HAMILTON-JACOBI THEORY AND PARAMETRIC ANALYSIS IN FULLY CONVEX PROBLEMS OF OPTIMAL CONTROL

R. T. Rockafellar¹

Department of Mathematics, Box 354350 University of Washington, Seattle, WA 98195-4350 rtr@math.washington.edu

Abstract

For optimal control problems satisfying convexity conditions in the state as well as the velocity, the optimal value is studied as a function of the time horizon and other parameters. Conditions are identified in which this optimal value function is locally Lipschitz continuous and semidifferentiable, or even differentiable. The Hamilton-Jacobi theory for such control problems provides the framework in which the results are obtained.

Key words: Hamilton-Jacobi theory, value functions, Bolza problems, calculus of variations, optimal control, cost-to-go, variational analysis, convex analysis, nonsmooth analysis

December, 2002

1 Introduction

A very wide variety of problems in optimal control can be posed in the form of a generalized problem of Bolza in the calculus of variations,

minimize
$$\int_0^\tau L(t,x(t),\dot{x}(t))dt + l(x(0),x(\tau)),$$

by allowing the functions L and l in the formulation to take values in $\overline{R} = [-\infty, \infty]$ instead of just $R = (-\infty, \infty)$. For instance a control problem of the type

minimize
$$\int_0^\tau f(t,x(t),u(t))dt + h(x(\tau))$$
 subject to $\dot{x}(t) \in F(t,x(t),u(t)),\ u(t) \in U(t),\ x(0)=a,\ x(\tau) \in E,$

is covered by letting l(b,c) = h(c) if b = a and $c \in E$, but $l(b,c) = \infty$ otherwise, and letting L(t,x,v) the infimum of f(t,x,u) over all $u \in U(t)$ such that $F(t,x,u) \ni v$. (When there is no such u, the infimum is ∞ , by definition.)

^{*}Research partially supported by the NSF Grant DMS-0104055.

In this paper, we concentrate on a class of problems that fit this picture, emphasizing convexity while looking at parameters which influence the solutions. The basic model we adopt is

$$\mathcal{P}(\pi,\tau) \qquad \text{minimize } g(x(0)) + \int_0^\tau L(x(t),\dot{x}(t))dt + h(\pi,\tau,x(\tau)) \text{ over all } x \in \mathcal{A}_n^1[0,\tau],$$

where $\mathcal{A}_n^1[0,\tau]$ is the space of absolutely continuous functions $x(\cdot):[0,\tau]\to\mathbb{R}^n$ (arcs), and π is a parameter vector ranging over an open set $O\subset\mathbb{R}^d$. Our interest lies in studying the effects of π and the time parameter τ on the optimal value in $\mathcal{P}(\pi,\tau)$. In other words, we aim at understanding properties of the value function p defined by

$$p(\pi, \tau) := \inf \mathcal{P}(\pi, \tau) \quad \text{for} \quad (\pi, \tau) \in O \times (0, \infty). \tag{1}$$

For a function such as p, produced through optimization, continuity cannot usually be expected, let alone differentiability. However, we will be able to identify some situations where p does possess directional derivatives in a strong sense, and even cases where p is smooth, i.e., belongs to C^1 . This will be accomplished by relying on convexity assumptions in the state arguments and utilizing tools in convex analysis and general variational analysis [12].

Basic Assumptions (A).

- (A0) The function g is convex, proper and lsc on \mathbb{R}^n .
- (A1) The function L is convex, proper and lsc on $\mathbb{R}^n \times \mathbb{R}^n$.
- (A2) The set $F(x) := \{v \mid L(x,v) < \infty\}$ is nonempty for all x, and there is a constant ρ such that $\operatorname{dist}(0,F(x)) < \rho(1+|x|)$ for all x.
- (A3) There are constants α and β and a coercive, proper, nondecreasing function θ on $[0, \infty)$ such that $L(x, v) \geq \theta(\max\{0, |v| \alpha|x|\}) \beta|x|$ for all x and v.
- (A4) The function h is finite on $O \times (0, \infty) \times \mathbb{R}^n$, where O is an open subset of \mathbb{R}^d , and $h(\pi, \tau, \xi)$ is convex with respect to ξ .

The joint convexity of L(x, v) in x and v in (A1), combined with the convexity in (A0) and (A4), is the hallmark of "full" convexity. Control problems enjoying full convexity were first investigated in depth in the 1970's, cf. [7], [8], [9], [10], [11]. In such problems, locally optimal solutions are globally optimal, and there are numerous other features in the global optimization category as well.

Assumptions (A0)–(A3) come out of the Hamilton-Jacobi theory for fully convex problems of Bolza as presented in [13] and [14] (see also [15] amd [5]), and they go back even earlier to the cited work in the 1970's through [11]. The properness of an extended-real-valued function means that it does not take on $-\infty$, but is not identically ∞ ; "lsc" abbreviates lower semicontinuous. The growth condition in (A3) serves in place of a Tonelli condition (much stronger), which would be unworkable for control applications. Assumption (A2) imposes a very weak kind of linear growth on the differential inclusion that underlies the problem. Note that it excludes implicit state constraints (which would be signaled by F being empty-valued in some regions of \mathbb{R}^n).

In terms of the associated Hamiltionian function H, defined through the Legendre-Fenchel transform by

$$H(x,y) := \sup_{v} \left\{ v \cdot y - L(x,v) \right\} \tag{2}$$

and yielding L back through the reciprocal formula

$$L(x,v) = \sup_{y} \{v \cdot y - H(x,y)\},\tag{3}$$

assumptions (A1)–(A3) correspond to H being finite on $\mathbb{R}^n \times \mathbb{R}^n$ with H(x,y) convex in x and concave in y, and also satisfying certain mild growth conditions which are symmetric with respect to the x and y arguments; cf. [13, Theorem 2.3].

The connection with Hamilton-Jacobi theory arises through consideration of the auxiliary problem

$$\mathcal{Q}(\tau,\xi) \qquad \text{minimize } g(x(0)) + \int_0^\tau \!\! L(x(t),\dot{x}(t))dt \quad \text{over all } x \in \mathcal{A}_n^1[0,\tau] \text{ having } x(\tau) = \xi$$

and its value function

$$V(\tau, \xi) := \begin{cases} \inf(\mathcal{Q}(\tau, \xi)) & \text{when } \tau > 0, \\ g(\xi) & \text{when } \tau = 0, \end{cases}$$

$$(4)$$

which represents the forward propagation of g with respect to L. In particular, g could be the indicator function of a given point a: one could have $q(\xi) = 0$ if $\xi = a$, but $q(\xi) = \infty$ if $\xi \neq a$.

Properties of V under assumptions (A0)–(A3) were recently studied in great detail in [13] and [14]. Since the behavior of $V(\tau, \xi)$ with respect to ξ typically has to be distinguished from its behavior with respect to τ , it is helpful to introduce the notation

$$V_{\tau} := V(\tau, \cdot) : \mathbb{R}^n \to \overline{\mathbb{R}} \tag{5}$$

and think of V_{τ} as an extended-real-valued function on \mathbb{R}^n which "moves" as τ goes from 0 to ∞ . In [13, Theorem 2.1], it was demonstrated that V_{τ} is convex, proper and lsc, and depends epi-continuously on τ (i.e., its epigraph depends continuously on τ in the sense of set convergence, a topic expounded for instance in [12]).

The "motion" of V_t has been characterized by a generalized Hamilton-Jacobi equation in terms of the subgradient mapping ∂V of V as a whole. It was proved in [13, Theorem 2.5] that

$$\sigma + H(\xi, \eta) = 0 \text{ for all } (\sigma, \eta) \in \partial V(\tau, \xi) \text{ when } \tau > 0,$$
 (6)

and indeed, the even stronger property holds that

$$(\sigma, \eta) \in \partial V(\tau, \xi) \iff \eta \in \partial V_{\tau}(\xi) \text{ and } \sigma = -H(\xi, \eta).$$
 (7)

The subgradients in (6) follow the definition patterns in [12], which omit the convexification step of Clarke [2], but in the case of V they have actually been shown in [13] to coincide with Clarke's subgradients. In (7), ∂V_{τ} is the subgradient mapping of convex analysis [6] associated with the convex function V_{τ} .

In fact, V is the *unique* solution to (6). This was not known in [13], but was established subsequently by Galbraith [3], [4], by way of new uniqueness Hamilton-Jacobi theorems extending beyond the framework of full convexity and also beyond that of viscosity methodology (e.g. as seen in [1]).

An elementary but fundamental relationship between p and the more basic value function V will serve as the key to our analysis here. It concerns the subproblem

$$\hat{\mathcal{P}}(\pi, \tau)$$
 minimize $V(\tau, \xi) + h(\pi, \tau, \xi)$ over all $\xi \in \mathbb{R}^n$,

which is aimed at capturing the *finite-dimensional* aspect of the infinite-dimensional optimization problem $\mathcal{P}(\pi,\tau)$. Note that the convexity of $h(\pi,\tau,\cdot)$ in (A4) ensures the convexity of the function of ξ being minimized in $\hat{\mathcal{P}}(\pi,\tau)$.

Proposition 1 (value function reduction). The optimal value function p for $\mathcal{P}(\tau, \xi)$ is simultaneously the optimal value function for $\hat{\mathcal{P}}(\tau, \xi)$:

$$p(\pi, \tau) = \inf \hat{\mathcal{P}}(\pi, \tau) = \inf \mathcal{P}(\pi, \tau). \tag{8}$$

Furthermore, optimal solutions to these problems are connected by

$$x(\cdot) \in \operatorname{argmin} \mathcal{P}(\pi, \tau) \iff x(\cdot) \in \operatorname{argmin} \mathcal{Q}(\tau, \xi) \text{ for some } \xi \in \operatorname{argmin} \hat{\mathcal{P}}(\pi, \tau).$$
 (9)

Proof. These relationships are evident from the definitions.

This decomposition, along with properties of V and $Q(\tau, \xi)$ developed in [13] and [14] will furnish the platform for understanding p.

It is known from [13, Theorem 5.2] that $\operatorname{argmin} \mathcal{Q}(\tau, \xi)$, the optimal solution set in $\mathcal{Q}(\tau, \xi)$, is nonempty whenever the pair $(\tau, \xi) \in (0, \infty) \times \mathbb{R}^n$ is such that $V(\tau, \xi) < \infty$; moreover, if $\partial V_{\tau}(\xi) \neq \emptyset$, every $x(\cdot) \in \operatorname{argmin} \mathcal{Q}(\tau, \xi)$ must belong to $\mathcal{A}_n^{\infty}[0, \tau]$, the space of Lipschitz continuous arcs (having \dot{x} in $\mathcal{L}_n^{\infty}[0, \tau]$ instead of just $\mathcal{L}_n^1[0, \tau]$). Through this result on the existence of solutions $x(\cdot)$ to $\mathcal{Q}(\tau, \xi)$, the question of the existence of solutions to $\mathcal{P}(\pi, \tau)$ is reduced to that of the existence of solutions ξ to $\hat{\mathcal{P}}(\pi, \tau)$.

Optimality conditions for $\mathcal{P}(\pi,\tau)$ likewise can be reduced to those for $\hat{\mathcal{P}}(\pi,\tau)$, which in turn may be derived from convex analysis in terms of subgradients of V and h with respect to their ξ argument. Hamiltonian trajectories give major support in this, because of their tie to the subgradients of V. A Hamiltonian trajectory over an interval $I \subset \mathbb{R}$ is a trajectory $(x(\cdot), y(\cdot)) \in \mathcal{A}_n^1[I] \times \mathcal{A}_n^1[I]$ of the generalized Hamiltonian dynamical system

$$\dot{x}(t) \in \partial_y H(x(t), y(t)), \qquad -\dot{y}(t) \in \partial_x [-H](x(t), y(t)), \tag{10}$$

where the subgradients are those of convex analysis for the convex functions $H(x,\cdot)$ and $H(\cdot,y)$. The differential inclusion (10) is very close to a differential equation, because $\partial_y H(x,y)$ and $\partial_x [-H](x,y)$ are singletons for almost every $(x,y) \in \mathbb{R}^n \times \mathbb{R}^n$; cf. [13, Proposition 6.1]. One has

$$\eta \in \partial V_{\tau}(\xi) \iff \begin{cases}
\exists \text{ Hamiltonian trajectory } (x(\cdot), y(\cdot)) \text{ with} \\
y(0) \in \partial g(x(0)) \text{ and } (x(\tau), y(\tau)) = (\xi, \eta).
\end{cases}$$
(11)

This prescription, from [13, Theorem 2.4], provides an extended method of characteristics, in subgradient form, which operates globally for solving the Hamilton-Jacobi equation in (6).

The existence of an arc $y(\cdot)$ satisfying with $x(\cdot)$ the condition in (11) is always sufficient for having $x(\cdot) \in \operatorname{argmin} \mathcal{Q}(\tau, \xi)$, and it is necessary if $\partial V_{\tau}(\xi) \neq \emptyset$ (which holds in particular if ξ is in the relative interior of the convex set dom $V_{\tau} = \{\xi \mid V_{\tau}(\xi) < \infty\}$); cf. [13, Theorem 6.3].

Another object that will be crucial in our endeavor is the dualizing kernel associated with the Lagrangian L, which is the function K on $[0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$ defined by

$$K(\tau, \xi, \omega) := \inf \left\{ x(0) \cdot \omega + \int_0^{\tau} L(x(t), \dot{x}(t)) dt \, \middle| \, x(\tau) = \xi \right\}. \tag{12}$$

for $\tau > 0$ and extended to $\tau = 0$ by

$$K(0,\xi,\omega) = \xi \cdot \omega. \tag{13}$$

This function, introduced in [14], is known to be finite everywhere, convex with respect to ξ , concave with respect to ω , and continuously differentiable with respect to τ , and it satisfies a generalized Hamilton-Jacobi equation of Cauchy type in the strong form

$$-\frac{\partial K}{\partial \tau}(\tau, \xi, \omega) = H(\xi, \eta) \text{ for all } \eta \in \partial_{\xi} K(\tau, \xi, \omega), \tag{14}$$

with (13) as initial condition [14, Theorem 3.1]. The results of Galbraith [3], [4], establish that $K(\cdot,\cdot,\omega)$ is the *unique* solution to this Hamilton-Jacobi equation in τ and ξ . Earlier only a weaker version of uniqueness, depending on the convexity-concavity and a dual Hamiltonian-Jacobi equation, had been verified in [14]. The dualizing kernel K yields a *lower envelope representation* of V:

 $V(\tau, \xi) = \sup_{\omega} \left\{ K(\tau, \xi, \omega) - g^*(\omega) \right\}, \tag{15}$

cf. [14, Theorem 2.5], where g^* is the convex function that is conjugate to g under the Legendre-Fenchel transform,

$$g^*(y) := \sup_x \{x \cdot y - g(x)\}, \qquad g(x) := \sup_y \{x \cdot y - g^*(y)\}.$$
 (16)

In our focus on the parametric analysis of problem $\mathcal{P}(\pi,\tau)$, we will eventually require certain other properties besides the ones already listed in (A).

Additional Assumptions (A').

- (A5) The function g on \mathbb{R}^n is coercive.
- (A6) The function h on $O \times (0, \infty) \times \mathbb{R}^n$ has the property that $h(\pi, \tau, \xi)$ is differentiable with respect to (π, τ) for each ξ , and the gradient in these arguments depends continuously on (π, τ, ξ) .

Coercivity of g in (A5) means that $g(\xi)/|\xi| \to \infty$ as $|\xi| \to \infty$; here $|\cdot|$ denotes the Euclidean norm. This growth condition on g is equivalent to the finiteness of the conjugate function g^* .

The smoothness in (A6) is destined for establishing a property of p called *semidifferentiability*. In general for a function f on an open subset of \mathbb{R}^m , semidifferentiability means that, at each point z of that subset, the difference quotient functions

$$\Delta_{\epsilon} f(z)(z') := [f(z + \epsilon z') - f(z)]/\epsilon \text{ for } \epsilon > 0$$

(which are defined for z' in a neighborhood of 0 that expands to fill all of \mathbb{R}^m as $\epsilon \setminus 0$) converge uniformly on bounded sets to a finite function on \mathbb{R}^m . This concept is examined from many angles in [12, 7.21]. The limit function, symbolized by df(z) and thus having values denoted by df(z)(z'), need not be a linear function, but when it is, semidifferentiability turns into ordinary differentiability. In the presence of local Lipschitz continuity, semidifferentiability is equivalent to the existence of one-sided directional derivatives: one simply has

$$df(z)(z') = \lim_{\epsilon \searrow 0} [f(z + \epsilon z') - f(z)]/\epsilon.$$

In particular, any finite convex function on \mathbb{R}^n is locally Lipschitz continuous and semidifferentiable everywhere [12, 9.14 and 7.27]. As another example, the dualizing kernel K was itself shown in [14, Theorem 3.6] to be locally Lipschitz continuous and semidifferentiable with respect to all of its arguments.

2 Main Developments

In obtaining the semidifferentiability of p, along with subgradient properties of p that allow the identification of cases in which p is smooth, several consequences of our assumptions (A4) and (A6) on the terminal cost function h will be needed. These consequences will be gleaned by the methodology of variational analysis in [12].

Proposition 2 (joint properties of the terminal function). Assumptions (A4) and (A6) on the separate functions

$$h_{\pi,\tau} = h(\pi, \tau, \cdot), \qquad h_{\xi} = h(\cdot, \cdot, \xi),$$

$$\tag{17}$$

guarantee that h has the following properties, involving all of its arguments together.

- (a) h is locally Lipschitz continuous on $O \times (0, \infty) \times \mathbb{R}^n$.
- (b) h is semidifferentiable on $O \times (0, \infty) \times \mathbb{R}^n$ with subderivative formula

$$dh(\pi, \tau, \xi)(\pi', \tau', \xi') = \nabla h_{\xi}(\pi, \tau) \cdot (\pi', \tau') + dh_{\pi, \tau}(\xi)(\xi'). \tag{18}$$

(c) h has its subgradients on $O \times (0, \infty) \times \mathbb{R}^n$ given by

$$\partial h(\pi, \tau, \xi) = \{ (\rho, \sigma, \eta) \mid (\rho, \sigma) = \nabla h_{\xi}(\pi, \tau), \ \eta \in \partial h_{\pi, \tau}(\xi) \}. \tag{19}$$

(d) h is subdifferentially regular on $O \times (0, \infty) \times \mathbb{R}^n$ (i.e., its epigraph is Clarke regular).

Proof. Argument for (a). The finite convexity in (A4) implies that $h_{\pi,\tau}$ is locally Lipschitz continuous on \mathbb{R}^n for each $(\pi,\tau) \in O \times (0,\infty)$ [12, 9.14]. On the other hand, the smoothness in (A6) implies that h_{ξ} is locally Lipschitz continuous on $O \times (0,\infty)$ for each $\xi \in \mathbb{R}^n$. It is elementary then that $h(\pi,\tau,\xi)$ is locally Lipschitz continuous with respect to (π,τ,ξ) .

Argument for (b). By virtue of (A4), $h_{\pi,\tau}$ is semidifferentiable on \mathbb{R}^n for each $(\pi,\tau) \in O \times (0,\infty)$ [12, 7.27]. To get the semidifferentiability of h itself, utilizing the differentiability in (A6), we observe that $\Delta_{\epsilon}h(\pi,\tau,\xi)(\pi',\tau',\xi')$ can be written as

$$\frac{h(\pi + \epsilon \pi', \tau + \epsilon \tau', \xi + \epsilon \xi') - h(\pi, \tau, \xi + \epsilon \xi')}{\epsilon} + \frac{h(\pi, \tau, \xi + \epsilon \xi') - h(\pi, \tau, \xi)}{\epsilon}, \tag{20}$$

where by the mean value theorem the first term in the sum has the representation

$$\frac{h(\pi + \epsilon \pi', \tau + \epsilon \tau', \xi + \epsilon \xi') - h(\pi, \tau, \xi + \epsilon \xi')}{\epsilon} = \nabla_{\pi, \tau} h(\pi + \theta \pi', \tau + \theta \tau', \xi + \epsilon \xi') \cdot (\pi', \tau')$$

for some $\theta \in (0, \epsilon)$ (depending on the various arguments). The continuous dependence of the gradient in (A6) allows us to deduce from this representation that, as a function of (π', τ', ξ') for each ϵ , the first term in the sum in (20) converges uniformly, as $\epsilon \searrow 0$, to the linear function given by the expression $\nabla_{\pi,\tau}(\pi,\tau,\xi)\cdot(\pi',\tau')$. Of course, the second term in the sum in (20), as a function of ξ' , converges uniformly as $\epsilon \searrow 0$ because of the semidifferentiability of h in its ξ argument that comes from (A4). Altogether, then, we do have the convergence property that is required by the definition of h being semidifferentiable in all of its arguments. The limit calculations have confirmed also that the semiderivatives are given by (18).

Argument for (c). In the terminology of [12, 8.3], the regular subgradient set $\hat{\partial}h(\pi, \tau, \xi)$ consists of all (ρ, σ, η) such that

$$(\rho, \sigma, \eta) \cdot (\pi', \tau', \xi') \leq dh(\pi, \tau, \xi)(\pi', \tau', \xi')$$
 for all (π', τ', ξ') .

Through the subderivative formula (18), this comes down to the elements specified on the right side of (19); the right side is thus $\hat{\partial}h(\pi,\tau,\xi)$. By definition, the general subgradient set $\partial h(\pi,\tau,\xi)$ is formed by taking all limits of sequences $\{(\rho^{\nu},\sigma^{\nu},\eta^{\nu})\}_{\nu=1}^{\infty}$ with $(\rho^{\nu},\sigma^{\nu},\eta^{\nu}) \in \hat{\partial}h(\pi^{\nu},\tau^{\nu},\xi^{\nu})$ and $(\pi^{\nu},\tau^{\nu},\xi^{\nu}) \to (\pi,\tau,\xi)$ (plus $h(\pi^{\nu},\tau^{\nu},\xi^{\nu}) \to h(\pi,\tau,\xi)$, but that is automatic here by (a)). Any such limit (ρ,σ,ξ) must have $(\rho,\sigma) = \nabla h_{\xi}(\pi,\tau)$ by the gradient continuity in (A6), and it must also have $\eta \in \partial h_{\pi,\tau}(\xi)$; the latter follows because the (finite) convex functions $h_{\pi^{\nu},\tau^{\nu}}$ converge pointwise to $h_{\pi,\tau}$; see [6, Sec. 24]. Hence $\partial h(\pi,\tau,\xi) = \hat{\partial}h(\pi,\tau,\xi)$.

Argument for (d). Because h is locally Lipschitz continuous (and therefore has no nontrivial "horizon subgradients" [12, 9.13]), the equality between $\partial h(\pi, \tau, \xi)$ and $\hat{\partial} h(\pi, \tau, \xi)$, just verified, guarantees the subdifferential regularity of h [12, 8.11].

For the important role it will have in our analysis, we next introduce alongside of $\hat{\mathcal{P}}(\pi, \tau)$ the following dual problem:

$$\hat{\mathcal{P}}^*(\pi, \tau)$$
 maximize $j(\pi, \tau, \eta) - V_{\tau}^*(\eta)$ over all $\eta \in \mathbb{R}^n$,

where V_{τ}^* is the convex function conjugate to V_{τ} , and j is the function defined by

$$j(\pi, \tau, \eta) = \inf_{\xi} \{ h(\pi, \tau, \xi) + \eta \cdot \xi \}. \tag{21}$$

Here $j(\pi, \tau, \cdot)$ is the concave conjugate of $-h(\pi, \tau, \cdot)$, so $\hat{\mathcal{P}}(\pi, \tau)$ and $\hat{\mathcal{P}}^*(\pi, \tau)$ are optimization problems dual to each other in the original sense of Fenchel; cf. [6, Sec. 31]. It is interesting to note, although it will not be needed, that V_{τ}^* can be identified with the value function that is defined like V_{τ} but for the forward propagation of g^* with respect to a certain Lagrangian dual to L; see [13, Theorem 5.1].

Theorem 1 (parametric optimality). For every $(\pi, \tau) \in O \times (0, \infty)$, the optimal value in problem $\hat{\mathcal{P}}(\pi, \tau)$, which is $p(\pi, \tau)$, is finite and agrees with the optimal value in the dual problem $\hat{\mathcal{P}}^*(\pi, \tau)$. The optimal solution sets

$$X(\pi,\tau) := \operatorname{argmin} \hat{\mathcal{P}}(\pi,\tau), \qquad Y(\pi,\tau) := \operatorname{argmax} \hat{\mathcal{P}}^*(\pi,\tau), \tag{22}$$

are nonempty, convex and compact, and they are characterized by

$$(\xi, \eta) \in X(\pi, \tau) \times Y(\pi, \tau) \iff \eta \in \partial V_{\tau}(\xi), -\eta \in \partial h_{\pi, \tau}(\xi).$$
 (23)

Proof. The coercivity assumed in (A5) makes V_{τ} be coercive for every $\tau \in (0, \infty)$; this was proved in [13, Corollary 7.7]. In $\hat{\mathcal{P}}(\pi, \tau)$, we are minimizing the sum of this coercive convex function (which is also proper and lsc) and the finite convex function $h(\pi, \tau, \cdot)$. Such a sum is itself a coercive convex function that is proper and lsc, and its minimum is therefore finite and attained on a compact set.

The finiteness of $h_{\pi,\tau}$ entails, on the same grounds, the coercivity of -j and leads us to the conclusion that the maximum in $\hat{\mathcal{P}}^*(\pi,\tau)$ is attained on a compact set. The fact that the

maximum agrees with the minimum, and that the optimal solutions are characterized by the subgradient conditions in (23), is a standard feature of Fenchel duality in these circumstances; cf. [6, Sec. 31].

To proceed further than in Theorem 1, we need to verify for the function being minimized in $\hat{\mathcal{P}}(\pi,\tau)$ a boundedness condition which is central to the theory of finite-dimensional parametric minimization, as in [12, 1.17].

Proposition 3 (parametric inf-boundedness property). Let $(\bar{\pi}, \bar{\tau}) \in O \times (0, \infty)$, and consider any $\epsilon > 0$ small enough that $(\pi, \tau) \in O \times (0, \infty)$ when $|\pi - \bar{\pi}| \le \epsilon$ and $|\tau - \bar{\tau}| \le \epsilon$. Then

$$\forall \lambda \in (0, \infty), \ \exists \gamma \in (0, \infty) \ \text{such that} \ |\xi| \leq \gamma \ \text{when} \ \begin{cases} V(\tau, \xi) + h(\pi, \tau, \xi) \leq \lambda \ \text{with} \\ |\pi - \bar{\pi}| \leq \epsilon \ \text{and} \ |\tau - \bar{\tau}| \leq \epsilon. \end{cases}$$
 (24)

Proof. We know that V_{τ} is coercive and depends epi-continuously on τ . This implies that the conjugate convex function V_{τ}^* is finite and likewise depends epi-continuously on τ (since epi-continuity is preserved under the Legendre-Fenchel transform [12, 11.34]). But finite convex functions epi-converge if and only if they converge pointwise, uniformly on bounded sets [12, 7.18]. It follows that, for any $\epsilon > 0$ and $\alpha > 0$, there exist r > 0 and s > 0 such that

$$V_{\tau}^*(\eta') \leq V_{\bar{\tau}}^*(0) + r|\eta'| + s \text{ when } |\eta'| \leq \alpha, |\tau - \bar{\tau}| \leq \epsilon.$$

When conjugates are taken on both sides with respect to η' , this inequality translates to

$$V_{\tau}(\xi) \geq \alpha \max\{0, |\xi| - r\} - V_{\bar{\tau}}^{*}(0) - s \text{ when } |\tau - \bar{\tau}| \leq \epsilon,$$

but all we will really need is the consequence that

$$\forall \alpha > 0, \ \exists \beta \in \mathbb{R} \text{ such that } V_{\tau}(\xi) \ge \alpha |\xi| - \beta \text{ for all } \xi \text{ when } |\tau - \bar{\tau}| \le \epsilon.$$
 (25)

Next we observe that, because h is locally Lipschitz continuous (by Proposition 2(a)), there is a Lipschitz constant κ for h on the neighborhood of $(\bar{\pi}, \bar{\tau}, 0)$ defined by $|\pi - \bar{\pi}| \leq \epsilon$, $|\tau - \bar{\tau}| \leq \epsilon$, $|\xi| \leq \epsilon$. In particular, that yields

$$h(\pi, \tau, 0) \ge h(0, 0, 0) - 2\kappa\epsilon \tag{26}$$

and $|h(\pi, \tau, \xi') - h(\pi, \tau, \xi)| \le \kappa |\xi' - \xi|$ when $|\xi| \le \epsilon$ and $|\xi'| \le \epsilon$. The latter ensures for the convex function $h_{\pi,\tau} = h(\pi, \tau, \cdot)$ that

$$\eta \in \partial h_{\pi,\tau}(0) \implies |\eta| \le \kappa$$
(27)

(see [12, 9.14]). The subgradient set in (27) is nonempty (because $h_{\pi,\tau}$ is finite), and its elements η are characterized by the inequality $h_{\pi,\tau}(\xi) \geq h_{\pi,\tau}(0) + \eta \cdot \xi$ holding for all $\xi \in \mathbb{R}^n$. The estimates in (26) and (27) yield through this inequality the lower bound:

$$h(\pi, \tau, \xi) \ge -\kappa |\xi| + h(0, 0, 0) - 2\kappa\epsilon$$
 for all ξ when $|\pi - \bar{\pi}| \le \epsilon$ and $|\tau - \bar{\tau}| \le \epsilon$.

Returning now to (25) and taking $\alpha > \kappa$, we see there will exist a constant μ such that

$$V(\tau,\xi) + h(\pi,\tau,\xi) \ge (\alpha - \kappa)|\xi| - \mu$$
 for all ξ when $|\pi - \bar{\pi}| \le \epsilon$ and $|\tau - \bar{\tau}| \le \epsilon$.

Then obviously (24) holds, as needed.

Theorem 2 (Lipschitz continuity and subgradients of the value function). The function p is locally Lipschitz continuous on $O \times (0, \infty)$, and its subgradients obey the rule that

$$(\rho, \sigma) \in \partial p(\pi, \tau) \implies \begin{cases} (\rho, \sigma + H(\xi, \eta)) = \nabla h_{\xi}(\pi, \tau) \text{ for } \\ \text{some } (\xi, \eta) \in X(\pi, \tau) \times Y(\pi, \tau). \end{cases}$$
 (28)

Proof. Let $f(\pi, \tau, \xi) = V(\tau, \xi) + h(\pi, \tau, \xi)$. The property of f in Proposition 3 is known by [12, 1.17] to ensure that the parametric optimal value $\inf_{\xi} f(\pi, \tau, \xi)$, which again is $p(\pi, \tau)$, is lsc in its dependence on (π, τ) . It further yields by [12, 10.13] the estimate

$$\partial p(\pi, \tau) \subset \{(\rho, \sigma) \mid (\rho, \sigma, 0) \in \partial f(\pi, \tau, \xi) \text{ for some } \xi \in \operatorname{argmin} \hat{\mathcal{P}}(\pi, \tau)\}.$$
 (29)

Because h is locally Lipschitz continuous by Proposition 2(a), we can apply the subgradient rule in [12, 10.10] to see that $\partial f(\pi, \tau, \xi) \subset (0, \partial V(\tau, \xi)) + \partial h(\pi, \tau, \xi)$. Invoking (7) and the subgradient formula in Proposition 2(c), along with the subgradient condition (23) that characterizes optimality in $\hat{\mathcal{P}}(\pi, \tau)$ as well as $\hat{\mathcal{P}}^*(\pi, \tau)$, we are able then to pass from (29) to (28).

Another consequence of Proposition 3 is that the mapping $(\pi, \tau) \mapsto \operatorname{argmin} \hat{\mathcal{P}}(\pi, \tau) = X(\pi, \tau)$ is locally bounded with respect to any compact subset C of $\{(\pi, \tau) \in O \times (0, \infty) \mid p(\pi, \tau) \leq \lambda\}$, for any λ . The mapping $(\pi, \tau) \mapsto \operatorname{argmin} \hat{\mathcal{P}}^*(\pi, \tau) = Y(\pi, \tau)$ is locally bounded then on such a set C as well; this is true because $\eta \in Y(\pi, \tau)$ implies $-\eta \in \partial h_{\pi,\tau}(\xi)$, and the convex functions $h_{\pi,\tau}$ are Lipschitz continuous on a neighborhood of the compact set $X(\pi,\tau)$, locally uniformly with respect to (π,τ) (by Proposition 2(a)).

It follows from the continuity of the Hamiltonian H that the mapping from (π, τ) in such a set C to the set of (ρ, σ) described on the right side of (28) is locally bounded. That guarantees the boundedness of any sequence of subgradients $(\rho^{\nu}, \sigma^{\nu}) \in \partial p(\pi^{\nu}, \tau^{\nu})$ with $(\pi^{\nu}, \tau^{\nu}) \to (\pi, \tau)$ and $p(\pi^{\nu}, \tau^{\nu}) \to p(\pi, \tau)$. Then, however, p has to be locally Lipschitz continuous (because this boundedness eliminates any nontrivial "horizon subgradients") [12, 9.13(a)].

The next stage of our analysis requires a minimax representation of the function p.

Proposition 4 (minimax representation). The function k defined by

$$k(\pi, \tau, \xi, \omega) := K(\tau, \xi, \omega) - g^*(\omega) + h(\pi, \tau, \xi)$$
(30)

is finite on $O \times (0, \infty) \times \mathbb{R}^n \times \mathbb{R}^n$, convex in ξ , concave in ω , and moreover locally Lipschitz continuous and semidifferentiable with respect to all arguments. It furnishes the representation

$$p(\pi,\tau) = \min_{\xi \in \mathbb{R}^n} \max_{\omega \in \mathbb{R}^n} k(\pi,\tau,\xi,\omega) = \max_{\omega \in \mathbb{R}^n} \min_{\xi \in \mathbb{R}^n} k(\pi,\tau,\xi,\omega).$$
(31)

Furthermore, the associated saddle point set, which is nonempty, convex and compact, has the form $X(\pi,\tau) \times W(\pi,\tau)$ (for the same $X(\pi,\tau)$ as above, but a set $W(\pi,\tau)$ that is new), and is characterized by

$$(\xi,\omega) \in X(\pi,\tau) \times W(\pi,\tau) \iff \begin{cases} \exists \eta \in Y(\pi,\tau) \text{ and } \zeta \in \mathbb{R}^n \text{ with } \omega \in \partial g(\zeta), \\ \text{and a Hamiltonian trajectory } (x(\cdot),y(\cdot)) \text{ with } \\ (x(0),y(0)) = (\zeta,\omega) \text{ and } (x(\tau),y(\tau)) = (\xi,\eta). \end{cases}$$
(32)

Proof. The initial claims about k follows from the properties already identified for K, g^* and h. For any finite convex-concave function, in this case $k_{\pi,\tau} = k(\pi,\tau,\cdot,\cdot)$, the set of saddle points is always a product of closed, convex sets. We need to demonstrate this product has the form described, and is bounded.

Let $M(\tau,\xi) = \operatorname{argmax}_{\omega} \{K(\tau,\xi,\omega) - g^*(\omega)\}$. The maximization half of the condition for a saddle point of $k_{\pi,\tau}$ is simply the condition that $\omega \in M(\tau,\xi)$. For any such ω , we have $K(\tau,\xi,\omega) - g^*(\omega) = V(\tau,\xi)$ by (15). Hence

$$k(\pi, \tau, \xi, \omega) = V(\tau, \xi) + h(\pi, \tau, \xi) \text{ when } \omega \in M(\tau, \xi).$$
(33)

By subgradient calculus, the elements $\omega \in M(\tau, \xi)$ are characterized by

$$\exists -\zeta \in \partial_{\omega}[-K](\tau, \xi, \omega) \text{ such that } \zeta \in \partial g^*(\omega). \tag{34}$$

Similarly, let $N(\pi, \tau, \omega) = \operatorname{argmin}_{\xi} \{K(\tau, \xi, \omega) + h(\pi, \tau, \xi)\}$, so that the minimization half of the condition for a saddle point of $k_{\pi,\tau}$ corresponds to $\xi \in N(\pi, \tau, \omega)$. That is characterized by 0 being a subgradient of the convex function $K(\tau, \cdot, \omega) + h(\pi, \tau, \cdot)$ at ξ , which through subgradient calculus [6] correponds to

$$\exists \eta \in \partial_{\xi} K(\tau, \xi, \omega) \text{ such that } -\eta \in \partial_{\xi} h(\pi, \tau, \xi).$$
 (35)

Having (ξ, ω) be a saddle point means having both $\xi \in N(\pi, \tau, \omega)$ and $\omega \in M(\tau, \xi)$. On the other hand, the conditions $\eta \in \partial_{\xi}K(\tau, \xi, \omega)$ and $-\zeta \in \partial_{\omega}[-K](\tau, \xi, \omega)$ in (34) and (35) are, by [14, Theorem 4.1], jointly equivalent to the existence of a Hamiltonian trajectory $(x(\cdot), y(\cdot))$ over $[0, \tau]$ that starts at (ζ, ω) and ends at (ξ, η) . The condition $\zeta \in \partial g^*(\omega)$ in (34) is itself equivalent, through conjugacy, to $\omega \in \partial g(\zeta)$. Applying (11) and the characterization of $X(\pi, \tau)$ and $Y(\pi, \tau)$ in (23), we obtain the description in (32) of the saddle point set.

This description confirms in particular the nonemptiness of the saddle point set. It yields the boundedness of $W(\pi, \tau)$ through the fact that the Hamiltonian dynamical system in question takes bounded sets into bounded sets, either forward or backward in time.

Theorem 3 (semidifferentiability of the value function). The function p is semidifferentiable, with semiderivative formula of minimax type:

$$dp(\pi,\tau)(\pi',\tau') = \min_{\xi \in X(\pi,\tau)} \max_{\eta \in Y(\pi,\tau)} \left\{ \nabla h_{\xi}(\tau,\pi) \cdot (\tau',\pi') - \tau' H(\xi,\eta) \right\}$$

$$= \max_{\eta \in Y(\pi,\tau)} \min_{\xi \in X(\pi,\tau)} \left\{ \nabla h_{\xi}(\tau,\pi) \cdot (\tau',\pi') - \tau' H(\xi,\eta) \right\}.$$
(36)

Proof. We apply Gol'shtein's theorem [12, 11.53] to the minimax representation in Proposition 4. The hypothesis of that theorem is satisfied because k is continuous and semidifferentiable, and the saddle point set is bounded. The direct formula obtained by this route is

$$dp(\pi,\tau)(\pi',\tau') = \min_{\xi \in X(\pi,\tau)} \max_{\omega \in W(\pi,\tau)} dk(\pi,\tau,\xi,\omega)(\pi',\tau',0,0)$$

=
$$\max_{\omega \in W(\pi,\tau)} \min_{\xi \in X(\pi,\tau)} dk(\pi,\tau,\xi,\omega)(\pi',\tau',0,0).$$
 (37)

We calculate that

$$dk(\pi, \tau, \xi, \omega)(\pi', \tau', 0, 0) = dK(\tau, \xi, \omega)(\tau', 0, 0) + dh(\pi, \tau, \xi)(\pi', \tau', 0), \tag{38}$$

where the final term is merely $\nabla h_{\xi}(\tau,\pi) \cdot (\tau',\pi')$ by Proposition 2(b). We then recall from the Hamilton-Jacobi theory of K that $dK(\tau,\xi,\omega)(\tau',0,0)$ equals $-\tau'H(\xi,\eta)$ for any $\eta \in \partial_{\xi}K(\tau,\xi,\omega)$, or for that matter $-\tau'H(\zeta,\omega)$ for any $-\zeta \in \partial[-K](\tau,\xi,\omega)$; cf. [14, Theorem 3.6]. In that way, utilizing the characterization of these two subgradient conditions in terms of Hamiltonian trajectories as in the preceding proof (through [14, Theorem 4.1]), we obtain from (38) the reduction of (37) to (36).

Theorem 4 (differentiability of the value function). Suppose that the function $h_{\pi,\tau} = h(\pi,\tau,\cdot)$ is not just convex, but strictly convex and differentiable. Then $X(\pi,\tau)$ and $Y(\pi,\tau)$ reduce to singletons, and p is smooth (continuously differentiable) with

$$\nabla p(\pi,\tau) = \nabla h_{\xi}(\pi,\tau) - (0, H(\xi,\eta)) \text{ for the unique } (\xi,\eta) \in X(\pi,\tau) \times Y(\pi,\tau). \tag{39}$$

Proof. The strict convexity ensures that $X(\pi,\tau)$ is a singleton, and the differentiability then makes $Y(\pi,\tau)$ be a singleton because having $\eta \in Y(\pi,\tau)$ entails $\eta = -\nabla h_{\pi,\tau}(\xi)$. Then, in the subgradient estimate of Theorem 2, there is only one candidate for membership in $\partial p(\pi,\tau)$. Since p is locally Lipschitz continous, this implies that p is smooth with this candidate element as its gradient [12, 9.18 and 9.19].

Corollary (differentiability of Moreau envelopes). For $\lambda > 0$, the Moreau envelope function

$$p(\lambda, \zeta, \tau) = e_{\lambda} V_{\tau}(\zeta) = \min_{\xi \in \mathbb{R}^n} \left\{ V(\tau, \xi) + \frac{1}{2\lambda} |\xi - \zeta|^2 \right\}$$

is continuously differentiable with respect to (λ, ζ, τ) .

Proof. Here we take
$$\pi = (\lambda, \zeta) \in (0, \infty) \times \mathbb{R}^n$$
 and $h(\pi, \tau, \xi) = |\xi - \zeta|^2 / 2\lambda$.

References

- [1] Bardi, M. and Capuzzo-Dolcetta, I. (1997), Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations, Birkhäuser.
- [2] Clarke, F. H. (1983), Optimization and Nonsmooth Analysis, Wiley.
- [3] Galbraith, G. (1999), Applications of Variational Analysis to Optimal Trajectories and Non-smooth Hamilton-Jacobi Theory, Ph. D. thesis, University of Washington, Seattle.
- [4] Galbraith, G., The Role of Cosmically Lipschitz Mappings in Nonsmooth Hamilton-Jacobi Theory (preprint).
- [5] Goebel, R. and Rockafellar, R. T. (2002), Generalized Conjugacy in Hamilton-Jacobi Theory for Fully Convex Lagrangians, *Convex Analysis* 9.

- [6] Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, N.J.
- [7] Rockafellar, R. T. (1970), Conjugate Convex Functions in Optimal Control and the Calculus of Variations, J. Mathematical Analysis and Applications 32, 174–222.
- [8] Rockafellar, R. T. (1970), Generalized Hamiltonian Equations for Convex Problems of Lagrange, *Pacific J. Mathematics* 33, 411–428.
- [9] Rockafellar, R. T. (1971), Existence and Duality Theorems for Convex Problems of Bolza, Transactions of the American Mathematical Society 159, 1–40.
- [10] Rockafellar, R. T. (1973), Saddle Points of Hamiltonian Systems in Convex Problems of Lagrange, J. Optimization Theory and Applications 12, 367–390.
- [11] R. T. Rockafellar, R. T. (1975), Semigroups of Convex Bifunctions Generated by Lagrange Problems in the Calculus of Variations, *Mathematica Scandinavica* 36, 137–158.
- [12] Rockafellar, R. T. and Wets, R. J-B (1997), Variational Analysis, Springer-Verlag, Berlin.
- [13] Rockafellar, R. T. and Wolenski, P. R. (2001), Convexity in Hamilton-Jacobi Theory 1: Dynamics and Duality, SIAM J. Control and Optimization 40, 1323–1350.
- [14] Rockafellar, R. T. and Wolenski, P. R. (2001), Convexity in Hamilton-Jacobi Theory 2: Envelope Representations, SIAM J. Control and Optimization 40, 1351–1372.
- [15] Rockafellar, R. T. (2001) Convex Analysis in the Calculus of Variations, in Hadjisavvas, N. and Pardalos, P. M. (eds.), *Advances in Convex Analysis and Global Optimization*, Kluwer, 135–152.