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Abstract Proximal mappings, which generalize projection mappings, were introduced by
Moreau and shown to be valuable in understanding the subgradient properties of
convex functions. Proximal mappings subsequently turned out to be important
also in numerical methods of optimization and the solution of nonlinear partial
differential equations and variational inequalities. Here it is shown that, when
a convex function is propagated through time by a generalized Hamilton-Jacobi
partial differential equation with a Hamiltonian that concave in the state and
convex in the co-state, the associated proximal mapping exhibits locally Lipschitz
dependence on time. Furthermore, the subgradient mapping associated of the
value function associated with this mapping is graphically Lipschitzian.
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schitz properties, graphically Lipschitzian mappings.

1. INTRODUCTION

In some of his earliest work in convex analysis, J.-J. Moreau introduced
in [1], [2], the proximal mappingP associated with a lower semicontinuous,
proper, convex functionf on a Hilbert spaceH, namely

P (z) = argminx

{
f(x) + 1

2 ||x− z||2
}
. (1.1)

It has many remarkable properties. Moreau showed thatP is everywhere single-
valued as a mapping fromH intoH, and moreover is nonexpansive:

||P (z′)− P (z)|| ≤ ||z′ − z|| for all z, z′. (1.2)
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In this respectP resembles a projection mapping, and indeed whenf is the
indicator of a convex setC, P is the projection mapping ontoC. He also
discovered an interesting duality. The proximal mapping associated with the
convex functionf∗ conjugate tof , which we can denote by

Q(z) = argminx

{
f∗(y) + 1

2 ||y − z||2
}
, (1.3)

which likewise is nonexpansive of course, satisfies

Q = I − P, P = I −Q. (1.4)

In fact the mappingsP andQ serve to parameterize the generally set-valued
subgradient mapping∂f associated withf :

y ∈ ∂f(x) ⇐⇒ (x, y) = (P (z), Q(z)) for somez, (1.5)

thisz being determined uniquely through (1.4) byz = x+y. Another important
feature is that theenvelopefunction associated withf , namely

E(z) = minx

{
f(x) + 1

2 ||x− z||2
}
, (1.6)

is a finite convex function onH which is Fŕechet differentiable with gradient
mapping

∇E(z) = Q(z). (1.7)

Our objective in this article is to tie Moreau’s proximal mappings and en-
velopes into the Hamilton-Jacobi theory associated with convex optimization
over absolutely continuous arcsξ : [0, t] → IRn; for this setting we henceforth
will haveH = IRn. Let the space of such arcs be denoted byA1

n[0, t].
The optimization problems in question concern the functionsft on IRn de-

fined byf0 = f and

ft(x) = min
ξ∈An[0,t]

{
f(ξ(0)) +

∫ t

0
L(ξ(τ), ξ̇(τ))dτ

}
for t > 0, (1.8)

which represent the propagation off forward in timet under the “dynamics”
of a Lagrangian functionL.

A pair of recent articles [3], [4], has explored this in the case whereL satisfies
the following assumptions, which we also make here:

(A1) The functionL is convex, proper and lsc onIRn × IRn.
(A2) The setF (x) := domL(x, ·) is nonempty for allx, and there is a

constantρ such thatdist(0, F (x)) ≤ ρ(1 + ||x||) for all x.
(A3) There are constantsα andβ and a coercive, proper, nondecreasing

functionθ on [0,∞) such thatL(x, v) ≥ θ( max{ 0, ||v|| − α||x|| })− β||x||
for all x andv.
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The convexity ofL(x, v) with respect to(x, v) in (A1), instead of just with
respect tov, is calledfull convexity. It opens the way to broad use of the tools
of convex analysis. The properties in (A2) and (A3) are dual to each other in
a sense brought out in [3] and provide coercivity and other needed features of
the integral functional.

It was shown in [3, Theorem 2.1] that, under these assumptions,ft is, for
everyt, a lower semicontinuous, proper, convex function onIRn which depends
epi-continuously ont (i.e., the set-valued mappingt 7→ epi ft is continuous
with respect tot ∈ [0,∞) in the sense of Kuratowsk-Painlevé set convergence
[6]). The topic we wish to address here is how, in that case, the associated
proximal mappings

Pt(z) = argminx

{
ft(x) + 1

2 ||x− z||2
}
, (1.9)

with P0 = P , and envelope functions

Et(z) = minx

{
ft(x) + 1

2 ||x− z||2
}
, (1.10)

withE0 = E, behave in their dependence ont. It will be useful for that purpose
to employ the notation

P̄ (t, z) = Pt(z), Ē(t, z) = Et(z). (1.11)

Some aspects of this dependence can be deduced readily from the epi-
continuity of ft in t, for example the continuity of̄P (t, z) and Ē(t, z) with
respect tot ∈ [0,∞); cf. [6, 7.37, 7.38]. From that, it follows through the
nonexpansivity of̄P (t, z) in z and the finite convexity of̄E(t, z) in z, that both
P̄ (t, z) andĒ(t, z) are continuous with respect to(t, z) ∈ [0,∞)× IRn.

At the end of our paper [7] in an application of other results about variational
problems with full convexity, we were able to show more recently thatĒ(t, z)
is in factcontinuously differentiable with respect to(t, z), not just with respect
to z, as would already be a consequence of the convexity and differentiability
ofEt, noted above. But this property does not, by itself, translate into any extra
feature of the dependence of̄P (t, z) on t, beyond the continuity we already
have at our disposal.

The following new result which we contribute here thus reaches a new level,
moreover one wherēP andĒ are again on a par with each other.

Theorem 1. Under (A1), (A2) and (A3), both̄P (t, z) and∇Ē(t, z) are locally
Lipschitz continuous with respect to(t, z). Thus,Ē is a function of classC1+.

Our proof will rely on the Hamilton-Jacobi theory in [4] for the forward
propagation expressed by (1.8). It concerns the characterization of the function

f̄(t, x) = ft(x) for (t, x) ∈ [0,∞)× IRn (1.12)

in terms of a generalized “method of characteristics” in subgradient format.
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2. HAMILTON-JACOBI FRAMEWORK

The Hamiltonian functionH that corresponds to the Lagrangian functionL
is obtained by passing from the convex functionL(x, ·) to its conjugate:

H(x, y) := supv

{
〈v, y〉 − L(x, v)

}
. (2.1)

Because of the lower semicontinuity in (A1) and the properness ofL(x, ·)
implied by (A2), the reciprocal formula holds that

L(x, v) = supy

{
〈v, y〉 −H(x, y)

}
, (2.2)

soL andH are completely dual to each other. It was established in [3] that a
functionH : IRn × IRn → IR is the Hamiltonian for a LagrangianL fulfilling
(A1), (A2) and (A3) if and only if it satisfies

(H1) H(x, y) is concave inx, convex iny, and everywhere finite,
(H2) There are constantsα andβ and a finite, convex functionϕ such that

H(x, y) ≤ ϕ(y) + (α||y||+ β)||x|| for all x, y.

(H3) There are constantsγ andδ and a finite, concave functionψ such that

H(x, y) ≥ ψ(x)− (γ||x||+ δ)||y|| for all x, y.

The convexity-concavity ofH in (H1) is a well known counterpart to the
full convexity ofL under the “partial conjugacy” in (2.1) and (2.2). (cf. [5]). It
impliers in particular thatH is locally Lipschitz continuous; cf. [5,§35]. The
growth conditions in (H2) and (H3) are dual to (A3) and (A2), respectively.
This duality underscores the refined nature of (A2) and (A3); they are tightly
intertwined. They have also been singled out because of the role they can play
in control theory of fully convex type. For example,L satisfies (A1), (A2),
(A3), when it has the form

L(x, v) = g(x) + minu{h(u) |Ax+Bu = v} (2.3)

for matricesA ∈ IRn×n, B ∈ IRm×n, a finite convex functiong and a lower
semicontinuous, proper convex functionh that is coercive, or equivalently, has
finite conjugateh∗. Thenft(x) is the minimum in the problem of minimizing

f(ξ(0)) +
∫ t

0
{g(ξ(τ)) + h(ω(τ))}dt

over all summable control functionsω : [0, t] → IRm such that

ξ̇(τ) = Aξ(τ) +Bω(τ) for a.e. τ, ξ(t) = x.
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The corresponding Hamiltonian in this case is

H(x, y) = 〈Ax, y〉 − g(x) + h∗(y). (2.4)

In the control context, backward propagation from a terminal time would
be more natural than forward propagation from time 0, but it is elementary to
reformulate from one to the other. Forward propagation is more convenient
mathematically for the formulas that can be developed.

For any finite, concave-convex functionH on IRn × IRm, there is an asso-
ciatedHamiltonian dynamical sytem, which can be written as the differential
inclusion

ξ̇(τ) ∈ ∂yH(ξ(τ), η(τ)), −η̇(τ) ∈ ∂xH(ξ(τ), η(τ)) for a.e. τ, (2.5)

where∂y refers to subgradients in the convex sense in they argument, and∂x

refers to subgradients in the concave sense in thex argument. In principle,
the candidatesξ andη for a solution over an interval[0, t] could just belong to
A1

n[0, t], but the local Lipschitz continuity ofH, and the local boundedness it
entails for the subgradient mappings that are involved [5,§35], guarantee that
ξ andη belong toA∞n [0, t], i.e., that they are Lipschitz continuous.

Dynamics of the kind in (2.5) were first introduced in [8] for their role in cap-
turing optimality in variational problems with fully convex Lagrangians. In the
present circumstances where (A1), (A2) and (A3) hold, it has been established
in [3] that

ξ solves (1.8) ⇐⇒
{
ξ(t) = x and(ξ, η) solves (2.5)
for someη with η(0) ∈ ∂f(ξ(0)) .

(2.6)

Again, ∂f refers to subgradients of the convex functionf in the traditions of
convex analysis. Another powerful property obtained in [3], which helps in
characterizing the functionsft and thereforēf , is that

y ∈ ∂ft(x) ⇐⇒
{

(ξ(t), η(t)) = (x, y) for some(ξ, η)
satisfying (2.5) withη(0) ∈ ∂f(ξ(0)). (2.7)

Yet another property from [3], which we can take advantage of here, is that, for
any (x0, y0) ∈ IRn × IRn, the Hamiltonian system has at least one trajectory
pair(ξ, η) that starts from(x0, y0) and continues forever, i.e., for the entire time
interval [0,∞). This implies further that any trajectory up to a certain timet
can be continued indefinitely beyondt. Such trajectories need not be unique,
however.

Subgradients of the value function̄f in (1.12) must be considered as well.
The complication there is that̄f(t, x) is only convex with respect tox, not
(t, x). Subgradient theory beyond convex analysis is therefore essential. In
this respect, we use∂f̄ to denote subgradients with respect to(t, x) in the
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broader sense of variational analysis laid out, for instance, in [6]. These avoid
the convex hull operation in the definition utilized earlier by Clarke and are
merely “limiting subgradients” in that context.

The key result from [3] concerning subgradients∂f̄ , which we will need to
utilize later, reveals that, fort > 0,

(s, y) ∈ ∂f̄(t, x) ⇐⇒ y ∈ ∂ft(x) and s = −H(x, y). (2.8)

Observe that the implication “⇒” in (2.8) says thatf̄ satisfies a subgradient
version of Hamilton-Jacobi partial differential equation forH and the initial
conditionf̄(0, x) = f(x). It becomes the classical version whenf̄ is contin-
uously differentiable, so that∂f̄(t, x) reduces to the singleton∇f̄(t, x). This
subgradient version turns out, in consequence of other developments in this
setting, to agree with the “viscosity” version of the Hamilton-Jacobi equation,
but is not covered by the uniqueness results that have so far been been achieved
in that setting. The uniqueness off̄ as a solution, under our conditions (H1),
(H2), (H3), and the initial functionf follows, nonetheless, from independent
arguments in variational analysis; cf. [9], [10].

By virtue of its implication “⇐” in our context of potential nonsmoothness,
(2.8) furnishes more than just a generalized Hamilton-Jacobi equation. Most
importantly, it can be combined with (2.7) to see that

(s, y) ∈ ∂f̄(t, x) ⇐⇒


∃(ξ, η) satisfying (2.6) over[0, t]
such that(ξ(t), η(t)) = (x, y)
and−H(ξ(t), η(t)) = s.

(2.9)

This constitutes a generalized “method of characteristics” of remarkable com-
pleteness, and in a global pattern not dreamed of in classical Hamilton-Jacobi
theory, where everything depends essentially on the implicit function theorem
with its local character. Instead of relying on such classical underpinnings, the
characterization in (2.9) is based on convex analysis and extensive appeals to
duality.

Proof of Theorem 1. We concentrate first on the claims aboutP̄ , which we
already know to have the property that

||P̄ (t, z′)− P̄ (t, z)|| ≤ ||z′ − z|| for all z, z′ ∈ IRn, t ∈ [0,∞). (2.10)

To confirm the local Lipschitz continuity of̄P (t, z) with respect to(t, z), it will
be enough, on this basis, to demonstrate local Lipschitz continuity int with a
constant that is locally uniform inz. Therefore, we fix anyt∗ ∈ [0,∞) and
z∗ ∈ IRn, and take

x∗ = P̄ (t∗, z∗), y∗ = Q̄(t∗, z∗), (2.11)

where
Q̄(t, z) = Qt(z) for Qt = I − Pt. (2.12)
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Fix any(t∗, z∗) ∈ [0,∞)×IRn along with a compact neighborhoodT0×Z0

of this pair. The mapping

M : (t, z) → (P̄ (t, z), Q̄(t, z)) ∈ IR2n, (2.13)

which we already know is continuous, takesT0 × Z0 into a compact set
M(T0, Z0) ⊂ IR2n. Utilizing the fact thatH is locally Lipschitz contin-
uous onIR2n, we can select compact subsetsU0 andU1 of IRn such that
M(T0, Z0) ⊂ U1 ⊂ intU0 and furthermore

(x, y) ∈ U0, u ∈ ∂xH(x, y), v ∈ ∂yH(x, y) =⇒
{
||u|| ≤ κ,
||v|| ≤ κ.

Trajectories(ξ, η) to the Hamiltonian system in (2.5) are then necessarily Lip-
schitz continuous with constantκ over time intervals during which they stay
insideU0. It is possible next, therefore, to choose an interval neighborhoodT1

of t∗ within T0 such that any Hamiltonian trajectory(ξ, η) overT1 that touches
U1 remains entirely inU0 (and thus has the indicated Lipschitz property). Fi-
nally, we can choose a neighborhoodT × Z of (t∗, z∗) within T1 × Z0, with
T1 being an interval, such thatM(T,Z) ⊂ U1.

With these preparations completed, consider anyz ∈ Z and any interval
[t, t′] ⊂ T , with t < t′. Let (x, y) = M(t, z), so that

x = P̄ (t, z) = Pt(z), y = Q̄(t, z) = Qt(z),

and consequently
y ∈ ∂ft(x), x+ y = z,

from the basic properties of proximal mappings. Also,(x, y) ∈ U1. By (2.7),
there is a Hamiltonian trajectory(ξ, η) over [0, t] with (ξ(t), η(t)) = (x, y). It
can be continued over[t, t′]. Our selection of[t, t′] ensures that, during that
time interval, bothξ andη are Lipschitz continuous with constantκ.

We also haveη(τ) ∈ ∂ft(ξ(τ)); this follows by applying (2.7) to the interval
[0, τ ] in place of[0, t]. Let ζ(τ) = ξ(τ) + η(τ) for τ ∈ [t, t′]. Thenζ(t) = z
andζ is Lipschitz continuous with constantκ. Moreover

ξ(τ) = Pτ (ζ(τ)) = P̄ (τ, ζ(τ)), η(τ) = Qτ (ζ(τ)) = Q̄(τ, ζ(τ)),

again according to Moreau’s theory of proximal mappings. Now, by writing

P̄ (t′, z)− P̄ (t, z) = [P (t′, ζ(t))− P (t′, ζ(t′))] + [P (t′, ζ(t′))− P (t, ζ(t))],

where||P (t′, ζ(t)) − P (t′, ζ(t′))|| ≤ ||ζ(t)) − ζ(t′)|| and, on the other hand,
P (t, ζ(t)) = ξ(t) andP (t′, ζ(t′)) = ξ(t′), we are able to estimate that

||P̄ (t, z)− P̄ (t, z)|| ≤ ||ζ(t′)− ζ(t)||+ ||ξ(t′)− ξ(t)|| ≤ 2κ|t′ − t|.
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Because this holds for allz ∈ Z and[t, t′] ⊂ T , we have the locally uniform
Lipschitz continuity property that was required forP̄ in its time argument.

Note that the local Lipschitz continuity of̄P implies the same propert for̄Q,
inasmuch as̄Q(t, z) = z − P̄ (t, z).

Turning now to the claims about̄E, we observe, to begin with, that since
∇Et = Qt from proximal mapping theory, we have∇zĒ(t, z) = Q̄(t, z). A
complementary fact, coming from [7, Theorem 4 and Corollary], is that

∂Ē

∂t
(t, z) = −H(x, y) for (x, y) = (P̄ (t, z), Q̄(t, z)).

In these terms we have

∇Ē(t, z) = (−H(P̄ (t, z), Q̄(t, z)), Q̄(t, z)).

SinceH is locally Lipschitz continuous, and both̄P andQ̄ are locally Lipschitz
continuous, as just verified, we conclude that∇Ē is locally Lipschitz continu-
ous, as claimed, too.

3. SUBGRADIENT GRAPHICAL LIPSCHITZ
PROPERTY

The facts in Theorem 1 lead to a further insight into the subgradients of
the functionf̄ . To explain it, we recall the concept of a set-valued mapping
S : IRp → IRq beinggraphically Lipschitzian of dimensiond around a point
(ū, v̄) in its graph. This means that there is some neighborhood of(ū, v̄) in
which, under a smooth change of coordinates, the graph ofS can be identified
with that of a Lipschitz continuous mapping on ad-dimensional parameter
space.

The subgradient mappings∂f : IRn →→ IRn associated with lower semi-
continuous, proper, convex functionsf on IRn, like here, are prime examples
of graphically Lipschitzian mappings. Indeed, this property is provided by
Moreau’s theory of proximal mappings. In passing from thex, y, “coordi-
nates” in which the relationy ∈ ∂f(x) is developed, to thez,w, “coordinates”
specified byz = x+ y andw = x− y, we get just the kind of representation
demanded, since the graph of∂f can be viewed parameterically in terms of
the pairs(P (z), Q(z)) asz ranges overIRn; cf. (1.5). Thus,∂f is graphically
Lipschitzian of dimensionn, everywhere.

Is there an extension of this property to the mapping∂f̄ from (0,∞)× IRn

to IR× IRn? The next theorem says yes.

Theorem 2. Under (A1), (A2) and (A3), the subgradient mapping∂f̄ is every-
where graphically Lipschitzian of dimensionn+ 1.
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Proof. We get this out of (2.8) and the parameterization properties developed
in the proof of Theorem 1. These tell us that the representation

(−H(P̄ (t, z), Q̄(t, z)), Q̄(t, z)) ∈ ∂f̄(t, P̄ (t, z))

fully covers the graph of∂f̄ in a one-to-one manner relative to(0,∞)× IRn as
(t, z) ranges over(0,∞)× IRn. This is ann+1-dimensional parameterization
in which the mappings are locally Lipschitz continuous, so the assertion of the
theorem is fully justified.
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de la Socíet́e Math́ematique de France93 (1965), 273–299.

[3] R. T. Rockafellar, P. R. Wolenski, Convexity in Hamilton-
Jacobi theory I: dynamics and duality.SIAM Journal on Control and Op-
timization39 (2001), 1323–1350.

[4] R. T. Rockafellar, P. R. Wolenski, Convexity in Hamilton-
Jacobi theory II: envelope representations.SIAM Journal on Control and
Optimization39 (2001), 1351–1372.

[5] R. T. Rockafellar, Convex Analysis, Princeton University Press,
1970.

[6] R. T. Rockafellar, R. J-B Wets, Variational Analysis, Springer-
Verlag, Berlin, 1997.

[7] R. T. Rockafellar, Hamilton-Jacobi theory and parametric analysis
in fully convex problems of optimal control.Journal of Global Optimiza-
tion, to appear.

[8] R. T. Rockafellar, Generalized Hamiltonian equations for convex
problems of Lagrange.Pacific Journal of Mathematics33 (1970), 411–
428.

[9] G. Galbraith, Applications of Variational Analysis to Optimal Trajec-
tories and Nonsmooth Hamilton-Jacobi Theory, Ph.D. thesis, University
of Washington, Seattle (1999).

[10] G. Galbraith, The role of cosmically Lipschitz mappings in nons-
mooth Hamilton-Jacobi theory (preprint).


