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ABSTRACT: The buffered failure probability is an alternative measure of reliability that offers several theo-
retical, practical, and computational advantages over the traditional failure probability. It is handled with relative
ease in design optimization problems, accounts for the degree of violation of a performance threshold, and is
more conservative than the failure probability. This paper examines the difference between the buffered failure
probability and the failure probability in several examples and find that the buffered failure probability typically
overestimates the failure probability of a structure with a factor of three. We examine the use of the buffered fail-
ure probability in reliability-based optimal design and present three algorithms for the solution of the resulting
optimization problems. Computational results on six engineering design examples indicate that the problems
are solvable in few seconds using standard optimization solvers.

1 INTRODUCTION

Engineering structures are subject to uncertain loads,
environmental conditions, material properties, and
geometry that must be accounted for in the design,
maintenance, and retrofit of such structures. The the-
ory of structural reliability, see, e.g., Ditlevsen and
Madsen (1996), provides an analytic framework for
assessing the reliability of a structure as measured by
its failure probability to be defined precisely below.
The failure probability is used by researchers, design-
ers, and building code developers as a tool for as-
sessing and comparing designs (Ditlevsen and Mad-
sen 1996). While the failure probability is of signifi-
cant importance, it also possesses troublesome prop-
erties that raise several theoretical, practical, and com-
putational issues. First, it only considers two possi-
ble states of the structure: failed, i.e., a performance
threshold is violated, and safe, i.e., the threshold is
not violated. The degree of violation is of no impor-
tance within this framework. Second, the exact com-
putation of the failure probability is rarely possible
and commonly used geometric approximations such

as the first-order and second-order reliability meth-
ods have unknown accuracy and may leave serious
design risk undetected. Third, the sensitivity of the
failure probability or its approximations with respect
to parameters may be poorly behaving and difficult to
compute even if the underlying model of the structure
is differentiable with respect to parameters. Fourth, it
is unknown whether the failure probability and its ap-
proximations are convex as functions of parameters.
For this reason, it may be difficult to obtain a glob-
ally optimal design of optimization problems involv-
ing the failure probability or its approximations due
to their many local minima that are not globally opti-
mal. We refer to Rockafellar and Royset (2010) for a
detailed discussion of these issues.

The buffered failure probability is an alternative
measure of reliability introduced in Rockafellar and
Royset (2010) that offers several advantages. The
buffered failure probability is handled with relative
ease in design optimization problems, accounts for
the degree of violation of a performance threshold,
and is more conservative than the failure probability.



This paper summarizes key properties of the buffered
failure probability and compares it with the failure
probability. Sections 2 and 3 present the failure and
buffered failure probabilities, respectively, and are
based on Rockafellar and Royset (2010). Section 4
compares the probabilities analytically and numeri-
cally. Section 5 presents computational methods for
solving design optimization problems.

2 FAILURE PROBABILITY

The failure and buffered failure probabilities are de-
fined in terms a limit-state function g(x,v) that is
a function of a vector x = (x1, 2o, ...,x,) of design
variables (with prime ' denoting the transpose of a
vector), which may represent member sizes, material
type and quality, amount of steel reinforcement, and
geometric layout selected by the designer, and a vec-
tor v = (v, vg,...,v,,)" of quantities, which may de-
scribe loads, environmental conditions, material prop-
erties, and other factors the designer cannot directly
control. The quantities v are usually subject to un-
certainty and their values are therefore not known
a priori. The limit-state function represents the per-
formance of the structure with respect to a specific
criterion referred to as a limit state. As commonly
done, we describe these quantities by random vari-
ables V = (V1,V5,...,V,,) with a joint probability
distribution which is regarded as known, although it
might need to be estimated empirically. To distinguish
between the random variables and their realizations,
we denote the former by capital letters and the latter
by lower case letters. For a given design X, g(x,V)
is a random variable describing the (random) perfor-
mance of the structure.

By convention, g(x,v) > 0 represents unsatisfac-
tory performance of the structure with respect to
the limit-state function and, consequently, the event
{g(x,V) > 0} is the set of realizations of the random
vector V corresponding to “failure.” The traditional
approach to structural reliability defines the failure
probability of a structure as the probability of such
a failure event. As the failure probability depends on
the design x, we denote it by p(x). That is,

p(x) = Plg(x,V)>0]

= /.../I(g(x,v) > 0) fy(v)dvy...dvy, (1)

where fy(v) is the joint probability density function
for V and I(g(x,v) > 0) is the indicator function de-
fined to be one if g(x,v) > 0 and zero otherwise. We
refer to Rockafellar and Royset (2010) for generaliza-
tions of the failure and buffered failure probabilities to
the case of structural systems with multiple limit-state
functions.
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Figure 1: Cumulative distribution function (cdf) of g(x, V) with
examples of a-quantile g, (x) and a-superquantile g, (x) when
normally distributed with mean —1 and standard deviation 1.

3 BUFFERED FAILURE PROBABILITY

In this section, we discuss the buffered failure prob-
ability, an alternative to the failure probability, which
offers several advantages. The buffered failure prob-
ability relates to the conditional value-at-risk (Rock-
afellar and Uryasev 2000, Rockafellar and Uryasev
2002), which is now widely used under the acronym
CVaR in the area of financial engineering to assess in-
vestment portfolios. In that area, a quantile is usually
called value-at-risk (VaR). Rockafellar (2007) pro-
vides a tutorial on CVaR including relation to safety
margins and potential replacements for failure proba-
bility constraints.

3.1 Definition

We first recall that for any probability level «, the a-
quantile of the distribution of a random variable is
the value of the inverse of the corresponding cumu-
lative distribution function at «v. For simplicity in pre-
sentation, we assume here and throughout this paper
that the cumulative distribution function of ¢(x, V) is
continuous and strictly increasing for all x. For defi-
nitions which serves to fully generalize beyond this
case, we refer to Rockafellar and Uryasev (2002).
We consider especially the random variable g(x,V)
for a given design x and denote the a-quantile of
9(x,V) by q.(x). As indicated by the notation, g, (X)
depends on the design x as the probability distribu-
tion of g(x,V) changes with x. Figure 1 illustrates
Jo(Xx) (and G, (x) to be defined below) for the case
when ¢(x,V) is normally distributed with mean —1
and standard deviation 1. Figure 1 shows the cumu-
lative distribution function of g(x, V) in this case and
quantiles corresponding to probability levels o = 0.60
and oy = 0.84. In view of Figure 1 and (1), we find
that the failure probability is equal to one minus the



probability level that results in the quantile being zero.
For example, in Figure 1 we find that oy = 0.84 gives
oy (X) = 0. Hence, p(x) =1 — oy =1—0.84 = 0.16.

Before we define the buffered failure probability,
we introduce a quantity that is closely related to the
quantile. For any probability level o, we define the
a-superquantile as

Go(x) = Elg(x, V)|g(x, V) = ga(x)]. 2)

That is, the a-superquantile is the average value of
g(x, V), conditional on the event that g(x, V) is no less
than the a-quantile. This quantity is called CVaR in fi-
nancial engineering, but we here use the application-
independent name superquantile. Figure 1 illustrates
the superquantiles of ¢(x,V) for probability levels
a = 0.60 and oy = 0.84. Since g(x,V) is normally
distributed, it is trivial to compute the superquan-
tiles using the well-known conditional expectation
formula,

() =+ 720

; 3)

for a normally distributed g(x, V) with mean p, stan-
dard deviation o, and truncation level q,, where ¢(+) is
the standard normal probability density function and
Jo 18 the a-quantile of the standard normal distribu-
tion. When ¢(x,V) is not normally distributed, the
calculation of the superquantile appears much more
difficult. As seen in the next subsection, however, it
can be computed in a remarkably efficient manner. It
is clear from the definitions that g, (x) < g,(x) for any
probability level o and design x.

Figure 1 highlights the definition of a superquantile
as a conditional expectation. As seen for probability
level o = 0.60, the corresponding quantile is —0.75.
The corresponding superquantile is the average value
of g(x,V) conditioned on ¢(x,V) being larger than
—0.75. In this case, that value is —0.03 as computed
by (3). Similarly, for probability level 0.84, the cor-
responding quantile is 0 and the corresponding su-
perquantile is 0.53.

We now define the buffered failure probability p(x)
to be equal to 1 — o where « is selected such that the
superquantile

Ga(x) = 0. 4)
That is,
p(x) = Plg(x,V) = ¢a(x)], (5)

where « is selected such that (4) holds. Hence,
q1—p(x)(X) = 0. We see from Figure 1 that the proba-
bility levels a = 0.60, which leads to g, (x) = —0.03,
and ap = 0.84, which leads to G,,(x) = 0.53, are
slightly too small and much too large, respectively,
to result in a corresponding superquantile of zero.
However, it is easy to find by trial-and-error and (3)
that a probability level o = 0.62 results in a quantile

of —0.70 and a superquantile of approximately zero.
(We present a much easier way than trial-and-error
below for computing the superquantile.) By defini-
tion, see (5), the buffered failure probability is then
1—a=1-0.62 =0.38, which is somewhat larger
than the failure probability of 0.16.

In general, we find that

p(x) < p(x) (6)

for any x (Rockafellar and Uryasev 2000, Rockafel-
lar and Uryasev 2002, Rockafellar 2007). Hence, the
buffered failure probability is a conservative estimate
of the failure probability for any design x. As we
see below, the degree of overestimation is usually
modest. We stress, however, that the buffered failure
probability carries more information about the design
than the failure probability as it includes information
about the upper tail of g(x,V). Hence, for designs
where the probability of g(x, V) taking on values sub-
stantially above zero is relatively large, the buffered
failure probability tends to be somewhat larger than
the failure probability. In contrast, if the probability
of g(x,V) taking on large values is small, then the
buffered failure probability is typically close to the
failure probability.

As we discuss below, the buffered failure probabil-
ity is surprisingly easy to compute, possesses several
convenient properties, and avoids many of the diffi-
culties associated with the failure probability. Hence,
we believe there are substantial advantages to replac-
ing the failure probability by the buffered failure prob-
ability in engineering design.

From the above definition of the superquantile, it
may appear difficult to compute the buffered failure
probability in general. However, this is not the case as
the next subsection describes.

3.2 Buffered Failure Probability in Design
Optimization

Suppose that we would like to find a design with fail-
ure probability no larger than a threshold 1 — . That
is, we would like to determine a design X that satisfies
the constraint

p(x) <1 — ay. @)

In view of Section 1 and Rockafellar and Royset
(2010), we note that standard optimization algorithms
may have substantial difficulties on problems with
constraints of the form (7). We now show that the al-
ternative constraint

p(x)<1—o (8)

in terms of the buffered failure probability is much
easier to handle. We start by noting that a design x
that satisfies (8) also satisfies (7). Hence, (8) is a con-
servative requirement.



The ease with which (8) can be handled in opti-
mization algorithms clearly hinges on our ability to
evaluate p(x) or equivalent expressions. While p(x)
cannot be expressed explicitly, there is a convenient,
equivalent expression for (8) that we derive next.

In view of the definition of the buffered failure
probability, we see that (8) holds if and only if

oo (X) < 0. )
It is shown in Rockafellar and Uryasev (2000) that

Ga(X) = min, (2, ), (10)

where 2z is an auxiliary design variable and

1

Na(20,X) = 20 + mE[max{Qg(x,V) — 20}]- (1)
We do not include a derivation of this expression as it
is somewhat involved and refer the interested reader
to Rockafellar and Uryasev (2000). Hence, the task of
finding a design x that satisfies p(x) < 1 — oy is equiv-
alent to finding a design x and an auxiliary variable z
such that

Nao (20,X) < 0. (12)

Suppose that the goal is to determine a design x
that minimizes some continuously differentiable ob-
jective function f(x) (e.g., cost) subject to the reli-
ability constraint p(x) < 1 — ap and a finite number
of continuously differentiable equality and inequal-
ity constraints abstractly represented by the set X.
That is, we would like to solve the design optimiza-
tion problem

P: min f(x) s

xeX

t. p(x) <1—o. (13)

In view of the discussion above, the alternative for-
mulation in terms of the buffered failure probability
takes the form

BP: min f(x) s.t.

x€X,zo

20 + E[max{0,9(x,V) — 2} < 0

1—0(0

where we observe that the optimization is over both x
and zg.

We usually cannot compute E[max{0,g(x,V) —
20 }] explicitly. However, the expectation can be es-
timated by its sample average. Let v', ..., v" be real-
izations of V. Then, the optimization problem

/. .
BP'y : xrer}%gof(x) s.t.
1 al :
—_ 0 7)) — < 014
20 + N(]. _ Oéo) = III&X{ 7g<X7V ) ZO} = ( )

is an approximation of the problem BP. Even if the
limit-state function g(x,v) is continuously differen-
tiable with respect to x for all v, BP')y is not di-
rectly tractable by standard nonlinear optimization
algorithms due to the nonsmoothness of the max-
function in BP'y. However, an equivalent transcrip-
tion of BP'y facilitates the use of standard nonlinear
optimization algorithms.

We let 2y, ..., 2y be auxiliary design variables and
denote zZ = (2, 21, ..., 2y )’. Then, BP' is equivalent
to the following intermediate problem

min f(x) s.t.

1 N
20+t ——"—< zi < 0
0 N(l—ao)jzlﬂ

max{0,g(x,v/) — 2} = 2;, j=1,2,...,N,

where we simply force the auxiliary design vari-
ables to take on the “right” values. We can relax the
equality constraints to less-than-or-equal constraints
as there is no benefit to let the variables take on
values such as max{0,g(x,v/) — z} < z; for any
7 =1,2,..., N. Moreover, a constraint of the form
max{0,g(x,v/) — 29} < z; is equivalent to the two
constraints g(x,vj ) — 20 < zj and 0 < z;. This leads
to the following equivalent problem of BP’ y:

BPy : Xrél)l(nif(x) s.t.

< 0
%+ Nl—ozo ZZJ -

gx, V) =z < 2, j=1,2,.,N (15

Zz > 0, j=1,2,..N.

We propose that engineers consider BPy and BP in-
stead of P when designing structures for reasons sum-
marized next.

4 COMPARISON OF PROBABILITIES

We next compare the buffered failure probability and
the failure probability in detail.

4.1 Advantages of the Buffered Failure Probability

As mentioned above and discussed in Rockafellar and
Royset (2010), the buffered failure probability com-
pares favorable with the failure probability in several
aspects. First, we find it highly problematic to apply
standard nonlinear optimization algorithms to opti-
mization problems involving p(x). In contrast, BPy
is solvable by standard nonlinear optimization algo-
rithms as long as the limit-state function g(x,v) is



continuously differentiable with respect to x. This is
a substantially less stringent condition than those re-
quired for P to be easily solvable. Moreover, as we see
below, there are also efficient algorithms that tackle
BP); directly. The optimal values of BPy and BP/y
are close to the optimal value of BP when N is large;
see Chapter 5 of Shapiro et al. (2009). In addition, BP
is a restriction of P because the buffered failure prob-
ability overestimates the failure probability; see (6).
Hence, a feasible design in BP is also feasible in P.

Second, the buffered failure probability provides
an alternative measure of structural reliability which
accounts for the tail behavior of the distribution of
g(x, V). Hence, designs obtained from BPy and BP'y
may be more desirable than those from P.

Third, even if g(x,v) is convex in X, p(x) may not
be and, hence, it may be difficult to obtain a globally
optimal design of P. In contrast, the region defined
by the constraints (15) is convex when g(x,v/), j =
1,2,..., N, are convex functions in x. Hence, every
Karush-Kuhn-Tucker point of BPy is a globally op-
timal design when f(x) and g(x,v/), j =1,2,.... N,
are convex functions and the region X is a convex
set. Consequently, BPy “preserves” convexity. Even
if not all of these conditions are satisfied, we expect it
to often be easier to determine a design with a lower
objective function value in BPy than in P because
BP) deals with g(x,v) directly instead of the more
complex expression p(X).

Fourth, BP y facilitates the development of approx-
imation schemes for limit-state functions that are ex-
pensive to evaluate. For example, if the evaluation of
the limit-state function involves the output of a finite
element model, it may not be possible to evaluate the
limit-state function more than a few hundred or a few
thousand times. In such situations, the failure proba-
bility in P is often replaced by response surface and
surrogate models (Gasser and Schueller 1998, Torc-
zon and Trosset 1998, Viana et al. 2009). This al-
lows quick optimization, but the quality of the re-
sulting design depends on the fidelity of the response
surface or surrogate model used. As p(x) may be a
highly nonlinear, nonconvex function, we conjecture
that it may be more difficult and computationally ex-
pensive to develop a good surrogate model of p(x)
than of g(x,v), about which we may have problem-
specific insight. With a surrogate model of g(x,v),
the optimization of BP using that surrogate model in
place of g(x, V) can often be accomplished relatively
quickly (Rockafellar and Royset 2010).

4.2  Analytic Comparison of Probabilities

While we stress that the buffered failure probability
carries more information about a structure’s reliabil-
ity than the failure probability, we may also view the
buffered failure probability as an approximation of the
failure probability. From (6), we see that the buffered
failure probability is a conservative approximation.

However, in general, it is difficult to say with how
much the buffered failure probability overestimates
the failure probability. Still, in some special cases, we
can relatively easily examine the differences. We con-
sider one such case next.

Suppose that the limit-state function is affine in
x with an intercept that is normally distributed with
mean £ and standard deviation o, i.e., g(x,V) = a’x +
V', where V is a single normally distributed random
variable V' with mean p and standard deviation o.
Then, the failure probability takes the form

p(x) =Probla’x +V > 0] = ®((a'x+ ) /o), (16)

where ®(-) is the cumulative standard normal distri-
bution function. Hence, the constraint p(x) < 1 — g
simplifies to

ax+pu+od (ag) <0. (17)

In comparison, the buffered failure probability p(x) <
1 — oy simplifies as follows. Since g(x, V) is normally
distributed with mean a’x +  and standard deviation
o, in view of (3), the superquantile

0(%5(‘1)_1(040)).

1—050

Qoo (X) = a'X+ 1+ (18)

Since p(x) < 1 — ap if and only if g,,(x) < 0, this
buffered failure probability constraint simplifies to

o¢(®~" (a))

a'x +p+
]_—O[()

<0. (19)

Comparing (17) and (19), we see the exact differ-
ence between the failure probability and buffered fail-
ure probability constraints in this case and that the
difference varies with ¢ and ay. Wang and Ahmed
(2008) present a similar comparison for the case with
g(x,V) = V'’x and V normally distributed. We next
examine numerically the difference between the prob-
abilities in the case of engineering applications.

4.3 Computational Examples

We consider six engineering design examples from
the literature and compare the difference between the
failure and buffered failure probabilities. Example 1 is
a simple problem instance with two design variables
and two random variables constructed by Hock and
Schittkowski (1981). Example 2 involves the design
of the thickness and width of a cantilever beam sub-
ject to random yield stress, Young’s module, and hor-
izontal and vertical loads, as described by Eldred and
Bichon (2006). Example 3 deals with the design of the
cross-section width and depth of a short column sub-
ject to random axial force, bending moment, and yield
stress, and is given in Bichon et al. (2009). Example
4 focuses on determining the diameter and thickness
of a tubular column under a random load; see (Rao
2009), pp. 10-14. Example 5 involves the design of



Table 1: Design examples with number of design variables (DV)
and random variables (RV) listed.

Table 2: Estimated failure and buffered failure probabilities for
specific optimized designs.

Ex. Description DV RV Ex. Failure probability Buffered failure prob.
1 Analytical (Hock and Schittkowski 1981) 2 2 1 [0.00047, 0.00057] 0.00133

2 Cantilever (Eldred and Bichon 2006) 2 4 2 [0.0000004, 0.0000016] 0.0010150

3 Short column (Bichon et al. 2009) 2 3 3 [0.00047, 0.00057] 0.00140

4 Tubular column (Rao 2009), pp. 10-14 2 1 4 [0.00033, 0.00041] 0.00097

5 Speed reducer (Rao 2009), pp. 472-473 7 7 5 [0.00042, 0.00052] 0.00449

6 Vehicle design (Samson et al. 2009) 17 6 [0.00028, 0.00034] 0.00138

a speed reducer under random material properties as
given in (Rao 2009), pp. 472-473. The design vari-
ables include face width, module of teeth, number of
teeth on pinion, and length and diameter of shafts. Ex-
ample 6 is taken from Samson et al. (2009) and deals
with the design of a motor vehicle under a side-impact
crash. The design variables include thickness of pil-
lar, floor side, cross member, door beam and door belt
line. All design variables are subject to production un-
certainties. Table 1 gives an overview of the examples
and lists the number of design variables (DV) and ran-
dom variables (RV); see also Basova (2010). These
examples involve multiple limit-state functions and,
hence, we consider the generalization of the failure
and buffered failure probabilities to the system fail-
ure probability and the system buffered failure proba-
bility as described in Rockafellar and Royset (2010).
The examples include a mix of explicitly given linear
and nonlinear objective and limit-state functions. Ta-
ble 2 presents 95% confidence intervals for the fail-
ure probability (column 2) for particular designs x
in the six examples. The particular designs are opti-
mized designs as given in Basova (2010). Here, we
only aim to illustrate typical differences between the
failure and buffered failure probabilities and omit the
numerical values of the designs. The confidence inter-
vals are computed in the standard manner by sequen-
tially generating sample points of V until the width
of the confidence interval is less than 10%. Column
3 of Table 2 presents point estimates of the buffered
failure probability in each example for the same de-
sign as the one used to estimate the failure probabil-
ity. In each example, we use the same sample as the
one that generated the estimate of the failure proba-
bility. Specifically, if v}, v2, ..., v" is that sample, then
the estimate of the buffered failure probability is sim-
ply 1 — «, where « is the probability level that ap-
proximately ensures that the empirical estimate of the
superquantile g,(x) is zero; see (4). Hence, 1 — «
is computed as follows. First, we order the the val-
ues {g(x, v/}, in decreasing order. Without loss of
generality, suppose that g(x,v!) > g(x,v?) > ... >
g(x,vY). Second, we computing the smallest integer
k such that 37", g(x,v/) /(N — k4 1) < 0. Third, we
obtain the estimate of the buffered failure probability
by k/(N — 1). Table 2 shows that the buffered failure
probability typically overestimates the failure proba-
bility of the structures by a factor of three.

5 COMPUTATIONAL METHODS

In this section, we discuss some relatively simple al-
gorithms for solving design optimization problems of
the form BP. Since the expectation in this problem is
rarely computable exactly, we focus on that problem’s
sample-average approximation BP'y, where the ex-
pectation is approximated by its sample average. We
present three algorithms for solving BP’y, for a fixed
N. These algorithm are attractive due to their simplic-
ity and the fact that they can easily be implemented
using standard optimization solvers such as SNOPT
(Gill et al. 1998), LANCELOT (Conn et al. 1992),
and NLPQL (Schittkowski 1985) when the limit-state
function g(x, v) is continuously differentiable with re-
spect to X. They are also guaranteed to generate glob-
ally optimal, locally optimal, and stationary points of
BP under relatively mild assumptions as N — oo.
We refer to Xu and Zhang (2009), Royset (2010),
and Chung et al. (2010) for the theoretical basis for
these algorithms. Related algorithms based on non-
smooth optimization are discussed by Beliakov and
Bagirov (2006), Lim et al. (2010), Iyengar and Ma
(2010), and Ogryczak and Sliwinski (2010). Algo-
rithms based on problem decomposition are discussed
by Fabian (2008) and Kunzi-Bay and Mayer (2006),
and algorithms based on smoothing by Tong et al.
(2010). For algorithms based on adaptive selection
of the sample size N, we refer to Basova (2010) and
Royset (2010).
We next describe the three algorithms in turn.

5.1 Algorithm 1: Expansion method

Algorithm 1 for solving BP)y, first presented in
(Rockafellar & Uryasev 2000), considers the variable-
and constrained-expanded problem BPy and apply a
standard nonlinear optimization algorithm to that ex-
panded problem. While this method is simple, it suf-
fers from the drawback that the number of variables
and constraints grows linearly in the sample size N.
Hence, for large N, it may be impossible to solve
BP ) or the solution may require specialized hardware
and software.

5.2 Algorithm 2: Active-set method

Algorithm 2 is a specialized version of an algorithm
by Chung et al. (2010) and considers only a subset
of sample points, a so-called active set, in most itera-
tions. Hence, it may overcome the difficulty faced by



the expansion method. Specifically, Algorithm 2 con-
sists of applying a standard optimization solver to the
reduced problem

BPy(W):  min

xeX,z;,jeEW

f(x) s.t.

1
20t —— zi < 0
N(l—Oéo)ng:Vj

g(x7vj) — 20 S 25, .] € W(2O)

where W is a subset of {1,2,..., N}. Given an ini-
tial design x" and initial auxiliary variables z° =
(20,29, ...,2% ), the active set IV first consists of those
sample point indices j such that g(x°,v/) — 2§ — 27 >
max;—1 2. n{9(x",v") — 20 — 2} — ¢, where € > 0
is a parameter. Hence, W consists of sample point
indices that yield nearly active constraints in BPy.
Next, Algorithm 2 carries out a given number of it-
erations, say n, of a standard optimization solver on
BPy (W). This yields a new design x* and auxiliary
variables z'. We refer to the process of determining
W and carrying out n solver iterations as one ma-
jor iteration. Algorithm 2 then starts another major
iteration by augmenting the active set with any sam-
ple point index j that satisfies g(x',v/) — z5 — 2} >
max;—; o . n{g(x',v)) — 2§ — z}} — €. Algorithm 2
proceeds similarly with alternating the calculations of
n iterations of the standard optimization solver ap-
plied to BPx (/) and the updating of W using the
latest design and auxiliary variables. Since the cardi-
nality of W may be smaller than N, Algorithm 2 may
have a smaller memory requirement than Algorithm 1

and, as seen below, its run time may also be shorter.

5.3 Algorithm 3: Smoothing method

Algorithm 3 overcomes the difficulty associated with
the nonsmooth max-function in BPy by smoothing
instead of by expansion of the number of variables
and constraints as in Algorithms 1 and 2. Specifically,
it can be shown that the problem

BPy, : xng}gof(x) s.t.
1 N
zo+]v(1_%)j§wg(x,zo) < 0, 21)
where

(%, 20) = ;ln(l +exp(a(gx,v) — 20)),  (22)

approximates in some sense BP; for large value of
the smoothing parameter ¢ > 0; see Alexander et al.
(2006), Xu and Zhang (2009), and Royset (2010) for

Table 3: Run times in seconds for Algorithms 1-3 on Examples
1-6.
Ex.  Algorithm 1

Algorithm 2 Algorithm 3

1 1406.1 0.7 15.9
2 1966.6 199.4 42.3
3 1020.8 1.1 30.3
4 435.8 9.8 56.9
5 1500.0 4.3 156.1
6 118.0 1.9 68.8

theoretical results and application of this approach.
Specifically, (21) is a smooth approximation of (14).
Itis easy to show that the gradient of 17 (x; z¢) is given

by
Vi (%, 20) = pt (X, 20) (Vyg(x,¥7), 1), (23)

where 1i](X,20) = exp(q(g(x, V) — 2))/(1 +
exp(q(g(x,v/) — z))). BPy, involves only one
auxiliary design variable z; and one constraint (in
addition to the constraints abstractly represented by
X) regardless of the sample size /NV. Hence, its mem-
ory requirement is moderate. Algorithm 3 simply
involves applying a standard optimization solver to
BP, for a given value of q. We next compare the run
times of Algorithms 1-3 on Examples 1-6.

5.4 Numerical results

We implement Algorithms 1-3 in MATLAB with
TOMLAB/SNOPT (Holmstrom, 1999) as optimiza-
tion solver. The computations are run on a desktop
computer with 3.25 GB RAM and 3.16 GHz proces-
sor speed under Windows XP. We consider BP for Ex-
amples 1-6 with 1 — g = 0.001349898, which corre-
sponds to the —3 quantile of the standard normal dis-
tribution. In addition to a constraint on the buffered
failure probability, Examples 1-6 include bounds on
the decision variables as described by Basova (2010)
and the original references given above. We use sam-
ple size N = 10000, parameters € = 0.001 and n = 5
in Algorithm 2, and parameter ¢ = 1000 in Algorithm
3. We refer to Basova (2010) for a discussion of these
parameter choices.

Table 3 gives run times to termination for Algo-
rithms 1-3 in seconds on Examples 1-6. In the case
of Algorithms 1 and 3, the calculations are termi-
nated when the default stopping criterion in SNOPT
is satisfied. For Algorithm 2, the calculations termi-
nate at major iteration k if g(x*,v/) — 2 < 2J for
allj=1,2,...,N and | max;_; o n{g(x*,v/) — 25 —
2} — maxj_io. n{g(xF V) — 257t — 2T <
1075. That is, the calculations terminate if the current
design is feasible with respect to all samples and the
difference between two consecutive major iterations
is small as measured by the constraints.

As reported by Basova (2010), Algorithms 1-3 ob-
tain essentially identical optimized designs. We find
from Table 3, however, that the run times of Algo-
rithm 1 are one to three orders of magnitude slower



than those of Algorithms 2 and 3 due to the large
number of variables and constraints that need to be
handled. Except in Example 2, Algorithm 2 is faster
than Algorithm 3 with run times of just a few seconds.

6 CONCLUSIONS

We compared the buffered failure probability, which
is an alternative measure of structural reliability, with
the traditional failure probability and find that it offers
significant advantages. The buffered failure probabil-
ity accounts for the degree of violation of a perfor-
mance threshold, is handled with relative ease in de-
sign optimization problems, and is more conservative
than the failure probability. The degree of conserva-
tiveness is moderate: the buffered failure probability
overestimates the failure probability of a structure by
a factor of three in several engineering design exam-
ples. The paper presents three algorithms for solving
optimal design problems involving the buffered fail-
ure probability. Two of the algorithms solve six engi-
neering design examples in few seconds.
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