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1. INTRODUCTION

Mathematical models of equilibrium in economics attempt to capture the
effects of competing interests among different “agents” in face of the limited
availability of goods and other resources. They typically revolve around the
existence of prices for the goods under which the optimization carried out by
these agents, individually, leads collectively to a balance between supply and
demand.

Although the fundamental ideas go back to Walras and others, the work
of Arrow and Debreu [1], [3], initiated the solidly mathematical form of the
subject, still continuing in its development. Notions from game theory, such as
Nash equilibrium and its counterpart for generalized games (where each agent's
strategy set can depend on the other agents’ actions), have entered strongly too.
Nowadays, influences are also coming from applications beyond the academic,
forinstance to traffic equilibrium and the practical consequences of deregulation
of markets in electrical power.

Inthe economics literature, fixed-point theory has long provided the environ-
ment for establishing whether an equilibrium exists. Fixed-point approaches
to calculation were promoted by Scarf [15], [16]. The emphasis on the theory
side, though, has largely been on broadening the models so as to encompass
preference relations expressed by set-valued mappings that satisfy weakened
semicontinuity assumptions and the like. The question of how agents might dis-
cover an equilibrium through a Walras-type procedure of tatonnement has been
of interest as well, but economists have not devoted much effort to achieving
a structured format conducive to large-scale numerical computation. General
fixed-point algorithms are notoriously slow and unpromising in anything but
simple, low-dimensional situations.

Alternative approaches have been opening up, however, in the optimiza-
tion literature in connection with variational inequality formulations, including
“complementarity” models; see [2], the 1990 survey of Harker and Pang [9],
and the 2003 book of Facchinei and Pang [6] for background. Such approaches
offer ways of tying the computation of equilibrium into the major advances that
have been made in numerical optimization, although this kind of computation
is nevertheless much more difficult than mere minimization or maximization.

The task of setting up a variational inequality model for equilibrium involves
not only challenges but compromises for the sake of tractibility. Some levels
of generality have to be abandoned, at least within present capabilities. For
example, the expression of preferences by abstract relations has to be dropped
in favor of expression by utility functions, which moreover may need to satisfy
assumptions like differentiability. Certain constraints need to be handled with
Lagrange multipliers. Such maneuvers run into some serious technical issues,
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however, two of the main ones being the existence of an equilibrium and the
existence of a solution to the proposed variational inequality.

The question of whether an equilibrium exists can be very subtle, even in
a purely economic framework. The Arrow-Debreu model [1], as applied to
pure exchange, for instance, effectively requires that each agent start out with
a tradable quantity of every possible good. Much effort has successfully gone
into weakening that sort of provision, but the techniques appear, at least on
the surface, to conflict with the features desired for a readily computible repre-
sentation. The constraint qualifications ordinarily invoked to ensure access to
Lagrange multipliers can fail, in particular. On the other side, the variational
inequality models achieved by introducing Lagrange multipliers have the draw-
back of leading to problems in which the underlying convex sets are unbounded
and adequate coercivity is absent. They tend then to fall outside the domain of
the standard criteria for confirming that a solution exists.

Ouraiminthis paper is to demonstrate how these difficulties can be overcome
in the fundamental case of a Walras equilibrium, which we take for simplic-
ity (rather than technical necessity) to be a pure exchange equilibrium among
consumers, with no producers. We carefully introduce assumptions that enable
us to prove the existence, at least, of a “virtual” exchange equilibrium, which
might have some agents just barely surviving without optimizing, but can be
approximated arbitrarily closely by an exchange equilibrium in the classical
sense. Moreover, we show thatigtual equilibriumcan be computed in prin-
ciple by solving a sequence of variational inequality problems in which the
underlying convex sets are actually compact.

A key contribution lies in showing how the iterative truncations needed tech-
nically in order to achieve compactness in the variational inequality, for exis-
tence of solutions, can be interpreted as corresponding to penalty representations
of the agents’ budget constraints, which surprisingly, however, furnish classical
equilibrium relative to nearby endowments in place of the original ones. In ver-
ifying that the equilibrium sequence from the truncated problems yields, in the
limit, a virtual equilibrium, we develop detailed progress estimates and break
new ground in utilizing arguments about epi-convergence.

We do not try to answer, here, the question of how the truncated varia-
tional inequalities can, themselves, be solved. Some guidance toward the future
prospects is available, though, in the recent papers [10], [11], which deal with
generalized games, and of course in the book [6], which addresses variational
inequalities more generally.

Beyond computation, it should be noted that variational inequality represen-
tations of equilibrium are able also to take advantage of the extensive theory on
how solutions to variational inequality problems respond to data perturbations,
as for instance in [14], [5]. Our work can be viewed as contributing also in that
direction.
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2. EQUILIBRIUM MODEL

The space of goods &' ; the goods are indexed by= 1,...,l. Each
agentz € A has an endowmeat, € JR{F and a utility functioru,, to be applied
to consumption choices. The consumption veaipmust belong to a certain
subsetX, C RQ. The conditionz, € X, is thesurvival constraintand.X, is
thesurvival set In elementary modelsy, = IR',.

Subjectto survival and the feasibility of exchanging the ggadsppropriate
pricesp;, which are not given but have to be determined from the data elements
eqar Xq andu,, the agents seek individually to arrange their consumption so as
to maximize their utility. The focus is orelative price vectors, i.e., vectors
that belong to the price simplex

Definition 1 (exchange equilibrium)A classicabxchange equilibrium consists
of a price vectop and consumption vectors,, such that

(@) XyeaTaj < Xyeaeaqj forall goods;, with equality holding ifp; > 0,

(b) z, € argmax{ ug(z,) | xa € Xa, P-a < P-€q)},@NAdD Ty = P -eq.
A two-tier exchange equilibrium is the same, except that some of the agents
may satisfy as a substitute f@iv) the condition

(b7) z, € argmin{ p -z, |z, € Xo}, andp T, = p-eq.
An agent satisfyingb) will be called anoptimizingagent , whereas an agent
satisfying(b~) will be called abarely survivingagent.

The requirement that-x, < p-e, is thebudgetconstraint for ageni. In a
two-tier equilibrium, the barely surviving agents have their budgets so tight that
they can only choose cheapest possible consumption vectors from their survival
sets, and that uses up all their wealth.

If the argmin in (') consists of a unique vector, that is what must be chosen.
In that case, (b) trivially entails (b), so the situation special interest ir)ls
mainly the one where the argminisn’t just a singleton. It's conceivable then that
a small amount of freedom may be left for utility optimization while keeping
to lowest cost. No such secondary optimization is claimed in the definition, but
we don't exclude the possibility that an optimizing agent might also be a barely
surviving agent. However, we will really be concerned with a sharpened form of
two-tier equilibrium, defined next, in which the barely surviving agents, if any,
are “arbitrarily close” to being optimizing agents and fall short only because of
a slightest lack of resources.

Definition 2 (virtual exchange equilibrium)A two-tier exchange equilibrium,
with price vectorp and consumption vectors,, is a virtual exchange equi-
librium if (when not itself actually a classical equilibrium) it includes at least
one optimizing agent and can be approximated arbitrarily closely by a classical
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equilibrium in the following sense. There are price vecggrand consumption
vectorse!, v =1,2,..., with

lim p” = p, lim x} = Zg,

V—00 V—00

which for eachv furnish a classical exchange equilibrium with respect to the
same setx(, and functions., but possibly different endowmenmntssatisfying

eq > eq, Vli_)ng() e, = é€q.

Although any classical equilibrium is a virtual equilibrium in particular (and
fits the sequence prescription wigh = p, x/ = z,, €/ = ¢,), the converse is
false. Likewise, not every two-tier equilibrium is a virtual equilibrium. Exam-
ples of these differences will be provided in the final section of this paper.

In the economic literature, what we are calling a classical exchange equi-
librium in Definition 1 is a special case of a Walras equilibrium, namely one
in which preferences are expressed by utilities, free disposal is assumed, and
“production” has not been introduced. Production is omitted here mainly for
the sake of simplicity. The results that will be described can be extended in that
way, but we wish to avoid the notational complications in order to focus here
on the newer features more clearly.

What we call a two-tier exchange equilibrium in Definition 1 corresponds,
under the same specializations, to a model first developed by Debreu [4] as a
guastequilibrium. We preferto speak of a two-tier equilibrium because the term
guasi-equilibrium has shifted over the years to mean something different from
what Debreu originally indicated. It regularly refers now, in a utility context
like ours, to substituting for (b) the condition the € X, with p-z, = p-e,,
but there is nac, € X, satisfying bothp -z, < p-e, andug(z,) > ua(Zq)-

This property is not as sharp as bit is implied by (b") but is insufficient to
yield (b~) in return.

The notion of a virtual exchange equilibrium in Definition 2 does not seem to
have been introduced or explored previously in economics. Beyond its potential
in the theoretical understanding of equilibrium, it has natural significance for
numerical work, where limits of computed sequences of approximations to a
desired equilibrium may inevitably need to be contemplated anyway.

In our variational approach to equilibrium, each agent’s utility maximization
problem will be translated into optimality conditions involving a Lagrange
multiplier. It is partly for the extra benefit accruing from such conditions, but
also for enhancing the computational possibilities when given specific data, that
we concentrate on utility functions (instead of abstract preference relations) and
furthermore make the following restrictions. Although these restrictions could
be relaxed in several ways, they will assist us here in getting some basic ideas
across without too many technical complications.
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Ongoing Assumptions(utility and constraint structure)
(Al) X, is convex and closed, with nonempty interior.
(A2) u, is concave and continuously differentiable &g.
(A3) u, does not attain a maximum oX,.

Because we are operating in an environment of free disposal, there is no real
loss of generality in stipulating in (A1) thaht X, # (); we could harmlessly
replaceX, by X, = X, + RQ while extending.,, to the nondecreasing utility
U, defined byii, (z,) = sup{uq(Z4) |2, < z4}. The continuous differen-
tiability in (A2) can be interpreted merely as continuous differentiability on
int X, with the mappingvu, having a continuous extension froint X, to
the boundary ofX,.

Definition 3 (utility scaling) By an equilibrium withutility scaling will be
meant an equilibrium in the sense of Definition 1 or Definition 2 in which
condition (b) is replaced by the existence of a coefficiant called autility
scale factoffor agenta, such that

(b*) z, € argmax{ uy(x4) — AP (Tq — €a) |24 € Xo} With

) o <0 if Ay =0,
Ao € [0, 00) andp‘(ﬂﬁa—@a){;o if Ag >0

and, in Definition 2, this also to the sequence of approximate equilibria.

Proposition 1 (status of utility scale factors)Condition(b™) implies condition

(b) always. Thus, an exchange equilibrium with utility scaling (whether clas-
sical or two-tier) in the sense of Definition 3 always entails the corresponding
equilibrium in Definition 1 or Definition 2. Converselgh) implies (b*) in
particular when there exists, € X, such thatp-z, > p-e,.

Proof. In fact, (b") gives the Kuhn-Tucker conditions for the maximization
problem in (b), inasmuch aX,, is convex by (Al) and., is concave by (A2).
These conditions are always sufficient for optimality, and they are necessary
under a Slater assumption, which by virtue of (A3) comes out here as the
existence of an, € X, satisfying the budget constraint strictly. O

The pointisthat (b) is, in general, an enhancementof (b), so thatin establish-
ing the existence of an equilibrium with utility scaling, we will be accomplishing
more than just proving the existence of a equilibrium by itself.

Proposition 2 (positivity of utility scale factors) Because 0{A3), condition
(b™) can only hold with\, > 0 andp-(z, — e,) = 0.

Proof. Ifwe had\, = 0in(b*), the maximum of., over.X, would be attained
atz,, in contradiction to (A3). O

The reason for calling, a utility scale factor is that it acts as a coefficient for
converting the price; for a good; into to a price\,p; measured in the utility



Variational Inequalities and Economic Equilibrium 7

units of agent.. According to (), once such utility prices are available they
can be brought into play by maximizing,(z,) — Aapa - (T4 — €4) instead of

uq (4 ), With the original budget constraint pushed into the background. This
alternative maximization converts the cgstz, — e,) of passing frone, to

z, into an adjustment of the utility associated with as compared te,.

If u, were strictly concave, the maximization intowould by itself de-
terminez, uniquely, and the budget constraint would therefore turn out to be
satisfied automatically. Even when the maximization in)(doesn't deter-
minez, uniquely, however, the budget constraint is not invoked directly in this
maximization and is only needed, if at all, in the aftermath, for the purpose of
eliminating some of the vectors in the argmin set.

Theorem 1(existence of virtual equilibrium)A two-tier exchange equilibrium
that is a virtual exchange equilibrium with utility scaling is sure to exist under
the following assumptions on the initial endowments:

(S1) for every agent there is a vector, € X, such thatr, < e,
(S2) there are vectors, € X, suchthat c 4 x4 <> ,c4 €a-

The proof of Theorem 1 will come later and, in a major respect, it will
be “constructive” (as elaborated in Theorem 3). In contrast to Theorem 1,
the existence result of Debreu [4] for this sort of model, although posed in
a somewhat broader setting, was not constructive and didn’t provide utility
scaling. It didn't confirm the presence of at least one optimizing agent or yield
the approximation property that distinguishes a virtual equilibrium.

Of course, any agent for which there exists, € X, such thatz, < e,
must in particular be an optimizing agent, since this strict vector inequality
precludes (b). Other, more subtle criteria for an agent to be optimizing are
known as well; cf.[7], [8], and their references. In combination with Theorem 1,
such criteria immediately lead to conclusions about the existencelagsical
equilibrium in our setting. We omit the details, because our interest centers on
the proof of Theorem 1 by way of a variational inequality formulation having
computational potential.

Nonetheless, it's worth noting that both of our survival assumptions (S1) and
(S2) automatically do hold when every ageiitas some, € X, withz, < e,
(which amounts to the main case treated in [1] by Arrow and Debreu).

3. VARIATIONAL REPRESENTATION

The variational inequality representation of an equilibrium with utility scal-
ing will now be set up. In general in a spali&* of vectorsv, the variational
inequality problenVI(C, F') associated with a nonempty, convex&et IR”
and a mappind” : C — IR” consists of finding

v € C suchthat — F(v) € N¢(v),
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whereN¢(v) is the normal cone t6' at:
w € Ne(v) <= w-(v—10v) <0 forall vecC.

It's well known that ifC' is compact and’ is continuous, a solutiofto problem
VI(C, F) exists.

In our formulation of equilibrium, the variational inequality we set up will
haveC' closed andF' continuous, butC' unbounded, so this criterion for the
existence of a solution tV1(C, F') will not be applicable directly. That will
oblige us to introduce truncations to create compactness. Such truncations will
be construed as corresponding to penalty formulations of the budget constraints
in the agent’s maximization problems. In obtaining an equilibrium through an
iterative process of truncation, we will employ an argument crucially based on
epi-convergence, which is a concept of variational analysis associated with the
convergence of solutions when optimization problems are approximated.

Theorem 2 (variational inequality format for classical equilibrium classi-
cal exchange equilibrium with utility scaling is furnished @y{z,}.c4 and
{Aa}aca, if and only if the variational inequality'I(C, F') in the form

—F (D5 Taye iy Aayes) ENC(Dy ooy Ty aseeey Aaee ) (2)

holds for the nonempty, closed, convex@et R' x [Huc4R!] x e 4R]
defined by
C =P x [geaXa] x [Haecal0,00)] (3)

and the continuous mappirg: C — R x [[I,c4IR'] x [T, 4IR] defined by

Proof. The closedness and convexity claimeddband the continuity claimed
for F are evident from (A1) and (A2). The variational inequality in question
decomposes into the conditions

YocalZa — €a] € Np(D),
Vua(Za) — Xap € Ny, (Tq) forall a € A, (5)
P (Za — €a) € Njgoo)(Aa) forall a € A.
The second condition means that the functign— u, (z,) — AP - (2o — €4),
which is concave, has its maximum ovE[, atz,, whereas the third condition
refers to the complementarity relations

P-(Tq —eq) <0, g >0, AP (Za — €a) = 0. (6)
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Those two conditions together, therefore, are equivalent tp liblding for
everya € A.

The first condition in (5) is not, on the surface, the same as the market
condition (a) in Definition 1, which in principle would be stronger. We will
see, however, that in the presence of the other conditions, the first condition in
(5) implies (a). In terms of

C= max {Sacalfo; — earl} 7)
J=1

the first condition in (5) says that
pj = 0 unlessX, c 4[Zaj — €qj] = ¢, (8)

so that in particular

D Egeala—€a =C. 9)
Now we bring in Proposition 2: we actually must havéz, — e,] = 0 for all
a € A. Then (9) implies, = 0, henceX,c 4[Zq; — eq;] < 0 for everyj in (7),
and we are able to conclude through (8) that (a) holds. O

Although the unboundedness of the &en our variational inequality repre-
sentation of classical equilibrium is an unavoidable consequence of the multi-
plier conditions we have introduced, a partial kind of boundedness, at least, can
be achieved under our assumptions by a trouble-free truncation of the survival
setsX,.

Proposition 3 (underlying boundedness of consumptioknder (S1) and
(S2), there exist bounded subset§ ¢ X, still satisfying these assumptions
and such that a classical exchange equilibrium with utility scaling is furnished
for {X Y} uca by D, {Za}aca and {\,}ac 4, if and only if these elements give
such an equilibrium fof X, },c 4. Specifically, this is true when

ng{xana\xagb} foranyb>ZaeAea, (10)

inwhich case there definitely exist elements X! satisfyingr, < b, whereas
any elements, € X? satisfyingd " ,c 4 To < > ,c4 €a Must satisfye, < b.

Proof. Takeb and X? as in (10). ClearlyX? is still convex and closed, but
also bounded, and (S2) is preserved. Singce 0 for everya € A, the strict
inequality in (10) implies that, < b for everya € A. The condition that
ea € X,, from (S1), thus carries over to havieg € X? and in particular
informs us, by taking:, = e,, that there exists, € X! satisfyingz, < b.
Indeed, in the background ef belonging tof x,, | z, < b} N X,, we get from
(Al)thatint X? = {z, |z, < b}Nint X, # () (cf. [12, Theorem 6.5]) and can
conclude that (A1) holds foK?. Trivially, (A2) persists when¥, is replaced
by the truncationX?.
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Be_c_ause’(,l C leﬂ th_e co_nditions:a € Xgand) 4 Za _g _ZaeA_@a inthe
definition of an equilibrium implyz, < b. Hence any equilibrium with respect
to the setsX,, is an equilibrium with respect to the seX¢, and conversely as
well, the constraints, < b necessarily being inactive in either case. 0O

According to this observation, we can replace the 3gtdy bounded sets
X! in the formulation of the variational inequality in Theorem 2 without un-
dermining the equivalence with the desired equilibrium. This still leaves the
unboundedness caused by the multiplier conditions, however. To handle that,
our approach is to truncate the interi@loo) to [0, ] for a valuer > 0, which
will turn out to act as a penalty parameter.

Proposition 4 (truncated variational inequality)Consider the variational in-
equality VI(C?, F) for the same mapping' as in Theorem 2 but with the set
C there replaced for > 0 by

Cl = P x MaeaXl] x [Macal0,7]],

the setsX? being defined as in Proposition 3. Thél is nonempty, closed
and convex, but also bounded, and a solutioVigC?, F') therefore exists.
A solution toVI(C?, F') is comprised of a relative price vectgralong with
{Z4q}aca and{ ), }ac for which there is a valu¢ € IR such that
(&) XoeaZaj < Xgeaeaj + ¢ forall goodsy, with equality whem; > 0,
(b}) Zo € argmax{ ug () — AaD - (Ta — €4) | 24 € X2}, with

i <0 if \g =0,
Ao €[0,7] @nd p-(Tg —eq) =0 if 0 <A, <,
>0 if \y=r.

Proof. The standard existence criterion for variational inequalities, invoked
for the compact se€?, producesp, {Z,}aca and {\,}aea for which the
correspondings = (P;...,Zqa,---;---»Aa,-..) SOVeSVI(C? F), i.e., has
—F(v) € N¢o (v). Adopting the pattern in the proof of Theorem 2, we decom-
pose this variational inequality into the conditions

Yoeal®a — €a] € Np(p),
Vua(Za) — AaD € Nxo(Z,) forall a € A,
D-[Ta —€q] € N[o,r](j\@ forall a € A.
The fact that the first of these conditions is equivalent 19 ¢aas effectively

argued already in the proof of Theorem 2. The second and third of these
conditions is (Iy). O

In working with the truncated variational inequality and understanding its
meaning, it will be helpful to have the notation

[t]. = max{0,t} for t € IR.
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We use it to set up a linear penalty approximation to the budget constraint
p-(zqs — eq) < 0in terms of the expression

0 whenp - (z, —e,) <0,
rp-(xq —eq) Whenp-(xz, —eq) > 0.

rlpoa — ), = {

Proposition 5 (penalty interpretation)Condition (i) of Proposition 4 holds
with respect t@ for z, and some\, if and only ifz, satisfies

(b)) 7, € argmax{ u,(s) — r[p-(za — )]+ | Ta € X2},

Proof. The equivalence can be seen by thinking of) (bs referring to the
minimization ofy, + 1, over R', where
[ —uq(zs) whenz, € X2, ol _

pulaa) = { ) whente € % ulen) = rlp-(oa = eu)l

Herey, is a lower semicontinuous, proper, convex function, witjjés a finite
convex function orR!. The subgradient condition both necessary and sufficient
for the minimum ofy, + 1, to occur atz,, namely0 € J(p, + Va)(a),
comes out therefore as the existence of a subgradierg¢ 0v,(z,) such
that—z, € 0pq(Za), Wwhere moreovedy,(Z,) = —Vuq(a) + Nyo(Z4) (Cf.
[12, Theorem 23.8]). The necessary and sufficient condition thus refers to the
existence oV u,(Z,) — zq € Ny (Zq).

By a basic chain rule in convex analysis (cf. [12, Theorem 23.9]), we have
za € Oba(Z,) if and only if z, = \,p for some), satisfying the conditions
in (bf). In this manner, we hav®u,(Z.) — za € Nx:(Za) if and only if
Vua(Za) — Aap € Ny (Z,) for some suchy,, and this can be recognized
as the necessary and sufficient condition for optimality in the maximization in
condition (h.). O

4. ITERATIVE SCHEME

The existence result in Theorem 1 will be derived by an iterative scheme
based on the variational inequality representations of equilibrium we have been
developed above. Inthis scheme, we replace the survivaksdtsthe bounded
setsX? specified in 10 and consider for= 1,2,..., a sequence of penalty
parameter values’ oo, denoting byC" the setC; of Proposition 4 in the case
of r = r”. For eachr we solve the variational inequalityI(C", F'), which is
possible by Proposition 4 in principle (and moreover should be approachable
numerically by methods developed along the lines of those in [6], [10], [11], as
mentioned in the introduction).

This way, we generate a sequence of price vegire P together with
sequences of consumption vectars ¢ X?, multipliers \¥ and values(”
satisfying
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(@) Zaeaty; < Xaecaeqi+¢” forallgoodsy, with equality wherp > 0,
(bf) 2% € argmax{ uy(zq) — Nip” (74 — €4) | T4 € X2} with

<0 if A =0,
Ae[0,r] andp” -(zf —eq) s =0 if 0 < AL <7,
>0 if X =1,

Note that because the componepifsof p” are nonnegative, but not all zero,
condition (a~) means that

¢" = max Y (2% - eqjl. (11)

Condition (.), on the other hand, can be interpreted through Proposition 5 as
the condition

(bv) 2% € argmax{ uy(zq) — [p" - (24 — €a)]s | Ta € X0},
which relaxes the budget constrapit - (z, — e,) < 0 by allowing it to be
exceeded at a penalty rate which is increased in each iteration.

Theorem 3 (limits in the iterative scheme)Oncer” is higher than a certain
threshold valuep” andz? furnish a classical equilibrium, with utility scaling,
respect to the same sets, and functions:, but possibily different endowment
vectorsel > e, withe!, — e,. The sequence of these nearby classical equilib-
ria (p”, {z%}.c) is bounded, and every cluster po(pt {Z, } 44 ) furnishes a
virtual equilibrium for the original data. Hence if only one virtual equilibrium
exists, the entire sequence must converge to it.

Obviously, in proving Theorem 3 we will have proved Theorem 1, so we can
concentrate on Theorem 3. Since the getsnd X’ containingp” andz are
closed and bounded, the sequences of veptaaadz? are bounded, as claimed
in Theorem 3, and cluster points do exist. Note, however, that no such claim
is made about the sequences of multipligfs The possible unboundedness
of such a sequence is exactly what can lead to an agbeing only a barely
surviving agent. The following facts will be crucial, in view of the definition
of a virtual equilibrium,

Proposition 6 (convergence estimatesjor eacha € A, choose any, € X,
with &, < e,, as exists by (S1), and Igf = max{ u,(2,) |z, € X°}. Then
pb > u,(#,), and one has

Mg — Uq(Za)

p”-(wZ—ea) < ,

forall a € A, (12)
This implies that

x, < b forall a € A whenr is sufficiently large, (13)
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as is true specifically when

N
r¥ > 7 for 7= 7 gleez({ug — ua(Z4q)}, (14)
where N is the number of agents € A and 3 is any positive number small
enough thad . 4 eq; < b; —  for every good. Thereafter, one will have

p” - (zh —eq,) >0 forall a € A, (15)

and the vectorg” and z? will furnish a classical equilibrium with respect to
the setsX,, functionsu,, and the endowment vectars defined by

€l = ea + G With ¢ = p¥ (2%, — ea), (16)

in which the multipliers\, are positive and serve as utility scale factors. Thus,
one will have

(&) Bpears; < Yoeaceq; forall j, with equality holding ifp} > 0,

(b"*) a¥ € argmax{ uq(xa) — Aop” - (xq — €4) | x4 € Xo} With

NS0, (el —el) =0

Proof. Becauset, < e,, we havei, € X? with p” - (2, — e4) < 0. Hence
pb >0and

[p” (Za — €a)+
S ug(zy) —rV[pY - (wf —eq]s < :UZ —rV[p” (@} — eals,

so thatr”[p” - (x% — eq], < pb — uq(@,). This inequality guarantees (12).
From (a~) we have}_,c 4 p” - (z} — eq) = p¥ > pealzl —eq) = ¢V with
¢¥ expressed by (11), and therefdre,c 4 [zi,; — eq;] < ¢”. It follows that
2oacA Ta; < Daea €aj + B when¢” < 3, and in particular

wl < bj— B when¢” < 8 with B<bj -3 (17)

acA Caj-
Thus,z? < b as claimed in (13) wher’ is beyond the valué in (14).
Once we have < b, the maximum oveX? in condition (i) is the same
as the maximum ovek,, due to convexity. Then necessarijf > 0, since
otherwise our nonsatiation assumption (A3) would be violated. I (e then
havep” -(z% —e,) > Oforalla € A. Inthat case, by taking” = p”-(z% —e,)
and defininge’, as indicated, we get, > e, andp” -(z% — e4) = 0, so that
conditions (&) and () have been converted to’jeand (¥*). That implies
by Proposition 1 that the elements, 2 and\” furnish a classical equilbrium
with respect to the endowments. O
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These estimates immediately reveal key properties of our iterative scheme.
Asr¥ — oo, we eventually have (14) and, in the augmentation rule in (16),

b ~
0<¢ < W — 0, sothate] — e,.
By taking limits of in (&) and ("), we see then that cluster poinisand
Z, must satisfy the market clearing condition (a) and the budget condition
p-(ZTq — eq) = 0. The extent to which they satisfy (b or (b~), however,
remains to be established.

The key to further analysis lies in the utility scale factafs For simplicity
of notation in this analysis, we can suppose we have passed to subsequences so
that actuallyp” — p andz? — z, for every agent. € A, and that (5*) and
(15) hold for allv, furthermore withz, < b, as comes out of the uniformity of

the bound derived in (17). We look at

A, = { agentsz € A such tha{\/}°>2, is bounded,
A_ = { agentsu € A such that{\y}>2 ; is unbounded.

By a further reduction to subsequences if necessary, we can arrange that

for eacha € A, , actually \Y — X\, >0,
for eacha € A_, actually A}, — oo.

Consider now an agente A, . Define the functiong!, andy, on the entire
spacelR’ by

() = { Jtalen) X" (o —el) {0 € X,

00 B if 2, ¢ X2,
 —ug(xe) F AaD (g —€q)  if e € X,
#alTa) = { 00 if 2, & X2,

these functions being convex and lower semicontinuous by virtue of (A1) and
(A2). Conditions (B™) and (") correspond respectively to

zl, € argmin ¢l (z,), To € argmin ¢, (74), (18)
za€R! za€R!

inasmuch as?’ < b andz, < b, along with\;, > 0 andp” - (z} —e%) =0, as
well as\ > 0 andp-(z, — e,) = 0. Therefore, if we can show that the second
condition in (18) follows in the limit from the first condition as— oo, we
will be able to conclude that, z, and )\, satisfy (b") and thus that agentis
an optimizing agent.

This is an issue addressed, in general, by the theory of “epi-convergence” of
sequences of functions and its role in minimization, as expounded for instance
in [14, Chapter 7]. Here, the circumstances are especially simple because the



Variational Inequalities and Economic Equilibrium 15

functions are convex and all have the same effective domain, na’ﬁiebyhich
moreover has nonempty interior. As— oo, we havey’ (z,) — pq(z,) for
eachz, € X!, and that guarantees the epi-convergence’ofo o, by [14,
Theorem 7.17]. Then by [14, Theorem 7.33], because these functions are
lower semicontinuous with their effective domains uniformly bounded, the first
condition in (18) yields the second, as required.

Next, consider instead an agent A_. Define the functions}, andz, on
the entire spacé’ by

VY (24) = { —(1/ N ua(za) + p” - (xa —€) i 24 € XL,

00 if z, ¢ Xt
_ [ p(za—ea) if z, € X2,
Yal@a) = { % if 2, ¢ X°.

Again, these functions are convex and lower semicontinuous by virtue of (A1)
and (A2), sa) epi-converges tg, for the reasons already mentioned, coming
from [14, Theorem 7.17]. On the basis of (), we haver! € argmin?, and
can conclude through [14, Theorem 7.33] thate argminv,. That tells us
thatz, minimizesp -z, subject tox, € Xg, and sincer, < b, it establishes
that (b") holds. Thus, agentis a barely surviving agent.

Finally, we confirm that the agents can’t all be just barely surviving. Ifindeed
A_ = A, we would have

inf{;‘)-ZaeA Ty | Xy € Xa} :ﬁ.zaeA €q-

But that’s incompatible with our assumption (S2), inasmucp &s0.

In summary, we have demonstrated tpaand {Z,},c4 provide a virtual
equilibrium as in Definition 2, in which moreover the agents A_ are barely
surviving, whereas the agentsc A, are optimizing and have the limis, as
utility scale factors. O

S. EXAMPLES

lllustrations will now be provided of the distinctions between the various
equilibrium concepts in Definitions 1 and 2 and how they relate to the existence
result in Theorem 1 and the iterative scheme addressed in Theorem 3.

In these examples, we have just two goods and two agents] keteand
A = {1,2}. Price vectors have the form= (p1,p2) with p; > 0, po > 0
andp; + po = 1. Agenta = 1 has an endowment vectey = (e, €12)
and chooses a consumption vecigr = (x11,x12) with utility w;(x11,x12)
from a survival sefX; C Bi, whereas agent = 2 has an endowment vector
es2 = (e21, e22) and chooses a consumption vector= (xa1, x22) With utility
us (w21, v22) from a survival sefXs C R2.
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Example 1 (a classical equilibrium without strict feasibilitylLet X; = Ri
and X, = IR?, and take

{61 = (17 1)7 ul(xlhle) = T11,
ex = (1,0), wua(wo1,z22) = w21 + T22.

In this case there is am; € X; with 21 < e, but nozy € X5 with zo < es.
Nonetheless, a classical equilibrium exists, given by

p=1(1/2,1/2), z1=1(2,0), z2=(0,1).

There is no other equilibrium, even two-tier. The iterative scheme, applied to
this data, would necessarily converge to the unique classical equilibrium.

Detail. Hereps = 1 — p1, Sop = (p1,1 — p1) with 0 < p; < 1. For agent
a = 1 the utility maximizing set is

M = argmax{ u(z1)|z1 € X1, p-x1 <p-e1}
= argmax{ x11 |z11 > 0, 212 > 0,
Pz + (1 —pr)zie < 1}
_J0 if p1 =0,
~{loroy thzo

whereas for agent = 2 the utility maximizing set is

My = argmax{ ug(x2) |22 € Xo, p-xo < p-es}
= argmax{ T21 + T22 | 221 > 0, w22 > 0,
p1zo1 + (1 = p1)ze2 < pi}

@ if D1 =0,
{(1,0)} if 0 <p1 <1/2,

=¢{(r,1-7)|0<7<1} ifp=1/2,
{001 p) ) 11/2 < p1 <1,
0 if pp = 1.

The total endowment; + ez is (2, 1), so the condition for market clearing is

(19)

x11 + x91 < 2, with equality if p; > 0,
T12 + x99 < 1, with equality if p; < 1.

Havingp; = 0 orp; = 1inaclassical equilibrium is excluded by the emptiness
then of M5, so any candidates would have to héve p; < 1 and obey both

of the inequalities in (19) as equations. In choosing, x12) from M; and
(221, z22) from M, it's impossible to get the second of these equations satisfied
when0 < p; < 1/2, or to get the first satisfied when'2 < p; < 1. Hence

the only available candidate j5 = 1/2. And indeed, forp = (1/2,1/2)

we can taker; = (2,0) from M; and andzy = (0,1) from AM> and have
Z1+ T2 = (2,1), as required for a classical equilibrium.
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This is the only possibility for a classical equilibrium, but what about a two-
tier equilibrium more generally? The investigation of that requires us to look
at the set of cheapest consumption vectors, which here happens to be the same
for both agents:

M_ = argmin{p-z; |z € X1} = argmin{p-z2 |22 € X}
{(r,0)[7 =0} ifp1=0,
:{{(0,0)} if0<p <1,
{(0,7)|7 >0} ifp =1

In a two-tier equilibrium with both agents barely surviving, b¢ih, z12)
and(za1, x22) would be selected from/_. Thus, both would have 0 in the first
componentifp; > 0, or both would have 0 in the second componept ik 1,
which would be inconsistent with (19), no matter hpwis selected.

For a two-tier equilibrium with agemt = 1 barely surviving and agent= 2
optimizing, we would need to satisfy (19) with a choice(of,, z12) € M_
and(za1, z22) € Mo. Again, the cases; = 0 andp; = 1 are excluded by the
emptiness of\l, for those values, but on the other hand, when p; < 1 we
are forced to takér11, z12) = (0, 0), and yet both of the conditions in (19) are
required to be fulfilled as equations. But there is no way to chpgge get
(1‘21,.7)22) € My with (.rgl, x22) = (2, 1).

For a two-tier equilibrium with agent = 1 optimizing and agent = 2
barely surviving, we would need (19) to hold for soiagq, z12) € M; and
(221, r92) € M_. Becausé/; = () whenp; = 0, we are limited td) < p; < 1
and(z11,z12) = (p; ', 0), with at least the first condition in (19) holding as an
equation. Sinces; has to be) whenp; > 0, we can only get this equation
with p; = 1/2, but then the second condition in (19) must hold as an equation
too, even thougho, has to be. Thus, this mode of equilibrium is impossible
as well. O

Example 2(a nonclassical virtual equilibrium along with other equilibrid)et
X1 = R? and X, = IR? and take

{61 = (1,1), wui(z11,212) = 211,

e = (0,1), wua(wa1,z22) = 21 + T20.

In this case there is no classical equilibrium, but two-tier equilibria in which

agenta = 1 is optimizing and agent = 2 is barely surviving are furnished by
p=(10), z1=(1,0), 22=(0,0), foranyde[0,2].  (20)

These are the only two-tier equilibria, and among them, only the ong fop

is a virtual equilibrium. That unique virtual equilibrium, with utility scaling,
must be the limit of any sequence of vecigrandz!, generated by the iterative
scheme.
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Detail. This is close in many respects to Example 1, having the saméets
andM_ and only a coordinate-switched version/db, namely

M} = argmax{ ug(z2) |22 € Xo, p-x2 < p-ea}
= argmax{ T91 + X292 |£L’21 >0, z22 >0,
prxor + (1 —p1)xee <1—pi}

@ ifp1:0,

{((py* —1,0)} if 0 <p1 <1/2,
=¢{(r,1-7)]0<7<1} ifp=1/2,

{(0,1)} if1/2 <p <1,

(Z) ifp1:1.

The total endowment; + e2 is (1, 2), so now the condition for market clearing
takes the form

{-Tll + 291 < 1, with equality ifp; > 0,

1o+ w99 < 2, with equality if p, < 1. (21)

A classical equilibrium requirds < p; < 1 because of the emptiness otherwise
of M}, and therefore two equations in (21). That can’t be met; no choice of
(51311, :Clg) € My and(l’gl,fcgg) € Mé canyieldzis + x990 > 1.

A two-tier equilibrium with both agents barely surviving is impossible for
the reasons already explained in Example 1. A two-tier equilibrium with agent
a = 1 barely surviving and agent = 2 optimizing is likewise impossible for
the reasons seen earlier.

A two-tier equilibrium with agent: = 1 optimizing and agent = 2 barely
surviving does turn out to be possible, however. For this, we fieegh; < 1
in order to avoidM; being empty. Bud < p; < 1 would make the choice of
(z21,x22) € M_ reduce tq0, 0) while requiring two equations in (21), which
doesn’t work. Intaking; = 1, we merely have to satisfy the first condition in
(21) with equality. The only vector if/; is (1,0), whereas\/_ consists of the
vectors(0, 7) with 7 > 0. We have (21) fulfilled whef < 7 < 2.

Inview of Theorem 2 (and Theorem 3), atleast one of these two-tier equilibria
must be a virtual equilibrium, but which? To sort that out, we have to inspect
the possibilities for having a classical equilibrium when the endowment vectors
e1 ande, are perturbed to

el =(1+en,l+e12), e5 = (€21, 1 + €22),
where the increments are all 0. The calculations focus then on the set
M; = argmax{ ui(z1)|z1 € X1, p-x1 < p-ef}
= argmax{ 11 |z11 >0, 12 > 0,
prz11 + (1= p1)zie < 1+ pien + (1 —pieat

_ { @ if p1 = 0,
T U A+ pren + (1= p1)ear),0)} if pr > 0,
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for agenta = 1 and the set

M5 = argmax{ ua(z2) | z2 € Xo, p-x2 < p-€5}
= argmax{ To1 + 22 | w21 > 0, 22 > 0,
p1zo1 + (1 = p1)wos < prear + (1 —p1)(1 +e22)}

0 if p1 =0,
{ (21 +p1'(1 = p1)(1 +€22),0)}

_ if 0<p1 <1/2,
{(r,1-7)|0<7<1} if p=1/2,
{(0, 1 —l—pl(l —p1)_1€21 + 522))} if 1/2 <p1 <1,
0 if p1 =1,

for agenta = 2. The perturbed total endowment is
ef+e5=(1+e11+e21,2+ €12 +€22),

and the market clearing conditions come out therefore as
211 + 291 < 1+ ¢e11 +e91, Wwith equality ifp; > 0, (22)
T12 + Tog < 2+ €19 + €99, With equality ifp; < 1.

Once more the cases where = 0 or p; = 1 can be eliminated because of
emptiness inV/5, so we must have < p; < 1 along with equality in both of
the conditions in (22). This can be achieved with

p° = (1+ew+ea) t(1+e12,e2),
i = (1+e11 +¢12,0), 25=(0,2+¢e21 +e22),

wheney; > 0, but not otherwise. As the increments ten@ tthe only possible
limit of such classical equilibria is the two-tier equilibrium in (20) b= 2.
Hence that is the unique virtual equilibrium, and the iterative scheme must
converge to it. O

Other insights can be gleaned from Example 2 as well. The utility scale
factors associated with agemt= 2 in the perturbed equilibria must tend to
oo as the increments go 1@ specifically ass2; — 0. If that were not the
case, the virtual equilibrium obtained in the limit would actually be a classical
equilibrium. This feature of the iterative scheme came out in the proof of
Theorem 3. The interpretation is that, as the amount of good 1 available to
agent 2 shrinks to nothing, the interest of agent 2 in acquiring some of good
1 increases without bound. The scaling between utility for agent 2 and the
relative prices at equilibrium blows up. This emerges as the essential reason
why agent 2 ends up barely surviving without optimizing, even though, with an
infinitesimal amount of good 1, optimization would be possible.
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