculate that

dk(π, τ, ξ, ω)(π′, τ ′, 0, 0) = dK(τ, ξ, ω)(τ ′, 0, 0) + dh(π, τ, ξ)(π′, τ ′, 0), (38)

where the final term is merely ∇hξ(τ, π)·(τ ′, π′) by Proposition 2(b). We then recall from the
Hamilton-Jacobi theory of K that dK(τ, ξ, ω)(τ ′, 0, 0) equals −τ ′H(ξ, η) for any η ∈ ∂ξK(τ, ξ, ω),
or for that matter −τ ′H(ζ, ω) for any −ζ ∈ ∂[−K](τ, ξ, ω); cf. [14, Theorem 3.6]. In that
way, utilizing the characterization of these two subgradient conditions in terms of Hamiltonian
trajectories as in the preceding proof (through [14, Theorem 4.1]), we obtain from (38) the
reduction of (37) to (36).

Theorem 4 (differentiability of the value function). Suppose that the function hπ,τ = h(π, τ, ·)
is not just convex, but strictly convex and differentiable. Then X(π, τ) and Y (π, τ) reduce to
singletons, and p is smooth (continuously differentiable) with

∇p(π, τ) = ∇hξ(π, τ)− (0, H(ξ, η)) for the unique (ξ, η) ∈ X(π, τ)× Y (π, τ). (39)

Proof. The strict convexity ensures that X(π, τ) is a singleton, and the differentiability then
makes Y (π, τ) be a singleton because having η ∈ Y (π, τ) entails η = −∇hπ,τ (ξ). Then, in the
subgradient estimate of Theorem 2, there is only one candidate for membership in ∂p(π, τ). Since
p is locally Lipschitz continous, this implies that p is smooth with this candidate element as its
gradient [12, 9.18 and 9.19].

Corollary (differentiability of Moreau envelopes). For λ > 0, the Moreau envelope function

p(λ, ζ, τ) = eλVτ (ζ) = min
ξ∈IRn

{
V (τ, ξ) +

1

2λ
|ξ − ζ|2

}
is continuously differentiable with respect to (λ, ζ, τ).

Proof. Here we take π = (λ, ζ) ∈ (0,∞)× IRn and h(π, τ, ξ) = |ξ − ζ|2/2λ.
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