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Abstract

For optimal control problems satisfying convexity conditions in the state as well as the
velocity, the optimal value is studied as a function of the time horizon and other parameters.
Conditions are identified in which this optimal value function is locally Lipschitz continuous
and semidifferentiable, or even differentiable. The Hamilton-Jacobi theory for such control
problems provides the framework in which the results are obtained.
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1 Introduction

A very wide variety of problems in optimal control can be posed in the form of a generalized
problem of Bolza in the calculus of variations,

minimize /0 " L(t, 2(8), #(8))dt + 1(2(0), (7)),

by allowing the functions L and [ in the formulation to take values in IR = [—o00, 00 instead of
just IR = (—o00,00). For instance a control problem of the type

T

minimize / f(t,z(t),u(t))dt + h(xz(7)) subject to
0
#(t) € F(t,x(t),u(t), u(t) € U(t), 2(0) = a, x(1) € E,
is covered by letting [(b,c) = h(c) if b = a and ¢ € E, but I(b,c¢) = oo otherwise, and letting

L(t,z,v) the infimum of f(¢,z,u) over all w € U(t) such that F(¢t,z,u) > v. (When there is no
such w, the infimum is oo, by definition.)
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In this paper, we concentrate on a class of problems that fit this picture, emphasizing convexity
while looking at parameters which influence the solutions. The basic model we adopt is

P(m,T) minimize g(z(0)) + /OT L(z(t), #(t))dt + h(r, 7, 2(7)) over all x € AL[0,7],

where AL[0, 7] is the space of absolutely continuous functions z(-) : [0,7] — R" (arcs), and
7 is a parameter vector ranging over an open set O C IR?. Our interest lies in studying the
effects of 7 and the time parameter 7 on the optimal value in P(m, 7). In other words, we aim
at understanding properties of the value function p defined by

p(m,7) :=inf P(m,7) for (m,7)€ O x (0,00). (1)

For a function such as p, produced through optimization, continuity cannot usually be ex-
pected, let alone differentiability. However, we will be able to identify some situations where p
does possess directional derivatives in a strong sense, and even cases where p is smooth, i.e., be-
longs to C!. This will be accomplished by relying on convexity assumptions in the state arguments
and utilizing tools in convex analysis and general variational analysis [12].

Basic Assumptions (A).

(AO) The function g is convex, proper and Isc on IR".

(A1) The function L is convex, proper and Isc on R" x IR".

(A2) The set F(x) := {v|L(x,v) < oo} is nonempty for all x, and there is a constant p such
that dist(0, F'(z)) < p(1 + |z|) for all x.

(A3) There are constants a and 3 and a coercive, proper, nondecreasing function 6 on [0, c0)
such that L(xz,v) > 0(max{0, |v| — a|z|}) — B|z| for all x and v.

(A4) The function h is finite on O x (0,00) x IR", where O is an open subset of IR?, and
h(m,T,€) is convex with respect to §.

The joint convexity of L(x,v) in x and v in (A1), combined with the convexity in (A0) and
(A4), is the hallmark of “full” convexity. Control problems enjoying full convexity were first
investigated in depth in the 1970’s, cf. [7], [8], [9], [10], [11]. In such problems, locally optimal
solutions are globally optimal, and there are numerous other features in the global optimization
category as well.

Assumptions (A0)—(A3) come out of the Hamilton-Jacobi theory for fully convex problems of
Bolza as presented in [13] and [14] (see also [15] amd [5]), and they go back even earlier to the
cited work in the 1970’s through [11]. The properness of an extended-real-valued function means
that it does not take on —oo, but is not identically oo; “Isc” abbreviates lower semicontinuous.
The growth condition in (A3) serves in place of a Tonelli condition (much stronger), which would
be unworkable for control applications. Assumption (A2) imposes a very weak kind of linear
growth on the differential inclusion that underlies the problem. Note that it excludes implicit
state constraints (which would be signaled by F' being empty-valued in some regions of R").

In terms of the associated Hamiltionian function H, defined through the Legendre-Fenchel
transform by

H(ZL’,y) ‘= sup, {'Uy—L([I),’U)} (2)
and yielding L back through the reciprocal formula
L(‘T?U) - supy{v-y—H(x,y)}, (3)
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assumptions (A1)—(A3) correspond to H being finite on R" x IR" with H(z,y) convex in x and
concave in y, and also satisfying certain mild growth conditions which are symmetric with respect
to the x and y arguments; cf. [13, Theorem 2.3].

The connection with Hamilton-Jacobi theory arises through consideration of the auxiliary
problem

Q(r, &) minimize g(z(0)) +/{)T[J($(t),i(t))dt over all x € AL[0,7] having x(7) = ¢

and its value function

_ [inf(Q(7,€)) when 7 >0,

Vir¢) = {g(é) when 7 = 0, (4)
which represents the forward propagation of g with respect to L. In particular, g could be the
indicator function of a given point a: one could have g(§) = 0 if £ = a, but ¢g(§) = o0 if £ # a.

Properties of V' under assumptions (A0)—(A3) were recently studied in great detail in [13]
and [14]. Since the behavior of V (7, &) with respect to £ typically has to be distinguished from
its behavior with respect to 7, it is helpful to introduce the notation

V,:=V(r,"): R"— IR (5)

and think of V. as an extended-real-valued function on IR" which “moves” as 7 goes from 0 to
oo. In [13, Theorem 2.1], it was demonstrated that V, is convex, proper and lsc, and depends
epi-continuously on 7 (i.e., its epigraph depends continuously on 7 in the sense of set convergence,
a topic expounded for instance in [12]).

The “motion” of V; has been characterized by a generalized Hamilton-Jacobi equation in terms
of the subgradient mapping OV of V' as a whole. It was proved in [13, Theorem 2.5] that

o+ H(,n) =0 forall (o,n) €dV(r,§) when 7 >0, (6)
and indeed, the even stronger property holds that
(o,n) €OV(,§) <= ne€dV:(§) and 0 = —H(&n). (7)

The subgradients in (6) follow the definition patterns in [12], which omit the convexification step
of Clarke [2], but in the case of V they have actually been shown in [13] to coincide with Clarke’s
subgradients. In (7), V; is the subgradient mapping of convex analysis [6] associated with the
convex function V.

In fact, V' is the unique solution to (6). This was not known in [13], but was established
subsequently by Galbraith [3], [4], by way of new uniqueness Hamilton-Jacobi theorems extending
beyond the framework of full convexity and also beyond that of viscosity methodology (e.g. as
seen in [1]).

An elementary but fundamental relationship between p and the more basic value function V
will serve as the key to our analysis here. It concerns the subproblem

P(m,7) minimize V(7,§) + h(m,7,£) over all ¢ € R",

which is aimed at capturing the finite-dimensional aspect of the infinite-dimensional optimization
problem P(m, 7). Note that the convexity of h(, 7, ) in (A4) ensures the convexity of the function
of £ being minimized in P(m, 7).



Proposition 1 (value function reduction). The optimal value function p for P(7,§) is simulta-
neously the optimal value function for P(1,§):

p(m,7) = inf P(r,7) = inf P(x, 7). (8)
Furthermore, optimal solutions to these problems are connected by
z(-) € argmin P(w,7) <= x(-) € argmin Q(r, &) for some & € argmin P(x, 7). (9)

Proof. These relationships are evident from the definitions. O

This decomposition, along with properties of V' and Q(r,£) developed in [13] and [14] will
furnish the platform for understanding p.

It is known from [13, Theorem 5.2] that argmin Q(7,&), the optimal solution set in Q(7,§),
is nonempty whenever the pair (7,§) € (0,00) x R" is such that V(7,{) < oo; moreover, if
V(&) # 0, every x(-) € argmin Q(7, &) must belong to A°°[0, 7], the space of Lipschitz continuous
arcs (having & in £°[0, 7] instead of just £1[0,7]). Through this result on the existence of
solutions z(-) to Q(T, &), the question of the existence of solutions to P(m, 7) is reduced to that
of the existence of solutions £ to 75(7r, 7).

Optimality conditions for P(m,7) likewise can be reduced to those for 75(7T,T), which in
turn may be derived from convex analysis in terms of subgradients of V and h with respect
to their ¢ argument. Hamiltonian trajectories give major support in this, because of their tie
to the subgradients of V. A Hamiltonian trajectory over an interval I C IR is a trajectory
(z(-),y()) € AL[I] x AL[I] of the generalized Hamiltonian dynamical system

2(t) € O, H(x(t),y(t),  —y(t) € O:[=H](2(t),y(t)), (10)

where the subgradients are those of convex analysis for the convex functions H(z,-) and H(-,y).
The differential inclusion (10) is very close to a differential equation, because d,H (z,y) and
O.[—H](z,y) are singletons for almost every (z,y) € IR" x IR"; cf. [13, Proposition 6.1]. One has

n € AV.(€) { 3 Hamiltonian trajectory (z(- iJ()) with a1

y(0) € Dg(x(0)) and (x(r),y(r)) = (€,1).

This prescription, from [13, Theorem 2.4], provides an extended method of characteristics, in
subgradient form, which operates globally for solving the Hamilton-Jacobi equation in (6).

The existence of an arc y(+) satisfying with x(-) the condition in (11) is always sufficient for
having x(-) € argmin Q(7,§), and it is necessary if OV, () # () (which holds in particular if £ is
in the relative interior of the convex set dom V, = {{|V,(§) < oo}); cf. [13, Theorem 6.3].

Another object that will be crucial in our endeavor is the dualizing kernel associated with
the Lagrangian L, which is the function K on [0, 00) x IR" x IR" defined by

K(1,&w) = inf{x(()) ‘w+ /OTL(x(t), x(t))dt ‘ z(T) = §} (12)
for 7 > 0 and extended to 7 = 0 by
K(0,&,w) =& w. (13)
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This function, introduced in [14], is known to be finite everywhere, convex with respect to &,
concave with respect to w, and continuously differentiable with respect to 7, and it satisfies a
generalized Hamilton-Jacobi equation of Cauchy type in the strong form
oK

—E(T,f,w) = H(&,n) for all n € 0:K(7,€,w), (14)
with (13) as initial condition [14, Theorem 3.1]. The results of Galbraith [3], [4], establish that
K(-,-,w) is the unique solution to this Hamilton-Jacobi equation in 7 and £. Earlier only a
weaker version of uniqueness, depending on the convexity-concavity and a dual Hamiltonian-
Jacobi equation, had been verified in [14]. The dualizing kernel K yields a lower envelope
representation of V:

V(7,6) = sup, { K(7,6,w) — g"(w)}, (15)

cf. [14, Theorem 2.5], where g* is the convex function that is conjugate to g under the Legendre-
Fenchel transform,

g () ==sw,{wy—g@)},  gl@)=sup,{zy—g W)} (16)

In our focus on the parametric analysis of problem P(m, 7), we will eventually require certain
other properties besides the ones already listed in (A).

Additional Assumptions (A’).

(A5) The function g on IR" is coercive.

(A6) The function h on O x (0,00) x IR" has the property that h(m,T,§) is differentiable with
respect to (m, T) for each &, and the gradient in these arguments depends continuously on (7, 7,§).

Coercivity of ¢ in (A5) means that g(§)/|{] — oo as || — oo; here |- | denotes the Euclidean
norm. This growth condition on g is equivalent to the finiteness of the conjugate function g*.

The smoothness in (A6) is destined for establishing a property of p called semidifferentiability.
In general for a function f on an open subset of IR™, semidifferentiability means that, at each
point z of that subset, the difference quotient functions

Af(2)(Z) =[f(z+€) — f(2)]/e for e >0

(which are defined for 2’ in a neighborhood of 0 that expands to fill all of IR™ as €\.0) converge
uniformly on bounded sets to a finite function on IR™. This concept is examined from many
angles in [12, 7.21]. The limit function, symbolized by df(z) and thus having values denoted by
df(z)(Z'), need not be a linear function, but when it is, semidifferentiability turns into ordinary
differentiability. In the presence of local Lipschitz continuity, semidifferentiability is equivalent
to the existence of one-sided directional derivatives: one simply has

df(2)(') = lim[f(z + e2') = f(2)]/e.

In particular, any finite convex function on IR" is locally Lipschitz continuous and semidiffer-
entiable everywhere [12, 9.14 and 7.27]. As another example, the dualizing kernel K was itself
shown in [14, Theorem 3.6] to be locally Lipschitz continuous and semidifferentiable with respect
to all of its arguments.



2 Main Developments

In obtaining the semidifferentiability of p, along with subgradient properties of p that allow the
identification of cases in which p is smooth, several consequences of our assumptions (A4) and
(A6) on the terminal cost function h will be needed. These consequences will be gleaned by the
methodology of variational analysis in [12].

Proposition 2 (joint properties of the terminal function). Assumptions (A4) and (A6) on the
separate functions

hT(,T = h(ﬂvTv ')7 h§ = h(? 'ag)a (17)

guarantee that h has the following properties, involving all of its arguments together.
(a) h is locally Lipschitz continuous on O x (0,00) x IR".
(b) h is semidifferentiable on O x (0,00) x IR" with subderivative formula

dh(m,7,&)(7', 7', &) = Vhe(m,7)- (7', 7") + dhr () (E). (18)
(c) h has its subgradients on O x (0,00) x IR" given by

Oh(m,7,€) = {(p,o:n) | (p,0) = Vhe(m,7), 0 € Ohrr ()} (19)

(d) h is subdifferentially regular on O x (0,00) x IR" (i.e., its epigraph is Clarke regular).

Proof. Argument for (a). The finite convexity in (A4) implies that h,, is locally Lipschitz
continuous on R" for each (m,7) € O x (0,00) [12, 9.14]. On the other hand, the smoothness
in (A6) implies that he is locally Lipschitz continuous on O x (0,00) for each & € R". It is
elementary then that h(m, 7, &) is locally Lipschitz continuous with respect to (m, 7, &).

Argument for (b). By virtue of (A4), h,. is semidifferentiable on IR" for each (m,7) €
O x (0,00) [12, 7.27]. To get the semidifferentiability of A itself, utilizing the differentiability in
(A6), we observe that Ach(m, 7, &) (7', 7',¢&") can be written as

h(m+ern’,7+er’ £+ €€) — h(m,7,& + €€) N h(m, 7, + €€') — h(m, 1,§)
€ €

where by the mean value theorem the first term in the sum has the representation

hrm+en', 7 +er’' £+ €)= h(m, 1, + €’)
€

= vﬂ',’rh’(ﬂ— + 97T/7 T+ 97_/’ § + 65,) ' (7T/7 Tl)

for some 0 € (0,¢) (depending on the various arguments). The continuous dependence of the
gradient in (A6) allows us to deduce from this representation that, as a function of (7/,7’,¢’)
for each e, the first term in the sum in (20) converges uniformly, as e\.0, to the linear function
given by the expression V, . (7, 7,&)- (7', 7). Of course, the second term in the sum in (20), as
a function of ¢, converges uniformly as e\.0 because of the semidifferentiability of A in its £
argument that comes from (A4). Altogether, then, we do have the convergence property that
is required by the definition of h being semidifferentiable in all of its arguments. The limit
calculations have confirmed also that the semiderivatives are given by (18).



Argument for (c¢). In the terminology of [12, 8.3], the regular subgradient set Oh(rw, T, &)
consists of all (p,o,n) such that

(p,o,n)- (7', 7,&) < dh(m,7,&) (', 7,&) for all (x',7,&).

Through the subderivative formula (18), this comes down to the elements specified on the right
side of (19); the right side is thus Oh(r, 7, €). By definition, the general subgradient set dh(r, 7, )
is formed by taking all limits of sequences {(p”, o, 1")}°2, with (p”, 0%, ") € dh(x*, 7%, €") and
(n¥,77,&") — (m,7,&) (plus h(n”,77,&) — h(m,7,£), but that is automatic here by (a)). Any
such limit (p, 0, &) must have (p, o) = Vhe(m, 7) by the gradient continuity in (A6), and it must
also have n € Oh, -(£); the latter follows because the (finite) convex functions h, . . converge
pointwise to h, ,; see [6, Sec. 24]. Hence Oh(m,T,&) = éh(w, 7,§).

Argument for (d). Because h is locally Lipschitz continuous (and therefore has no nontrivial
“horizon subgradients” [12, 9.13]), the equality between Oh(m, 7,&) and éh(w, 7,§), just verified,
guarantees the subdifferential regularity of h [12, 8.11]. m]

T

For the important role it will have in our analysis, we next introduce alongside of 75(7T, T) the
following dual problem:

P*(, 7) maximize j(m,7,1m) — V> (n) over all n € R",

T

where V* is the convex function conjugate to V;, and j is the function defined by

j(ﬂ, T, 77) = inf§ {h(ﬁv T, 5) + 775} (21)

Here j(m,,-) is the concave conjugate of —h(m, 7, ), so 75(7r,7') and 75*(7T,T) are optimization
problems dual to each other in the original sense of Fenchel; cf. [6, Sec. 31]. It is interesting to
note, although it will not be needed, that V* can be identified with the value function that is
defined like V. but for the forward propagation of ¢* with respect to a certain Lagrangian dual
to L; see [13, Theorem 5.1].

Theorem 1 (parametric optimality). For every (m,7) € Ox (0, 00), the optimal value in problem
P(m,T), which is p(m, T), is finite and agrees with the optimal value in the dual problem P*(rm, 7).
The optimal solution sets

X(m,7) := argmin P(m, 1), Y (7, 7) := argmax P*(m,7), (22)
are nonempty, convex and compact, and they are characterized by
(&n) € X(m 1) xY(m,7) <= nedVi(), —n € Ohrr(§). (23)

Proof. The coercivity assumed in (A5) makes V, be coercive for every 7 € (0,00); this was
proved in [13, Corollary 7.7). In P(m,7), we are minimizing the sum of this coercive convex
function (which is also proper and lsc) and the finite convex function h(7,7,-). Such a sum is
itself a coercive convex function that is proper and Isc, and its minimum is therefore finite and
attained on a compact set.

The finiteness of h,, entails, on the same grounds, the coercivity of —j and leads us to
the conclusion that the maximum in P* (m,7) is attained on a compact set. The fact that the
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maximum agrees with the minimum, and that the optimal solutions are characterized by the
subgradient conditions in (23), is a standard feature of Fenchel duality in these circumstances;
cf. [6, Sec. 31]. O

To proceed further than in Theorem 1, we need to verify for the function being minimized in
P(m, ) a boundedness condition which is central to the theory of finite-dimensional parametric
minimization, as in [12, 1.17].

Proposition 3 (parametric inf-boundedness property). Let (7,7) € O x (0,00), and consider
any € > 0 small enough that (m,7) € O x (0,00) when |r — 7| < € and |7 — 7| < e. Then

V(r,&) + h(m,1,&) < X\ with

V€ (0,00), 3v € (0,00) such that || <~ when {|7r—7‘r| <eand|r—7 <e

(24)

Proof. We know that V, is coercive and depends epi-continuously on 7. This implies that the
conjugate convex function V* is finite and likewise depends epi-continuously on 7 (since epi-
continuity is preserved under the Legendre-Fenchel transform [12, 11.34]). But finite convex
functions epi-converge if and only if they converge pointwise, uniformly on bounded sets [12,
7.18]. It follows that, for any € > 0 and « > 0, there exist » > 0 and s > 0 such that

Vi) < VZ(O) + 70| +s when || < a, |t =7 < e
When conjugates are taken on both sides with respect to 7/, this inequality translates to
V:(€) > amax{0, || —r} —VZ(0) — s when |7 — 7| <,
but all we will really need is the consequence that
Va >0, 36 € IR such that V,(§) > a|f| — § for all £ when |7 — 7| <e. (25)

Next we observe that, because h is locally Lipschitz continuous (by Proposition 2(a)), there
is a Lipschitz constant  for h on the neighborhood of (7,7, 0) defined by |7 —7| <, |[1—7| <,
|€| < €. In particular, that yields

h(m,7,0) > h(0,0,0) — 2ke (26)

and |h(m, 7, &) —h(m, 7,8)| < k| =] when || < e and [¢'| < e. The latter ensures for the convex
function h,, = h(m,7,-) that
ne ahw,T(O) = |77| <K (27)

(see [12, 9.14]). The subgradient set in (27) is nonempty (because h, . is finite), and its elements
n are characterized by the inequality hy ,(£) > hr -(0)+n-& holding for all £ € IR". The estimates
in (26) and (27) yield through this inequality the lower bound:

h(m,7,£) > —k|&| + h(0,0,0) — 2ke for all & when |7 —7| <€ and |7 — 7| <e.
Returning now to (25) and taking a > k, we see there will exist a constant p such that

V(1) + h(m,7,8) > (a— k)[§] — p for all £ when |7 — 7| <e and |7 — 7| <e.
Then obviously (24) holds, as needed. O



Theorem 2 (Lipschitz continuity and subgradients of the value function). The function p is
locally Lipschitz continuous on O x (0,00), and its subgradients obey the rule that

(p,o+ H(&,n)) = Vhe(m,T) for

(p,o) € Op(m,7) — {some (€.n) € X(m,7) X Y(m,7). (28)

Proof. Let f(m,7,§) =V (7,£) + h(m,7,&). The property of f in Proposition 3 is known by [12,
1.17] to ensure that the parametric optimal value infe f(m, 7,§), which again is p(m, 7), is Isc in
its dependence on (m, 7). It further yields by [12, 10.13] the estimate

ap(r,7) € {(p,0) | (p,0,0) € df (m, 7€) for some € € argmin P(r,7)}. (29)

Because h is locally Lipschitz continuous by Proposition 2(a), we can apply the subgradient rule
in [12, 10.10] to see that Of(m,7,&) C (0,0V(7,§)) + Oh(m, 7,&). Invoking (7) and the subgra-
dient formula in Proposition 2(c), along with the subgradient condition (23) that characterizes
optimality in P(7,7) as well as P*(m,7), we are able then to pass from (29) to (28).

Another consequence of Proposition 3 is that the mapping (7, 7) — argmin 75(7r, 7)=X(m, 1)
is locally bounded with respect to any compact subset C' of {(m,7) € O x (0,00) | p(m,7) < A},
for any A. The mapping (7, 7) — argmin P*(m,7) = Y (x,7) is locally bounded then on such a
set C' as well; this is true because n € Y (w, 7) implies —n € Oh,,(£), and the convex functions
hr . are Lipschitz continuous on a neighborhood of the compact set X (7, 7), locally uniformly
with respect to (7, 7) (by Proposition 2(a)).

It follows from the continuity of the Hamiltonian H that the mapping from (7, 7) in such a
set C' to the set of (p, o) described on the right side of (28) is locally bounded. That guarantees
the boundedness of any sequence of subgradients (p”,0") € Op(n”,7") with (7%, 7%) — (7, 7)
and p(7”,7¥) — p(m, 7). Then, however, p has to be locally Lipschitz continuous (because this
boundedness eliminates any nontrivial “horizon subgradients”) [12, 9.13(a)]. O

The next stage of our analysis requires a minimax representation of the function p.

Proposition 4 (minimax representation). The function k defined by
k(m, 7,&w) == K(7,§,w) = g"(w) + h(m,7,8) (30)

is finite on O x (0,00) x IR" x IR", convex in £, concave in w, and moreover locally Lipschitz
continuous and semidifferentiable with respect to all arguments. It furnishes the representation

p(m,7) = min max k(m,7,{,w) = max min k(w,7,¢,w) (31)
Furthermore, the associated saddle point set, which is nonempty, convex and compact, has the

form X (m,7) x W(m, 1) (for the same X (m,T) as above, but a set W (m,7) that is new), and is
characterized by

dneY(n,7) and ¢ € R" with w € 9g((),
(&, w) € X(m,7) x W(m,7) <= [ and a Hamiltonian trajectory (x(-),y(-)) with (32)
(2(0),9(0)) = (¢, w) and (2(7),y(7)) = (£, 7).



Proof. The initial claims about & follows from the properties already identified for K, g* and
h. For any finite convex-concave function, in this case k., = k(m, 7, -, -), the set of saddle points
is always a product of closed, convex sets. We need to demonstrate this product has the form
described, and is bounded.

Let M(7,&) = argmax, {K(7,{,w) — g*(w)}. The maximization half of the condition for
a saddle point of k., is simply the condition that w € M(7,§). For any such w, we have
K(1,&,w) — g"(w) = V(7,€) by (15). Hence

k(m,7,&w) =V(7,&) + h(m,7,§) when w € M(1,§). (33)
By subgradient calculus, the elements w € M(7, &) are characterized by
3 — (€ J,[—-K](r,&,w) such that ¢ € dg*(w). (34)

Similarly, let N(7, 7, w) = argming { K(7,§,w) + h(7,7,€)}, so that the minimization half of the
condition for a saddle point of k,, corresponds to £ € N(mw,7,w). That is characterized by 0
being a subgradient of the convex function K(7,-,w)+ h(w,7,-) at &, which through subgradient
calculus [6] correponds to

dn € 0¢K(7,&,w) such that —n € Och(m, 7,§). (35)

Having (§,w) be a saddle point means having both £ € N(m, 7,w) and w € M(7,£). On the
other hand, the conditions n € 0¢K(7,§,w) and —(¢ € 0,[—K](7,&,w) in (34) and (35) are, by
[14, Theorem 4.1], jointly equivalent to the existence of a Hamiltonian trajectory (z(-),y(+)) over
[0, 7] that starts at ({,w) and ends at (£,n). The condition ( € dg*(w) in (34) is itself equivalent,
through conjugacy, to w € dg(¢). Applying (11) and the characterization of X (m, 7) and Y (7, 7)
in (23), we obtain the description in (32) of the saddle point set.

This description confirms in particular the nonemptiness of the saddle point set. It yields the
boundedness of W (m, 1) through the fact that the Hamiltonian dynamical system in question
takes bounded sets into bounded sets, either forward or backward in time. O

Theorem 3 (semidifferentiability of the value function). The function p is semidifferentiable,
with semiderivative formula of minimax type:

dp(m, )™, ) = gin nerg?gﬂ{th(r, ™) () = T H(E )}
= max min {th(r, m)- (7', 7) —T’H(f,n)}.

neY (m,7) £eX(m,T)

(36)

Proof. We apply Gol’shtein’s theorem [12, 11.53] to the minimax representation in Proposition
4. The hypothesis of that theorem is satisfied because k is continuous and semidifferentiable,
and the saddle point set is bounded. The direct formula obtained by this route is

dp(m,7)(7',7') = min  max dk(m,7,&w)(x’,7,0,0
bl 7)) = i s d(r, 7 £0)(,7.0,0) -

= max min dk(m, 7,&w) (7, 7,0,0).
weW (m,1) £eX (m,T) ( 5 )( )
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We calculate that
dk(m, 7, &, w) (7', 7,0,0) = dK(7,&,w)(7,0,0) + dh(xw, 1,&) (7', 7, 0), (38)

where the final term is merely Vhe(r,m) (7', 7') by Proposition 2(b). We then recall from the
Hamilton-Jacobi theory of K that dK(7,&,w)(7’,0,0) equals —7'H (£, n) for any n € 0:K(7,&,w),
or for that matter —7'H((,w) for any —¢ € 0[—K](7,§,w); cf. [14, Theorem 3.6]. In that
way, utilizing the characterization of these two subgradient conditions in terms of Hamiltonian
trajectories as in the preceding proof (through [14, Theorem 4.1]), we obtain from (38) the
reduction of (37) to (36). O

Theorem 4 (differentiability of the value function). Suppose that the function h, , = h(m,T,-)
is not just convex, but strictly convex and differentiable. Then X (m,7) and Y (w,7) reduce to
singletons, and p is smooth (continuously differentiable) with

Vp(m,7) = Vhe(m,7) — (0, H(,,n)) for the unique (§,n) € X(m,7) x Y (7, 7). (39)

Proof. The strict convexity ensures that X (7, 7) is a singleton, and the differentiability then
makes Y (7, 7) be a singleton because having n € Y (w, 7) entails n = —Vh, (£). Then, in the
subgradient estimate of Theorem 2, there is only one candidate for membership in dp(m, 7). Since
p is locally Lipschitz continous, this implies that p is smooth with this candidate element as its
gradient [12, 9.18 and 9.19]. O

Corollary (differentiability of Moreau envelopes). For A\ > 0, the Moreau envelope function

POGT) = eaVo(Q) = min {V(r,©) + 5116 — ()

is continuously differentiable with respect to (A, (, 7).

Proof. Here we take m = (), () € (0,00) x R" and h(m,7,£) = |£ — C|*/2\. m|
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