Chapter 1

MOREAU’'S PROXIMAL MAPPINGS AND
CONVEXITY IN HAMILTON-JACOBI THEORY

R. T. Rockafellar
Department of Mathematics, University of Washington, Seattle, WA 98195-4350, USA
rtr@math.washington.edu

Abstract Proximal mappings, which generalize projection mappings, were introduced by
Moreau and shown to be valuable in understanding the subgradient properties of
convex functions. Proximal mappings subsequently turned out to be important
also in numerical methods of optimization and the solution of nonlinear partial
differential equations and variational inequalities. Here it is shown that, when
a convex function is propagated through time by a generalized Hamilton-Jacobi
partial differential equation with a Hamiltonian that concave in the state and
convex in the co-state, the associated proximal mapping exhibits locally Lipschitz
dependence on time. Furthermore, the subgradient mapping associated of the
value function associated with this mapping is graphically Lipschitzian.
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1. INTRODUCTION

In some of his earliest work in convex analysis, J.-J. Moreau introduced
in [1], [2], the proximal mapping P associated with a lower semicontinuous,
proper, convex functiorf on a Hilbert spacé{, namely

P(2) = argmin, { f(z) + 5[z — 2[*}. (1.1)

It has many remarkable properties. Moreau showediligeverywhere single-
valued as a mapping froff into 7, and moreover is nonexpansive:

[|P(2) — P(2)|| < ||¢' — z|| forall z, 2. (1.2)
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In this respectP resembles a projection mapping, and indeed wfiés the
indicator of a convex sef’, P is the projection mapping ont6. He also
discovered an interesting duality. The proximal mapping associated with the
convex functionf* conjugate tof, which we can denote by

Q(2) = argmin, { f*(y) + 3/ly — 2I1*}, (1.3)
which likewise is nonexpansive of course, satisfies
Q=1-P, P=1-0Q. (1.4)

In fact the mappingd® and (@ serve to parameterize the generally set-valued
subgradient mapping/f associated witlj’:

y € 0f(r) < (z,y) = (P(2),Q(z)) for somez, (1.5)

thisz being determined uniquely through (1.4)by z+y. Anotherimportant
feature is that thenvelopdunction associated witli, namely

B(2) = miny{ f(z) + 3|z - 2|2}, (1.6)

is a finite convex function oft{ which is Fechet differentiable with gradient
mapping
VE(z) = Q(z). (1.7)

Our objective in this article is to tie Moreau’s proximal mappings and en-
velopes into the Hamilton-Jacobi theory associated with convex optimization
over absolutely continuous arg¢s [0, t] — IR"™; for this setting we henceforth
will have H = IR". Let the space of such arcs be denoteddyo, t].

The optimization problems in question concern the functifyren IR™ de-
fined by fy = f and

t .
file) = min { 7€) + [ Lig(r).&@ar) fort>0. (1
which represent the propagation pforward in timet under the “dynamics”
of a Lagrangian functiod.

A pair of recentarticles [3], [4], has explored this in the case wihesatisfies
the following assumptions, which we also make here:

(A1) The functionL is convex, proper and Isc dR" x IR".

(A2) The setF'(z) := dom L(z, -) is nonempty for allz, and there is a
constanip such thatdist(0, F'(z)) < p(1 + ||z||) for all z.

(A3) There are constants and # and a coercive, proper, hondecreasing
functionf on [0, co) such thatl.(x,v) > 6#(max{0, ||v|| — a||z|| }) — B]|~]]
for all z andwv.
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The convexity ofL(x, v) with respect tqx, v) in (Al), instead of just with
respect ta, is calledfull convexity It opens the way to broad use of the tools
of convex analysis. The properties in (A2) and (A3) are dual to each other in
a sense brought out in [3] and provide coercivity and other needed features of
the integral functional.

It was shown in [3, Theorem 2.1] that, under these assumptjfris, for
everyt, a lower semicontinuous, proper, convex functionf@hwhich depends
epi-continuously ort (i.e., the set-valued mapping— epi f; is continuous
with respect t@d € [0, co) in the sense of Kuratowsk-Painkget convergence
[6]). The topic we wish to address here is how, in that case, the associated
proximal mappings

Pi(z) = argminx{ fe(x) + %Hw - zHQ}, (1.9)
with Py = P, and envelope functions
Ey(z) = ming { fu(x) + 3lle — 2I[*}, (1.10)

with £y = E, behave in their dependencetonit will be useful for that purpose
to employ the notation

P(t,z) = Py(2), E(t,2) = Ey(2). (1.11)

Some aspects of this dependence can be deduced readily from the epi-
continuity of £, in ¢, for example the continuity oP(¢, z) and E(¢, z) with
respect tat € [0, 00); cf. [6, 7.37, 7.38]. From that, it follows through the
nonexpansivity ofP(t, z) in z and the finite convexity of(¢, z) in z, that both
P(t,z) andE(t, z) are continuous with respect t6, z) € [0, 00) x IR".

Atthe end of our paper [7] in an application of other results about variational
problems with full convexity, we were able to show more recently ¥t »)
is in factcontinuously differentiable with respect(to z), not just with respect
to z, as would already be a consequence of the convexity and differentiability
of E;, noted above. But this property does not, by itself, translate into any extra
feature of the dependence Bft, z) on ¢, beyond the continuity we already
have at our disposal.

The following new result which we contribute here thus reaches a new level,
moreover one wher® and £ are again on a par with each other.

Theorem 1. Under (A1), (A2) and (A3), botﬁ(t,fz) andVE(t, z) are locally
Lipschitz continuous with respect ta z). Thus,E is a function of clasg'*.

Our proof will rely on the Hamilton-Jacobi theory in [4] for the forward
propagation expressed by (1.8). It concerns the characterization of the function

f(t,z) = fi(x) for (t,z) € [0,00) x R" (1.12)

in terms of a generalized “method of characteristics” in subgradient format.
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2. HAMILTON-JACOBI FRAMEWORK

The Hamiltonian functior{ that corresponds to the Lagrangian function
is obtained by passing from the convex functibfx, -) to its conjugate:

H(x,y):= supv{ (v,y) — L(x,v)}. (2.1)

Because of the lower semicontinuity in (Al) and the properness(of-)
implied by (A2), the reciprocal formula holds that

Lx,v) = sup,{ (v,9) — H(z,y)}, (22)

so L and H are completely dual to each other. It was established in [3] that a
functionH : IR" x IR™ — IR is the Hamiltonian for a Lagrangiah fulfilling
(Al), (A2) and (A3) if and only if it satisfies

(H1) H(x,y) is concave inz, convex iny, and everywhere finite,
(H2) There are constantsand and a finite, convex functiop such that

H(z,y) < o(y) + (allyll + B)[|=|| forall z, y.

(H3) There are constantsandé and a finite, concave functian such that
H(z,y) > ¢(x) — (Vllz|| + d)llyl| forall =, y.

The convexity-concavity off in (H1) is a well known counterpart to the
full convexity of I, under the “partial conjugacy” in (2.1) and (2.2). (cf. [5]). It
impliers in particular tha#{ is locally Lipschitz continuous; cf. [535]. The
growth conditions in (H2) and (H3) are dual to (A3) and (A2), respectively.
This duality underscores the refined nature of (A2) and (A3); they are tightly
intertwined. They have also been singled out because of the role they can play
in control theory of fully convex type. For examplg, satisfies (Al), (A2),
(A3), when it has the form

L(z,v) = g(z) + min,{ h(u) | Az + Bu = v} (2.3)

for matricesA € IR™*", B € IR™*", a finite convex functiory and a lower
semicontinuous, proper convex functibrthat is coercive, or equivalently, has
finite conjugatér*. Thenf;(x) is the minimum in the problem of minimizing

FEO) + [ {o(e(r) + hleo(r) e

over all summable control functions: [0,¢] — IR™ such that

&(1) = A&(7) + Bw(r) fora.e.r, &(t) = x.
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The corresponding Hamiltonian in this case is
H(z,y) = (Az,y) — g(z) + 1 (y). (2.4)

In the control context, backward propagation from a terminal time would
be more natural than forward propagation from time 0, but it is elementary to
reformulate from one to the other. Forward propagation is more convenient
mathematically for the formulas that can be developed.

For any finite, concave-convex functidh on IR" x IR™, there is an asso-
ciatedHamiltonian dynamical sytemwhich can be written as the differential
inclusion

§(r) € 9yH(E(7), (7)), —n(7) € & H(&(7),n(7)) fora.e.7, (2.5)

whered, refers to subgradients in the convex sense injtaegument, and,
refers to subgradients in the concave sense incthegument. In principle,
the candidates andn for a solution over an intervdl, ¢| could just belong to
AL[0,], but the local Lipschitz continuity off, and the local boundedness it
entails for the subgradient mappings that are involved35], guarantee that
¢ andn belong to.AS°|0, t], i.e., that they are Lipschitz continuous.

Dynamics of the kind in (2.5) were first introduced in [8] for their role in cap-
turing optimality in variational problems with fully convex Lagrangians. In the
present circumstances where (A1), (A2) and (A3) hold, it has been established
in [3] that

&(t) =z and(¢,n) solves (2.5)

for somen with (0) € 9f(£(0)) . (2.6)

¢ solves (1.8) «— {
Again, 0f refers to subgradients of the convex functipin the traditions of
convex analysis. Another powerful property obtained in [3], which helps in
characterizing the functiong and therefore, is that

(&), n(t)) = (x,y) for some(£, n)
y € 0fi(x) { satistying (2.5) withy(0) € af(e(0)). 27

Yet another property from [3], which we can take advantage of here, is that, for
any (zg,y0) € R" x IR", the Hamiltonian system has at least one trajectory
pair (£, ) that starts fronfzg, yo) and continues forever, i.e., for the entire time
interval [0, c0). This implies further that any trajectory up to a certain titne
can be continued indefinitely beyomnd Such trajectories need not be unique,
however.

Subgradients of the value functighin (1.12) must be considered as well.
The complication there is that(¢, =) is only convex with respect t@, not
(t,z). Subgradient theory beyond convex analysis is therefore essential. In
this respect, we us8f to denote subgradients with respect(toz) in the
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broader sense of variational analysis laid out, for instance, in [6]. These avoid
the convex hull operation in the definition utilized earlier by Clarke and are
merely “limiting subgradients” in that context.

The key result from [3] concerning subgradieétg which we will need to
utilize later, reveals that, far> 0,

(s,y) € Of(t,r) <= y € dfi(x) ands = —H(x,y). (2.8)

Observe that the implication=" in (2.8) says thatf satisfies a subgradient
version of Hamilton-Jacobi partial differential equation férand the initial
condition f(0,z) = f(x). It becomes the classical version whgis contin-
uously differentiable, so thdtf(t, z) reduces to the singletd f (¢, «). This
subgradient version turns out, in consequence of other developments in this
setting, to agree with the “viscosity” version of the Hamilton-Jacobi equation,
but is not covered by the uniqueness results that have so far been been achieved
in that setting. The uniqueness pfas a solution, under our conditions (H1),
(H2), (H3), and the initial functiory follows, nonetheless, from independent
arguments in variational analysis; cf. [9], [10].

By virtue of its implication “=" in our context of potential nonsmoothness,
(2.8) furnishes more than just a generalized Hamilton-Jacobi equation. Most
importantly, it can be combined with (2.7) to see that

{ (¢, n) satisfying (2.6) ovefo, ¢]

(s,y) € 0f(t,x) < ¢ suchthat{(t),n(t)) = (x,y) (2.9)

and—H (&(t),n(t)) = s.
This constitutes a generalized “method of characteristics” of remarkable com-
pleteness, and in a global pattern not dreamed of in classical Hamilton-Jacobi
theory, where everything depends essentially on the implicit function theorem
with its local character. Instead of relying on such classical underpinnings, the
characterization in (2.9) is based on convex analysis and extensive appeals to
duality.

Proof of Theorem 1 We concentrate first on the claims abdttwhich we
already know to have the property that
||P(t,2) — P(t,2)|| < ||/ — 2|| forall z,2' € R", t € [0,00). (2.10)

To confirm the local Lipschitz continuity dP(¢, z) with respect tdt, z), it will

be enough, on this basis, to demonstrate local Lipschitz continuityith a
constant that is locally uniform in. Therefore, we fix any* € [0, 00) and
z* € IR™, and take

ot = P(t*,2%), " =Q(t*,2"), (2.11)

where

Q(t,2) = Q(2) for Qs =1 — P,. (2.12)
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Fixany(t*, z*) € [0, 00) x IR™ along with a compact neighborho@y x Z;
of this pair. The mapping

M (t,2) — (P(t,2),Q(t, 2)) € R*™, (2.13)

which we already know is continuous, tak#és x Z, into a compact set
M(Ty, Zy) ¢ IR*. Utilizing the fact thatH is locally Lipschitz contin-
uous onlR?", we can select compact subséfg and U; of IR" such that
M (Ty, Zp) C Uy C int Uy and furthermore

|ull < &,

(l’,y) GUOa ueaxH(x,y), peayH($,y) = {HUH <k.

Trajectorieg £, ) to the Hamiltonian system in (2.5) are then necessarily Lip-
schitz continuous with constartover time intervals during which they stay
insidel). It is possible next, therefore, to choose an interval neighborfi®od
of t* within Tj such that any Hamiltonian trajectofy, n) overT; that touches
U, remains entirely iy (and thus has the indicated Lipschitz property). Fi-
nally, we can choose a neighborhdfdx Z of (t*, z*) within T} x Zj, with
T, being an interval, such that (T, Z) C Uy.

With these preparations completed, consider any Z and any interval
[t,t] c T,witht <. Let(z,y) = M(t, z), so that

:P(tﬂz):Pt(Z)7 y:Q(t,z) :Qt(z)7
and consequently
y € Of(x), r+y=z,

from the basic properties of proximal mappings. Algo,y) € U;. By (2.7),
there is a Hamiltonian trajectofy, n) over|[0, t] with (£(¢),n(t)) = (z,y). It
can be continued ovét, t’|. Our selection oft, '] ensures that, during that
time interval, both¢ andr are Lipschitz continuous with constatt

We also havey(7) € df,(£(7)); this follows by applying (2.7) to the interval
[0, 7] in place of[0,¢]. Let{(r) = &(7) + n(r) for m € [¢,¢]. Then((t) =
and( is Lipschitz continuous with constart Moreover

(1) = Pr(¢(7)) = P(1.¢(7),  n(7) = Q-(¢(1) = Q(7,{(T)),
again according to Moreau’s theory of proximal mappings. Now, by writing
P(t',z) = P(t,z) = [P(t',¢(t)) = P(t', C(¢)] + [P(t',¢(t) — P(t,¢(1))],

wherel||P(t',{(t)) — P(t',¢(t)]| < ||<(¢)) — ¢(t')|| and, on the other hand,
P(t,¢(t)) = &(t)andP(¢', (') = £(t'), we are able to estimate that

1P(t,z) = P(t, 2)|| < [IC(t) = COI + 11€) — @] < 2wt —1].
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Because this holds for all € Z and[t,¢'] C T, we have the locally uniform
Lipschitz continuity property that was required fBrin its time argument.
Note that the local Lipschitz continuity df implies the same propert f@y,
inasmuch ag)(t, z) = z — P(t, 2).
Turning now to the claims about, we observe, to begin with, that since
VE; = Q; from proximal mapping theory, we havé, E(t,z) = Q(t, z). A
complementary fact, coming from [7, Theorem 4 and Corollary], is that

OF
ot
In these terms we have

(t,2) = —H(w,y) for (z,y) = (P(t,2), Q(t, 2)).

VE(t, z) = (= H(P(t, 2), Q(t, 2)), Q(t, 2)).

SinceH islocally Lipschitz continuous, and bgfl’landQ are locally Lipschitz
continuous, as just verified, we conclude tR&a is locally Lipschitz continu-
ous, as claimed, too. O

3. SUBGRADIENT GRAPHICAL LIPSCHITZ
PROPERTY

The facts in Theorem 1 lead to a further insight into the subgradients of
the functionf. To explain it, we recall the concept of a set-valued mapping
S : IRP — IR? beinggraphically Lipschitzian of dimensiath around a point
(u,v) in its graph. This means that there is some neighborhodd .af) in
which, under a smooth change of coordinates, the graphaain be identified
with that of a Lipschitz continuous mapping ondadimensional parameter
space.

The subgradient mappingsf : IR" = IR" associated with lower semi-
continuous, proper, convex functiorison IR™, like here, are prime examples
of graphically Lipschitzian mappings. Indeed, this property is provided by
Moreau’s theory of proximal mappings. In passing from ihey, “coordi-
nates” in which the relatiop € 0f(x) is developed, to the, w, “coordinates”
specified by = x + y andw = x — y, we get just the kind of representation
demanded, since the graph @f can be viewed parameterically in terms of
the pairs(P(z), Q(z)) asz ranges ovelR"; cf. (1.5). Thuspf is graphically
Lipschitzian of dimensiom, everywhere.

Is there an extension of this property to the mapgifgrom (0, o) x R"
to IR x IR™? The next theorem says yes.

Theorem 2. Under (A1), (A2) and (A3), the subgradient mappihfjis every-
where graphically Lipschitzian of dimensian- 1.
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Proof. We get this out of (2.8) and the parameterization properties developed
in the proof of Theorem 1. These tell us that the representation

(= H(P(t,2),Q(t,2)), Q(t, 2)) € Of (t, P(t, 2))

fully covers the graph o f in a one-to-one manner relative(® co) x IR" as

(t, z) ranges ove(0, co) x IR™. This is am + 1-dimensional parameterization

in which the mappings are locally Lipschitz continuous, so the assertion of the
theorem is fully justified. O
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