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PARAMETRICALLY ROBUST OPTIMALITY IN NONLINEAR
PROGRAMMING*

A. L. DONTCHEV 1, R. T. ROCKAFELLARZ,§

ABSTRACT. In nonlinear programming, the strong second-order optimality condition and the
linearly independent gradient condition have many uses. In particular, the first guarantees that
a point is an isolated locally optimal solution, while the second insures the uniqueness of the
associated multiplier vector, but other, less stringent assumptions would already be enough for
that. In fact, the combination of these two conditions is equivalent to having a powerful stability
property beyond just local primal-dual uniqueness. That property is parametric robustness:
almost no matter how parameters are introduced into the objective and constraint functions,
the dependence of the locally optimal solution and its multiplier vector on the parameters will be
single-valued and Lipschitz continuous. Then, moreover, the mapping from parameter vector
to solution-multiplier pair will have directional derivatives which meet the high standards of
semidifferentiability. At any point and in any direction, the derivative can be calculated by
solving an auxiliary problem of quadratic programming.
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In the design and analysis of methods for solving nolinear programming problems in the
standard format
. . <0 for i=1,...,s,
(P) minimize fo(xz) subject to fi(x) { 20 for i=s+1....m,
with C? functions fo, fi,..., fm on R", two special properties, demanding much more than just
the Kuhn-Tucker conditions, are often imposed at a feasible point . These are the strong
second-order optimality condition and the linearly independent gradient condition:

(SSOC) there exists a Kuhn-Tucker vector 4 = (91,...,Um) for T such that

V2fo(z) + 3, 5 V2f;(Z) is positive definite on the subspace orthogonal
to the gradients V f;(Z) for i € [1, s] having g; > 0 andfor i € [s + 1, m)].

(LIGC) the gradients Vf;(Z) of the active constraints at T are linearly independent.

Both (SSOC) and (LIGC) can be viewed in terms of second derivatives of the Lagrangian
L(z,y) = fol@) + yifi(@) + -+ ymfin(2) on R™ x [RE > R™7], (1)

since the n x n matrix in (SSOC) is VZ,L(%, %), whereas the m x n matrix with the gradients
V fi(Z) as its rows, which enters into (LIGC), is V2, L(Z, 7).

Various results are known which relate the combination of (SSOC) with (LIGC) to stability
properties of (P) with respect to parameters affecting the constraint and objective functions,
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including at the most basic level primal canonical parameters (which shift the constraints up
or down) and dual canonical parameters (which tilt the objective). Such results are shown in
2], [8], [14] and in the books [1], [6] and [9] where more references can be found. Furthermore,
(SSOC) and (LIGC) enter the scene when Newton-type methods are employed to numerically
solve (P), see e.g. [7, Section 12.4].

Here we present a fresh statement of the connection with solution stability, highlighting it
in the strongest possible way. Further, we bring out significant consequences for the sensitivity
analysis of locally optimal solutions to (P). These developments emerge from the tactic of
addressing a wide class of parameterizations of (P) simultaneously, instead of looking at only a
single, given parameterization assumed to meet various requirments, as has typically been the
approach in sensitivity analysis.

Definition 1 (admissible parameterizations). By an admissible parameterization of (P) will
be meant a choice of an open neighborhood W' of a vector w in some space R? together with a
collection of C? functions f; : W x R™ — R such that

fi(ﬁ),'):fi fori=0,1,...,m. (2)

Each admissible parameterization corresponds to an embedding of (P) in a family of nonlinear
problems which depend on w € W:

— = = < p=1,...
(P(w))  minimize fo(w,z) in x subject to f;(w,x) { ;8 EE ZZ. :1; n 1’8’ m
When w = w, we get (P). The Lagrangian for (P(w)), namely
E(’UJ,IL‘,Z/) :f_O(wvx)+y1f1(waw)+"'+ymf(wax) (3)

reduces likewise to L(z,y) when w = w. B
For any w € W, we can consider with the aid of the parameterized Lagrangian L the set

S(w) = {Kuhn-Tucker pairs (z,y) for (P(w))} (4)

and thereby get a set-valued mapping S : w +— S(w) from W to R™ x R™. This is the stationarity
mapping associated with the given parameterization. Note that S(w) consists of all the Kuhn-
Tucker pairs (Z,y) for (P) itself; the triple (w, z,7) belongs to the graph of S.

Our focus is on circumstances in which Z is locally optimal and such local optimality is
preserved when passing from (w,Z, %) to nearby elements (w,x,y) of the graph of S. The
following concept will help us to express the exact property we wish to have. We will say that
S has a Lipschitz localization at w for (Z,7) if there exist neighborhoods U of w and V of (z, )
such that the mapping s : w +— S(w) NV is single-valued and in fact is a Lipschitz continuous
function of w € U. Observe that, geometrically, the graph of s is the intersection of U x V with
the graph of S in W x R™ x R™.

Definition 2 (parametric robustness of solutions). A wvector T will be called a robust locally
optimal solution to (P) if T is a feasible solution having a multiplier vector § associated with it
the Kuhn-Tucker conditions and is such that for every admissible parameterization of (P) and
its associated stationarity mapping S,

(a) S has a Lipschitz localization s at w for (Z,y), for which
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(b) there exist neighborhoods Wy of w and Xo of T such that, if w € Wy and s(w) = (z,y),

then x is the unique locally optimal solution to (P(w)) in Xo.
We are ready now to state and prove the first of the two theorems in this paper.

Theorem 1 (parametric robustness in nonlinear programming). In problem (P), a vector T is

a robust locally optimal solution if and only if (SSOC) holds with (LIGC).

Proof. Any admissible parameterization as in Definition 1 can be augmented by canonical
primal and dual parameters so as to be an extended canonical parameterization with

w' = (w,v,u) in W =W xR" x R", @' = (w,0,0),

fow' ) = folw,) + (v,2) (5)
fl(w',x) = fi(w,z) +u; for i =1,...,m.

For the corresponding family of problems (P(w')) = (P(w,v,u)), in which we

<0 fori=1,...,s,
=0 fori=s+1,...,m,

(6)

we get a stationarity mapping S : w' = (w,v,u) — S(w') = S(w,v,u) going from W x R"™ x R™
to R™ x R™.

In [2, Theorem 6 |, we obtained a result like the theorem we are now involved with proving,
but in terms of extended canonical parameterizations only. We have to demonstrate now that
the same thing holds in terms of all admissible parameterizations.

Because every extended canonical parameterization is in particular an admissible parame-
terization with parameter vector w’ as in (5), and conditions (SSOC) and (LIGC) are already
necessary for those parameterizations in w’ to have the properties (a) and (b) of Definition 2
through [2, Theorem 6], it is clear that (SSOC) and (LIGC) are also necessary for Z to be a
robust locally optimal solution to (P) in the present setting.

For the converse, suppose that the stationarity mapping S : (w,v,u) — S(w,v,u) for an
extended canonical parameterization as in (6) has the properties (a) and (b) of Definition 2.
Then the submapping Sy : w — S(w,0,0) has those properties as well. Since the stationarity
mapping associated with any admissible parameterization can be identified with such a submap-
ping, the sufficiency of (SSOC) and (LIGC) for extended canonical parameterizations to enjoy
the properties in Definition 2, by [2, Theorem 6], implies the sufficiency of conditions for all
admissible parameterizations.

minimize fo(w,z) + (v, x) subject to fo(w,z) + u; {

Next we look more closely at the Lipschitz localizations s that exist by Theorem 2 and explore
their differentiability properties. The directional derivative of s at a point w € R?® with respect
to a vector w’ € R? is defined of course by

s'(wyw') = il\l% [s(w + ew') — s(w) /€], (7)

when the limit exists. If it exists for every w’, and if moreover the mapping w' — s (w;w’)
furnishes a first-order approximation to s at w in the sense that

s(w+w') = s(w) + 5 (w;w') + o(Jw]), (8)

then s has the property of semidifferentiability at w which was defined and characterized in
various ways in [15, Chap.7].



A. L. DONTCHEV , R. T. ROCKAFELLAR: PARAMETRICALLY ROBUST OPTIMALITY ... 35

Theorem 2 (solution sensitivity under robustness). Let Z be a robust locally optimal solution to
(P) with multiplier vector g, and let s be a Lipschitz localization of the stationarity mapping S
associated with an admissible parameterization of (P) as in Definition 1. Then s is semidifferen-
tiable at all w in some neighborhood of w. Furthermore, a formula for the directional derivatives
s'(w;w') is available: the pair (2',y’) = s'(w;w') is characterized by x’ being the unique optimal
solution, and y' the unique associated multiplier vector, for the following problem of quadratic
programming with respect to w and the pair (z,y) = s(w),

_ 1 _
minimize w'V2, L(w, z,y)x’ + 533' V2, L(w,z,y)z" in 2’ subject to
P (w;w')
<0 for i €[1,s] with fi(w,z) =0, ;=0

Vaufilw, 2)w + Vo fi(w,z)z’ { =0 for i€ [l,s] with fi(w,z) =0, y; >0,
=0fori=s+1,....m

1
1

Proof. Recall that for a convex set Z C RY and a point z € Z the normal cone Nyz(Z) consists
of all vectors v € R such that v - (z — 2) < 0 for all z € Z; when Z ¢ Z, N (%) is taken to be
the empty set. The variational inequality for Z and a single-valued mapping F : RY — RY is
the condition on z that

—F(2) € Nz(2), or equivalently, z € Z and F(z) - (2 —z) > 0 for all z € Z. 9)

In the footsteps of Robinson [14], we can pose the Kuhn-Tucker conditions for the parameterized
nonlinear programming problem (P(w)) as the parameterized variational inequality

—F(w,z) € Nz(2) with{ 2= (@), Z=R"x[RE xR, (10)

F(w,z) = (Vmi(w,x,y), —Vyi(w,x,y)).

The stationarity mapping S associated with the family of problems (P(w)) is then the solution
mapping w — {z| — F(w,z) € Nz(z)}. Our attention is concentrated on the localized graphical
behavior of this mapping around w € W and z = (z,y) in S(w).

Much is known about the behavior of solution mappings for variational inequalities in general.
In our paper [3], we showed that if the parameterization by w € R is ample (a standard of
“richness” ), then the graph of S is a type of Lipshitz manifold of dimension d around (w, z) €
R? x RN which, in a geometric sense, has a first-order approximation given by its graphical
derivative DS(w|z), the graph of which is similarly a Lipschitz manifold of dimension d around
(0,0). The case where these local Lipschitz manifolds turn into the graphs of single-valued
Lipschitz continuous mappings corresponds to S having a Lipschitz localization at w for z, which
in fact is equivalent under ample parameterization to DS(w|z) having a Lipschitz localization
s at 0 for 0; then we have semidifferentiality with §'(w;w’) = DS(w|z)(w’). (For all this, see
[3, Secs. 6,7].)

In our format (10), any extended canonical parameterization by w’ = (w, v, u) obtained from
an admissible parameterization of (P) by w as in (6) is an admissible parameterization in the
sense of [3], in particular. Along the same lines of reasoning as in our proof of Theorem 1 above,
we can reduce the proof of Theorem 2 to the case of such parameterizations. Since we are
already in the context of a Lipschitz localization s of S at w for z = (Z, ), we are left only with
verifying that the formula for s'(w;w’) provided by [3, Theorem 7.1] for polyhedral Z comes
down to the formula claimed here. (The corresponding formula for s'(w;w’) at nearby w # w
will follow then automatically from our context.)

In that formula for an amply parameterized variational inequality over a polyhedral convex
set in general, one looks at the auxiliary variational inequality
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. / Gw',2')=V,F(w,z2)w' + V,F(w,z)2,
—G(w',2") € Nk (2" for{ K = (# € To(2)|2 L F(z, 7)), (11)

where T7(Z) is the tangent cone to Z at z; then K is the critical cone at z. The solution mapping
S w' v {Z| -G, 2") € Ng(2')}, which has (0,0) in its graph, turns out to be the graphical
derivative mapping DS(w|z), according to [3, Theorem 7.1]. The task facing us is to confirm
that when we apply this to the variational inequality (10) we get the stationarity mapping for
the parameterized quadratic programming problems (P’ (w;w’)).

It is easy to see that when F' is the mapping in (10), then G takes the form

Gw',2) = (Vi,L(w,z,y)w' + Vi, L(w,z,5)z" + V2, L(w,z,5)y ,
~ VoL (@, 2, g)w' = Vi, L(w, z,5)a" = V3, L(w,2,3)y), (12)
but V2, L(w, z,y) = 0. (Here Vz,L(w,z,y) = V3,L(Z,7), etc., but we keep to the notation of

L so as to relate better to the intension that the same formulas can later be applied to other
(w,x,y) instead of (w,Z,y).) With respect to the index sets

I-={i€ [l fi(w,z) <0, §; =0},
Iy = {i€[Ls] filw,z) =0, i = 0},
IJr:{iE[’Hfl(wj):O) g1>0}7
the cone K C R™ x R™ is described by
=0 for iel_

(@ y)eK — 2 €eR"and y;{ >0 for i€y,
free for 1€l}

where a variable is said to be “free” when it can take on any real value. Since V L(w,z,7) is
the matrix having the gradients V, f(w, ) as its rows, whereas ngi(w z,9) has them as its
columns, the variational inequality in (11) takes, through (12), the form that the equation

V2, L@, 9w’ + V2, L@, 7,9)2' + Y yiVefi@,7) =0 (13)

holds along with the conditions, in the notation I;(w’, 2') = V., fi(w0, Z, §)w’ + V. f; (w0, T)2', that

yi =0, Li(w, 2) free for;ie I,
yi >0, Li(w,2') <0, yili(w',2') =0 for, ;i € Iy, (14)
yi free, Lj(w',2') =0 for;i e I,.

All that is left is the observation that (13) and (14) are the Kuhn-Tucker conditions for the
auxiliary problem (P'(w;w’)).

It follows from the formula in Theorem 2, by the way, that s'(w;w’) is a piecewise linear
function of w’. Of course, because s is Lipschitz continuous around w, we actually know, from
Rademacher’s theorem on almost everywhere differentiability, that s'(w;w’) is a linear function
of w’ for almost every w in a neighborhood of w.
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We should note that a formula for the directional derivative of s in the case of extended
canonical perturbations was given in [16] and more explicitly in [13] where an earlier result of
Jittorntrum (1884) was cited.

Beyond the framework of basic nonlinear programming, there are related results on primal-
dual solution stability under perturbations which have appeared in [12] and [4]. A character-
ization of primal solution stability by itself, without an accompanying multiplier vector, has
been obtained in a very general setting in [11] through high-powered techniques in variational
analysis. The conditions there are difficult to specialize in fine detail, however, because of the
lack, at present, of an adequate calculus for certain second-derivative objects on which the char-
acterization relies. Finally, we mention that a broad introduction to the properties of solution
mappings to variational inequalities and other similar relations is now available in [5] together
with a number of new results in that area.
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