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Abstract

It has been argued that investors who optimize their portfolios with attention paid only to mean
and standard deviation will all end up choosing some multiple of a certain master fund portfolio.
Justification for the capital asset pricing model of classical portfolio theory, which relates individual
assets to such a master fund, has come from this direction in particular. Attempts have been made to
provide solid mathematical support by showing that the imputed behavior of investors is a conse-
quence of price equilibrium in a market in which assets are traded subject to budget constraints,
and optimization is carried out with respect to utility functions that depend only on mean and stan-
dard deviation.

In recent years, reliance on standard deviation has come under increasing criticism because of
inconsistencies in its effect on portfolio preferences. One response has been to introduce generalized
measures of deviation which lead to alternative master funds. The market implications of such exten-
sions of theory have hitherto been unclear, but in this paper the existence of equilibrium is estab-
lished in circumstances where nonstandard deviations are admitted. Equilibrium is guaranteed
even when different investors use different measures of deviation and thereby end up with portfolios
scaled from different master funds. Whether they employ the same measure or not, they may impose
caps on deviation, which likewise may be different.
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1. Introduction

In the broad picture of economic theory, market equilibrium is concerned with the exis-
tence of prices such that, when agents called consumers buy and sell goods according to
their preferences, subject to budget constraints, and other agents called producers buy
inputs and sell outputs so as to maximize profits, supply will balance demand. Sophisti-
cated results have been obtained even when the goods in question have uncertain conse-
quences for the consumers who hold them and could, in part, represent financial assets.

In finance, where uncertainty is the dominant characteristic, the question about equilib-
rium that has most attracted attention is more particular and is tied to practical consider-
ations like justifying the widespread use of the capital asset pricing model (CAPM). That
model, coming from classical portfolio theory as pioneered by Markowitz (1952), is based
on the premise that an investor, in choosing a mix of assets and looking at the random var-
iable describing the future of that mix, will primarily pay attention to the expectation and
variance, or standard deviation, of that random variable. An ‘‘efficient frontier’’ is derived
which displays the trade-off between expectation and standard deviation. Under broad
assumptions, it is shown that a special mix of assets, called a master fund, exists with the
property that any investor who wishes to minimize standard deviation subject to a constraint
on expectation will end up choosing some multiple of that master fund, scaled up or down.

The issue that inevitably arises then is whether the master fund, because of its universal
involvement, somehow stems from a kind of market equilibrium. It seemingly would have
to, if the notion that all investors are prone to act in this same manner is to make sense,
along with the usual capital asset pricing model.

Much research has gone into this over the years, from the early work of Sharpe (1964) and
Mossin (1966) to the subsequent papers of Nielsen (1988), Nielsen (1989), Nielsen (1990),
Nielsen (1992), Allingham (1991), Sharpe (1991) and later Konno and Shirakawa (1995),
among others. In most of this work, an investor seeks to maximize a utility expression of
the expected value and standard deviation of the future value of a portfolio (in a model with
a single future period). That future value comes from random variables giving the future val-
ues of various assets and therefore is independent of current market prices. Konno and Shi-
rakawa, however, replace future value by the rate of return (relative to present value) in both
places. They also investigated in Konno and Shirakawa (1994) whether equilibrium could be
achieved if every investor used mean absolute deviation instead of standard deviation.

The question of whether standard deviation, while convenient, is the ideal tool for an
investor to use appraising discrepancies between future values and their expectations
has long been asked. Markowitz, already in 1959, recognized that standard deviation
has the drawback of penalizing outcomes higher than expectations just as much as out-
comes lower than expectations. He suggested using a downside version of standard devi-
ation as an alternative. Standard deviation has come under heavier attack more recently
with the introduction of ‘‘coherent risk measures’’ by Artzner et al. (1999) (cf. Föllmer
and Schied, 2002) for a comprehensive exposition. The preferences forced on investors
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by optimizing relative to standard deviation can have ‘‘incoherent’’ consequences. These
criticisms have led to the study of other measures of deviation which might be adopted
as substitutes, for instance ones based in one way or another on conditional value-at-risk
(Rockafellar and Uryasev, 2000; Rockafellar and Uryasev, 2002). A systematic study was
undertaken by us in Rockafellar et al. (2002a) and Rockafellar et al. (2006a).

Our purpose in this paper is to demonstrate that equilibrium in a financial market can
be established when investors, with preferences expressed by a utility function of mean and
deviation, use any of these alternative measures without being limited to standard devia-
tion, its downside version, or to mean absolute deviation. Moreover we will show that
equilibrium is guaranteed even when different investors, belonging to investor classes with
different attitudes toward risk, take different approaches to deviation. Nothing like this
has previously been proved, or even contemplated. It raises new questions about market
behavior in which several master funds might be active simultaneously.

As a framework for the generalized measures of deviation which will be central to our
endeavor, it is useful to take the view that the uncertain outcome associated with an asset
or mix of assets is a random variable X regarded as a function on a set X of future states x
furnished with a probability structure; X(x) is the outcome in state x. We focus on the
space of such X for which EX and r(X) are well defined (finite), which we denote for sim-
plicity by L2ðXÞ. We use C to stand for either a constant in R (the real numbers) or the
corresponding constant random variable X � C.

A deviation measure D assigns to each random variable X in the designated space
L2ðXÞ a number in [0,1] in such a manner that

(a) DðX Þ ¼ 0 for constant X, but DðX Þ > 0 for nonconstant X,
(b) DðkX Þ ¼ kDðX Þ for k P 0,
(c) DðX þ X 0Þ 6 DðX Þ þDðX 0Þ.

This definition appears simpler than the one we originally proposed in 2002 in Rocka-
fellar et al. (2002a) and repeated in Rockafellar et al. (2006a), Rockafellar et al. (2005) and
Rockafellar et al. (2006b). But it is equivalent to it by Rockafellar et al. (2006a, Proposi-
tion 1), according to which the combination of (a) with the convexity of D coming from
(b) and (c) implies that

DðX þ CÞ ¼ DðX Þ for all constants C; so DðX Þ ¼ DðX � EX Þ for all X :

In line with the developments in those earlier works of ours, it will further be assumed that
the deviation measures we deal with in this paper have the following property of lower
semicontinuity with respect to sequences fX kg1k¼1: if E[Xk � X]! 0, r(Xk � X)! 0 and
DðX kÞ 6 c as k!1, then DðX Þ 6 c.

Standard deviation, the case of DðX Þ ¼ rðX Þ, obeys these rules, but there are numerous
other examples of interest which, unlike standard deviation, can have Dð�X Þ 6¼ DðX Þ. For
these, and a more technically detailed development, we refer to Rockafellar et al. (2006a).
A connection with coherent risk measures R is brought out there, in particular: deviation
measures D satisfying the additional condition that DðX Þ 6 EX � inf X correspond one-
to-one with coherent risk measures R that satisfy the additional condition (not part of
the definition in Artzner et al. (1999)) that RðX Þ > E½�X � for nonconstant X, under the
rule that DðX Þ ¼ RðX � EX Þ. Standard deviation does not satisfy r(X) 6 EX � infX

and thus does not correspond in this way to a coherent risk measure.
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A key fact in the theory of generalized deviations, which motivates and supports our
efforts here, is that the classical portfolio analysis of how investors should react to the
trade-off between mean and standard deviation can thoroughly be extended to the context
of a generalized deviation measure D being substituted for r. Moreover a corresponding
extension of the concept of master fund then plays a significant role; see Rockafellar et al.
(2005). Our aim is to draw on those results in an exploration of whether the existence of
financial equilibrium and the ways that master funds might enter it.

We depart from most of the other work on equilibrium not only through this broader
perspective, but also by taking the random variables that characterize the risky assets to be
rates of returns on market values, rather than future values directly. In this we follow the
lead of Konno and Shirakawa (1994) and Konno and Shirakawa (1995), but in contrast to
them we still take the preferences of the investors to be based on the future values of port-
folios as determined by applying rates of return to current prices. These preferences are
able then to reflect differences in attitudes to risk which might come from the current
wealth of an investor. Of course, no approach to financial equilibrium can ever be fully
satisfactory in a model in which there is only a present and a single future. Without some
dynamical extension into later stages, such a model is bound to be artificial. However, we
can hope at least that our contribution here offers progress in understanding the issues and
reveals new challenges for the development of pricing schemes.

Another distinctive feature of our approach is that we treat the preferences of inves-
tors more broadly than before by allowing an investor to insist on a cap on deviation,
i.e., an upper bound constraint on the deviation value of a portfolio. Different investors,
even when agreeing on the measure of deviation to be utilized, can impose caps at dif-
ferent levels. Until now, no model of financial equilibrium has admitted such
constraints.

This paper does not directly provide any indication of which measures of deviation the
participants in a financial market might actually choose to employ. By showing, though,
that the effect of these choices lies entirely in the associated master funds, it paves the way
toward possibly reconstructing the choices through market analysis. Under the hypothesis,
for example, that all investors make the same choice, which might not be standard devi-
ation but results in a master fund corresponding to the S&P 500, studies could be carried
out to see which deviation measure from a collection of possibilities most closely produces
that result. Other indices like the Russell 2000 could also be considered, especially in pur-
suing the notion that several different classes of investors might be characterized by differ-
ent deviation measures. Various ideas could be exploited through solving inverse portfolio
problems (to restore the parameters of such problems) or through statistical analysis. For
such analysis, it would likely be helpful to extend traditional statistics, with symmetric
measures of error, to error expressions reflecting the lack of symmetry between gains
and losses in the decisions of investors. Preliminary elements of such developments, utiliz-
ing general deviation measures, are already in place in Rockafellar et al. (2002b), but much
remains to be investigated.

2. Assets, investors and portfolios

In the market we study, there are assets indexed by j = 0,1, . . . ,n having rates of return
denoted by r0, r1, . . . , rn. Asset 0 is assumed to be riskless, so r0 is a constant, but the other
assets are risky; their rates of return are nonconstant random variables.
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The investors in our model are indexed by i = 1, . . . ,m. All the investors know, and
agree on, the statistics of all the assets. A deviation measure Di serves investor i in eval-
uating risk. These deviation measures may be the same or different; Di ¼ r is just one
of the possibilities.

A risky portfolio for investor i corresponds to a vector xi = (xi1, . . . ,xin) in which xij is
the amount invested in asset j. The future value of such a portfolio is the random variablePn

j¼1xijð1þ rjÞ, with expectation
Pn

j¼1xijð1þ ErjÞ and deviation Di
Pn

j¼1xijð1þ rjÞ
� �

¼
Di

Pn
j¼1xijrj

� �
: As long as xi 5 (0, . . . , 0), risk is present and this deviation value is positive

under our assumptions. We suppose that DiðrjÞ <1 and Dið�rjÞ <1 for all i and j, in
order to guarantee, by way of the deviation axioms already listed, that Di

Pn
j¼1xijrj

� �
<1

as well.
The generalized master funds that arise in this setting come out of a fundamental prob-

lem of optimization in which investor i, in selecting xi, correspondingly allocates
1�

Pn
j¼1xij to the riskless asset, so that the mixed portfolio thereby obtained represents

one unit of investment, in total. This mixed portfolio has future value 1�
Pn

j¼1xij

� �
r0þPn

j¼1xijð1þ riÞ and rate of return r0 þ
Pn

j¼1xijðri � r0Þ, for which the expected value is
r0 þ

Pn
j¼1xijðEri � r0Þ.

The fundamental problem in the selection of xi = (xi1, . . . ,xin) that we concern ourselves
with here, as a prelude to utility optimization in our equilibrium model, is to

PiðDiÞ minimize Di

Xn

j¼1

xijrj

 !
subject to xij P 0;

Xn

j¼1

xijðErj � r0ÞP Di;

where the parameter Di > 0 gives the amount of ‘‘gain’’ above the risk-free rate that is de-
manded of the xi-portfolio.

The constraint xi P 0 in PiðDiÞ requires xij P 0 for j = 1, . . . ,n, but this does not nec-
essarily keep the amount 1�

Pn
j¼1xij invested in the risk-free asset from perhaps being

negative, which would correspond to taking on a debt of this magnitude. Thus, we exclude

short positions in the risky assets, but on the other hand we allow leveraging, i.e., borrowing
in order to invest in those assets.

In the classical mean-variance portfolio theory behind the capital asset pricing model,
short positions have usually been allowed, although this has presented difficulties. In disal-
lowing short positions here, we follow the precedent of Konno and Shirakawa (1994) and
Konno and Shirakawa (1995), in their equilibrium work on standard deviation and mean
absolute deviation. However, they also disallowed debt (leveraging), whereas we do not.

In our earlier efforts in Rockafellar et al. (2005) on extending the central facts in clas-
sical portfolio theory to generalized deviation measures, we did allow shorting, but the
result that will needed in the present paper, a generalized ‘‘one-fund theorem’’, can readily
be adapted to the absence of shorting. It is stated as Theorem 2.1 below. The conditions on
the random variables rj that go into it, along with a ‘‘relevance’’ condition needed later in
our equilibrium analysis, are the following.

Assumptions 2.1 (Risky assets). We suppose that the expected rates of return Erj for the
risky assets j are not identical, and

Erj > r0 for j ¼ 1; . . . ; n: ð1Þ
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Author's personal copy

We assume that no linear combination of r1, . . . , rn with coefficients not all zero is a con-
stant (i.e., riskless). Furthermore, we assume that none of the risky assets is irrelevant to

the market, in the context of the deviation measures Di being used, in the sense of not
being present in a positive amount in any solution to any problem PiðDiÞ.

The relevance assumption merely amounts to a harmless kind of ‘‘normalization’’ of
our framework, since an asset having no interest to any of the investors under consider-
ation ought simply to be left out. The linear-independence-type assumption on the risky
assets likewise has this character, as explained in Rockafellar et al. (2005, Proposition
1), and similarly the conditions on Erj.

Theorem 2.1. In terms of

�di ¼ minimum deviation value in PiðDiÞ for Di ¼ 1;

X i ¼ set of minimizing vectors in PiðDiÞ for Di ¼ 1;

(
ð2Þ

the following facts hold:

�di is positive; X i is nonempty; convex and compact; ð3Þ
and furthermore

for PiðDiÞ in general
the maximum value is di ¼ Di

�di;

the solution set is X i ¼ fDi�xij�xi 2 X ig:

(
ð4Þ

Also, the inequality constraint in PiðDiÞ always holds as an equation at optimality.

Proof. The argument provided in Rockafellar et al. (2005, Proposition 5) for the case with
shorting allowed carries over with only the obvious adjustments in wording. The provision in
(1) ensures the feasibility of attaining any level of gain Di > 0 above the risk-free rate. h

Following our terminology in Rockafellar et al. (2005), we call �di the basic deviation

value associated with Di and r0, r1, . . . , rn. It gives the rate at which the deviation of a port-
folio has to increase as the targeted future value is increased. We say that the vectors
�xi 2 X i give the basic funds associated with Di and r0, r1, . . . , rn. (Although we know there
is at least one such vector, there might be more than one, in general; see Rockafellar et al.
(2005).) According to (4), investor i, in solving PiðDiÞ with Di > 0, will always get a port-
folio that is some multiple of a basic fund portfolio.

The master fund portfolios associated with the deviation measure Di in this framework
are obtained by rescaling so as to have unit investment instead of unit ‘‘gain’’. In other
words, they correspond to the vectors ~xi ¼ ð~xi1; . . . ;~xinÞ having the form

~xi ¼ �xi=ð�xi1 þ � � � þ �xinÞ with �xi 2 X i: ð5Þ
Here �xi1 þ � � � þ �xin > 0 because �xi P 0 and �xi 6¼ 0, the latter coming from the equationPn

j¼1�xijðEri � r0Þ ¼ 1 that holds for solutions to Pið1Þ. Through this relationship, choos-
ing a multiple of a basic fund portfolio is equivalent to choosing a multiple of a master
fund portfolio.

Working with basic funds is more convenient for us than working with master funds in
the context of optimization, because of their immediate connection with the optimization
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problems PiðDiÞ, but in the end it does not matter whether results are stated in terms of
basic funds or master funds.

An important consequence of Theorem 2.1 concerning the basic funds/master funds
associated with the deviation measures Di for i = 1, . . . ,m, comes out of our assumption
on the ‘‘relevance’’ of the risky assets.

Proposition 2.1. Basic fund vectors �xi 2 X i can be selected for i = 1, . . . ,m in such a way that

for each risky asset j; at least one of the vectors �xi has �xij > 0: ð6Þ
Equivalently, master fund vectors ~xi exist with this property.

Proof. Our relevance assumption can be restated through Theorem 2.1 as the condition
that no risky asset is rejected by every basic fund associated with the various deviation
measures Di. This guarantees that we can choose for each i a collection of vectors
�xk

i 2 X i for k = 1, . . . ,ni (maybe just with ni = 1), such that for each j 2 {1, . . . ,n} there will
be some �xk

i having �xk
ij > 0. The vectors �xi ¼ ð�x1

i þ � � � þ �xn
i Þ=ni then belong to X i as well, by

the convexity in (3), and they satisfy (6). h

3. Equilibrium model

Market equilibrium will be concerned with the effects of prices on the trading (buying
and selling) of assets by the investors i = 1, . . . ,m.

With pj > 0 denoting the (yet-to-be-determined) market price per share of asset j, the
future value per share of asset j is (1 + rj)pj. The dependence in this way of future values
on current prices is fundamental to the approach we are taking.

Let Zj > 0 be the total number of shares of asset j for j = 1, . . . ,n. Let z0
ij be the (maybe

fractional) number of shares of asset j held initially by investor i, with

z0
ij P 0 for j ¼ 1; . . . ; n; ð7Þ

as well asXm

i¼1

z0
ij ¼ Zj for j ¼ 1; . . . ; n: ð8Þ

Let z0
i0 be the initial holding of investor i in the riskless asset, the units being the same as

those of the prices (i.e., ‘‘money’’). Under the prices pj, the initial wealth of investor i is
then

wiðpÞ ¼ z0
i0 þ

Xn

j¼1

z0
ijpj: ð9Þ

We do not require z0
i0 P 0, so this initial wealth might conceivably be negative; investor i

might be in debt. That causes no difficulties in what follows, but of course it could also be
excluded by adding the nonnegativity of z0

i0 to the assumptions in (7).
In the market, investor i trades the shares z0

ij for shares zij at the prices pj subject to

zij P 0 for j ¼ 1; . . . ; n; ð10Þ
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(no short positions in the risky assets) and the budget constraint that

zi0 þ
Xn

j¼1

zijpj ¼ wiðpÞ: ð11Þ

The random variable giving the future value of the resulting portfolio for investor i is

Ri ¼ zi0ð1þ r0Þ þ
Xn

j¼1

zijpjð1þ rjÞ: ð12Þ

We adopt the modeling premise that investor i is only interested in two aspects of this ran-
dom variable, namely its expected value ERi and its deviation value DiðRiÞ. Investor i bal-
ances these by means of a utility function Ui(li,di) of parameters li 2 (�1,1) and
di 2 [0,1) standing for mean and deviation. In response to a price vector p = (p1, . . . ,pm),
investor i solves the following optimization problem in order to determine the new
portfolio:

PiðpÞ choose zi ¼ ðzi0; zi1; . . . ; zinÞ to maximize UiðERi;DiðRiÞÞ under ð10Þ and ð11Þ:

Despite appearances, this problem statement will be shown to allow investor i to impose a
constraint in the form of a deviation cap, DiðRiÞ 6 d�i , if desired. The generality of our
assumptions about Ui will make this possible.

Definition 3.1 (Market equilibrium). A price vector p together with vectors zi =
(zi0,zi1, . . . ,zin) for i = 1, . . . ,m furnishes a market equilibrium if p > 0 (i.e., pj > 0 for
j = 1, . . . ,n), each zi solves the corresponding optimization problem PiðpÞ, and

Xm

i¼1

zij ¼ Zj for j ¼ 1; . . . ; n: ð13Þ

These equations mean that after the trading, as before, all the shares of all the risky
assets j = 1, . . . ,n are held among the investors i = 1, . . . ,m. The supply of shares has
exactly met the demand for shares arising from the investors’ desire to optimize utility.
The corresponding equation

Xm

i¼1

zi0 ¼
Xm

i¼1

z0
i0

for the riskless asset will then be satisfied automatically through (8), (9) and (11). Since the
terms in this equation are allowed to be negative, it has the interpretation that the net

holdings in this asset are the same after trading as before.
Our goal is to provide a criterion for the existence of an equilibrium, and for this we

need to put some restrictions on the utility functions.

Assumptions 3.1 (Utility function). For each investor i, the function Ui on (�1,1) ·
[0,1), which is allowed to take on �1 but not +1, has the following properties:
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U iðli; diÞ is

concave with respect to li and di jointly;

increasing with respect to li;

nonincreasing with respect to di;

upper semicontinuous with respect to li and di jointly;

8>>><
>>>:

ð14Þ

and, in relation to the basic deviation value �di associated with Di, it has the property that

for all li; all di 2 ð0; �di�
there is a s1 > 0 with U iðli þ s1; s1diÞ > Uiðli; 0Þ;
there is a s2 > 0 with U iðli þ s2; s2diÞ < Uiðli; 0Þ:

�
ð15Þ

In allowing Ui(li,di) to be �1 for some instances of li and di, we effectively force the
random variable Ri in problem PiðpÞ not to have such a combination of mean li and devi-
ation di (cf. Example 3.2 below). This is where a deviation cap can come in.

The requirement that Ui(li,di) be increasing in li means that U iðl0i; diÞ > Uiðli; diÞ when
l0i > li, whereas the requirement that Ui(li,di) be nonincreasing with respect to di means
that Uiðli; d

0
iÞ 6 U iðli; diÞ when d0i > di. Of course such monotonicity conditions could be

captured by sign conditions on partial derivatives of Ui, but the assumption that partial
derivatives exist would be a pointless limitation, potentially leading to conflicts with our
tactic of allowing Ui to take on �1. The upper semicontinuity in (14) means that for every
c 2 R the set of (li,di) 2 (�1,1) · [0,1) satisfying Ui(li,di) P c is closed. This is a minor
technical requirement, chiefly for coping with the possibility of Ui taking on �1.

These assumptions, so far, follow a pattern going all the way back to Mossin (1966),
except that utility functions have elsewhere been assumed to be finite, continuous and dif-
ferentiable. The properties in (15), however, distinguish our model from others. They will
pave the way toward an application of convex analysis which will validate a crucial fixed
point argument.

The significance of (15) lies in how investor i will react to adding to a riskless portfolio
with future value li some multiple s of a risky portfolio with expected future value 1 and
deviation di, thus getting a portfolio with expected future value li + s and deviation sdi. In
light of Ui(li + s,sdi) being concave as a function of s by (14), the requirements in (15) are
equivalent to insisting that the utility must increase at first, as s rises above 0, but later
decrease and actually tend to �1. The addition of some amount of the risky portfolio
to the riskless portfolio should be attractive at least if the amount is small enough, but
should be shunned if the amount is too large. But this is stipulated only for risky portfolios
with deviation di 6

�di. That makes sense from (1)–(3): investor i should not be coerced to
react favorably, even for small s, to a higher rate of increase in deviation than �di. Clearly, if
Ui satisfies (15) for all di 2 (0,1), not just for di 2 ð0; �di�, then all the better – there is no
need to get involved with the basic deviation value �di.

Example 3.1. For a nonlinear utility function having the form

Uiðli; diÞ ¼ li � kid
qi
i with ki P 0 and qi > 1; ð16Þ

all the assumptions are satisfied, regardless of the magnitude of �di. This corresponds to
investor i maximizing ERi � kiDiðRiÞqi in problem PiðpÞ. In the linear case where qi = 1,
the assumptions are unfulfilled because the conditions in (15) conflict with each other.

A classical choice for Example 3.1 would qi = 2 with Di taken to be standard deviation.
Then investor i in problem PiðpÞ would be maximizing ERi � kir

2(Ri).
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Example 3.2. For a specified upper bound d�i > 0 on deviation, let

Uiðli; diÞ ¼
li if di 6 d�i ;

�1 if di > d�i :

�
ð17Þ

Then all the utility assumptions are satisfied, regardless of the magnitude of �di. In this case
investor i, in solving problem PiðpÞ, is concerned simply with choosing zi to maximize ERi

subject to the budget constraint (11) and the deviation cap DiðRiÞ 6 d�i .

As a matter of fact, the kind of implicit constraint on deviation incorporated in (17) is
essentially the only kind that our assumptions can accommodate. The reason is that the set
of (li,di) having Ui(li,di) > �1 is convex, owing to the concavity of Ui in (14), and
through (15) it must include the li-axis, and more besides. If not equal to all of
(�1,1) · [0,1), this set must be a sort of ‘‘strip’’ that puts a cap d�i on di. (It could hap-
pen that Ui(li,di) tends to �1 as di rises to d�i ; this does not conflict with the upper semi-
continuity in (14).)

The failings of the linear utility case in Example 3.1 with qi = 1 could be countered by
imposing a deviation cap as in Example 3.2, as long as ki < 1=�di. This demonstrates that
the magnitude of �di could make a difference in some situations.

More will be said about Examples 3.1 and 3.2 at the beginning of Section 5.

Theorem 3.1. An equilibrium is certain to exist under the assumptions placed on the utility

functions Ui and the risky assets j = 1, . . . , n with respect to the deviation measures Di.

Theorem 3.2

(a) In any equilibrium the vector (xi1, . . . ,xin) = (zi1p1, . . . , zinpn), giving the amounts

invested in the risky assets j = 1, . . . , n by an investor i, will be a positive multiple of

a basic fund vector �xi ¼ ð�xi1; . . . ;�xinÞ associated with Di (or the corresponding master

fund vector ~xi). In particular, it will be nonnegative but not the zero vector.

(b) In the case of nonuniqueness of basic funds, an arbitrary choice of �xi 2 X i can be made
for each deviation measure Di, subject only to (6), and then an equilibrium will exist in

which (a) holds for those particular basic funds (or the corresponding master funds).

Theorems 3.1 and 3.2 will be proved in Section 5 after some work in the Section 4 which
connects the optimization problems in our model with the fundamental portfolio problems
in Section 2.

4. Characterization in terms of masterfunds

As a step toward understanding the model better and working up to the proof of The-
orems 3.1 and 3.2 in stages, let us view the budget equation in (11) as a prescription for
obtaining zi0 from the other variables:

zi0 ¼ wiðpÞ �
Xn

j¼1

zijpj: ð18Þ

Substituting this into the formula for Ri in (12), we get

Ri ¼ wiðpÞð1þ r0Þ þ
Xn

j¼1

zijpjðrj � r0Þ; ð19Þ
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so that

ERi ¼ wiðpÞð1þ r0Þ þ
Xn

j¼1

zijpjðErj � r0Þ ð20Þ

and

DiðRiÞ ¼ Di

Xn

j¼1

zijpjðrj � r0Þ
 !

¼ Di

Xn

j¼1

zijpjrj

 !
: ð21Þ

In these terms, problem PiðpÞ comes down to the following:

choose ðzi1; . . . ; zinÞP ð0; . . . ; 0Þ to maximize

U i wiðpÞð1þ r0Þ þ
Pn
j¼1

zijpjðErj � r0Þ;Di
Pn
j¼1

zijpjrj

 ! !

and then get the corresponding zi0 fromð18Þ:

8>>>><
>>>>:

ð22Þ

This formulation leads us to consider, alongside of PiðpÞ, the auxiliary problem

P0iðpÞ
choose xi ¼ ðxi1; . . . ; xinÞP ð0; . . . ; 0Þ to maximize

U i wiðpÞð1þ r0Þ þ
Pn
j¼1

xijðErj � r0Þ; Di
Pn
j¼1

xijrj

 ! !
:

8><
>:

Note that there are no constraints on the xij’s in P0iðpÞ beyond nonnegativity, other than
those that may be implicit in ensuring that the value of Ui is not �1 (as for instance in the
case of Example 3.2).

Proposition 4.1. A price vector p > 0 furnishes an equilibrium with shares zij for i = 1, . . . ,m

and j = 0,1, . . . , n, if and only if vectors xi = (xi1, . . . ,xin) exist such that

(a) xi solves problem P0iðpÞ for i = 1, . . . ,m,

(b) pj ¼
Pm

i¼1xij=Zj for j = 1, . . . , n,

(c) zij = xij/pj for i = 1, . . . ,m and j = 1, . . . , n,

(d) zi0 ¼ wiðpÞ �
Pn

j¼1zijpj for i = 1, . . . ,m.

Proof. Under the assumption that pj > 0 for j = 1, . . . ,n, the change of variables xij = zijpj

is reversible through (c). Having a solution to problem PiðpÞ, which is characterized by the
prescription in (22), is equivalent to having (a) and then invoking (c) and (d). The equa-
tions in (b) mean then that (13) holds, so that the conditions in the definition of an equi-
librium are fulfilled. h

Further insights can now be gained by expressing the optimization problem P0iðpÞ in an
equivalent but more extensive form in which another decision variable Di appears:

P00i ðpÞ

choose xi ¼ ðxi1; . . . ; xinÞ and Di to maximize

U i wiðpÞð1þ r0Þ þ Di;Di
Pn
j¼1

xijrj

 ! !

subject to xij P 0;
Pn
j¼1

xijðErj � r0ÞP Di:

8>>>>>><
>>>>>>:
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This relies on our assumption that Ui(li,di) increases as li increases, which implies
further that the expectation inequality must hold as an equation at optimality. The
advantage of the seemingly redundant reformulation is that it allows us to apply
the portfolio results from Rockafellar et al. (2005) which were summarized in
Section 2.

Consider the subproblem of P00i ðpÞ in which Di is fixed and the minimization is car-
ried out in xi alone. Because Ui(li,di) is nonincreasing with respect to di, this subprob-
lem can be reduced to the earlier problem PiðDiÞ; it does not depend on p. We arrive
then at an illuminating prescription for solving the optimization problem PiðpÞ for
investor i, when posed as P00i ðpÞ. In presenting it, we recall from (2) the notation �X i

for the (nonempty) set of basic fund vectors �xi associated with the deviation measure
Di and introduce

MiðpÞ ¼ fset of all Di maximizing UiðwiðpÞð1þ r0Þ þ Di;Di
�diÞ subject to Di P 0g:

ð23Þ

Proposition 4.2. A vector xi solves problem P0iðpÞ if and only if there is a Di such that xi and

Di solve problem P00i ðpÞ. Moreover, determining xi and Di to solve P00i ðpÞ comes down to the

following: take Di 2Mi(p) and then take xi ¼ Di�xi for any �xi 2 X i. Here Mi(p) is sure to be a

nonempty, closed interval of values Di > 0 (maybe just one value).

Thus, xi solves P0iðpÞ if and only if xi ¼ Di�xi for some �xi 2 X i and Di 2Mi(p).

Proof. The initial assertion is correct from the formulation of P00i ðpÞ and the properties
of Ui. Because Ui(li,di) is nonincreasing in di, the maximization of the utility expres-
sion in P00i ðpÞ with respect to xi for a fixed Di > 0 yields the value that corresponds
to choosing xi to minimize Di

Pn
j¼1xijrj

� �
subject to

Pn
j¼1xijðErj � r0ÞP Di, as in the

portfolio problem PiðDiÞ. According to (4) in Theorem 2.1, the maximum utility

obtained this way for a fixed Di > 0 is U iðwiðpÞð1þ r0Þ þ Di;Di
�diÞ. For fixed Di 6 0,

of course, the maximum with respect to xi would be achieved just by taking xi = 0
and getting deviation 0; but Ui(wi(p)(1 + r0) + Di,0) 6 Ui(wi(p)(1 + r0),0) when Di 6 0
by (15). Therefore, the residual problem of optimization in P00i ðpÞ with respect to Di,
after the maximization with respect to xi, is the one having Mi(p) as the set of optimal
values of Di.

In that problem, the function uðDiÞ ¼ UiðwiðpÞð1þ r0Þ þ Di;Di
�diÞ is upper semicontin-

uous and concave with u(0) finite. Through (15), there exists Di > 0 such that u(Di) > u(0),
but also Di > 0 such that u(Di) < u(0). The set {Di P 0ju(Di) P u(0)} is thus a closed,
bounded interval on which the maximum of u must somewhere be attained, but not at 0.
Hence the set of Di achieving the maximum is a nonempty, closed, bounded interval in
(0,1).

The pairs (Di,xi) solving P00i ðpÞ are thus the ones such that Di 2Mi(p) and xi solves the
portfolio subproblem in P00i ðpÞ for that Di. We know from (4) that the vectors Di�xi �xi 2 X i

solve that subproblem, for which the maximum is UiðwiðpÞð1þ r0Þ þ Di;Di
�diÞ, and that if

there somehow were others, they would have to achieve this same utility value with
D
Pn

j¼1xij

� �
¼ D0i

�di for D0i > Di. The monotonicity properties of Ui exclude this, however,
because they imply for D0i > Di that U iðwiðpÞð1þ r0Þ þ Di;D

0
i
�diÞ < U iðwiðpÞð1þ r0Þþ
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D0i;D
0
i
�diÞ 6 U iðwiðpÞð1þ r0Þ þ Di;Di

�diÞ. Hence the prescription for solving P00i ðpÞ is
complete. h

Propositions 4.1 and 4.2 allow us now to confirm the claims in part (a) of Theorem 3.2,
even if the proof of part (b) has to await further developments.

Proof. Theorem 3.2(a). We merely have to apply the knowledge in Proposition 4.2 about
solutions xi to P0ðpÞ to the prescription in Proposition 4.1 for determining the shares zij in
an equilibrium. Under our assumption about master funds, the portfolio vectors giving
them are obtained by a simple rescaling of the vectors giving basic funds; therefore, saying
that the vector in (4) is a positive multiple of a master fund vector is the same as saying it is
a positive multiple of some �xi 2 X i. Such vectors are known to be nonzero but not the zero
vector. h

From now on, our efforts will mainly be concentrated on additional background needed
for the verification of the existence of equilibrium claimed in Theorem 3.1. The next result
gives the key to the approach we will take.

Proposition 4.3. A price vector p furnishes an equilibrium if and only if the equations

Xm

i¼1

�Di�xij ¼ pjZj for j ¼ 1; . . . ; n; ð24Þ

can be satisfied by some choice of vectors �xi 2 X i satisfying (6) and values �Di 2 MiðpÞ. Thus,

an equilibrium exists if and only if there exist values �Di with the property that, for some choice

of vectors �xi 2 X i, the prices defined by

pj ¼
Xm

i¼1

�Di�xij Zj

�
for j ¼ 1; . . . ; n; ð25Þ

will be such that �Di 2 MiðpÞ for i = 1, . . . ,m. The equilibrium holdings of the investors are
given then for the risky assets by

zij ¼ fijZj with f ij ¼
�Di�xij

�D1�x1j þ � � � þ �Dm�xmj
P 0; for j ¼ 1; . . . ; n; ð26Þ

and for the riskless asset by

zi0 ¼ wiðpÞ �
Xn

j¼1

�Di�xij: ð27Þ

Proof. This combines Proposition 4.2 with Proposition 4.1. By Proposition 4.2, the vec-
tors xi in (a) of Proposition 4.1 must be of the form Di�xi, and the values Di in question
have to be positive. Because of (6), our prescription for prices in (b) of Proposition 4.1
yields pj > 0. The substitution of these prices into the formulas in (c) and (d) of Prop-
osition 4.1, where zijpj ¼ xij ¼ �Di�xij, then completes the specification of the
equilibrium. h
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5. Existence arguments

The characterization of the existence of equilibrium in Proposition 4.3 will lead us to a
fixed point argument which will furnish a proof of Theorem 3.1. In an important case,
however, the existence of equilibrium can immediately be verified at this stage without
resorting to a fixed point argument. It is worthwhile to record this fact directly, even
though it could also just be written down later as a corollary of our broader result.

Theorem 5.1. Suppose that the sets Mi(p) in (23) do not actually depend on p and thus can be

denoted simply by Mi, as is true for the utility functions in Examples 3.1 and 3.2. Then for

any choice of �Di 2 Mi and �xi 2 �X i for i = 1, . . . ,m satisfying (6), the price vector

p ¼
Pm

i¼1
�Di�xi=Zj will furnish an equilibrium.

Proof. This follows at once from the characterization of equilibrium in Proposition
4.3. h

Example 5.1. If every investor i has a utility function Ui of the nonlinear form in (16) of
Example 3.1, then an equilibrium exists and is described for any choice of vectors �xi 2 �X i

satisfying (6) by (25)–(27) with

�Di ¼ 1=ðqiki
�dqi

i Þ
1=ðqi�1Þ for i ¼ 1; . . . ;m: ð28Þ

Example 5.2. If every investor i has a utility function Ui of the form (17) in Example 3.2,
capping the deviation at level d�i , then an equilibrium exists and is described for any choice
of vectors �xi 2 X i satisfying (6) by (25)–(27) with

�Di ¼ d�i =
�di for i ¼ 1; . . . ;m: ð29Þ

Turning now to the task of setting up a fixed point argument for the existence of equi-
librium in the general case of Theorem 3.1, we carry the ideas in Proposition 4.3 further by
taking p from the formula in (25) and considering what this requires of �Di and �xi. In terms
of the fractions

f 0
ij ¼ z0

ij=Zj; ð30Þ

which describe the initial holdings of the investors, the initial wealth of investor i with
respect to the price vector p specified by (25) has the expression

wiðpÞ ¼ z0
i0 þ

Xn

j¼1

f 0
ij

Xm

k¼1

�Dk�xkj: ð31Þ

To say that Di 2Mi(p) when p is given by (25) is to say that Di maximizes

U i z0
i0 þ

Xn

j¼1

f 0
ij

Xm

k¼1

�Dk�xkj

 !
ð1þ r0Þ þ Di;Di

�di

 !
;

subject to Di P 0. This leads us to introduce the shorthand notation

D ¼ ðD1; . . . ;DmÞ; �D ¼ ð�D1; . . . ; �DmÞ; �x ¼ ð�x1; . . . ;�xmÞ; X ¼ X 1 � � � � � X m;
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along with the vectors

ai;�x ¼
Xn

j¼1

f 0
ij�x1j; . . . ;

Xn

j¼1

f 0
ij�xmj

 !
; ð32Þ

in terms of which we can focus on the functions

Ui;�xð�D;DiÞ ¼ U iððzi0 þ �D � ai;�xÞð1þ r0Þ þ Di;Di
�diÞ ð33Þ

and sets

Mi;�xð�DÞ ¼ fset of all Di maximizing Ui;�xð�D;DiÞ subject to Di P 0g: ð34Þ
We consider then for any �x 2 X satisfying (6) the set-valued mapping S�x defined by

S�xð�DÞ ¼ fset of all D such that Di 2 Mi;�xð�DÞ for i ¼ 1; . . . ;mg: ð35Þ

Proposition 5.1. If for some �x 2 X satisfying (6) the set-valued mapping S�x has a fixed point,
i.e., a vector �D satisfying �D 2 S�xð�DÞ, then an equilibrium exists, moreover one in which the

master funds are positive multiples of the vectors �xi that comprise �x.

Proof. This is hardly more than a restatement of the existence criterion of Proposition 4.3
in which the sets Mi(p) are replaced by the sets Mi;�xð�DÞ which have been obtained by taking
p from �D and �x as in (25). h

Proposition 5.2. For any �x 2 X satisfying (6), S�x has the following properties:

(a) The set S�xð�DÞ is nonempty, convex and compact in Rm
þ for every �D 2 Rm.

(b) The graph of S�x, consisting of all ð�D;DÞ such that D 2 S�xð�DÞ, is a closed set.

(c) There is a q > 0 such that

D 2 S�xð�DÞ with �D P 0 and k�Dk1 6 q) kDk1 < q: ð36Þ

Proof. For each i, the set Mi;�xð�DÞ is a nonempty, closed interval in (0,1); we already know
this from Proposition 4.2 – the only thing that has changed is the notation for the initial
wealth of investor i. Because S�xð�DÞ is the product of the intervals Mi;�xð�DÞ, it is a compact,
convex subset of Rm

þ. This shows (a).

Much of what comes next will stem from the observation that the functions Ui;�x are
upper semicontinuous and concave on Rm � Rm, owing to our assumptions on the
functions Ui and the linearity in the dependence on �D of the initial wealth expressions in
(31) and (33), with coefficient vectors coming from (32). This implies in particular that the
optimal value hi;�xð�DÞ in the problem of maximizing �U i;�xð�D;DiÞ with respect to Di P 0 is a
concave function of �D 2 Rm (Rockafellar and Wets, 1998, 2.22), which moreover is
everywhere finite. Such a function is necessarily continuous (Rockafellar and Wets, 1998,
2.36). Having Di 2 �Mi;�xð�DÞ is the same as having U i;�xð�D;DiÞ ¼ hi;�xð�DÞ, or for that matter,
U i;�xð�D;DiÞP hi;�xð�DÞ, and therefore

D 2 S�xð�DÞ () U i;�xð�D;DÞ � hi;�xð�DÞP 0 for i ¼ 1; . . . ;m:
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The upper semicontinuity of U i;�x and continuity of hi;�x ensure the upper semicontinuity of
Ui;�x � hi;�x and consequently the closedness of the set specified by this system of inequalities.
Hence (b) is accurate.

In proving (c), a key ingredient will be the convexity and closedness of the sets

Ci ¼ fðli; diÞjUiðli; diÞP cig for ci ¼ Uiðz0
i0ð1þ r0Þ; 0Þ; ð37Þ

which follows from the concavity and upper semicontinuity assumed for the utility func-
tions Ui, along with the observation that

Di 2 Mi;�xð�DÞ; �D P 0) ððzi0 þ �D � ai;�xÞð1þ r0Þ þ Di;Di
�diÞ 2 Ci: ð38Þ

That holds because Di 2 Mi;�xð�DÞ implies

U iððzi0 þ �D � ai;�xÞð1þ r0Þ þ Di;Di
�diÞP Uiððzi0 þ �D � ai;�xÞð1þ r0Þ; 0Þ;

(since Di = 0 is one of the candidates in the maximization), and on the other hand

U iððzi0 þ �D � ai;�xÞð1þ r0Þ; 0ÞP U iðzi0ð1þ r0Þ; 0Þ;
because Ui(li,di) increases when li increases, while

�D � ai;�xð1þ r0ÞP 0 when �D P 0 ð39Þ
through the nonnegativity of the vector ai;�x in (32).

If (c) were false, there would have to exist sequences f�Dkg1k¼1 and fDkg1k¼1 in Rm
þ such

that

Dk 2 S�xð�DkÞ and kDkk1 P k�Dkk1 ! 1: ð40Þ
We will argue this to a contradiction.

The inequality in (40) means that for each k there is some i such that Dk
i P k�Dkk1. Since

there are only finitely many investors i, we can suppose, by passing to subsequences if
necessary, that the i in this inequality is always the same, say i = 1. Then the vectors
~Dk ¼ �Dk=Dk

1 have k~Dkk1 6 1, and by passing once again to subsequences if necessary, we
can arrange that

lim
k!1

~Dk ¼ ~D 2 Rm
þ for ~Dk ¼ �Dk=Dk

1: ð41Þ

We return now to the observation in (38), fixing on the case of i = 1:

ððz10 þ �Dk � a1;�xÞð1þ r0Þ þ Dk
1;D

k
1
�d1Þ 2 C1;

which can be written as

ððð1=Dk
1Þz10 þ ~Dk � a1;�xÞð1þ r0Þ þ 1; �d1Þ 2 ð1=Dk

1ÞC1: ð42Þ
Since 1=Dk

1 ! 0, this implies by way of (41) that

ð~D � a1;�xð1þ r0Þ þ 1; �diÞ 2 C11 ;

where C11 denotes the horizon cone of the set C1 (Rockafellar and Wets, 1998, p. 81),
which by the convexity of C1 is the same as the recession cone 0+C1 of convex analysis
(Rockafellar, 1970) (cf. (Rockafellar and Wets, 1998, p. 82)) and is a closed, convex cone
in R2. Then likewise

ð1; ~d1Þ 2 C11 for ~d1 ¼ �d1=ð~D � a1;�xð1þ r0Þ þ 1Þ > 0: ð43Þ
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Since C1 contains points of the form (l1,0), namely for l1 P z0
10ð1þ r0Þ, the criterion in

Rockafellar and Wets (1998, Theorem 3.6) for membership in C11 can be expressed, in
the case of a vector of form (1,d1) with d1 P 0, as the property that

ðl1; 0Þ þ sð1; d1Þ 2 C1 for all ðl1; 0Þ 2 C1 and s > 0;

which is equivalent to having

U 1ðl1 þ s; sd1ÞP U 1ðl1; 0Þ for all s > 0 when l1 P z0
10: ð44Þ

We are told by (43) that this holds for d1 ¼ ~d1. On the other hand, we know from assump-
tion (14) that (44) holds for d1 = 0. The convexity of C11 implies then that it holds for all
d1 2 ½0; ~d1�. But we also know from assumption (15) that (44) does not hold for any
d1 2 ð0; �d1�. These two properties are incompatible with each other, inasmuch as both ~d1

and �d1 are positive. This conflict forces us to conclude that (c) cannot be false. h

With all these pieces in place, we can move on to the final verification of the main
results in this paper.

Proof. Theorem 3.1. Take any �x 2 X satisfying (6). Take q as in (c) of Proposition 5.2,
and let D be the compact, convex set consisting of all �D 2 Rm

þ with k�Dk1 6 q. We have
S�xð�DÞ � D for all �D 2 D. The graph of S�x relative to D, which is the intersection of D · D
with the overall graph in (b) of Proposition 5.2, is closed, and the sets S�xð�DÞ are nonempty
and convex by (a) of Proposition 5.2. The Kakutani fixed point theorem (Border, 1985) is
therefore applicable and yields a �D 2 D such that �D 2 S�xð�DÞ. This assures us through
Proposition 5.1 that an equilibrium exists. h

Proof. Theorem 3.2(b). This is immediate now from the fact that the preceding fixed
point argument was carried out for an arbitrary choice of �x 2 �X satisfying (6). h

6. Conclusions

The existence of equilibrium in a financial market has been proved in a setting in which
investors optimize portfolios according to their individual preferences for combinations of
expected future values and the extent to which those future values may deviate from expec-
tations. The principle new feature is that nonstandard measures of deviation, fitting with
axiomatic developments elsewhere, are allowed to be used in place of standard deviation.
Different investors can even select different measures of deviation. Moreover they can
introduce hard upper bounds on portfolio deviation values, if they want such constraints
as part of their expressions of preferences. Despite all these new possibilities, the portfolios
at which the various investors arrive will necessarily be scaled from generalized master
funds associated with the chosen deviation measure, or measures.
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