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Abstract  Decisions often need to be made before all the facts are in. A facility must be built
to withstand storms, floods, or earthquakes of magnitudes that can only be guessed
from historical records. A portfolio must be purchased in the face of only statistical
knowledge, at best, about how markets will perform. In optimization, this implies
that constraints may need to be envisioned in terms of safety margins instead of
exact requirements. But what does that really mean in model formulation? What
guidelines make sense, and what are the consequences for optimization structure and
computation?

The idea of a coherent measure of risk in terms of surrogates for potential loss,
which has been developed in recent years for applications in financial engineering,
holds promise for a far wider range of applications in which the traditional approaches
to uncertainty have been subject to criticism. The general ideas and main facts are
presented here with the goal of facilitating their transfer to practical work in those
areas.
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1. Introduction

In classical optimization based on deterministic modeling, a typical problem in n variables
has the form

minimize co(x) over all z € S satisfying ¢;(z) <0 for i=1,...,m, (1.1)

where S is a subset of R™ composed of vectors = (z1,...,2,), and each ¢; is a function
from S to R. In the environment of uncertainty that dominates a vast range of applications,
however, a serious difficulty arises in such a formulation. We can think of it as caused by
parameter elements about which the optimizer (who wishes to solve the problem) has only
incomplete information at the time x must be chosen. Decisions are then fraught with risk
over their outcomes, and the way to respond may be puzzling.

The difficulty can be captured by supposing that instead of just ¢;(z) we have ¢;(z,w),
where w belongs to a set () representing future states of knowledge. For instance, 2 might
be a subset of some parameter space R%, or merely a finite index set. The choice of an z € S
no longer produces specific numbers ¢;(x), as taken for granted in problem (1.1), but merely
results in a collection of functions on {2
c;(x): w—ci(r,w) fori=0,1,...,m. (1.2)

=1

How then should the constraints in the problem be construed? How should the objective be
reinterpreted? In what ways should risk be taken into account? Safeguards may be needed
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to protect against undesired outcomes, and safety margins may have to be introduced, but
on what basis?

Various approaches, with their pros and cons, have commonly been followed and will be
reviewed shortly as background for explaining more recent ideas. However, an important
principle should be understood first: No conceptual distinction should be made between
the treatment of the objective function ¢y and the constraint functions c1,...,¢,, in these
circumstances.

Behind the formulation of problem (1.1) there may have been a number of functions, all
of interest in terms of keeping their values low. A somewhat arbitrary choice may have been
made as to which one should be minimized subject to constraints on the others. Apart from
this arbitrariness, well known device, in which an additional coordinate z, 1 is appended to
x=(x1,...,2,), can anyway always be used to convert (1.1) into an equivalent problem in
which all the complications are put into the constraints and none are left in the objective,
namely

minimize z,41 over all (z,z,41) € S xR
co(z) —2pnt1 <0 and
satisfying (1.3)
ci(z) <0 fori=1,...,m.

The challenges of uncertainty would be faced in the reformulated model with the elements
w €  affecting only constraints.

This principle will help in seeing the modeling implications of different approaches to han-
dling risk. Let us also note, before proceeding further, that in the notation ¢;(x,w) some func-
tions might only depend on a partial aspect of w, or perhaps not on w at all, although for our
purposes, constraints not touched by uncertainty could be suppressed into the specification of
the set S. Equations have been omitted as constraints because, if uncertain, they rarely make
sense in this basic setting, and if certain, they could likewise be put into S.

Hereafter, we will think of ) as having the mathematical structure of a probability space
with a probability measure P for comparing the likelihood of future states w. This is more
a technical device rather than a philosophical statement. Perhaps there is true knowledge
of probabilities, or a subjective belief in probabilities that should appropriately influence
actions by the decision maker. But the theory to be described here will bring into consider-
ation other probability measures as alternatives, and ways of suggesting at least what the
probabilities of subdivisions of €2 might be if a more complete knowledge is lacking. The
designation P might therefore be just a way to begin.

By working with a probability measure P on §) we can interpret the functions ¢,;(z): @ = R
as random variables. Any function X: €2 — R induces a probability distribution on R with
cumulative distribution function Fx defined by taking Fx(z) to be the probability assigned
by P to the set of w € Q such that X (w) < z. (In the theory of probability spaces introducing
a field of measurable sets in €2, and so forth, should be a concern. For this tutorial, however,
such details are not considered.)

Integrals with respect to P will be written as expectations F. We will limit attention
to random variables X for which E[X?] is finite; such random variables make up a linear
space that will be denoted here just by £2. Having X € £2 ensures that both the mean and
standard deviation of X, namely

wWX)=EX and o(X)=(B[(X —uX))?)"?

are well defined and finite. Here we will assume that all the specific random variables entering
our picture through (1.2) for choices of z € S belong to £2.

To recapitulate, in this framework uncertainty causes the numbers ¢;(x) in the determin-
istic model (1.1) to be replaced by the random variables ¢;(z) in (1.2). This casts doubt on
interpretation of the constraints and objective. Some remodeling is therefore required before
a problem of optimization is again achieved.
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2. Some Traditional Approaches

Much can be said about how to address uncertainty in optimization, and how it should affect
the modeling done in a specific application. But, the most fundamental idea is to begin by
condensing random variables that depend on z back to numbers that depend on x. We will
discuss several of the most familiar ways of doing this and compare their features. In the
next section, a broader perspective will be taken and a theory furnishing guidelines will be
developed.

In coming examples, we adopt the same approach in each case to the objective and
every constraint, although approaches could be mixed in practice. This will underscore
the principle of not thinking that constraints require different modes of treatment than
objectives. It will also help to clarify shortcomings in these approaches.

2.1. Approach 1: Guessing the Future

A common approach in practice, serving essentially as a way of avoiding the issues, is to
identify a single element @ € 2 as furnishing a best estimate of the unknown information,
and then to

minimize co(z,@) over all z € S satisfying ¢;(x,0) <0 for i=1,...,m. (2.1)

Although this might be justifiable when the uncertainty is minor and well concentrated
around @, it is otherwise subject to serious criticism. A solution Z to (2.1) could lead, when
the future state turns out to be some w other than @, to a constraint value ¢;(Z,w) > 0, or
a cost ¢o(Z,w) disagreeably higher than c¢y(Z,w). No provision has been made for the risk
inherent in these eventualities. A decision  coming out of (2.1) fails to hedge against the
uncertainty and thus “puts all the eggs in one basket.” It does not incorporate any appraisal
of how harmful an ultimate constraint violation or cost overrun might be to the application
being modeled.

The weakness in this response to uncertainty can also be appreciated from another angle.
If Q has been modeled as a continuum in a space R? of parameter vectors, the behavior of
solutions to (2.1) as an optimization problem depending on @ as a parameter element could
be poor. Even in linear programming it is well understood that tiny changes in coefficients
can produce big changes, even jumps, in solutions. The dangers of not hedging could be
seriously compounded by such instability.

2.2. Approach 2: Worst-Case Analysis

Another familiar approach is to rely on determining the worst that might happen. In its
purest form, the counterpart to the deterministic problem (1.1) obtained in this way is to
minimize sup ¢o(z,w) over all z € S satisfying sup ¢;(z,w) <0 fori=1,...,m. (2.2)
weN weN
Here we write “sup” instead of “max” not only to avoid claiming attainment by some w,
but also in deference to the technicality that we must be dealing with the essential least
upper bound (neglecting sets of probability 0) when 2 is infinite.

This very conservative formulation aims at ensuring that the constraints will be satisfied,
no matter what the future brings. It devotes attention only to the worst possible outcomes,
even if they are associated only with future states thought to be highly unlikely. Assessments
of performance in more ordinary cirumstances are not addressed.

Although the goal is to eliminate all risk, there is a price for that. The feasible set,
consisting of the xs satisfying all the constraints, might be very small—possibly empty. For
example, if the uncertainty in w has to do with storms, floods, or earthquakes, and z is tied
to the design of a structure intended to withstand these forces, there may be no available
choice of x guaranteeing absolute compliance. The optimizer may have to live with a balance
between the practicality of z and the chance that the resulting design could be overpowered
by some extreme event.
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Nonetheless a strong attraction of this formulation is that the potential trouble over
specifying a probability measure P on 2 is effectively bypassed. A modern and more sophis-
ticated version of the worst-case approach, motivated by that feature, is currently promoted
as robust optimization. It aims likewise to avoid the introduction of a probability measure,
but tries anyway to treat some parts of {2 as more important (more likely) than others. A
generalization along these lines will be given as Approach 8 in §6.4.

2.3. Approach 3: Relying on Expectations

Still another idea of long standing, back in the context of 2 being a probability space, is to
utilize the expectations of the random variables ¢;(z) as numbers that depend on z. Taking
this approach at its purest, one could

minimize FElcq(x)] over all x € S satisfying Elc;(z)]<0fori=1,...,m. (2.3)

As far as the objective is concerned, this is a normal way of proceeding, and it has a long
history. Yet for the constraints it seems generally ridiculous. If a constraint corresponded to
the safety of a structure, for example, or the avoidance of bankruptcy, who would be satisfied
with it only being fulfilled on the average? Expectations are primarily suitable for situations
where the interest lies in long-range operation, and where stochastic ups and downs can
safely average out. To the contrary, many applications have a distinctly short-run focus with
serious risks in the foreground.

Why then should the expectation approach be acceptable for the objective in (2.3)? That
runs counter to the no-distinction-in-treatment principle explained in the introduction. More
will be seen about this below.

2.4. Approach 4: Standard Deviation Units as Safety Margins

An appealing way to dramatically improve on expectation constraints is to introduce safety
margins based on standard deviation so as to ensure that the expected value is not just 0
but reassuringly below 0. For a choice of positive values A; > 0, the constraints set up in
this manner take the form

e, (@) +XNo(c;(x)) <0 fori=1,...,m. (2.4)

The significance is that the future states w for which one gets ¢;(x,w) > 0 instead of the
desired ¢;(z,w) <0 correspond only to the upper part of the distribution of the random
variable ¢, (z) that lies more than \; standard deviation units above the expected value
of ¢,;(x). This resonates with many stipulations in statistical estimation about levels of
confidence. Furthermore, it affords a compromise with the harsh conservatism of the worst-
case approach.

What is the comparable formulation to (2.4) to adopt for the objective? The answer is to
introduce another coefficient Ay > 0 and

minimize p(co(x)) + Aoo(cy(x)) over all z € S satisfying (2.4). (2.5)

This is an interesting way to look at the objective, though it is almost never considered.
Its interpretation, along the lines of (1.3) with the objective values viewed as costs is that
one is looking for the lowest level of x,,,1 as a cost threshold such that, for some z € S
satisfying (2.4), the cost outcomes co(x,w) > x,+1 will occur only in states w corresponding
to the high end of the distribution of ¢,(z) lying more than Ay standard deviation units
above the mean cost.

Despite the seeming simplicity and attractiveness of this idea, it has a major flaw that
will stand out when we get into the theoretical consideration of what guidelines should
prevail for good modeling. A key property called coherency is lacking. A powerful substitute
without this defect is presented in Approach 9 in §7.4.
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2.5. Approach 5: Specifying Probabilities of Compliance

Another popular alternative to the worst-case approach, and which bears some resemblence
to the one just outlined, is to pass to probabilistic constraints (also called chance constraints)
in which the desired inequalities ¢;(x,w) <0 are to hold at least with specified probabilities

prob{c,(z) <0} > a;, fori=1,...,m, (2.6)

where «; is a confidence level, say 0.99. Following the idea in (1.3) for handling the objective,
the problem is to

minimize x, 1 over all (z,2,11) € S x R satisfying
prob{c,(z) <x,41} > ap and the constraints (2.6).  (2.7)

For instance, with ag = 0.5 one would be choosing = to get the median of the random variable
co(x), rather than its mean value, as low as possible.

Drawbacks are found even in this mode of optimization modeling, however. A qualitative
objection, like the one about relying on a confidence level specified by standard deviation
units, is that inadequate account is taken of the degree of danger inherent in potential
violations beyond that level. In the cases where constraint violations ¢;(z,w) > 0 occur,
which they do with probability 1 — «;, is there merely inconvenience or a disaster? The
specification of «;, alone, does not seem to fully address that. A technical objection too,
from the optimization side, is that the probability expressions in (2.6) and (2.7) can exhibit
poor mathematical behavior with respect to z, often lacking convexity and even continuity.

Tt is less apparent that Approach 5, like its predecessors, fits the pattern of condensing a
random variable into a single number. Yet it does—in terms of quantiles and value-at-risk,
a central idea in finance. In (2.6), the a;-quantile of the random variable ¢, (x) must be <0,
but technicalities can make the precise meaning problematic. This is discussed further in
85 when we explain value-at-risk and some recent approaches with conditional value-at-risk
and its variants involving risk profiles.

2.6. Constraint Consolidation

Questions could be raised about the appropriateness of the tactic in Approaches 4 and 5 of
putting a separate probability-dependent condition on each random variable. Why not, for
instance, put ¢;(z),...,¢,,(x) into a single random variable

c¢(z) with ¢(z,w) =max{c(z,w),...,cm(z,w)} (2.8)

and then constrain prob{c(z) < 0} > a? That would correspond to insisting that x be
feasible with probability at least a. Nothing here should be regarded as counseling against
that idea, which is very reasonable. However, the consequences may not be as simple as
imagined.

The units in which the different costs ¢;(z,w) are presented may be quite different. Issues
of scaling could arise with implications for the behavior of a condition on ¢ (x) alone. Should
each ¢,;(x) be multiplied first by some A; >0 in (2.8) to adjust to this? If so, how should
these coefficients be chosen?

Note also that individual constraints like those in (2.4) or (2.6) allow some costs to be
subjected to tighter control than others, which is lost when they are consolidated into a
single cost. A combination of individual constraints and a consolidated constraint may be
appropriate. Not to be overlooked either is the no-distinction-in-treatment principle for the
objective. But how should the objective be brought in?

Having raised these issues, we now put them in the background and continue with sep-
arate conditions on the random variables ¢;(z). This theory will anyway be applicable to
alternative formulations involving constraint consolidation.
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2.7. Stochastic Programming and Multistage Futures

Stochastic programming is a major area of methodology dedicated to optimization prob-
lems under uncertainty (Wets [22]). Its leading virtue is extended modeling of the future,
especially through recourse decisions. Simply put, instead of choosing x € S and then hav-
ing to cope with its consequences when a future state w € Q is reached, there may be an
opportunity then for a second decision z’ that could counteract bad consequences, or take
advantage of good consequences of x. There could then be passage to a state w’ further in
the future, and perhaps yet another decision z” after that. Although we will not go into
this important subject, we note that the newer ideas explained here have yet to be incor-
porated in stochastic programming. When applied to our bare-bones format of choosing z
and then experiencing w, the traditional formulation in stochastic programming would be
to minimize the expectation of ¢,(x) over all x € S satisfying supc,(z) <0 fori=1,...,m.
In particular, the objective and the constraints are treated quite differently. It should be
clear from the comments about Approaches 2 and 3 that the improvements may need to
be considered. Theoretical work in that direction has been initiated in Ruszczynski and
Shapiro [21]. However, it should also be understood that stochastic programming strives, as
far as possible in the modeling process, to eliminate uncertain constraints through the pos-
sibilites for recourse and various penalty expressions that might relate them. The purpose
is not so much to obtain an exact solution as it is to identify ways of hedging that might
otherwise be overlooked. The themes about risk which we develop here could assist further
in that effort.

2.8. Dynamic Programming

Dynamic programming is another area of methodology in optimization under uncertainty
that focuses on a future with many stages—perhaps an infinite number of stages. Dynamic
programming operates backward in time to the present. Because it is more concerned with
policies for controlling an uncertain system than coping with near-term risk, it is outside of
the scope of this tutorial.

2.9. Penalty Staircases

A common and often effective approach to replacing the simple minimization of ¢o(z) by
something involving the random variable ¢,(x), when uncertainty sets in, without merely
passing to Elc,(z)], is to

minimize E[)(cy(x))] for an increasing convex function ¢ on (—oo,00). (2.9)

For example, a series of cost thresholds dy,...,d,; might could be specified, and 1 could
be taken to be a piecewise linear function having breakpoints at di,...,d,, which imposes
increasingly steeper penalization rates as successive thresholds are exceeded. A drawback
is the difficulty in predicting how the selection of ¢ will shape the distribution of ¢ (z) in
optimality.

An alternative would be to proceed in the manner of Approach 5 with the choice of
objective but to supplement it with constraints such as

prob{ck(z) —dp <0} >ak, fork=1,...,q. (2.10)

The point is that a random variable like ¢,(x) can be propagated into a sequence of other
random variables

ch(x)=co(x)—dy fork=1,...,q (2.11)

in staircase fashion to achieve sharper control over results. Of course, the probabilistic
constraints in (2.10) are only a temporary proposal, given the defects already discussed.
Better ways of dealing with a staircased random variable as in (2.11) will soon be available.
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3. Quantification of Risk

We wish to paint a large-scale picture of risk, without being bound to any one viewpoint or
area of application, and to supply an axiomatic foundation that assists in clearing up some
of the persistent misunderstandings.

What is risk? Everyone agrees that risk is associated with having to make a decision
without fully knowing its consequences, due to future uncertainty, but also knowing that
some of those consequences might be bad, or at least undesirable relative to others. Still,
how might the quantity of risk be evaluated to construct a model in which optimization can
be carried out?

Two basic ideas must be considered and coordinated. To many people, the amount of risk
in a random variable representing a cost of some kind is the degree of uncertainty in it, i.e.,
how much it deviates from being constant. To other people, risk must be quantified in terms
of a surrogate for the overall cost, such as its mean value, median value, or worst possible
value. All the examples surveyed so far in optimization under uncertainty have revolved
around such surrogates, but both ways of viewing risk will have roles in this tutorial.

The meaning of “cost” can be very general: Money, pollution, underperformance, safety
hazard, failure to meet an obligation, etc. In optimization the concern is often a cost that is
relative to some target and keeping it below 0, so that it does not become a “loss.” Of course,
a negative cost or loss amounts to a “gain.”

For clarity, we will speak of measures of deviation when assessing inconstancy, with the
standard deviation of a random variable serving as terminological inspiration. We will speak
of measures of risk when assigning a single value to a random variable as a surrogate for
its overall cost. Although this conforms to current common usage, it seems to create a
competition between the second kind of measure and the first. It would really be more
accurate to speak of the second kind as measures of the risk of loss, so we will use that
terminology initially, before reverting to just speaking of measures of risk, for short.

Random variables could represent many things, but to achieve our goal of handling the
random variables ¢, (z) in (1.2) that come out of an optimization problem such as (1.1) when
uncertainty clouds the formulation, it is important to adopt an orientation. When speaking
of a measure of risk of loss being applied to a random variable X, we will always have in
mind that X represents a cost, as above: Positive outcomes X (w) of X are disliked, and
large positive outcomes disliked even more, while negative outcomes are welcomed. This
corresponds with traditions in optimization in which quantities are typically minimized or
constrained to be <0.

The core of the difficulty in optimization under uncertainty is the fact that a random
variable is not, itself, a single quantity. The key to coping with this will be to condense
the random variable into a single quantity by quantifying the risk of loss, rather than the
degree of uncertainty, in it. We are thinking of positive outcomes of random variables ¢, (x)
associated with constraints as losses (e.g., cost overruns). This presupposes that variables
have been set up so that constraints are in <0 form. For ¢, (), associated with minimization,
loss is unnecessary cost incurred by not making the best choices.

The random variables X in our framework are identified with functions from {2 to R that
belong to the linear space £2 which we introduced relative to a probability measure P on §).
They can be added, multiplied by scalars, and so forth. In quantifying loss, we must assign
to each X € £2 a value R(X). We will take this value to belong to (—o0,oc]. In addition to
having it be a real number, we may allow it in some circumstances to be co. Quantifying
risk of loss will therefore revolve around specifying a functional R from £2 to (—oco,oc]. (In
mathematics, a function on a space of functions, like £2, is typically called a functional.)

3.1. A General Approach to Uncertainty in Optimization

In the context of problem (1.1) disrupted by uncertainty causing the function values ¢;(z) to
be replaced by the random variables ¢, (x) in (1.2), select for each i =0,1,...,m a functional
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Ri: L2 — (—00,00] aimed at quantifying the risk of loss. Then

replace the random variables ¢;(z) by the functions ¢;(x) = R;(c,;(z)) and

minimize ¢ (x) over all z € S satisfying ¢;(z) <0 for i=1,...,m. (3.1

As an important variant, c,(z) could be staircased in the manner of (2.11), and the same
could be done for ¢ (z),...,c,,(x), if desired. This would introduce a multiplicity of random
variables ¢ ¥ () that could individually be composed with functionals R¥ to supplement (3.1)
with constraints providing additional control over the results of optimization.

Because the end product of any staircasing would still look like problem (3.1) except in
notation, it will suffice, in the theory, to deal with (3.1).

The fundamental question now is this: What axiomatic properties should a functional
have to be a good quantifier of the risk of loss? The pioneering work of Artzner et al.
[3, 4], Delbaen [6], has provided a solid answer in terms of properties they identified as
providing coherency. Their work concentrated on applications in finance, especially banking
regulations, but the contribution goes far beyond that. We will present the concept in a form
that follows more recent developments in expanding the ideas of those authors, or in some
respects simplifying or filling in details. The differences will be discussed after the definition.

It will be convenient to use C to stand for either a number in R or the corresponding
constant random variable X = C in £2. We write X < X’ meaning that X (w) < X’(w) with
probability 1, and so forth. The magnitude of an X € £L? is given by the norm

1X 12 = (B[X?)"2 = (u*(X) + (X)), (3:2)

A sequence of random variables X*, k=1,2,..., converges to a random variable X with
respect to this norm if [|[X* — X||s — 0, or equivalently, if both u(X* — X) — 0 and
o(X* - X)—=0as k— oo.

3.2. Coherent Measures of Risk

A functional R: £2 — (—o00,00] will be called a coherent measure of risk in the extended
sense if

(R1)
(R

(C)=C for all constants C,
2) RIAA-NX+ X)) <(1- )\)R( )+ AR(X') for A€ (0,1) (“convexity”),
(R3) R(X)<R(X’) when X <X’ (“monotonicity”),
(R4) R(X) <0 when || X* — X||z — 0 with R(X") <0 (“closedness”).
It will be called a coherent measure of risk in the basic sense if it also satisfies

(R5) R(AX)=AR(X) for A >0 (“positive homogeneity”).

R
R
R
R

The original definition of coherency in Artzner et al. [3, 4] required (R5). Insistence on
this scaling property has since been called into question on various fronts. Although it is the
dropping of it that we have in mind in supplementing their basic definition by an extended
one, there are also other, lesser, differences between this version and the original definition.

Property (R1), which implies in particular that R(0) = 0, has the motivation that if a
random variable always has the same outcome C, then in condensing it to a single surrogate
value, that value ought to be C. In Artzner et al. [3, 4] the place of (R1) was taken by a
more complicated property, which was tailored to a banking concept, but came down to
having

R(X+C)=R(X)+C for constants C. (3.3)

This extension of (R1) follows automatically from the combination of (R1) and (R2), as was
shown in Rockafellar et al. [16]. In that paper, however, as well as in Artzner et al. [3, 4]
the orientation was different: Random variables were viewed not as costs but as anticosts
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(affording gains or rewards), which would amount to a switch of sign, transforming (3.3)
into R(X +C) =R(X) —C and (R1) into R(C) = —C. The formulation in this tutorial is
dictated by the wish for a straightforward adaptation to the conventions of optimization
theory, so that recent developments about risk can be at home in that subject and can
smoothly reach a wider audience.

The risk inequality in (R3) has similarly been affected by the switch in orientation from
anticosts to costs. The same will be true for a number of other conditions and formulas
discussed or cited below, although this will not always be mentioned.

The combination of (R2) with (R5) leads to subadditivity

R(X +X') <R(X) +R(X). (3.4)

On the other hand this property together with (R5) implies (R2). Subadditivity was empha-
sized in Artzner et al. [3, 4] as a key property that was lacking in the approaches popular
with practioners in finance. The interpretation is that when X and X’ are the loss variables
(cost =loss) for two different portfolios, the total risk of loss should be reduced, or a least
not made worse, when the portfolios are combined into one. This refers to diversification.
The same argument can be offered as justification for the more basic property of convex-
ity in (R2). Forming a weighted mixture of two portfolios should not increase overall loss
potential. Otherwise there might be something to be gained by partioning a portfolio (or
comparable entity outside of finance) into increasingly smaller fractions.

The monotonicity in (R3) also makes perfect sense. If X (w) < X’(w) almost surely in the
future states w, the risk of loss seen in X should not exceed the risk of loss seen in X', with
respect to quantification by R. Yet some seemingly innocent strategies among practioners
violate this, as will be seen shortly.

Note from applying (R3) in the case of X’ =sup X, when X is bounded from above, and
invoking (R1), that

R(X)<supX always, (3.5)
and, on the other hand, from taking X’ =0 instead, that
R(X)<0 when X <0. (3.6)

The latter property is in fact equivalent to the monotonicity in (R3) through the convexity
in (R2).

3.3. Acceptable Risks

Artzner et al. [3, 4] introduced the terminology that the risk (of loss) associated with a
random variable X is acceptable with respect to a choice of a coherent risk measure R when
R(X) <0. This ties in with the idea that R(X) is the surrogate being adopted for the
potential cost or loss. By (3.6), X is acceptable in particular if it exhibits no chance of
producing a positive cost. But the concept allows compromise where there could sometimes
be positive costs, as long as they are not overwhelming by some carefully chosen standard.
The examples discussed in the next section explain this in greater detail.

In this respect, axiom (R4) says that if a random variable X can be approximated arbi-
trarily closely by acceptable random variables X*, then X too should be acceptable. Such
an approximation axiom was not included in the original papers of Artzner et al. [3, 4], but
that may have been due to the fact that in those papers ) was a finite set and the finiteness
of R(X) was taken for granted. Because a finite convex function on a finite-dimensional
space is automatically continuous, the closedness in (R5) would then be automatic. It has
been noted by Ruszczytiski that the continuity of R follows also for infinite-dimensional £2
from the combination of (R2) and (R3) as long as R does not take on co. But oo values can
occur in some examples which we do not wish to exclude.
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3.4. Coherency in Optimization

The main consequences of coherency in adopting (3.1) as a basic model for optimization
under uncertainty are summarized as follows:

Theorem 1. Suppose in problem (3.1), posed with functions ¢;(x) = Ri(c,;(z)) for i =
0,1,...,m, that each functional R; is a coherent measures of risk in the extended sense.

(a) Preservation of convexity. If ¢;(x,w) is convex with respect to x for each w, then the
function ;(x) = R;(c;(x)) is convex. Thus, if problem (1.1) without uncertainty would have
been a problem of convex programming, that advantage persists when uncertainty enters and
is handled by passing to the formulation in (3.1) with coherency.

(b) Preservation of certainty. If ¢,(x) is actually just a constant random wvariable for
each x, i.e., ¢;(x,w) = c;(x) with no influence from w, then ¢;(x) =c;(x). Thus, the compo-
sition technique does mot distort problem features that were not subject to uncertainty.

(c) Insensitivity to scaling. If the risk measures R; also satisfy (R5), then problem (3.1)
remains the same when the units in which the values ¢;(z,w) are denominated are rescaled.

Property (a) of Theorem 1 holds through (R2) and (R3) because the composition of a
convex function with a nondecreasing convex function is another convex function. (Without
(R3), this could definitely fail.) Property (b) is immediate from (R1), whereas (c¢) corre-
sponds to (R5).

Note that the constraints ¢;(z) <0 in problem (3.1) correspond to requiring = to make
the risk in the random variable c,;(x) be acceptable according to the dictates of the selected
risk measure R;. A related feature coming out of (3.3), is that

Ri(ci(z)) <b; <= Ri(c;(z) —b;) <0. (3.7)

Thus, acceptability is stable under translation and does not depend on where the zero is
located in the scale of units for a random variable.

4. Coherency or Its Lack in Traditional Approaches

It is time to return to the traditional approaches to see how coherent they may or may not
be. We will also look at the standards they implicitly adopt for deeming the risk in a cost
random variable to be acceptable.

4.1. Approach 1: Guessing the Future
This corresponds to assessing the risk in ¢,(x) as R(c;(z)) with
R(X)=X(w) for some choice of @ € O having positive probability. (4.1)

This functional R does give a coherent measure of risk in the basic sense, but is open to
criticism if used for such a purpose in responding to uncertainty. The risk in X is regarded
as acceptable if there is no positive cost in the future state w. No account is taken of any
other future states.

4.2. Approach 2: Worst-Case Analysis

This corresponds to assessing the risk in ¢,(x) as R(c;(z)) with
R(X)=supX. (4.2)

Again, we have a coherent measure of risk in the basic sense, but it is severely conser-
vative. Note that this furnishes an example where perhaps R(X) = oo. That will happen
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whenever X does not have a finite upper bound (almost surely), which for finite 2, could
not happen. The risk in X is acceptable only when X <0, so that positive costs have zero
probability.

4.3. Approach 3: Relying on Expectations

This corresponds to assessing the risk in ¢,(x) as R(c;(z)) with
R(X) = u(X) = EX. (4.3)

This is a coherent measure of risk in the basic sense, but it is feeble. Acceptability of the
risk in X merely refers to negative costs being enough to balance out positive costs in the
long run.

4.4. Approach 4: Standard Deviation Units as Safety Margins

This corresponds to assessing the risk in ¢,(z) as R;(c;(x)) with
Ri(X)=p(X)+No(X) for some \; > 0. (4.4)

However, such a functional R; is not a coherent measure of risk. Axiom (R3) fails, although
(R1), (R2), (R4) and even (R5) hold. This is one of the prime examples that the authors in
Artzner et al. [3, 4] had in mind when developing their concept of coherency, because it lies
at the heart of classical approaches to risk in finance.

Note that because (R3) fails for (4.4), the introduction of safety margins in this manner
can destroy convexity when forming composites as in problem (3.1), and thus eliminate the
benefits in part (a) of Theorem 1. This is unfortunate. Acceptability of the risk in X means
that positive costs can only occur in the part of the distribution of X that lies more than \;
standard deviation units above the mean. However, an excellent substitute that preserves
convexity will emerge below in terms of conditional value-at-risk and other versions of safety
margins based on various other measures of deviation.

4.5. Approach 5: Specifying Probabilities of Compliance

This corresponds to assessing the risk in ¢,(x) as R;(c;(z)) with
Ri(X) = ga, (X) = aj-quantile in the distribution of X, for a choice of o; € (0,1). (4.5)

Although the precise meaning will be explained in the next section, it must be noted that
this does not furnish a coherent measure of risk. The difficulty here lies in the convexity
axiom (R2), which is equivalent to the combination of the positive homogeneity in (R5)
and the subadditivity in (3.4). Although (R5) is obeyed, the subadditivity in (3.4), standing
for the desirability of diversification, is violated. This was another important motivation for
the development of coherency in Artzner et al. [3, 4]. Quantiles correspond in finance to
value-at-risk, which is even incorporated into international banking regulations.

Without coherency, this approach, like the one before it, can destroy converity that might
otherwise be available for optimization modeling. Convexity can be salvaged in (4.5) if the
distributions of the random variables ¢, (x) belong to the log-concave class for all € S, but
even then there are technical hurdles because the convexity of R; is missing relative to the
entire space £2.

For (4.5) acceptability of the risk in X means, of course, that positive costs are avoided
with probability «;. Again, this is a natural idea. Although the faults in it are dismaying,
conditional value-at-risk will address them.



Rockafellar: Coherent Approaches to Risk in Optimization Under Uncertainty
Tutorials in Operations Research, © 2007 INFORMS 49

5. Value-at-Risk and Conditional Value-at-Risk

In terms of the cumulative distribution function F'x of a random variable X and a probability
level a € (0,1), the value-at-risk VaR(X) and the a-quantile g, (X) are identical:

VaRa(X) = ¢o(X) =min{z| Fx(z) > a}. (5.1)
The conditional value-at-risk CVaR,(X) is defined by
CVaR, (X) = expectation of X in the conditional distribution of its upper a-tail, (5.2)
so that, in particular,
CVaR,(X) > VaR,(X) always. (5.3)

The specification of what is meant by the “upper a-tail” requires careful examination to clear
up ambiguities. It should refer to the outcomes X (w) in the upper part of the range of X for
which the probability is 1 — «. Ordinarily this would be the interval [¢,(X), c0), but that is
not possible when there is a probability atom of size § > 0 at g, (X) itself (corresponding to
Fx having a jump of such size at ¢,(X)), because then prob[g,(X),0) is not necessarily
1 — « but rather something between prob(g,(X),00) and prob(g,(X),00) + 4. The a-tail
conditional distribution cannot then be just the restriction of the P distribution to the
interval [¢,(X),00), rescaled by dividing by 1 — «. Instead, that rescaling has to be applied
to the distribution obtained on [g,(X),00) obtained by splitting the probability atom at
g (X) so as to leave just enough to bring the total probability up to 1 — «.

Although this is a foolproof definition for clarifying the concept, as introduced in
Rockafellar and Uryasev [14] as a follow-up to the original definition of CVaR in Rockafellar
and Uryasev [13], other formulas for CVaR,(X) may be operationally more convenient in
some situations. One of these is

1
CVaRa(X):i / VaRy(X) dj, (5.4)

coming from Acerbi, cf. [1]. It has led to the term average value-at-risk being preferred for
this concept in Follmer and Schied [7], which has become a major reference in financial
mathematics, although Acerbi preferred ezpected shortfall (a term with an orientation that
conflicts with our cost view of random variables X). The most potent formula for CVaR
may be the minimization rule

CVaR,(X) = xcnei%{c + (1 —a) ' E[max{0, X — C}]}, (5.5)

which was established in Rockafellar and Uryasev [13, 14]. It has the illuminating counterpart
that

VaR, (X) = left endpoint of argmin{C + (1 —a) ' E[max{0, X — C}]}. (5.6)

CeR

In (5.5) and (5.6) a continuous convex function of C € R (dependent on X and «) is being
minimized over R. The argmin giving the values of C' for which the minimum is attained
is, in this special case, known always to be a nonempty, closed, bounded interval. Much of
the time that interval collapses to a single value, VaR, (X), but if not, then VaR,(X) is the
lowest value in it.

We have posed in this formula in terms of VaR,, (X) for harmony with CVaR,,(X), but it
can easily be seen as an expression for calculating ¢, (X). In that respect, it is equivalent to
a formula of Koenker and Bassett [9], which is central to quantile regression (Koenker [8])

¢o(X) =left endpoint of argmin EF[max{0,X —C} + (o™ —1)max{0,C — X}]. (5.7)
CeR
Researchers in that area paid little attention to the minimum value in (5.5), but that value
is primary here for the following reason.
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Theorem 2. For any probability level o € (0,1), the functional R(X)=CVaRq(X) is a
coherent measure of risk in the basic sense.

This conclusion was reached from several directions. After the concept of conditional
value-at-risk was introduced in Rockafellar and Uryasev [13] along with the minimization
rule in (5.5), but initially only under the simplifying assumption that Fx had no jumps,
Pflug [10] proved that a functional given by the right side of (5.5) would be a coherent
measure of risk even if jumps were present. The fact that CVaR,,(X), if extended to the case
of jumps by the careful interpretation of the a-tail in (5.2), would still hold (5.5) was proved
in Rockafellar and Uryasev [14]. Meanwhile, Acerbi and Tasche [2] showed the coherency of
functionals expressed by the right side of (5.4), thus covering CVaR in another way.

Prior to these efforts, even with the strong case for coherent risk measures originally
made in Artzner et al. [3, 4] essentially no good example of such a measure had been
identified that had practical import beyond the theoretical. (In Artzner et al. [4], only general
examples corresponding to the risk envelope formula to be presented in Theorem 4(a) were
provided, without specifics. Other proposed measures such as tail risk, bearing a resemblance
to conditional value-at-risk, but neglecting the complication of probability atoms, were, for a
while, believed to offer coherence.) Currently, conditional value-at-risk, and other measures
of risk constructed from it, form the core of the subject, especially in view of deep connections
found in utility theory and second-order stochastic dominance.

A further property of conditional value-at-risk, distinguishing it from value-at-risk, is that
for any single X € £2,

CVaR,(X) depends continuously on a € (0,1),
with lim CVaR,(X)=sup X and lim CVaR,(X)=EX. (5.8)
a—1 a—0

For value-at-risk, the limits are the same, but the dependence is not always continuous.

To appreciate the implications of conditional value-at-risk in approaching uncertainty, it
will help to look first at what happens with value-at-risk itself. The crucial observation is
that, through the definition in (5.1), one has

prob{X <0} >a <= ¢o(X)<0 <= VaR,(X)<0. (5.9)

This can be used to rewrite the probabilistic constraints of Approach 5 in (2.6) and also the
associated objective in (2.7), since

prob{X <c¢}>a <= ¢.<c¢c < VaR,(X)<ec (5.10)

In this way, Approach 5 can be expressed in the same kind of pattern as the others, where
the random variables ¢,(z) are composed with some R; as in problem (3.1).

5.1. Approach 5, Recast: Safeguarding with Value-at-Risk
For a choice of probability levels «; € (0,1) for i =0,1,...,m,

minimize VaRq,(co(z)) over all z € S satisfying
VaRg,(c;(z)) <0 fori=1,...,m. (5.11)

In this case we have R;(X) = VaR,,(X) = ¢, (X) and the original interpretations of this
approach hold: We are asking in the constraints that the outcome of ¢,(z) should lie in
(—00,0] with probability at least a;, and subject to that, are seeking the lowest value ¢ such
that ¢ (z) < ¢ with probability at least a. But the shortcomings still hold as well: R; is not
a coherent measure of risk, even though it satisfies (R1), (R3), (R4), and (R5). In looking
to it for guidance, one could be advised paradoxically against diversification.

From a technical standpoint, other poor features of using VaR,, (X), or in equivalent nota-
tion ¢ (X), to assess the overall risk in a random variable X are revealed. The formula in
(5.1) predicts discontinuous behavior when dealing with random variables X whose distri-
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bution functions F'x may have graphical flat spots or jumps, as is inevitable with discrete,
and in particular, empirical distributions. All this is avoided by working with conditional
value-at-risk instead. Those familiar with the fundamentals of optimization can immediately
detect the root of the difference by comparing the formulas in (5.5) in (5.6). It is well known
that the minimum value in an optimization problem dependent on parameters, even a prob-
lem in one dimension, as in this case, behaves much better than does the solution, or set of
solution points. Thus, CVaR,(X) should behave better as a function of X than VaR(X)
and indeed it does.

5.2. Approach 6: Safeguarding with Conditional Value-at-Risk
For a choice of probability levels «; € (0,1) for i =0,1,...,m,

minimize CVaRg,(c((x)) over all = € S satisfying
CVaRy, (¢;(z)) <0 fori=1,...,m. (5.12)

Here we use the coherent risk measures R; = CVaR,,. What effect does this have on the
interpretation of the model, in contrast to that of Approach 5, where R; = VaR,,? The
conditional expectation in the definition of conditional value-at-risk provides the answer.
However, due to the small complications that can arise over the meaning of the upper «;-
tail of the random variable ¢;(x) when its distribution function may have a jump at the
quantile value gq, (¢;(z)) = VaRq, (¢, (x)), it is best, for an initial understanding of the idea,
to suppose there are no such jumps. Then,

CVaRg, (¢;(z)) <0 means not merely that ¢,(z) <0
at least 100c; % of the time, but that the average of the
worst 100(1 — a;)% of all possible outcomes will be <0. (5.13)

Obviously, Approach 6 is, in this way, more cautious than Approach 5.

A valuable feature in Approach 6 is the availability of the minimization rule (5.5) for
help in solving a problem in formulation (5.12). Insert this formula, with an additional
optimization variable C; for each index ¢, and the resultant problem to solve is to

find (x,Cy,C1,...,Cpn) € X x R™T to minimize
Co+ (1 —ag) ' E[max{0, ¢y (x) — Co}] subject to
Ci+(1—a;) ' Emax{0,c,(z) - C;}] <0, i=1,...,m. (5.14)

Especially interesting is the case where each ¢;(x,w) depends linearly (affinely) on x, and the
space € of future states w is finite. The expectations become weighted sums in which, through
the introduction of still more variables, each max term can be replaced by a pair of linear
inequalities so as to arrive at a linear programming reformulation of (5.14); cf. Rockafellar
and Uryasev [14].

5.3. Staircasing

As a reminder, these approaches are being described in the direct picture of problem (3.1),
but they also encompass the finer possibilities associated with breaking a random variable
down into a staircased sequence, as in (2.11), obtained from a series of cost thresholds. (See
comment after (3.1).)

6. Further Examples and Risk Envelope Duality

The examples of coherent measures of risk that we have accumulated so far are in Approaches
1, 2, 3, and 6. Other prime examples are provided in this section, including some that fit only
the extended, not the basic, definition of coherency. Note, however, that any collection of
examples automatically generates an even larger collection through the following operations,
as is seen from the definition of coherency.
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Theorem 3. Coherency-preserving operations.

(a) If R1,...,R, are coherent measures of risk in the basic sense, and if \1,..., A\, are
positive coefficients adding to 1, then a coherent measure of risk is defined by

R(X)=A1R1(X)+)\2RQ(X)++>\7«R7«(X) (61)
Moreover, the same holds for coherent measures of risk in the extended sense.
(b) If R1,..., R, are coherent measures of of risk in the basic sense, then so too is
R(X)=max{R1(X),R2(X),...,R-(X)}. (6.2)

Moreover, the same holds for coherent measures of risk in the extended sense.

6.1. Mixed CVaR and Spectral Profiles of Risk

An especially interesting example of such operations is mized conditional value-at-risk, which
refers to functionals having the form

R(X) = A\ CVaRa, (X) + -+ A, CVaRy, (X)
with Oéi6(0,1),)\1‘>0,/\1+"'+>\r:1. (63)

These functionals likewise furnish coherent measures of risk in the basic sense. One can even
extend this formula to continuous sums

R(X) = /O | VAR, (X) dA(a). (6.4)

This gives a coherent measure of risk in the basic sense for any weighting measure A (with
respect to generalized integration) that is nonnegative with total weight equal to 1. The
formula in (6.3) corresponds to the discrete version of (6.4) in which a probability atom
of size \; is placed at each «;. It has been proved (see Rockafellar et al. [16, Proposition
5]) that as long as fol(l —a) td\(a) < oo, the measure of risk in (6.4) has an alternative
expression in the form

R(X):/ VaR, (X)p(a)da  with ¢(a):/ (1—B3)"tdx(p). (6.5)
0 (0, ]

This is a spectral representation, in the sense of Acerbi [1], which relates to a dual theory of
utility where ¢ gives the risk profile of the decision maker.

Clearly, risk measures of form (6.3) can be used to approximate risk measures like (6.4).
On the other hand, such risk measures can be supplied through the minimization rule (5.5)
with a representation in terms of parameters C', ..., C, which is conducive to their practical
use in optimization along the lines of the prescription at the end of the preceding section.

6.2. Approach 7: Safeguarding with Mixtures of
Conditional Value-at-Risk

The use of single CVaR risk measures in Approach 6 could be expanded to mixtures as just
described, with possible connections to risk profiles. All the properties in Theorem 1 would
be available.

6.3. Risk Measures from Subdividing the Future

Let € be partitioned into subsets €11, ..., €2, having positive probability, and for k=1,... r
let

Ri(X) = 521512) X(w). (6.6)
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Then Ry, is a coherent measure of risk in the basic sense (just like the one in Approach 2),
and so too then, by Theorem 3(a), is
R(X)=XA sup X(w)+---+ A sup X(w) for coefficients A; >0 adding to 1. (6.7)
weN weN,
The weights Ar could be seen as lending different degrees of importance to different parts
of Q2. They could also be viewed as providing a sort of skeleton of probabilities to 2. A better
understanding of this will be available below; see (6.16) and the surrounding explanation.

6.4. Approach 8: Distributed Worst-Case Analysis

This refers to the modification of the worst-case formulation in Approach 2 to encompass
risk measures of the forms in (6.6) and (6.7). Different partitions of 2 might be used for
different constraints.

6.5. Risk Measures of Penalty Type

Another interesting way of quantifying the risk of loss is to modify the expected cost by
adding a penalty term for positive costs. Recall that the so-called LP-norms are well defined
as functionals on £? by

E|X]| for p=1,
1X1l, = { (BIXPPDY? for 1<p< oo, (63)
sup | X| for p = o0,

with || X||, < || X]||,r when p <p’, but || X||, can take on oo when p>2 and © is not finite
(in which case |||, is not technically a “norm” any more on £?). Consider the functional
R: L2 — (—00, 0] defined by

R(X)=EX + A||max{0, X — EX}||, with p€[l,00], A€0,1]. (6.9)

This too gives a coherent measure of risk in the basic sense. The coherency in (6.9) is not
hard to verify up to a point: Axioms (R1), (R2), and (R4) are easily checked, along with (R5)
for scalability. The monotonicity in (R3), however, is a bit more daunting. It is seen through
the equivalence of (R3) with (3.6) using the inequality that

| max{0, X — EX}|, < ||max{0,X — EX}|cc =supX —EX

and the observation that EX + A(supX — EX) <0 when X <0 and 0 <A <1.

Often in financial applications where co(z,w) refers to the shortfall relative to a specified
target level of profit, a penalty expression is like || max{0,c,(z)}||, is minimized, or such
an expression raised to a power a¢ > 1. This corresponds to composing ¢, (z) with R(X) =
|| max{0, X'}||5, which is not a coherent measure of risk. It satisfies (R2), (R3), (R4), and
when a =1 even (R5). Only (R1) fails. The convexity preservation in Theorem 1(a) would
hold, although not the certainty preservation in Theorem 1(b). A shortcoming is in the
absence of a control over the expected value of ¢ (z), which might even be positive. Minimum
penalty might be achieved by a decision z in which there is a very high probability of loss,
albeit not a big loss. By contrast, however, composition with a coherent risk measure such
as in (6.9) would facilitate creating a safety margin against loss.

6.6. Log-Exponential Risk Measures

Until now, every coherent measure of risk has satisfied (R5). Here is an important one that
does not and therefore must be considered in the extended sense rather than the basic sense
of coherency

R(X) = Mog E[eX/?] for a parameter value A > 0. (6.10)

The confirmation of coherency in this case will be based on the duality theory presented
next.
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6.7. Representations of Risk Measures by Risk Envelopes

Coherent measures of risk can always be interpreted as coming from a kind of augmented
worst-case analysis of expectations with respect to other probability measures P’ on €2 than
the nominal one, P, or more specifically such measures P’ having a well defined density
Q =dP'/dP € L£? with respect to P. Such densities functions make up the set

P={QeL?|Q>0, EQ=1}. (6.11)

When @ is the density for P’, the expectation of a random variable X with respect to P’
instead of P is F[XQ)], masmuch as

E[XQ] = /X /X dPl /X )dP'( (6.12)

In this framework P itself corresponds to @ =1: We have EX = E[X - 1].

In contemplating a subset Q of P, one is essentially looking at some collectlon of alterna-
tives P’ to P. This could be motivated by a reluctance to accept P as furnishing a completely
reliable model for the relative occurrences of the future states w € 2, and the desire to test
the dangers of too much trust in P.

A risk envelope will mean a nonempty, convex subset Q of P that is closed (so when
elements Q% of Q converge to some @ in the £? sense described earlier, ) also belongs
to Q). An augmented risk envelope will mean a risk envelope Q supplied with a function
a: @ — [0,00] (the augmenting function) having the properties that

the set {Q €Q | a(@) < oo} has Q as its closure,
the set {Q € Q|a(Q) < C} is closed for C < o0, (6.13)

the function a is convex on Q with 5nfga(Q) =0.
€

As a special case one could have a =0 on Q, and then the idea of an augmented risk envelope
would simply reduce to that of a risk envelope by itself.

Theorem 4. Dual characterization of coherency.

(a) R is a coherent measure of risk in the basic sense if and only if there is a risk
envelope Q (which will be uniquely determined) such that

R(X)=sup E[XQ). (6.14)
Qe

(b) R is a coherent measure of risk in the extended sense if and only if there is a risk
envelope Q with an augmenting function a (both of which will be uniquely determined) such
that

R(X) = sup{E[XQ] —a(Q)}. (6.15)
QEQ

The proof of this key result, reflecting a basic conjugacy principle in convex analysis
(Rockafellar [11, 12]), can be found in a number of places, subject to variations on the
underlying space (not always £2). A version for the scalable case with 2 finite appeared in
Artzner et al. [4] and was elaborated for infinite 2 in the unpublished exposition of Delbaen
[6]. It was taken up specially for £2 in Rockafellar et al. [17] where the term risk envelope was
introduced. (The main results of that working paper were eventually published in Rockafellar
et al. [16].) Versions without scalability are in Féllmer and Schied [7] and Ruszczyriski and
Shapiro [20]. The condition in (6.13), that infg a =0, is essential for getting axiom (R1) to
be satisfied in (6.15).

In view of the preceding discussion, formula (6.14) for the basic case has the interpretation
that the risk R(X) in X comes simply from a worst-case analysis of the expected costs E[X Q)]
corresponding to the probability measures P’ having densities @ in the specified set Q.



Rockafellar: Coherent Approaches to Risk in Optimization Under Uncertainty
Tutorials in Operations Research, © 2007 INFORMS 55

In short, selecting a coherent risk measure R is equivalent to selecting a risk envelope Q.
Of course, this is rather black and white. Either a density () presents a concern or it does not.
The extended case with an augmenting function a provides a gradation in (6.15): Densities
@ have less influence when a(Q) > 0.

Formula (6.14) would still give a coherent risk measure R with Q taken to be any
nonempty subset Qg of P, but that R would also then be given by taking Q to be the closed
convex hull of Qp (the smallest closed convex subset of £2? that includes Q). The assump-
tion that Q is already closed and convex makes it possible to claim that (6.12) furnishes a
one-to-one correspondence R <> Q. A similar statement applies to formula (6.15).

6.8. Risk Envelope for Guessing the Future

The coherent (but hardly to be recommended) risk measure R(X) = X (@) for a future
state w with prob(w) > 0 corresponds to taking Q in (6.14) to consist of a single function @,
which has Q(@) =1/ prob(@) but Q(w) =0 otherwise.

6.9. Risk Envelope for Worst-Case Analysis

The coherent risk measure R(X) =sup X corresponds to taking Q in (6.14) to be all of P,
i.e., to consist of all Q >0 with EQ =1.

6.10. Risk Envelope for Distributed Worst-Case Analysis

In the broader setting of 2 being partitioned into subsets ) with weights A as in (6.7), the
risk envelope Q consists of the densities ) with respect to P of the probability measures P’
such that

P(Qr)=M fork=1,...,r (6.16)

Not all probability measures alternative to P are admitted, as with ordinary worst-case
analysis, but only those that conform to a specified framework of the likelihoods of different
parts of €. This provides a means for incorporating a rough structure of probabilities without
having to go all the way to a particular measure like P, which serves here only in the
technical background.

6.11. Risk Envelope for Relying on Expectations

The coherent risk measure for R(X) = p(X) corresponds to taking Q in (6.14) to consist
solely of Q =1.

6.12. Risk Envelope for Standard Deviation Units as Safety Margins?

For the functional R(X) = u(X) + Ao (X) there is no risk envelope Q@ C P, due to the absence
of coherency. However, because only (R3) fails, there is a representation in the form (6.14)
involving elements @ that are not necessarily >0. (See Rockafellar et al. [16].)

6.13. Risk Envelope for Safeguarding with Value-at-Risk, or in Other
Words, for Specifying Probabilities of Compliance?

For R(X) = go(X) = VaR,(X) there is no corresponding risk envelope Q, and in fact no
representation in the pattern of (6.14), because R lacks convexity.

6.14. Risk Envelope for Safeguarding with Conditional Value-at-Risk
For the functional R(X) = CVaR,(X), the risk envelope is

Q={QeP|Q<1/a}. (6.17)
This was first shown in Rockafellar et al. [17]. (See also Rockafellar et al. [16].)
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6.15. Risk Envelope for Mixed Conditional Value-at-Risk
For R(X)=3"._, iCVaR,, (X) with positive weights A; adding to 1, the risk envelope is

Q—{ZAZ—QZ-

i=1

Qiep,OSQigl/ai}. (6.18)
Again, this comes from Rockafellar et al. [17]. (See also Rockafellar et al. [16].)

6.16. Risk Envelope for Measures of Penalty Type
For R(X)=EX + \|max{0,X — EX}|, with A >0 and p € [1, 00}, the risk envelope is

1—p~H)~' wh
Q={QeP||Q-infQ|, <1} whereq:{i P whenp<oo, o g)

when p = o0.

The proof of this is found in Rockafellar et al. [16, Examples 8 and 9]. (In all such references
to the literature, the switch of orientation from X giving rewards to X giving costs requires
a switch in signs.)

6.17. Augmented Risk Envelope for Log-Exponential Risk
The measure of risk expressed by R(X) = Alog E[e*X/*], which is not positively homogeneous,
requires a risk envelope Q with an augmenting function a, namely

Q=P with a(Q) =AE[QlogQ]. (6.20)

This recalls the duality between log-exponential functions and entropy-like functions which
is well known in convex analysis, cf. Rockafellar [11]; Rockafellar and Wets [15, p. 482]. Its
application to risk measures can be seen in Follmer and Schied [7, p. 174], who refer to this
R as an “entropy” risk measure. The coherency of comes from showing that R is obtained
from the Q and a in (6.20) by the formula in Theorem 4(b). In terms of the probability
measure P’ having density Q =dP’/dP, one has

E[QlogQ]=1(P',P), the relative entropy of P’ over P. (6.21)

Ben-Tal and Teboulle [5] open this further and note that EF[a(Q)] has been studied for more
general a than a(Q) = [Qlog @], as in (6.20), for which they supply references.

7. Safety Margins and Measures of Deviation

Although the safety margins in Approach 4, using units of standard deviation, collide with
coherency, the concept of a safety margin is too valuable to be ignored. The key idea behind
it is to remedy the weakness of an expected cost constraint E[c,(z)] <0 by insisting on an
adequate barrier between E[c,(z)] and 0. Is this ensured simply by passing to a constraint
model R;(c;(z)) <0 for a coherent measure of risk R;, as we have been considering? Not
necessarily. Guessing the future, with R;(X) = X(©) for some @ of positive probability,
provides a quick counterexample. There is no reason to suppose that having X (@) < 0 entails
having FX < 0. We have to impose some restriction on R; to get a safety margin. The
following class of functionals must be brought in.
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7.1. Averse Measures of Risk

Relative to the underlying probability measure P on 2, a functional R: £2 — (—oc, oo will
be called an averse measure of risk in the extended sense, if it satisfies axioms (R1), (R2),
(R4) and

(R6) R(X)> EX for all nonconstant X,

and in the basic sense, if it also satisfies (R5).

Recall that (R1) guarantees R(X) = EX for constant X = C. Aversity has the interpre-
tation that the risk of loss in a nonconstant random variable X cannot be acceptable unless,
in particular, X (w) <0 on average. Note that relations to expectation, and consequently to
the particular choice of P, have not entered axiomatically until this point. (Averse measures
of risk were initially introduced in Rockafellar et al. [17] in terms of “strict expectation-
boundedness” rather than “aversity.” See also Rockafellar et al. [16].)

The monotonicity in (R3) has not been required in the definition, so an averse measure
of risk might not be coherent. On the other hand, a coherent measure might not be averse,
as the preceding illustration makes clear. In the end, we will want to focus on measures of
risk that are simultaneously averse relative to P and coherent. At this stage, however, the
concepts will come out clearer if we do not insist on that.

Averse measures of risk relative to P will be crucial in making the connection with
the other fundamental way of quantifying the uncertainty in a random variable, namely
its degree of deviation from constancy. Next, we develop this other kind of quantification
axiomatically.

7.2. Measures of Deviation
A functional D: £2? — [0, 00] will be called a measure of deviation in the extended sense if it
satisfies

(D1) D(C) =0 for constants C, but D(X) > 0 for nonconstant X,

(D2) D(1-NX+AX)<(1-ND(X)+AD(X’) for A€ (0,1) (“convexity”).

(D3) D(X) <d when || X* — X||2 — 0 with D(X*) <d (“closedness”).

It will be called a measure of deviation in the basic sense when furthermore
(D4) D(AX) =AD(X) for A >0 (“positive homogeneity”).

Either way, it will be called coherent if it also satisfies
(D5) D(X) <supX — EX for all X (“upper range boundedness”)

An immediate example of a measure of deviation in the basic sense is standard deviation,
D(X) =0(X). In addition to (D1), (D2), and (D3), it satisfies (D4), but not, as it turns out,
(D5). The definition aims to quantify the uncertainty, or nonconstancy, of X in different
ways than just standard deviation, allowing even for cases where D(X) might not be the
same as D(—X). The reason for tying (D5) to D being “coherent” is revealed by the theorem
below.

7.3. Risk Measures Versus Deviation Measures

Theorem 5. A one-to-one correspondence between measures of deviation D in the
extended sense and averse measures of risk R in the extended sense is expressed by the

relations R(X)=EX +D(X), D(X)=R(X — EX), (7.1)

with respect to which
R is coherent <= D is coherent. (7.2)

In this correspondence, measures in the basic sense are preserved:

R is positively homogeneous <= D is positively homogeneous. (7.3)
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This result, for the basic case, was originally obtained in the working paper Rockafellar
et al. [17] and finally in Rockafellar et al. [16]. Extension of the proof beyond positive homo-
geneity is elementary. The risk envelope representation of Theorem 4 for R under coherency
immediately translates, when R is strict, to a similar representation for the associated D

D(X)=sup E[(X — EX)Q] in the basic case (7.4)
QeQ

or, on the other hand

D(X)=sup{F[(X —EX)Q]— E[a(Q)]} in the extended case. (7.5)
QeQ

It follows from Theorem 5 that a deviation measure D is coherent if and only if it has
a representation of this kind (necessarily unique) in which Q and a (identically 0 in the
basic case) meet the specifications in (6.13). Deviation measures that are not coherent have
representations along the same lines, but with Q ¢ P. The elements Q) € Q still have EQ =1,
but @ # 0 for some, and their interpretation in terms of densities dP’/dP of probability
measures P’ being compared to P drops away. For more on this, see Rockafellar et al. [16].

The fact that standard deviation D(X) = o(X) does not have a risk envelope representa-
tion (7.4) with @ C P lies behind the assertion that this deviation measure is not coherent
and, at the same time, confirms the lack of that property in Approach 4. This shortcoming
of D(X) =0(X) can also be gleaned from the condition for D to be coherent in (D5). If
o(X)<supX — EX for all X, we would also have by applying this to —X, that o(X) <
EX —inf X, and therefore o(X) < [sup X — inf X]/2 for all random variables X, which is in
general false.

Theorem 5 shows that to introduce safety margins in optimization under uncertainty
without falling into the trap of Approach 4 with its lack of coherency, we must pass from
standard deviation units to those of some other measure of deviation satisfying (D5). Here
we can take advantage of the fact that when D is a coherent measure of deviation, then so
too is AD for any A > 0.

7.4. Approach 9: Generalized Deviation Units as Safety Margins

Faced with the random variables (1.2), choose deviation measures D; for i =0, 1,...,m with
coefficients \; > 0. Pose the constraints in the form

e, () +NDi(c,;(x) <0 fori=1,...,m, (7.6)

thus requiring that positive outcomes of ¢, (x) can only occur in the part of the range of this
random variable lying more than \; deviation units, with respect to D;, above the mean
w(c;(z)) = Elc;(z)]. The goal is to

minimize p(co(2) — Tnt1) + AoDilcy(x) — Tnt1)
over all (z,2,41) €S x R satisfying (7.4). (7.7)

This mimics Approach 4 with o(X) replaced by D;(X). The measures of risk filling the role
prescribed in (3.1) now have the form

Ri(X) =pu(X) + \Di(X) = EX +D)(X) fori=1,....m, with D,=\D;. (7.8)

The contrast between this and the previous case, where D;(X) = o(X), is that R; is coherent
when D; is coherent. Hence, if this holds for ¢ =0,1,...,m, the optimization properties in
Theorem 1 apply to problem (7.7).

Theorem 5 provides the right that all the approaches to optimization under uncertainty
considered so far in the mode of (3.1) in which the R;s are averse measures of risk correspond
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to introducing safety margins in units of generalized deviation. But this is not true when
the R;s are not averse. Because we want the R;s to be coherent as well, the question arises:
What examples do we have at this point of coherent measures of risk that are also averse
(relative to P)? Those obtained via (7.8) from a coherent measure of deviation serve the
purpose, but the issue then devolves to looking for examples of such measures of deviation.

7.5. Aversity of CVaR and Mixed CVaR

The coherent risk measure R(X) = CVaR,,(X) is averse for any « € (0, 1). The corresponding
coherent measure of deviation is

D(X) = CVaR, (X — EX). (7.9)

More generally, any mixture R(X) = A;CVaR,, (X) + --- + A.CVaR,,.(X) with positive
weights adding to 1 gives an averse, coherent measure partnered with the deviation measure

D(X) =M\ CVaR,, (X — EX) +---+ A.CVaR,, (X — EX), (7.10)

which therefore is coherent also.

7.6. Aversity of Risk Measures of Penalty Type

The coherent risk measure R(X) = EX + A||max{0,X — EX}|, for any A >0 and any
p € [1,00] is averse. That is clear from the definition of strictness through (R6): We do have
R(X)—EX >0 unless X is constant. The corresponding coherent measure of deviation is

D(X) = | max{0, X — EX}|,. (7.11)

7.7. Aversity of the Worst-Case Risk Measure

The coherent risk measure R(X) =sup X is averse, again directly through the observation
that it satisfies (R6): Except when X is constant, we always have sup X > EX. This can
also be viewed as a special case of the previous example because || max{0,X — EX}||. =
sup X — EX. We see then as well that the corresponding coherent measure of deviation is

D(X)=supX — EX. (7.12)

7.8. Aversity of Distributed Worst-Case Risk Measures
The coherent risk measure in (6.7) is averse, with

D(X)=—-EX+ X sup X(w)+---+ A sup X(w). (7.13)
wEe weN,

7.9. Aversity of Log-Exponential Risk Measures

The coherent risk measure in the extended sense given by R(X) = Alog E[eX/?] is averse.
Direct verification through (R6) works again: Since EX = Alog E[e[FX]/A] having R(X) >
EX amounts to having E[e¥] > eFY for Y = X/, and that is Jensen’s inequality for a
nonconstant Y and the strictly convex function ¢ +— et. We conclude that a coherent measure
of deviation in the extended sense is furnished by

D(X) = AlogE[e[X_EX]/)‘] for any A > 0. (7.14)
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7.10. Another Example of a Deviation Measure in the Extended Sense

A deviation measure of a type related to so-called robust statistics is defined in terms of a
parameter s > 0 by

D(X) =

{02(X) if 0(X) <s,
s2+2s[0(X) —s] ifo(X)>s.

Here o(X) could be replaced by Dy(X) for any deviation measure Dy.

8. Characterizations of Optimality

For a problem of optimization in the form of (3.1) with each R; a coherent measure of risk,
how can solutions & be characterized? This topic could lead to a major discussion, but here
we only have space for a few words. Basically this requires working with subgradients of the
functions ¢; in the sense of convex analysis, and that means being able to determine the
subgradients of the functionals R;. That has been done in Rockafellar et al. [18]. The answer,
for the case of R; being positively homogeneous, is given in terms of the corresponding risk
envelopes Q;. The set of subgradients Y of R; at X is

OR;(X)=argmax E[X Q). (8.1)
QeQ;
Details of what that means for various examples are provided in Rockafellar et al. [18]. Fun-
damentally, Lagrange multipliers, duality, and other important ideas in convex optimization
revolve around the risk envelopes when invoked in the context of uncertainty.
Note, for instance, that if the random variable c,(x) is staircased as in (2.11) and
constraints of the form CVaRg, (¢o(x) — di) <0 are imposed to tune its distribution, a
Lagrangian expression in the form

CVaRa,(co(z)) +y1[CVaRa, (¢o()) — di] + -+ + y4[CVaRa, (co (7)) — dq] (8.2)

is generated in which minimization in x for fixed nonnegative multipliers y1,...,y; corre-
sponds to minimization of R(c,(x)) for the mixed CVaR risk measure

R = AoCVaRa, + A1 CVaRy, + -+ A,CVaR,, (8.3)

in which the coefficient vector (Ag, A1,...,A,) is obtained by rescaling (1,y1,...,y,) so that
the coordinates add to 1. Duality, in the framework of identifying the multipliers which yield
optimality, must in effect identify the weights in this mixture and therefore an implicit risk
profile for the optimizer who imposed the staircase constraints.
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