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1. INTRODUCTION

Mathematical models of equilibrium in economics attempt to capture the
effects of competing interests among different “agents” in face of the limited
availability of goods and other resources. They typically revolve around the
existence of prices for the goods under which the optimization carried out by
these agents, individually, leads collectively to a balance between supply and
demand.

Although the fundamental ideas go back to Walras and others, the work
of Arrow and Debreu [1], [3], initiated the solidly mathematical form of the
subject, still continuing in its development. Notions from game theory, such as
Nash equilibrium and its counterpart for generalized games (where each agent’s
strategy set can depend on the other agents’ actions), have entered strongly too.
Nowadays, influences are also coming from applications beyond the academic,
for instance to traffic equilibrium and the practical consequences of deregulation
of markets in electrical power.

In the economics literature, fixed-point theory has long provided the environ-
ment for establishing whether an equilibrium exists. Fixed-point approaches
to calculation were promoted by Scarf [15], [16]. The emphasis on the theory
side, though, has largely been on broadening the models so as to encompass
preference relations expressed by set-valued mappings that satisfy weakened
semicontinuity assumptions and the like. The question of how agents might dis-
cover an equilibrium through a Walras-type procedure of tatonnement has been
of interest as well, but economists have not devoted much effort to achieving
a structured format conducive to large-scale numerical computation. General
fixed-point algorithms are notoriously slow and unpromising in anything but
simple, low-dimensional situations.

Alternative approaches have been opening up, however, in the optimiza-
tion literature in connection with variational inequality formulations, including
“complementarity” models; see [2], the 1990 survey of Harker and Pang [9],
and the 2003 book of Facchinei and Pang [6] for background. Such approaches
offer ways of tying the computation of equilibrium into the major advances that
have been made in numerical optimization, although this kind of computation
is nevertheless much more difficult than mere minimization or maximization.

The task of setting up a variational inequality model for equilibrium involves
not only challenges but compromises for the sake of tractibility. Some levels
of generality have to be abandoned, at least within present capabilities. For
example, the expression of preferences by abstract relations has to be dropped
in favor of expression by utility functions, which moreover may need to satisfy
assumptions like differentiability. Certain constraints need to be handled with
Lagrange multipliers. Such maneuvers run into some serious technical issues,
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however, two of the main ones being the existence of an equilibrium and the
existence of a solution to the proposed variational inequality.

The question of whether an equilibrium exists can be very subtle, even in
a purely economic framework. The Arrow-Debreu model [1], as applied to
pure exchange, for instance, effectively requires that each agent start out with
a tradable quantity of every possible good. Much effort has successfully gone
into weakening that sort of provision, but the techniques appear, at least on
the surface, to conflict with the features desired for a readily computible repre-
sentation. The constraint qualifications ordinarily invoked to ensure access to
Lagrange multipliers can fail, in particular. On the other side, the variational
inequality models achieved by introducing Lagrange multipliers have the draw-
back of leading to problems in which the underlying convex sets are unbounded
and adequate coercivity is absent. They tend then to fall outside the domain of
the standard criteria for confirming that a solution exists.

Our aim in this paper is to demonstrate how these difficulties can be overcome
in the fundamental case of a Walras equilibrium, which we take for simplic-
ity (rather than technical necessity) to be a pure exchange equilibrium among
consumers, with no producers. We carefully introduce assumptions that enable
us to prove the existence, at least, of a “virtual” exchange equilibrium, which
might have some agents just barely surviving without optimizing, but can be
approximated arbitrarily closely by an exchange equilibrium in the classical
sense. Moreover, we show that avirtual equilibriumcan be computed in prin-
ciple by solving a sequence of variational inequality problems in which the
underlying convex sets are actually compact.

A key contribution lies in showing how the iterative truncations needed tech-
nically in order to achieve compactness in the variational inequality, for exis-
tence of solutions, can be interpreted as corresponding to penalty representations
of the agents’ budget constraints, which surprisingly, however, furnish classical
equilibrium relative to nearby endowments in place of the original ones. In ver-
ifying that the equilibrium sequence from the truncated problems yields, in the
limit, a virtual equilibrium, we develop detailed progress estimates and break
new ground in utilizing arguments about epi-convergence.

We do not try to answer, here, the question of how the truncated varia-
tional inequalities can, themselves, be solved. Some guidance toward the future
prospects is available, though, in the recent papers [10], [11], which deal with
generalized games, and of course in the book [6], which addresses variational
inequalities more generally.

Beyond computation, it should be noted that variational inequality represen-
tations of equilibrium are able also to take advantage of the extensive theory on
how solutions to variational inequality problems respond to data perturbations,
as for instance in [14], [5]. Our work can be viewed as contributing also in that
direction.
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2. EQUILIBRIUM MODEL

The space of goods isIRl
+; the goods are indexed byj = 1, . . . , l. Each

agenta ∈ A has an endowmentea ∈ IRl
+ and a utility functionua to be applied

to consumption choices. The consumption vectorxa must belong to a certain
subsetXa ⊂ IRl

+. The conditionxa ∈ Xa is thesurvival constraint, andXa is
thesurvival set. In elementary models,Xa = IRl

+.
Subject to survival and the feasibility of exchanging the goodsj at appropriate

pricespj , which are not given but have to be determined from the data elements
ea,Xa andua, the agents seek individually to arrange their consumption so as
to maximize their utility. The focus is onrelativeprice vectors, i.e., vectorsp
that belong to the price simplex

P = { p = (p1, . . . , pl) ∈ IRl | pj ≥ 0, p1 + · · · pl = 1}. (1)

Definition 1 (exchange equilibrium). Aclassicalexchange equilibrium consists
of a price vector̄p and consumption vectors,x̄a, such that

(a) Σa∈A x̄aj ≤ Σa∈A eaj for all goodsj, with equality holding if̄pj > 0,
(b) x̄a ∈ argmax{ua(xa) |xa ∈ Xa, p̄ ·xa ≤ p̄ ·ea)}, andp̄ ·x̄a = p̄ ·ea.

A two-tier exchange equilibrium is the same, except that some of the agentsa
may satisfy as a substitute for(b) the condition

(b−) x̄a ∈ argmin{ p̄ ·xa |xa ∈ Xa}, andp̄ ·x̄a = p̄ ·ea.
An agent satisfying(b) will be called anoptimizingagent , whereas an agent
satisfying(b−) will be called abarely survivingagent.

The requirement that̄p ·xa ≤ p̄ ·ea is thebudgetconstraint for agenta. In a
two-tier equilibrium, the barely surviving agents have their budgets so tight that
they can only choose cheapest possible consumption vectors from their survival
sets, and that uses up all their wealth.

If the argmin in (b−) consists of a unique vector, that is what must be chosen.
In that case, (b−) trivially entails (b), so the situation special interest in (b−) is
mainly the one where the argmin isn’t just a singleton. It’s conceivable then that
a small amount of freedom may be left for utility optimization while keeping
to lowest cost. No such secondary optimization is claimed in the definition, but
we don’t exclude the possibility that an optimizing agent might also be a barely
surviving agent. However, we will really be concerned with a sharpened form of
two-tier equilibrium, defined next, in which the barely surviving agents, if any,
are “arbitrarily close” to being optimizing agents and fall short only because of
a slightest lack of resources.

Definition 2 (virtual exchange equilibrium). A two-tier exchange equilibrium,
with price vectorp̄ and consumption vectors̄xa, is a virtual exchange equi-
librium if (when not itself actually a classical equilibrium) it includes at least
one optimizing agent and can be approximated arbitrarily closely by a classical
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equilibrium in the following sense. There are price vectorspν and consumption
vectorsxν

a, ν = 1, 2, . . ., with

lim
ν→∞

pν = p̄, lim
ν→∞

xν
a = x̄a,

which for eachν furnish a classical exchange equilibrium with respect to the
same setsXa and functionsua but possibly different endowmentseνa satisfying

eνa ≥ ea, lim
ν→∞

eνa = ea.

Although any classical equilibrium is a virtual equilibrium in particular (and
fits the sequence prescription withpν = p̄, xν

a = x̄a, eνa = ea), the converse is
false. Likewise, not every two-tier equilibrium is a virtual equilibrium. Exam-
ples of these differences will be provided in the final section of this paper.

In the economic literature, what we are calling a classical exchange equi-
librium in Definition 1 is a special case of a Walras equilibrium, namely one
in which preferences are expressed by utilities, free disposal is assumed, and
“production” has not been introduced. Production is omitted here mainly for
the sake of simplicity. The results that will be described can be extended in that
way, but we wish to avoid the notational complications in order to focus here
on the newer features more clearly.

What we call a two-tier exchange equilibrium in Definition 1 corresponds,
under the same specializations, to a model first developed by Debreu [4] as a
quasi-equilibrium. We prefer to speak of a two-tier equilibrium because the term
quasi-equilibrium has shifted over the years to mean something different from
what Debreu originally indicated. It regularly refers now, in a utility context
like ours, to substituting for (b) the condition thatx̄a ∈ Xa with p̄ ·x̄a = p̄ ·ea,
but there is noxa ∈ Xa satisfying bothp̄ ·xa < p̄ ·ea andua(xa) > ua(x̄a).
This property is not as sharp as (b−); it is implied by (b−) but is insufficient to
yield (b−) in return.

The notion of a virtual exchange equilibrium in Definition 2 does not seem to
have been introduced or explored previously in economics. Beyond its potential
in the theoretical understanding of equilibrium, it has natural significance for
numerical work, where limits of computed sequences of approximations to a
desired equilibrium may inevitably need to be contemplated anyway.

In our variational approach to equilibrium, each agent’s utility maximization
problem will be translated into optimality conditions involving a Lagrange
multiplier. It is partly for the extra benefit accruing from such conditions, but
also for enhancing the computational possibilities when given specific data, that
we concentrate on utility functions (instead of abstract preference relations) and
furthermore make the following restrictions. Although these restrictions could
be relaxed in several ways, they will assist us here in getting some basic ideas
across without too many technical complications.
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Ongoing Assumptions(utility and constraint structure).
(A1) Xa is convex and closed, with nonempty interior.
(A2) ua is concave and continuously differentiable onXa.
(A3) ua does not attain a maximum onXa.

Because we are operating in an environment of free disposal, there is no real
loss of generality in stipulating in (A1) thatintXa 6= ∅; we could harmlessly
replaceXa by X̂a = Xa + IRl

+ while extendingua to the nondecreasing utility
ûa defined byûa(xa) = sup{ua(x̂a) | x̂a ≤ xa}. The continuous differen-
tiability in (A2) can be interpreted merely as continuous differentiability on
intXa with the mapping∇ua having a continuous extension fromintXa to
the boundary ofXa.

Definition 3 (utility scaling). By an equilibrium withutility scaling will be
meant an equilibrium in the sense of Definition 1 or Definition 2 in which
condition (b) is replaced by the existence of a coefficientλ̄a, called autility
scale factorfor agenta, such that

(b+) x̄a ∈ argmax{ua(xa)− λ̄ap̄ ·(xa − ea) |xa ∈ Xa} with

λ̄a ∈ [0,∞) and p̄ ·(x̄a − ea)
{
≤ 0 if λ̄a = 0,
= 0 if λ̄a > 0,

and, in Definition 2, this also to the sequence of approximate equilibria.

Proposition 1(status of utility scale factors). Condition(b+) implies condition
(b) always. Thus, an exchange equilibrium with utility scaling (whether clas-
sical or two-tier) in the sense of Definition 3 always entails the corresponding
equilibrium in Definition 1 or Definition 2. Conversely,(b) implies (b+) in
particular when there existsxa ∈ Xa such that̄p ·xa > p̄ ·ea.

Proof. In fact, (b+) gives the Kuhn-Tucker conditions for the maximization
problem in (b), inasmuch asXa is convex by (A1) andua is concave by (A2).
These conditions are always sufficient for optimality, and they are necessary
under a Slater assumption, which by virtue of (A3) comes out here as the
existence of anxa ∈ Xa satisfying the budget constraint strictly.

The point is that (b+) is, in general, an enhancement of (b), so that in establish-
ing the existence of an equilibrium with utility scaling, we will be accomplishing
more than just proving the existence of a equilibrium by itself.

Proposition 2 (positivity of utility scale factors). Because of(A3), condition
(b+) can only hold with̄λa > 0 and p̄ ·(x̄a − ea) = 0.

Proof. If we hadλa = 0 in (b+), the maximum ofua overXa would be attained
at x̄a, in contradiction to (A3).

The reason for callinḡλa a utility scale factor is that it acts as a coefficient for
converting the pricēpj for a goodj into to a pricēλap̄j measured in the utility
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units of agenta. According to (b+), once such utility prices are available they
can be brought into play by maximizingua(xa) − λ̄ap̄a ·(xa − ea) instead of
ua(xa), with the original budget constraint pushed into the background. This
alternative maximization converts the costp̄ ·(xa − ea) of passing fromea to
xa into an adjustment of the utility associated withxa, as compared toea.

If ua were strictly concave, the maximization in (b+) would by itself de-
terminex̄a uniquely, and the budget constraint would therefore turn out to be
satisfied automatically. Even when the maximization in (b+) doesn’t deter-
minex̄a uniquely, however, the budget constraint is not invoked directly in this
maximization and is only needed, if at all, in the aftermath, for the purpose of
eliminating some of the vectors in the argmin set.

Theorem 1(existence of virtual equilibrium). A two-tier exchange equilibrium
that is a virtual exchange equilibrium with utility scaling is sure to exist under
the following assumptions on the initial endowments:

(S1) for every agenta there is a vectorxa ∈ Xa such thatxa ≤ ea,
(S2) there are vectorsxa ∈ Xa such that

∑
a∈A xa <

∑
a∈A ea.

The proof of Theorem 1 will come later and, in a major respect, it will
be “constructive” (as elaborated in Theorem 3). In contrast to Theorem 1,
the existence result of Debreu [4] for this sort of model, although posed in
a somewhat broader setting, was not constructive and didn’t provide utility
scaling. It didn’t confirm the presence of at least one optimizing agent or yield
the approximation property that distinguishes a virtual equilibrium.

Of course, any agenta for which there existsxa ∈ Xa such thatxa < ea
must in particular be an optimizing agent, since this strict vector inequality
precludes (b−). Other, more subtle criteria for an agent to be optimizing are
known as well; cf. [7], [8], and their references. In combination with Theorem 1,
such criteria immediately lead to conclusions about the existence of aclassical
equilibrium in our setting. We omit the details, because our interest centers on
the proof of Theorem 1 by way of a variational inequality formulation having
computational potential.

Nonetheless, it’s worth noting that both of our survival assumptions (S1) and
(S2) automatically do hold when every agenta has somexa ∈ Xa with xa < ea
(which amounts to the main case treated in [1] by Arrow and Debreu).

3. VARIATIONAL REPRESENTATION

The variational inequality representation of an equilibrium with utility scal-
ing will now be set up. In general in a spaceIRL of vectorsv, the variational
inequality problemVI(C,F ) associated with a nonempty, convex setC ⊂ IRL

and a mappingF : C → IRL consists of finding

v̄ ∈ C such that− F (v̄) ∈ NC(v̄),
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whereNC(v̄) is the normal cone toC at v̄:

w ∈ NC(v̄) ⇐⇒ w ·(v − v̄) ≤ 0 for all v ∈ C.

It’s well known that ifC is compact andF is continuous, a solution̄v to problem
VI(C,F ) exists.

In our formulation of equilibrium, the variational inequality we set up will
haveC closed andF continuous, butC unbounded, so this criterion for the
existence of a solution toVI(C,F ) will not be applicable directly. That will
oblige us to introduce truncations to create compactness. Such truncations will
be construed as corresponding to penalty formulations of the budget constraints
in the agent’s maximization problems. In obtaining an equilibrium through an
iterative process of truncation, we will employ an argument crucially based on
epi-convergence, which is a concept of variational analysis associated with the
convergence of solutions when optimization problems are approximated.

Theorem 2(variational inequality format for classical equilibrium). A classi-
cal exchange equilibrium with utility scaling is furnished byp̄, {x̄a}a∈A and
{λ̄a}a∈A, if and only if the variational inequalityVI(C,F ) in the form

−F (p̄; . . . , x̄a, . . . ; . . . , λ̄a, . . .) ∈ NC(p̄; . . . , x̄a, . . . ; . . . , λ̄a . . .) (2)

holds for the nonempty, closed, convex setC ⊂ IRl × [Πa∈AIR
l] × [Πa∈AIR]

defined by
C = P × [Πa∈AXa]× [Πa∈A[0,∞)] (3)

and the continuous mappingF : C → IRl × [Πa∈AIR
l]× [Πa∈AIR] defined by

F (p; . . . , xa, . . . ; . . . , λa, . . .)
= (Σa∈A[ea − xa]; . . . , λap−∇ua(xa), . . . ; . . . , p ·[ea − xa], . . .) .

(4)

Proof. The closedness and convexity claimed forC and the continuity claimed
for F are evident from (A1) and (A2). The variational inequality in question
decomposes into the conditions

Σa∈A[x̄a − ea] ∈ NP (p̄),
∇ua(x̄a)− λ̄ap̄ ∈ NXa

(x̄a) for all a ∈ A,
p̄ ·(x̄a − ea) ∈ N[0,∞)(λ̄a) for all a ∈ A.

(5)

The second condition means that the functionxa 7→ ua(xa)− λ̄ap̄ ·(xa − ea),
which is concave, has its maximum overXa at x̄a, whereas the third condition
refers to the complementarity relations

p̄ ·(x̄a − ea) ≤ 0, λ̄a ≥ 0, λ̄ap̄ ·(x̄a − ea) = 0. (6)
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Those two conditions together, therefore, are equivalent to (b+) holding for
everya ∈ A.

The first condition in (5) is not, on the surface, the same as the market
condition (a) in Definition 1, which in principle would be stronger. We will
see, however, that in the presence of the other conditions, the first condition in
(5) implies (a). In terms of

ζ = max
j=1,...,l

{Σa∈A[x̄aj − eaj ]} , (7)

the first condition in (5) says that

p̄j = 0 unlessΣa∈A[x̄aj − eaj ] = ζ, (8)

so that in particular
p̄ ·Σa∈A[x̄a − ea] = ζ. (9)

Now we bring in Proposition 2: we actually must havep̄ ·[x̄a − ea] = 0 for all
a ∈ A. Then (9) impliesζ = 0, henceΣa∈A[x̄aj − eaj ] ≤ 0 for everyj in (7),
and we are able to conclude through (8) that (a) holds.

Although the unboundedness of the setC in our variational inequality repre-
sentation of classical equilibrium is an unavoidable consequence of the multi-
plier conditions we have introduced, a partial kind of boundedness, at least, can
be achieved under our assumptions by a trouble-free truncation of the survival
setsXa.

Proposition 3 (underlying boundedness of consumption). Under (S1) and
(S2), there exist bounded subsetsXb

a ⊂ Xa still satisfying these assumptions
and such that a classical exchange equilibrium with utility scaling is furnished
for {Xb

a}a∈A by p̄, {x̄a}a∈A and{λa}a∈A, if and only if these elements give
such an equilibrium for{Xa}a∈A. Specifically, this is true when

Xb
a = {xa ∈ Xa |xa ≤ b} for any b >

∑
a∈A

ea, (10)

in which case there definitely exist elementsxa ∈ Xb
a satisfyingxa < b, whereas

any elementsxa ∈ Xb
a satisfying

∑
a∈A xa ≤

∑
a∈A ea must satisfyxa < b.

Proof. Takeb andXb
a as in (10). ClearlyXb

a is still convex and closed, but
also bounded, and (S2) is preserved. Sinceea ≥ 0 for everya ∈ A, the strict
inequality in (10) implies thatea < b for everya ∈ A. The condition that
ea ∈ Xa, from (S1), thus carries over to havingea ∈ Xb

a and in particular
informs us, by takingxa = ea, that there existsxa ∈ Xb

a satisfyingxa < b.
Indeed, in the background ofea belonging to{xa |xa < b} ∩Xa, we get from
(A1) that intXb

a = {xa |xa < b}∩ intXa 6= ∅ (cf. [12, Theorem 6.5]) and can
conclude that (A1) holds forXb

a. Trivially, (A2) persists whenXa is replaced
by the truncationXb

a.
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BecauseXa ⊂ IRl
+, the conditionsxa ∈ Xa and

∑
a∈A xa ≤

∑
a∈A ea in the

definition of an equilibrium implyxa < b. Hence any equilibrium with respect
to the setsXa is an equilibrium with respect to the setsXb

a, and conversely as
well, the constraintsxa ≤ b necessarily being inactive in either case.

According to this observation, we can replace the setsXa by bounded sets
Xb

a in the formulation of the variational inequality in Theorem 2 without un-
dermining the equivalence with the desired equilibrium. This still leaves the
unboundedness caused by the multiplier conditions, however. To handle that,
our approach is to truncate the interval[0,∞) to [0, r] for a valuer > 0, which
will turn out to act as a penalty parameter.

Proposition 4 (truncated variational inequality). Consider the variational in-
equalityVI(Cb

r , F ) for the same mappingF as in Theorem 2 but with the set
C there replaced forr > 0 by

Cb
r = P × [Πa∈AX

b
a]× [Πa∈A[0, r]],

the setsXb
a being defined as in Proposition 3. ThenCb

r is nonempty, closed
and convex, but also bounded, and a solution toVI(Cb

r , F ) therefore exists.
A solution toVI(Cb

r , F ) is comprised of a relative price vector̄p along with
{x̄a}a∈A and{λ̄a}a∈A for which there is a valueζ ∈ IR such that

(ar) Σa∈A x̄aj ≤ Σa∈A eaj + ζ for all goodsj, with equality when̄pj > 0,
(b+

r ) x̄a ∈ argmax{ua(xa)− λ̄ap̄ ·(xa − ea) |xa ∈ Xb
a}, with

λ̄a ∈ [0, r] and p̄ ·(x̄a − ea)

≤ 0 if λ̄a = 0,
= 0 if 0 < λ̄a < r,
≥ 0 if λ̄a = r.

Proof. The standard existence criterion for variational inequalities, invoked
for the compact setCb

r , producesp̄, {x̄a}a∈A and {λ̄a}a∈A for which the
correspondinḡv = (p̄; . . . , x̄a, . . . ; . . . , λ̄a, . . .) solvesVI(Cb

r , F ), i.e., has
−F (v̄) ∈ NCb

r
(v̄). Adopting the pattern in the proof of Theorem 2, we decom-

pose this variational inequality into the conditions

Σa∈A[x̄a − ea] ∈ NP (p̄),
∇ua(x̄a)− λ̄ap̄ ∈ NXb

a
(x̄a) for all a ∈ A,

p̄ ·[x̄a − ea] ∈ N[0,r](λ̄a) for all a ∈ A.

The fact that the first of these conditions is equivalent to (ar) was effectively
argued already in the proof of Theorem 2. The second and third of these
conditions is (b+r ).

In working with the truncated variational inequality and understanding its
meaning, it will be helpful to have the notation

[t]+ = max{0, t} for t ∈ IR.
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We use it to set up a linear penalty approximation to the budget constraint
p ·(xa − ea) ≤ 0 in terms of the expression

r[p ·(xa − ea)]+ =
{

0 whenp ·(xa − ea) ≤ 0,
rp ·(xa − ea) whenp ·(xa − ea) > 0.

Proposition 5 (penalty interpretation). Condition (b+r ) of Proposition 4 holds
with respect tōp for x̄a and somēλa if and only ifx̄a satisfies

(br) x̄a ∈ argmax{ua(xa)− r[p̄ ·(xa − ea)]+ |xa ∈ Xb
a}.

Proof. The equivalence can be seen by thinking of (br) as referring to the
minimization ofϕa + ψa overIRl, where

ϕa(xa) =
{
−ua(xa) whenxa ∈ Xb

a,
∞ whenxa /∈ Xb

a,
ψa(xa) = r[p̄ ·(xa − ea)]+.

Hereϕa is a lower semicontinuous, proper, convex function, whileψa is a finite
convex function onIRl. The subgradient condition both necessary and sufficient
for the minimum ofϕa + ψa to occur atx̄a, namely0 ∈ ∂(ϕa + ψa)(xa),
comes out therefore as the existence of a subgradientza ∈ ∂ψa(x̄a) such
that−za ∈ ∂ϕa(x̄a), where moreover∂ϕa(x̄a) = −∇ua(ā) + NXb

a
(x̄a) (cf.

[12, Theorem 23.8]). The necessary and sufficient condition thus refers to the
existence of∇ua(x̄a)− za ∈ NXb

a
(x̄a).

By a basic chain rule in convex analysis (cf. [12, Theorem 23.9]), we have
za ∈ ∂ψa(x̄a) if and only if za = λ̄ap̄ for someλ̄a satisfying the conditions
in (b+

r ). In this manner, we have∇ua(x̄a) − za ∈ NXb
a
(x̄a) if and only if

∇ua(x̄a) − λ̄ap̄ ∈ NXb
a
(x̄a) for some such̄λa, and this can be recognized

as the necessary and sufficient condition for optimality in the maximization in
condition (br).

4. ITERATIVE SCHEME

The existence result in Theorem 1 will be derived by an iterative scheme
based on the variational inequality representations of equilibrium we have been
developed above. In this scheme, we replace the survival setsXa to the bounded
setsXb

a specified in 10 and consider forν = 1, 2, . . ., a sequence of penalty
parameter valuesrν ↗∞, denoting byCν the setCr

b of Proposition 4 in the case
of r = rν . For eachν we solve the variational inequalityVI(Cν , F ), which is
possible by Proposition 4 in principle (and moreover should be approachable
numerically by methods developed along the lines of those in [6], [10], [11], as
mentioned in the introduction).

This way, we generate a sequence of price vectorspν ∈ P together with
sequences of consumption vectorsxν

a ∈ Xb
a, multipliers λν

a and valuesζν

satisfying
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(arν ) Σa∈A x
ν
aj ≤ Σa∈A eaj +ζν for all goodsj, with equality whenpν

j > 0,
(b+

rν ) xν
a ∈ argmax{ua(xa)− λν

ap
ν ·(xa − ea) |xa ∈ Xb

a} with

λν
a ∈ [0, rν ] and pν ·(xν

a − ea)


≤ 0 if λν

a = 0,
= 0 if 0 < λν

a < rν ,
≥ 0 if λν

a = rν .

Note that because the componentspν
j of pν are nonnegative, but not all zero,

condition (arν ) means that

ζν = max
j=1,...,l

∑
a∈A

[xν
aj − eaj ]. (11)

Condition (b+rν ), on the other hand, can be interpreted through Proposition 5 as
the condition

(brν ) xν
a ∈ argmax{ua(xa)− rν [pν ·(xa − ea)]+ |xa ∈ Xb

a},
which relaxes the budget constraintpν ·(xa − ea) ≤ 0 by allowing it to be
exceeded at a penalty rate which is increased in each iteration.

Theorem 3 (limits in the iterative scheme). Oncerν is higher than a certain
threshold value,pν andxν

a furnish a classical equilibrium, with utility scaling,
respect to the same setsXa and functionsua but possibily different endowment
vectorseνa ≥ ea with eνa → ea. The sequence of these nearby classical equilib-
ria (pν , {xν

a}a∈A) is bounded, and every cluster point(p̄, {x̄a}a∈A) furnishes a
virtual equilibrium for the original data. Hence if only one virtual equilibrium
exists, the entire sequence must converge to it.

Obviously, in proving Theorem 3 we will have proved Theorem 1, so we can
concentrate on Theorem 3. Since the setsP andXb

a containingpν andxν
a are

closed and bounded, the sequences of vectorspν andxν
a are bounded, as claimed

in Theorem 3, and cluster points do exist. Note, however, that no such claim
is made about the sequences of multipliersλν

a. The possible unboundedness
of such a sequence is exactly what can lead to an agenta being only a barely
surviving agent. The following facts will be crucial, in view of the definition
of a virtual equilibrium,

Proposition 6 (convergence estimates). For eacha ∈ A, choose anŷxa ∈ Xa

with x̂a ≤ ea, as exists by (S1), and letµb
a = max{ua(xa) |xa ∈ Xb

a}. Then
µb

a ≥ ua(x̂a), and one has

pν ·(xν
a − ea) ≤

µb
a − ua(x̂a)

rν
for all a ∈ A, (12)

This implies that

xν
a < b for all a ∈ A whenrν is sufficiently large, (13)
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as is true specifically when

rν ≥ r̂ for r̂ =
N

β
max
a∈A

{µb
a − ua(x̂a)}, (14)

whereN is the number of agentsa ∈ A andβ is any positive number small
enough that

∑
a∈A eaj ≤ bj − β for every goodj. Thereafter, one will have

pν ·(xν
a − ea) ≥ 0 for all a ∈ A, (15)

and the vectorspν andxν
a will furnish a classical equilibrium with respect to

the setsXa, functionsua, and the endowment vectorseνa defined by

eνaj = eaj + ζν
a with ζν

a = pν ·(xν
a − ea), (16)

in which the multipliersλν
a are positive and serve as utility scale factors. Thus,

one will have
(aν) Σa∈A x

ν
aj ≤ Σa∈A e

ν
aj for all j, with equality holding ifpν

j > 0,
(bν+) xν

a ∈ argmax{ua(xa)− λν
ap

ν ·(xa − eνa) |xa ∈ Xa} with

λν
a > 0, pν ·(xν

a − eνa) = 0.

Proof. Becausêxa ≤ ea, we havex̂a ∈ Xb
a with pν ·(x̂a − ea) ≤ 0. Hence

µb
a ≥ 0 and

ua(x̂a) = ua(x̂a)− rν [pν ·(x̂a − ea]+
≤ ua(xν

a)− rν [pν ·(xν
a − ea]+ ≤ µb

a − rν [pν ·(xν
a − ea]+,

so thatrν [pν ·(xν
a − ea]+ ≤ µb

a − ua(x̂a). This inequality guarantees (12).
From (arν ) we have

∑
a∈A p

ν ·(xν
a − ea) = pν ·

∑
a∈A(xν

a − ea) = ζν with
ζν expressed by (11), and therefore

∑
a∈A [xν

aj − eaj ] ≤ ζν . It follows that∑
a∈A xν

aj ≤
∑

a∈A eaj + β whenζν ≤ β, and in particular

xν
aj ≤ bj − β when ζν ≤ β with β ≤ bj −

∑
a∈A

eaj . (17)

Thus,xν
a < b as claimed in (13) whenrν is beyond the valuêr in (14).

Once we havexν
a < b, the maximum overXb

a in condition (b+rν ) is the same
as the maximum overXa, due to convexity. Then necessarilyλν

a > 0, since
otherwise our nonsatiation assumption (A3) would be violated. In (b+

rν ) we then
havepν ·(xν

a− ea) ≥ 0 for all a ∈ A. In that case, by takingζν = pν ·(xν
a− ea)

and definingeνa as indicated, we geteνa ≥ ea andpν ·(xν
a − eνa) = 0, so that

conditions (arν ) and (b+rν ) have been converted to (aν) and (bν+). That implies
by Proposition 1 that the elementspν , xν

a andλν
a furnish a classical equilbrium

with respect to the endowmentseνa.
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These estimates immediately reveal key properties of our iterative scheme.
As rν →∞, we eventually have (14) and, in the augmentation rule in (16),

0 ≤ ζν
a ≤ µb

a − ua(x̂a)
rν

→ 0, so thateνa → ea.

By taking limits of in (aν) and (bν+), we see then that cluster points̄p and
x̄a must satisfy the market clearing condition (a) and the budget condition
p̄ ·(x̄a − ea) = 0. The extent to which they satisfy (b+) or (b−), however,
remains to be established.

The key to further analysis lies in the utility scale factorsλν
a. For simplicity

of notation in this analysis, we can suppose we have passed to subsequences so
that actuallypν → p̄ andxν

a → x̄a for every agenta ∈ A, and that (bν+) and
(15) hold for allν, furthermore with̄xa < b, as comes out of the uniformity of
the bound derived in (17). We look at

A+ = { agentsa ∈ A such that{λν
a}∞ν=1 is bounded},

A− = { agentsa ∈ A such that{λν
a}∞ν=1 is unbounded}.

By a further reduction to subsequences if necessary, we can arrange that{
for eacha ∈ A+, actually λν

a → λ̄a ≥ 0,
for eacha ∈ A−, actually λν

a →∞.

Consider now an agenta ∈ A+. Define the functionsϕν
a andϕa on the entire

spaceIRl by

ϕν
a(xa) =

{
−ua(xa) + λν

ap
ν ·(xa − eνa) if xa ∈ Xb

a,
∞ if xa /∈ Xb

a,

ϕa(xa) =
{
−ua(xa) + λ̄ap̄ ·(xa − ea) if xa ∈ Xb

a,
∞ if xa /∈ Xb

a,

these functions being convex and lower semicontinuous by virtue of (A1) and
(A2). Conditions (bν+) and (b+) correspond respectively to

xν
a ∈ argmin

xa∈IRl

ϕν
a(xa), x̄a ∈ argmin

xa∈IRl

ϕa(xa), (18)

inasmuch asxν
a < b andx̄a < b, along withλν

a > 0 andpν ·(xν
a − eνa) = 0, as

well asλ̄ ≥ 0 andp̄ ·(x̄a − ea) = 0. Therefore, if we can show that the second
condition in (18) follows in the limit from the first condition asν → ∞, we
will be able to conclude that̄p, x̄a andλ̄a satisfy (b+) and thus that agenta is
an optimizing agent.

This is an issue addressed, in general, by the theory of “epi-convergence” of
sequences of functions and its role in minimization, as expounded for instance
in [14, Chapter 7]. Here, the circumstances are especially simple because the
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functions are convex and all have the same effective domain, namelyXb
a, which

moreover has nonempty interior. Asν → ∞, we haveϕν
a(xa) → ϕa(xa) for

eachxa ∈ Xb
a, and that guarantees the epi-convergence ofϕν

a to ϕa by [14,
Theorem 7.17]. Then by [14, Theorem 7.33], because these functions are
lower semicontinuous with their effective domains uniformly bounded, the first
condition in (18) yields the second, as required.

Next, consider instead an agentx ∈ A−. Define the functionsψν
a andψa on

the entire spaceIRl by

ψν
a(xa) =

{
−(1/λν

a)ua(xa) + pν ·(xa − eνa) if xa ∈ Xb
a,

∞ if xa /∈ Xb
a,

ψa(xa) =
{
p̄ ·(xa − ea) if xa ∈ Xb

a,
∞ if xa /∈ Xb

a.

Again, these functions are convex and lower semicontinuous by virtue of (A1)
and (A2), soψν

a epi-converges toψa for the reasons already mentioned, coming
from [14, Theorem 7.17]. On the basis of (bν+), we havexν

a ∈ argminψν
a , and

can conclude through [14, Theorem 7.33] thatx̄a ∈ argminψa. That tells us
that x̄a minimizesp̄ ·xa subject toxa ∈ Xb

a, and sincēxa < b, it establishes
that (b−) holds. Thus, agenta is a barely surviving agent.

Finally, we confirm that the agents can’t all be just barely surviving. If indeed
A− = A, we would have

inf
{
p̄ ·

∑
a∈A

xa

∣∣∣xa ∈ Xa

}
= p̄ ·

∑
a∈A

ea.

But that’s incompatible with our assumption (S2), inasmuch asp̄ 6= 0.
In summary, we have demonstrated thatp̄ and{x̄a}a∈A provide a virtual

equilibrium as in Definition 2, in which moreover the agentsa ∈ A− are barely
surviving, whereas the agentsa ∈ A+ are optimizing and have the limits̄λa as
utility scale factors.

5. EXAMPLES

Illustrations will now be provided of the distinctions between the various
equilibrium concepts in Definitions 1 and 2 and how they relate to the existence
result in Theorem 1 and the iterative scheme addressed in Theorem 3.

In these examples, we have just two goods and two agents: herel = 2 and
A = {1, 2}. Price vectors have the formp = (p1, p2) with p1 ≥ 0, p2 ≥ 0
andp1 + p2 = 1. Agenta = 1 has an endowment vectore1 = (e11, e12)
and chooses a consumption vectorx1 = (x11, x12) with utility u1(x11, x12)
from a survival setX1 ⊂ IR2

+, whereas agenta = 2 has an endowment vector
e2 = (e21, e22) and chooses a consumption vectorx2 = (x21, x22) with utility
u2(x21, x22) from a survival setX2 ⊂ IR2

+.
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Example 1 (a classical equilibrium without strict feasibility). LetX1 = IR2
+

andX2 = IR2
+, and take{

e1 = (1, 1), u1(x11, x12) = x11,
e2 = (1, 0), u2(x21, x22) = x21 + x22.

In this case there is anx1 ∈ X1 with x1 < e1, but nox2 ∈ X2 with x2 < e2.
Nonetheless, a classical equilibrium exists, given by

p̄ = (1/2, 1/2), x̄1 = (2, 0), x̄2 = (0, 1).

There is no other equilibrium, even two-tier. The iterative scheme, applied to
this data, would necessarily converge to the unique classical equilibrium.

Detail. Herep2 = 1 − p1, sop = (p1, 1 − p1) with 0 ≤ p1 ≤ 1. For agent
a = 1 the utility maximizing set is

M1 = argmax{u1(x1) |x1 ∈ X1, p ·x1 ≤ p ·e1}
= argmax{x11 |x11 ≥ 0, x12 ≥ 0,

p1x11 + (1− p1)x12 ≤ 1}

=
{
∅ if p1 = 0,
{ (p−1

1 , 0)} if p1 > 0,

whereas for agenta = 2 the utility maximizing set is

M2 = argmax{u2(x2) |x2 ∈ X2, p ·x2 ≤ p ·e2}
= argmax{x21 + x22 |x21 ≥ 0, x22 ≥ 0,

p1x21 + (1− p1)x22 ≤ p1}

=


∅ if p1 = 0,
{(1, 0)} if 0 < p1 < 1/2,
{ (τ, 1− τ) | 0 ≤ τ ≤ 1} if p = 1/2,
{(0, (1− p1)−1)} if 1/2 < p1 < 1,
∅ if p1 = 1.

The total endowmente1 + e2 is (2, 1), so the condition for market clearing is{
x11 + x21 ≤ 2, with equality ifp1 > 0,
x12 + x22 ≤ 1, with equality ifp1 < 1.

(19)

Havingp1 = 0 orp1 = 1 in a classical equilibrium is excluded by the emptiness
then ofM2, so any candidates would have to have0 < p1 < 1 and obey both
of the inequalities in (19) as equations. In choosing(x11, x12) from M1 and
(x21, x22) fromM2, it’s impossible to get the second of these equations satisfied
when0 < p1 < 1/2, or to get the first satisfied when1/2 < p1 < 1. Hence
the only available candidate isp1 = 1/2. And indeed, forp̄ = (1/2, 1/2)
we can takēx1 = (2, 0) from M1 and andx̄2 = (0, 1) from M2 and have
x̄1 + x̄2 = (2, 1), as required for a classical equilibrium.
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This is the only possibility for a classical equilibrium, but what about a two-
tier equilibrium more generally? The investigation of that requires us to look
at the set of cheapest consumption vectors, which here happens to be the same
for both agents:

M− = argmin{ p ·x1 |x1 ∈ X1} = argmin{ p ·x2 |x2 ∈ X2}

=


{ (τ, 0) | τ ≥ 0} if p1 = 0,
{ (0, 0)} if 0 < p1 < 1,
{ (0, τ) | τ ≥ 0} if p1 = 1.

In a two-tier equilibrium with both agents barely surviving, both(x11, x12)
and(x21, x22) would be selected fromM−. Thus, both would have 0 in the first
component ifp1 > 0, or both would have 0 in the second component ifp1 < 1,
which would be inconsistent with (19), no matter howp1 is selected.

For a two-tier equilibrium with agenta = 1 barely surviving and agenta = 2
optimizing, we would need to satisfy (19) with a choice of(x11, x12) ∈ M−

and(x21, x22) ∈M2. Again, the casesp1 = 0 andp1 = 1 are excluded by the
emptiness ofM2 for those values, but on the other hand, when0 < p1 < 1 we
are forced to take(x11, x12) = (0, 0), and yet both of the conditions in (19) are
required to be fulfilled as equations. But there is no way to choosep1 to get
(x21, x22) ∈M2 with (x21, x22) = (2, 1).

For a two-tier equilibrium with agenta = 1 optimizing and agenta = 2
barely surviving, we would need (19) to hold for some(x11, x12) ∈ M1 and
(x21, x22) ∈M−. BecauseM1 = ∅whenp1 = 0, we are limited to0 < p1 ≤ 1
and(x11, x12) = (p−1

1 , 0), with at least the first condition in (19) holding as an
equation. Sincex21 has to be0 whenp1 > 0, we can only get this equation
with p1 = 1/2, but then the second condition in (19) must hold as an equation
too, even thoughx22 has to be0. Thus, this mode of equilibrium is impossible
as well.

Example 2(a nonclassical virtual equilibrium along with other equilibria). Let
X1 = IR2

+ andX2 = IR2
+ and take{

e1 = (1, 1), u1(x11, x12) = x11,
e2 = (0, 1), u2(x21, x22) = x21 + x22.

In this case there is no classical equilibrium, but two-tier equilibria in which
agenta = 1 is optimizing and agenta = 2 is barely surviving are furnished by

p̄ = (1, 0), x̄1 = (1, 0), x̄2 = (0, θ), for any θ ∈ [0, 2]. (20)

These are the only two-tier equilibria, and among them, only the one forθ = 2
is a virtual equilibrium. That unique virtual equilibrium, with utility scaling,
must be the limit of any sequence of vectorspν andxν

a generated by the iterative
scheme.
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Detail. This is close in many respects to Example 1, having the same setsM1

andM− and only a coordinate-switched version ofM2, namely

M ′
2 = argmax{u2(x2) |x2 ∈ X2, p ·x2 ≤ p ·e2}

= argmax{x21 + x22 |x21 ≥ 0, x22 ≥ 0,
p1x21 + (1− p1)x22 ≤ 1− p1}

=


∅ if p1 = 0,
{((p−1

1 − 1, 0)} if 0 < p1 < 1/2,
{ (τ, 1− τ) | 0 ≤ τ ≤ 1} if p = 1/2,
{(0, 1)} if 1/2 < p1 < 1,
∅ if p1 = 1.

The total endowmente1 + e2 is (1, 2), so now the condition for market clearing
takes the form {

x11 + x21 ≤ 1, with equality ifp1 > 0,
x12 + x22 ≤ 2, with equality ifp1 < 1.

(21)

A classical equilibrium requires0 < p1 < 1 because of the emptiness otherwise
of M ′

2, and therefore two equations in (21). That can’t be met; no choice of
(x11, x12) ∈M1 and(x21, x22) ∈M ′

2 can yieldx12 + x22 ≥ 1.
A two-tier equilibrium with both agents barely surviving is impossible for

the reasons already explained in Example 1. A two-tier equilibrium with agent
a = 1 barely surviving and agenta = 2 optimizing is likewise impossible for
the reasons seen earlier.

A two-tier equilibrium with agenta = 1 optimizing and agenta = 2 barely
surviving does turn out to be possible, however. For this, we need0 < p1 ≤ 1
in order to avoidM1 being empty. But0 < p1 < 1 would make the choice of
(x21, x22) ∈M− reduce to(0, 0) while requiring two equations in (21), which
doesn’t work. In takingp1 = 1, we merely have to satisfy the first condition in
(21) with equality. The only vector inM1 is (1, 0), whereasM− consists of the
vectors(0, τ) with τ ≥ 0. We have (21) fulfilled when0 ≤ τ ≤ 2.

In view of Theorem 2 (and Theorem 3), at least one of these two-tier equilibria
must be a virtual equilibrium, but which? To sort that out, we have to inspect
the possibilities for having a classical equilibrium when the endowment vectors
e1 ande2 are perturbed to

eε1 = (1 + ε11, 1 + ε12), eε2 = (ε21, 1 + ε22),

where the increments are all≥ 0. The calculations focus then on the set

M ε
1 = argmax{u1(x1) |x1 ∈ X1, p ·x1 ≤ p ·eε1}

= argmax{x11 |x11 ≥ 0, x12 ≥ 0,
p1x11 + (1− p1)x12 ≤ 1 + p1ε11 + (1− p1)ε21}

=
{
∅ if p1 = 0,
{ (p−1

1 (1 + p1ε11 + (1− p1)ε21), 0))} if p1 > 0,
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for agenta = 1 and the set

M ε
2 = argmax{u2(x2) |x2 ∈ X2, p ·x2 ≤ p ·eε2}

= argmax{x21 + x22 |x21 ≥ 0, x22 ≥ 0,
p1x21 + (1− p1)x22 ≤ p1ε21 + (1− p1)(1 + ε22)}

=



∅ if p1 = 0,
{ (ε21 + p−1

1 (1− p1)(1 + ε22), 0)}
if 0 < p1 < 1/2,

{ (τ, 1− τ) | 0 ≤ τ ≤ 1} if p = 1/2,
{ (0, 1 + p1(1− p1)−1ε21 + ε22))} if 1/2 < p1 < 1,
∅ if p1 = 1,

for agenta = 2. The perturbed total endowment is

eε1 + eε2 = (1 + ε11 + ε21, 2 + ε12 + ε22),

and the market clearing conditions come out therefore as{
x11 + x21 ≤ 1 + ε11 + ε21, with equality ifp1 > 0,
x12 + x22 ≤ 2 + ε12 + ε22, with equality ifp1 < 1.

(22)

Once more the cases wherep1 = 0 or p1 = 1 can be eliminated because of
emptiness inM ε

2 , so we must have0 < p1 < 1 along with equality in both of
the conditions in (22). This can be achieved with

pε = (1 + ε12 + ε21)−1(1 + ε12, ε21),
xε

1 = (1 + ε11 + ε12, 0), xε
2 = (0, 2 + ε21 + ε22),

whenε21 > 0, but not otherwise. As the increments tend to0, the only possible
limit of such classical equilibria is the two-tier equilibrium in (20) forθ = 2.
Hence that is the unique virtual equilibrium, and the iterative scheme must
converge to it.

Other insights can be gleaned from Example 2 as well. The utility scale
factors associated with agenta = 2 in the perturbed equilibria must tend to
∞ as the increments go to0, specifically asε21 → 0. If that were not the
case, the virtual equilibrium obtained in the limit would actually be a classical
equilibrium. This feature of the iterative scheme came out in the proof of
Theorem 3. The interpretation is that, as the amount of good 1 available to
agent 2 shrinks to nothing, the interest of agent 2 in acquiring some of good
1 increases without bound. The scaling between utility for agent 2 and the
relative prices at equilibrium blows up. This emerges as the essential reason
why agent 2 ends up barely surviving without optimizing, even though, with an
infinitesimal amount of good 1, optimization would be possible.



20

References

[1] K. J. Arrow, G. Debreu, Existence of an equilibrium for a compet-
itive economy.Econometrica22 (1954), 265–290.

[2] S. Dafermos, Exchange price equilibria and variational inequalities.
Mathematical Programming46 (1990), 391–402.

[3] G. Debreu, Theory of Value,(Wiley, 1959).

[4] G. Debreu, New concepts and techniques for equilibrium analysis.
Chapter 10 ofMathematical Economics(Econometric Soc. Monographs,
No. 4), 1983.

[5] A. D. Dontchev, R. T. Rockafellar, Ample parameterization
of variational inclusions.SIAM J. Optimization12 (2002), 170–187.

[6] F. Facchinei, J.-S. Pang, Finite-dimensional variational inequal-
ities and complementarity problems. Vols. I and II, Springer Series in
Operations Research. Springer-Verlag, New York, 2003.

[7] M. Florig, On irreducible economies.Annales d’́Economie et de Statis-
tique61 (2001), 184–199.

[8] M. Florig, Hierarchic competitive equilibria.Journal of Mathematical
Economics35 (2001), 515–546.

[9] P. T. Harker, J.-S. Pang, Finite-dimensional variational inequali-
ties and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications.Mathematical Programming, Ser. B48 (1990),
161–220.

[10] J.-S. Pang, Computing generalized Nash equilibria. Preprint, 2002.

[11] J.-S. Pang, M. Fukushima, Quasi-variational inequalities, general-
ized Nash equilibria, and multi-leader-follower games. Preprint, 2002.

[12] R. T. Rockafellar, Convex Analysis, Princeton University Press,
1970.

[13] Oiko Nomia, Existence of Walras equilibria: the excess demand ap-
proach, Cahiers MSE, University of Paris I, 1996.

[14] R. T. Rockafellar, R. J-B Wets, Variational Analysis, Springer-
Verlag, Berlin, 1997.

[15] H. E. Scarf, The approximate fixed points of a continuous mapping.
SIAM J. Applied Math.15 (1967), 1328–1343.

[16] H. E. Scarf, The Computation of Economic Equilibria, Yale University
Press, 1973.


