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Abstract. In an economic model of exchange of goods, the preference structure can be specified
by utility functions. Under utility conditions identified here more broadly than usual, except for
concavity in place of quasi-concavity, every equilibrium will be stable in a doubly local sense with
respect to shifts in the agent’s holdings and Walrasian tatonnement. This result, fully allowing
the boundary of the goods orthant to come into play, is obtained by paying attention not only
to prices but also to the closeness of initial holdings to equilibrium holdings.

The utility conditions are classically standard for stability investigations, in that they invoke
properties coming from second derivatives, but are significantly relaxed in not forcing all goods to
be held in positive amounts. Agents can be more than consumers, and the goods are viewed very
generally, not just as commodities and not only for immediate disposal. For a given agent some
goods are allowed to have no effect at all on utility, while others, although insatiably interesting,
may anyway end up at zero in equilibrium. Recent advances in variational analysis provide the
support needed for working in that context, which requires in particular a convenient “ample”
survivability condition for existence to replace the usual assumption that agents start with at
least a little bit of every good.

The stability results also point the way toward further developments in which an equilibrium
might evolve in response, say, to incremental consumption or inputs in the agents’ holdings as
stockpiles or other sources of benefit.
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1 Introduction

The general theory of equilibrium is fundamental in mathematical economics, but its biggest
success has been in confirming existence. Questions about how an equilibrium might be identified
by some market mechanism such as Walrasian tatonnement, or how readily it might adjust to
shifts in the initial holdings of the agents, have been harder to answer. Yet such questions are
crucial to assessing whether the concept of equilibrium, as defined and developed so far, is truly
satisfactory.! Examples of bizarre configurations of equilibrium prices and instability in the face
of changes in resources have led researchers to fall back on merely generic forms of answers.
Technical limitations have prevented realistic assessment of the effects of survival constraints on
the adjustment behavior of agents, even generically.

Here we provide affirmative answers which go beyond such limitations. We show that equi-
librium in models of exchange enjoys properties of stability which are much more robust and
universal than the existing literature might lead one to expect, if viewed from the proper per-
spective of local behavior. The results are obtained under assumptions on preference structure
that are significantly relaxed from the usual ones in this subject. The key is utilization of
methodology from variational analysis, [40], [16], which makes it feasible to treat stability issues
effectively when the amounts of some goods in an agent’s holdings might be zero in equilibrium or
out of it, or might repeatedly hit the boundary of the goods space during a process of adjustment.
The tools of smooth differential analysis could not cope with that and anyway have promoted
conclusions about uniqueness and stability that are only guaranteed to hold generically; cf. the
books of Mas-Colell [35] (1985), Balasko [7] (1988) and [9] (2009). The one restrictive aspect of
our assumptions is that we take utility functions to be concave instead of quasi-concave.? This
enables us to work more effectively with Lagrange multipliers for budget constraints and to rely
on the duality theory of convex optimization in developing a simple alternative to the common
requirement that initial holdings be positive in all goods.

A conceptual distinction accompanying our approach is that goods can be more than just
“commodities,” and agents can be more than just consumers. What might happen to the holdings
amassed by the agents is left unsaid. That opens the way to new ideas of how such holdings
might evolve in time, as will be explained below.

In models of exchange where agents maximize utility under budget constraints dictated by
prices and initial holdings, there are demand mappings that go from prices and initial holdings
to desired holdings. An equilibrium is achieved when the desired holdings, in aggregate, are in
balance with the initial holdings, and the issue is whether a price vector can bring this about.
A prime object of study is the mapping from the initial holdings to such a price vector, or
vectors, if any—there might be multivaluedness. However, it is essential for our efforts to include
the desired holdings along with the prices, thereby getting an equilibrium mapping from initial

!The importance of stability issues in economic equilibrium was strongly emphasized early-on by Samuelson
[42] (1941) and recently all the more by Kirman [31] (2011).

2Preferences coming from a quasi-concave utility can be approximated arbitrarily closely by those coming from
a concave utility; see Kannai [28] (1977). On the other hand, finite demand data cannot test the difference; see
Brown and Shannon [12] (2008).



holdings to prices and terminal holdings combined. In that picture, a combination of prices and
holdings is an equilibrium if those holdings, as inputs, lead to themselves as outputs.?

The important thing to keep in mind from this perspective is that a given equilibrium com-
bination of prices and holdings, although induced by those holdings themselves, can also arise
from many other instances of initial holdings, in fact from any that offer the same total quanti-
ties of goods without changing the agents’ budgets with respect to the equilibrium prices. The
behavior of the equilibrium mapping can be very different for some of those instances than for
others. This has perhaps clouded some of the perceptions about whether “stability” is a property
of equilibrium that can more or less be counted upon. Poor behavior is well documented and
has provided a discouraging undercurrent to research.*

An instructive example of Dontchev and Rockafellar [17] (2010) has two agents, two goods,
and strongly concave utilities. An instance of initial holdings is given which leads to two different
equilibrium configurations. One of them behaves very nicely with respect to perturbations of the
initial holdings, but the other either bifurcates or abruptly vanishes, depending on the direction
of perturbation. Does this mean that the second equilibrium is unstable? Not necessarily, be-
cause, in our view, “stability” ought to tied to an equilibrium in itself instead of being something
“accidental” in the singling out a particular choice of initial holdings that gives rise to it. Indeed,
as demonstrated further for this example in [17], if the initial holdings are taken closer to those
in the second equilibrium, the trouble goes away. The second equilibrium becomes the unique
equilibrium for those alternative initial holdings and behaves nicely with respect to their pertur-
bation. The potential of this proximity phenomenon seems largely to have gone unrecognized
despite some results about it published by Balasko [6] and Sattinger [43] in 1975.

These considerations are all the more crucial in appreciating difficulties associated with Wal-
rasian tatonnement, which tries to identify an equilibrium by gradually adjusting prices down
or up in reaction to excess supply or demand as indicated by tentative trading responses of the
agents. A classical model for this is an ordinary differential equation in a space of price vec-
tors as formulated from the demand functions of the agents. If those functions are adequately
differentiable, traditional stability analysis around an equilibrium price vector (this being a sta-
tionary point for the system) can be carried out in terms of the matrix in the linearization of the
equation at that point. That approach, seen early in Hicks [20] (1939) and Metzler [37] (1945),
led further to the investigation of various matrix conditions with added meaning for economics,
as in Arrow and McManus [5] (1958). Other research, as in Arrow and Hahn [2] (1971), ex-
plored non-Walrasian adjustment processes which go beyond the development of supply-demand
information and enter into iterative trading; cf. Keisler [30] (1996) and its references.”

Scarf [44] (1960) gave the counterexamples that became a major turning point for hopes of

3We prefer “holdings” to “endowments” as better reflecting this possibly double environment.

4Whether such behavior is possible with concave utility is unsettled. Examples like those of Debreu [14] and
Mas-Colell [34] with strange infinite sets of equilibrium price vectors have only quasi-concave utility. Concave
utility imposes more regularity; cf. Mas-Colell [35] and Kannai [28]. It is interesting to speculate that an updated
approach to the axiomatization of preferences which addresses comparative utility as in Kahneman and Tversky
[27] might lead directly to concave utility and its advantages.

®The complicated history of interpretation of the original ideas of Walras [49] (1874) is discussed in this article
as well. See also Walker [48] (1987).



convergence of Walrasian tatonnement in the manner in which it had been envisioned.® The
process might get nowhere, regardless of how close the initial prices are to equilibrium prices.
Saari [41] (1985) underscored the challenges faced by almost any price adjustment mechanism
in achieving successful performance globally, unless the economy had very special characteristics
like gross substitutability. A separate blow to hopes for a reassuringly broad convergence result
came with the realization that the differential equation behind tatonnement suffered hardly any
restriction in having to emerge from an economic model of supply and demand.”

Most of the convergence attention was focused however on the starting point for prices without
consideration of the starting point for holdings. The initial holdings, which dictate the budgets
on the basis of the prices, are kept fixed throughout the adjustment process, and the trouble
with convergence may therefore come from them simply being too far out of kilter. While it
would be good news if tatonnement furnished a sort of globally effective algorithm for finding
an equilibrium from arbitrary initial circumstances, this is evidently too much to ask of it.® The
question of whether the properties of the tatonnement differential equation might nonetheless be
strongly influenced by localization with respect to both goods and prices stayed below the surface
of discussion despite the observations of Balasko [6] and Sattinger [43].°

Here, we pose the question about tatonnement in the framework of a stability property which
may or may not be enjoyed by an equilibrium, independently of the different instances of initial
holdings that would lead to it. Focusing on the classical continuous-time version of tatonnement
as an ordinary differential equation, we define an equilibrium to be tatonnement-stable if the
solution trajectory converges to the price vector in that equilibrium when initiated not only
from prices not too far away, but also from initial holdings not too far away from those in the
equilibrium. This property has a clear economic implication. If the holdings of the agents in the
equilibrium were redistributed in some way, but not by too much, then tatonnement, starting
from the current prices and the altered holdings, would be able to re-identify the lost equilibrium.
An equilibrium with tatonnement stability would thus have a certain attractivity. In combination
with shift stability, tatonnement could similarly even locate a new equilibrium after a shift of
goods that is more than just a redistribution of holdings.

Shift stability is reminiscent of, but distinct from “regularity” of an economy, e.g. as in Mas-
Colell [35], which is featured in arguments on genericity. Such regularity relies on some degree of
smoothness for its very definition and is inoperable as a concept in situations where nonnegativity

6The microeconomics textbooks of Hildenbrand and Kirman [21] and Mas-Colell et al. [36, Chapter 17.H]
further explore many of the things that could go wrong.

"The recent volume of articles put together by Brown and Kubler [11](2008) is a remarkable eye-opener in
that regard, although inklings were present much earlier in the results of Debreu [15] and others.

8 Analogy can be made with the simpler situation where a function to be minimized is not convex and may have
have many isolated points that are locally optimal. In the vast computational literature on this, most algorithms
are only locally effective.

9Balasko’s 1975 theorem was extended by Keenan [29] in 1982, but reference to it can hardly be found elsewhere
in equilibrium literature. It is not cited by Hirota [22] (1981), where an example indicating such localization
influence was offered. More recently, the paper of Brown and Shannon [12] (2008), containing insights into the
extent that “rationalization” of an economy from finite data can be carried out so as to promote tatonnement,
presents the convergence issue in terms of prices only; no localization in goods comes up.



constraints on goods can be active, as in the our framework here. Shift stability builds instead
on recent results of Dontchev and Rockafellar [17] which are not of a generic character. Those
results will be key ingredients in our efforts here. A greatly weakened survivability assumption,
shown in [17] to be enough for the existence of an equilibrium, will help crucially as well.

The conclusion we arrive at, that both stability properties prevail in surprisingly broad cir-
cumstances, suggests that classical equilibrium is a more satisfying notion than opinion has
generally allowed, at least for exchange economies when localization in goods as well as prices
is appreciated. A stronger point still is that we reach this conclusion without resorting to some
of the unrealistic restrictions on goods that have dominated many studies. We fully encompass
the prospect that the attitudes of agents towards particular goods can differ sharply, with some
goods having no effect on utility at all and some being indispensable. Others can be attractive
without being indispensable and can be present in zero amounts in equilibrium, or initially, or
both.19 These provisions are handled without disrupting the existence of equilibrium or the two
types of stability. Equilibrium in this setting cannot conveniently be reduced to a system of
smooth equations. A variational inequality model works instead, and that is what we build on
in our proofs.

Our double form of local stability of equilibrium entails a local uniqueness with the potential
for orderly change through exogenous or endogenous influences. We explore this by consider-
ing the possibility of a law of continuous-time evolution in which adjustments to equilibrium
are induced incrementally. The increments could enter through subsidies or production effects,
or in negative mode through taxes and rates of consumption or deterioration of goods. Rich
possibilities are evident without the need, already here, to develop a full-blown model that pre-
scribes them. Such a model might, for instance, address the dynamical control of equilibrium in
a principal-agent formulation.

2 Statement of assumptions and the main results

Proceeding toward a precise formulation, we take the nonnegative orthant ]R’l+1 as the space of
goods!'!t and suppose that the agents, indexed by i = 1,...,r, have preferences on it which are
given by utility functions u;. To fully appreciate the equilibrium context we are aiming at, it is
important to keep in mind that the goods can be very general, not just commodities destined
for consumption. They can be anything physical, or perhaps even “rights,” that an agent might
wish to acquire and are available for trading in fixed supply. The question of what an agent
might do with them is separate and will be revisited later.

10 After all, in an economy with a potentially huge number of goods, agents should be able to display total
disinterest in some of them and, on other hand, forgo other goods of some interest because other goods are still
more compelling. A theory of equilibrium that assumes this away in order to concentrate only on mathematically
“regular” cases, even if they are somehow generic, risks a lack of plausibility.

HUHaving n + 1 instead of n will shortly be seen to help in the presentation. We could just as well work with
survival sets in the form of displaced orthants specifying various nonnegative lower bounds on the goods required
by the agents. But that can be reduced to the basic orthant case by a change of variables, so for the sake of a
simpler presentation we leave this as an obvious implicit enhancement.



Assumption A1l (utility fundamentals). Each utility function u; on IR?"" is nondecreasing,
concave'?> and upper semicontinuous. It may take on —oo, but if so, only at points on the

boundary of ]RZH. Relative to the set where it is finite, u; is continuous.'?

An important provision will depend on classifying goods according to the interest that an
agent has in them. A good will be called attractive for agent i if every increase in that good
leads to a higher value of u;. It will be called indispensable for agent ¢ if it is attractive and, at
any point in which the quantity of that good (but not every attractive good) is zero, either w;
takes on —oo or u; is finite but the marginal utility of the good is +o00.

Assumption A2 (indispensability). There is a good that is indispensable to all agents. Every
good is indispensable to at least one agent.

The presence of a good that is indispensable to all agents will have an central role in what
follows. It implies insatiability of all the utility functions, but it will have other major conse-
quences as well. Classically standard assumptions, requiring the level surfaces of utility to curve
away from orthant boundaries, actually force every good to be indispensable to every agent. We
need just one such good and will work with it as a numéraire.

In our picture, some goods, far from being indispensable, can fail to be attractive at all to
agent 7. Other goods can be attractive without being indispensable. Our next condition sharpens
the distinction.

Assumption A3 (unattractiveness). If a good is not attractive to agent i, then it has no effect
on the utility function wu;.

In this condition we forgo the possibility of goods that might have positive marginal utility
up to some level but zero marginal utility thereafter.

Assumption A4 (partial strict concavity). With respect to the suborthants of the goods space
that are defined by

O; = {vectors in IR having positive components for goods indispensable to agent i }, (1)

the utility functions u; are twice continuously differentiable.'® Furthermore, the Hessian matrices,
formed by the second partial derivatives, are negative definite with respect to the goods that are
attractive to agent .16

12The distinction between concave and quasi-concave is vital here. For results about approximating quasi-
concave utility by concave utility while taking into account various properties of strictness and differentiability,
such as enter below, see Kannai [28], Mas-Colell [35, Chapter 2], and recently Connell and Rasmusen [13].

13Continuity on the interior of the orthant, where w; is surely finite, is automatic from concavity, so this
technical provision refers only to boundary behavior.

14Marginal utility refers here to the one-sided directional derivative with respect to an increase in the good in
question. That derivative exists from the concavity.

5By this we mean that first and second partial derivatives not only exist continuously on the interior of O;,
namely the positive orthant itself, but also that these derivatives can be extended continuously, through limits,
to the boundary points belonging to O;.

16This refers to the submatrix of the Hessian obtained by excluding the goods that are not attractive. Under
A3, such goods only yield zero derivatives anyway.



In contrast to A4, it would classically be standard—with concave utility—to insist on the
entire Hessian being negative definite. This would be combined with limiting attention to the
interior of the goods space; the orthant boundary would not be allowed to complicate the analysis.
But for economic theory to be more realistic, it ought to be permitted to do so.

With these assumptions at our disposal, we can move to more specific symbolism and formu-
lations of stability. We concentrate on a particular good that is indispensable to all agents, as
guaranteed by A2, calling it money for short.'” ¥ We designate quantities of money in the hands
of agent ¢ by m;, and vectors giving quantities of the other goods by x;, so that the elements of
the goods space have the form (m;, ;) with m; € IR, and x; € IR. Initial holdings will have
the notation (m?, z?).

Prices will always be denominated in money. Since money has price 1 with respect to itself,
we will only need to be concerned with price vectors p € IR" for the remaining goods.

Utility maximization problems. The goal of agent ¢ with respect to a price vector p and
initial holdings (m?,z{) € O; is to maximize the utility u;(m;, x;) over all goods vectors (m;, x;)
satisfying the budget constraint

m; + pa; = m] + paf. (2)

In dealing often with agents collectively, it will be expedient to use the “supervector” notation
(myz) for m=(...,my,...), x= (.., T4...),

and similarly (m?, z°) in the case of initial holdings, and so forth.

Definition of equilibrium. An equilibrium is a triple (p, m, Z) such that each (m;, ;) compo-
nent solves the utility maximization problem of agent i relative to p when (m{, z?) = (m;, ;).
More generally, (p,m, ) is an equilibrium with respect to initial holdings (m", z°), possibly
differing from (m, x), written
(p,m,7) € E(m®,2"),

if each pair (m;, T;) solves the utility maximization problem of agent i relative to p and (m{, z?),

and moreover
r _ T
Zi:l Ti = Zi:l m?. (3)

The goods equation (3) requires supply to equal demand in all the goods other than money.
Money can be left out because the corresponding condition

T r

=1 T = 2 mg (4)

17Qur assumptions will guarantee that this good can serve as a numéraire for prices. However, it is possible
to go further and interpret it as money in the sense of the printed bills and coins of some currency, e.g., dollars.
Such money can be treated as a good because it is available for “trading” in limited supply only. Moreover agents
may well consider it indispensable in their desired holdings, as argued in our papers [25] and [26].

18Tn their 1988 textbook [21], Hildenbrand and Kirman likewise appeal to numéraire prices as an aid to the
study of tatonnement, but they do not speak of the numéraire as “money”; the same for MacKenzie [33] (2002).
This is reflected also in the earlier work of Uzawa [47]. In the recent paper of Kitti [32] (2010), the reduction to
numéraire prices is called price “normalization.” For us, however, money does more than normalize. It enters
significantly into survivability conditions for existence and other assumptions.

7



follows at once from (3) and the budget constraints (2). Apart from the money feature, this
definition is fairly ordinary, but an equilibrium is often conceived in terms of the price vector
alone. We think this is a shortcut which may have lulled researchers into neglecting the very
influences of holdings that we find essential to the analysis of stability issues.

Some observations can now be made which will simplify the discussions to come. First,

in any equilibrium, all prices must be positive. (5)

This follows from A2 through the fact that if the price of some good were zero, then the maxi-
mization problem for an agent considering that good to be indispensable, or even just attractive,
could not have a solution. Next,!”

for p > 0 the problem of an agent ¢ has a unique solution, (6)
and it has to belong to the suborthant O; defined by (1).

Indeed, the budget constraint defines a compact set of goods vectors which meets the interior of
IR™ | where utility is surely finite. The upper semicontinuity of u; in Al guarantees then that
the maximum is finitely attained. Quantities of goods that are not attractive are pushed to zero,
since otherwise they would drag down the budget available for attractive goods, but goods with
infinite marginal utility at zero are forced to be positive. The partial strict concavity guaranteed
by A4 then provides the uniqueness.

On the platform of (5) and (6) we can introduce, with respect to price vectors p > 0, the
demand mappings

Xi(p;m?, 2?) = the corresponding unique optimal z; for agent 1, (7)
observing that the associated optimal money amount will then be

)

and the excess demand mapping will be
Z(pim®,2%) =3 [Xi(p;m?,al) — 2f]. (9)

In this notation we can say for the mapping F in the definition of equilibrium that, with respect
to z; = Xi(p;m?, %) and m; = M;(p;m?, z9),

(p,m,z) € E(m°,2°) < p>0, Z(p;m° 2°) =0. (10)
In particular, (p,m, ) is an equilibrium (unto itself) when this holds with (m°, 2°) = (m, z).

The neighborhoods appearing in the following definitions can be regarded as closed balls with
respect to the Euclidean norm || - [].

19For us, a strict vector inequality refers to a strict inequality in each component.



Definition of shift stability. An equilibrium (p, m, &) is shift-stable if there are neighborhoods
Ny of (m,x) and Ny of (p,m,Z) such that

each (m° 2°) € N, yields a unique equilibrium (p,m,x) € Ny,
and the corresponding localized equilibrium mapping
E:(m° 2% € Ny E(m°,2°) = (p,m,z) € Ny, having E(m,z) = (p,m, ), (11)

is Lipschitz continuous. The equilibrium is semidifferentiably shift stable if E is not only Lipschitz
continuous but also possesses, with respect to all choices of (m°®’,z°"), the one-sided directional
derivative®®

DE(m®, 2% m®,2") = lim 1 [E(mo + hm®’ 2° + ha'’) — E(m°, xo)] (12)
h—0+ h

A perturbation result that bears closely on this property has recently been obtained in [17,
Theorem 3], but not quite in the same framework. That result, not couched as shift stability of the
equilibrium (p, m, T), is presented as a property of (m?, x°) when close enough to (m, T) as long as
a something further is satisfied: the initial holdings (m°, 2°) are amply survivable. This condition,
shown in [17] to furnish the existence of an equilibrium, is far weaker than the customary
assumption that initial goods belong to survival set interiors.?! That perturbation result will
be central to our development here, with the new feature being that, in our setting, any initial
holdings (m°, z°) with components (m?, z?) drawn from the suborthants O; will automatically be
amply survivable, and the same then for any equilibrium holdings (m, z), in particular.

Note that the possibility of there being more than one equilibrium associated with (m?°, z%)
from the neighborhood Ny of (m, z) is not ruled out by shift stability. The requirement is only
that there cannot be a second equilibrium in the neighborhood N; of (p, m, z). For (m°, 2°) ¢ Ny
there might be multiple equilibria in N7, but none could be an equilibrium associated with (m, ).

The one-sided limit in (12) with A — 0T refers to h tending to 0 only from above; the classical
two-sided directional derivative would have h — 0 with no such restriction. The companion
derivative expression with the opposite one-sided limit is tacitly covered by this as well, because

1
lim — {E(mo + hm® 2% 4+ ha'’) — E(m°, xo)] = —DE(m°, 2" —m"’, —z").
h—0— h

By virtue of the Lipschitz continuity in the definition of shift stability, we get a sort of Taylor
expansion of the localized equilibrium mapping:

E(m°® + hm® 2% 4+ ha'’) = E(m°, 2°) + hDE(m°, 2%, m"", 2°') + o(h).

20The primes here do not, themselves, refer to derivatives.

21 Apart from that strict positivity assumption there are other, more subtle equilibrium-supporting conditions
in [1] and later in [18], [19], involving “irreducibility.” However, these are all rather unwieldy in comparison with
“ample survivability.”



This corresponds to the differentiability of E at (m° 2°) if and only if DE(m®, 2% m°’ z%) is
linearly dependent on (m°,x°’). Without that linearity it still signals semidifferentiability,*
which serves as the tool enabling us to handle the one-sided effects on equilibrium distributions
of goods that may be caused by the orthant boundary coming into play.

In turning next to tatonnement, backed by shift stability, we follow Arrow and Hurwicz [3] in
posing it in terms of an ordinary differential equation; see also [4]. Versions in discrete time could
similarly be laid out along the lines in [21] and [47], but in our opinion the case of continuous
time puts the ideas in sharper focus.?3

Definition of tatonnement stability. An equilibrium (p,m, Z) is tatonnement-stable if there
is a neighborhood N of p and a neighborhood Ny of (m,T) such that, for all p° € N and all
(m°, 2°) € Ny having E(m°, 2°) = (p,m, T),** the differential equation of tatonnement, namely*

p(t) = Z(p(t);m°, 2°) for t > 0 with p(0) = p°, (13)

has a unique solution p(t) converging to p, while the associated demands x;(t) = X;(p(t); m°, 2°)

and m;(t) = M;(p(t);m°, x°) converge then to T; and m;. It is strongly tatonnement stable if,
for such neighborhoods, there is a constant y > 0 such that

(' —p)(Z(p;m° 2°) — Z(p;m°,2°)) < —pllp’ — p||* for all p',p € N, (m°,2") € Ny, (14)

According to the equation (13), the price of a good rises at a rate equal to the current excess
demand for that good (which amounts to falling if that is negative).?® An equilibrium price
vector p, in having Z(p; m°, 2°) = 0, furnishes a stationary point for the differential equation (6):
starting from p® = p one would get p(t) = p as a solution.

The property in (14), which in the weaker form of having

' —p)(Zp';m",2°) — Z(p,m°,2°)) < 0 when p' # p, (15)

is known as “monotonicity” among economists,?” has already been recognized as guaranteeing
the convergence of p(t) to p, which is easy to prove,® as for instance in the textbook of Hilden-
brand and Kirman [21, page 237]. (The convergence of the demands z;(¢) then follows from the

228ee [40, Chapter 7] for more on semidifferentiability.

23 Anyway, the issue here is a conceptual property of stability of an equilibrium. It deserves to be seen in
simpler terms without getting into a myriad possible variants, which perhaps would not add much in overall
understanding to stability theory. See Kitti [32] for a comprehensive discussion of the efforts that have been put
into the discrete-time case and the latest accomplishments in that direction.

24Tn the sense of (11); this Ny shrinks the one there, if necessary.

25We employ p(t) for the derivative of p(t) in order to preserve primed symbols like p’ for other uses.

26Tt is easy to make the rates depend instead on different proportionality coefficients for different goods. How-
ever, this requires no additional mathematics because it really amounts only to changing the units of measurement
for the goods other than money. With the prices adjusted accordingly, the budgets then come out the same. Ar-
row and Hurwicz observed this already in [3]. Other formulations in which the right side of (13) depends in extra
ways on p(t) have been explored by MacKenzie [33].

2TThere is an unfortunate conflict with long-established terminology in mathematics, according to which (15)
is the strict monotonicity of —Z(-;m°, 2%), not Z(-;m?,2%). Plain monotonicity would have < in place of < 0,
whereas (14) is the strong monotonicity of —Z(-;m°,2%). For an introduction to the remarkable theory of such
monotonicity, which comprises a valuable and much applied a branch of convex analysis, see [40, Chapter 12].

Z8 A simple tactic is to show by differentiation that ||p(t) — p||? is a decreasing function of ¢ that must go to 0.

10



continuity of the mappings X?, which will be shown later.) From the stronger property in (14)
an additional conclusion readily follows about the convergence rate:

[Ip(t) — Il < e™*[Ip" — pll. (16)

Indeed, (14) implies even that two price trajectories p;(t) and po(t) starting from different initial
states py and ph have |[pi(t) — p2(t)|| < e™*[p] — ph]|.

The question of what properties of utility might induce the “monotonicity” of excess demand
has received attention from a number of researchers over the years; see the article of Quah [38]
(2000) and its references. However, the results in that literature are not applicable in our context.
They concern an excess demand mapping which differs from the one in (9) by being defined in
terms of a wealth parameter that suppresses the role of initial holdings and their proximity to
equilibrium holdings.

It deserves to be emphasized that tatonnement, as formulated here, does not represent a
process in which distributions of goods get adjusted in real time. Rather it is conceived as a
scheme for exchange of information in “virtual time” by means of which a Walrasian broker or
auctioneer determines prices that will bring supply and demand into balance.?

Robust Stability Theorem. Under assumptions Al, A2, A3 and A4, there exists for any
instance of initial holdings (m, z°) having (m?, ) € O; for all agents i at least one equilibrium
(p,m,z) € E(m°, 2°). Moreover, every equilibrium (p, m,z) € E(m°, 2°) is robustly stable in the
sense of being both semidifferentiably shift-stable and strongly tatonnement-stable.

In this setting the demand mappings X; and the excess demand mapping Z in tatonnement are
themselves Lipschitz continuous with one-sided directional derivatives, hence semidifferentiable.

This result may help to alleviate worries about the fragility of equilibrium and open new
horizons for exploration. The idea that the goods acquired by the agents through trading yield
general “holdings” with many conceivable attractions besides immediate “consumption” is crucial
for contemplating a broad range of new possibilities. From this angle equilibrium does not need
be viewed statically. It can interpreted as modeling an observable phenomenon over time in
which supply and demand, with respect to maintaining the agents’ holdings, stay close to being
in balance, and the balance continuously shifts due to the influence of various factors, both
internal and external (but not as yet incorporated into the model).

Those factors could have many forms. A good that stands for a consumable commodity, for
which the holding is a sort of stockpile, might be subject to a rate of consumption dictated by an
agent’s needs, or for that matter, deterioration due to environmental circumstances. Money, as
a good, could be taken from an agent through exogenously instituted taxation, or on the other
hand enhanced by an ongoing subsidy. And so forth.3!

29This is made especially clear by Uzawa in [47]; see also the text of Mas-Colell [35, page 621].

30This vision can be found in the 1941 paper of Samuelson [42] in the era before equilibrium had achieved an
adequate mathematical formulation.

31This extended view of holdings and their potential persistence also underlies our work with financial market
modeling in [26].
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The localized (or truncated) mapping E : (m° 2°) — (p,m,z) described in the Robust
Stability Theorem can help us clarify what should then happen. To make this specific, imagine
we have a equilibrium (p(t), m(t), z(t)) at time ¢,

(p(t), m(t), z(t)) = E(m(t), z(t)),

but additions to m(t) and z(t) are coming in at rates m, (t) and x_(¢),>* which force the equi-
librium to evolve. As an approximation over a time increment h > 0, the holdings would shift
slightly to m(t) + hm,(t) and z(t) + hx,(t) and no longer be matched by p(¢). However, an
adjusted equilibrium

(p(t+Rh),m(t+ h),x(t+ h)) = E(m(t) + hm_(t), z(t) + hx (1)), (17)
identifiable by tatonnement, will exist uniquely nearby. Then also
(p(t+h),m(t+h),x(t+h)) = E(m(t+ h),z(t+ h)),
so the corresponding rate of change in the components of the equilibrium is

Lot +h),m(t + h), x(t+ h) = (p(t), m(t), 2(¢))]
= G E(m(t) + ha'(t), x(t) + ha'(t)) — E(m(t), 2(t))].

In taking the limit of this as h — 0% we obtain, on the right, the one-sided directional derivative
DE(m(t),z(t);m,(t),x,(t)). This gives us the following insight.

Evolution of equilibrium. Consider an equilibrium (p, m, x) and let input rates (m(t), z,(t))
depend continuously on t. Then, over a time interval [0, 7| (with T > 0 and sufficiently small), an
equilibrium trajectory (p(t), m(t),z(t)) should exist which is Lipschitz continuous, one-sidedly
differentiable, and characterized in terms of the directional derivatives (12) of the localized equi-
librium mapping E by the one-sided differential equation

(B* (), m* (1), &7 (t)) = DE(m(t), 2(t);m,(t), z.(t),  (p(0),m(0),z(0)) = (p,m,z). ~ (18)

One-sided, instead of two-sided, differentiability of the trajectory is unavoidable because some
goods components in the x(t) trajectory could start at 0, or drop to zero at a later time, only
to eventually rise up and perhaps again drop down. For a locally Lipschitz continuous function
y(t) (which necessarily has a derivative §(t) almost everywhere), one-sided differentiability refers
to the existence of the right and left limits

J0)= T STyt~ g, i) = T [yl +R) — y(h)] (19

h—0+t h h—0—

in which case y(t + h) — ¢ (t) as h — 07 and y(t + h) — y~(t) as h — 07; differentiability
corresponds to having ¢*(t) =y~ (t).

32Some components in these input rate vectors could be negative, thereby acting as subtractions.
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The one-sidedness in the right side of the differential equation (18) brings up a need for
mathematical innovation and casts our assertion about evolution into more of a conjecture than
a theorem. But there is the interesting prospect that, within the confines of the model, both
the prices and holdings in an equilibrium will evolve in time according to a fixed rule, dictated
only by the utility functions of the agents, in response to internally/externally driven inputs.
For instance, what might be expected if agents had their money holdings “controlled” by a
government through subsidies or taxation? Of course, the limitations of the idea are indeed
many, and most important among them is the absence in this formulation of any modeling of
uncertainty over the future.

We wish to reiterate that the complications in (18) with one-sidedness originate with the
imperative of letting the quantities of attractive goods sometimes be 0. Around an equilibrium
with everything positive, as compelled in particular by the classical inability to handle the orthant
boundary in stability analysis, the differential equation (18) loses its one-sided aspects and takes
the ordinary form

(B(t), (1), &(t)) = DE(m(t), x(t); m.(t),2,.(t),  (p(0),m(0),z(0)) = (p,m, T),

in which E is continuously differentiable instead of just semidifferentiable. Standard theory of
differential equations is applicable then, and evolution passes from just being a conjecture. We
do then have a solid theorem.

3 Proof of the robust stability theorem, first part

Everything is much easier in the setting of full indispensability of goods, where boundary effects
are avoided. Direct arguments for that case are provided in the Appendix for readers who may
wish to understand the simpler situation first, before getting into newer methodology.

For the general case, the assertions about shift-stability will be an application of the stability
result of Dontchev and Rockafellar [17, Theorem 3]. First, we must deal with the claim that, for
any choice of initial holdings (m°,z°) with (m,z?) € O; there exists at least one correspond-
ing equilibrium (p,m,z). That will rely on specializing the existence result of Dontchev and
Rockafellar [17, Theorem 1]. The key to that result, besides the utility conditions in Al, is the
following replacement for the usual assumption that all agents start with positive quantities of

every good.
Ample survivability. The initial holdings (m°, z°) give ample survivability if the agents i have
choices (m;, &;) with u;(m;, &;) > —oo such that
(a) &; <2 but m; <m?, and
(b) iy @ < Xy .
The interpretation is that the agents could, if they wished, survive without any trading at all

and do so with individual surpluses of money and collective surpluses in every other good.
To justify the basic existence claim made here, it will be enough to demonstrate that

all choices of (m° z°) with (m?,z¥) € O; give ample survivability. (20)
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The argument is elementary and merely depends on the observing the extent to which various
components in (m°, 2°) can be lowered slightly to get new holdings (71, &) such that (my;, &) still
lies in O;. This is evidently possible when the money holdings of all agents are positive and each
other good is possessed in positive quantity by at least one agent. The definition of O; in (1)
ensures this through the indispensability in A2.

An immediate consequence of (20), in combination with the fact noted earlier in (6) about
solutions to the agents’ optimization problems, is that

in any equilibrium (p,m, Z), the holdings (m, Z) as (m°, 2°) give ample survivability.  (21)
Through this, the parametric stability result of Dontchev and Rockafellar [17, Theorem 3| can
applied to an equilibrium with respect to its own holdings. The result then asserts the shift
stability of the equilibrium. (The cited result is applicable to any initial holdings (m°,z°) in
some small-enough neighborhood of (m, ) as long as (m°, 2°) gives ample survivability. Shift
stability of an equilibrium, not defined or considered in [17], needs (m°, 2°) = (m, ) itself to give
ample survivability, and the guarantee of that is what is new here.)?3 The existence of one-sided
derivatives of the localized equilibrium mapping is provided by [17, Theorem 3| as well.

That work relies, in particular, on conditions that characterize optimality in the agent’s
maximization problems. Those conditions will again have to come into play, so we record then
next before going on with the remainder of the proof.

Because u; is concave®* and differentiable on the convex set O; where any solution must lie, a
condition both necessary and sufficient for (m;, z;) to be optimal for a given p > 0 can be given
in terms of the gradient of u; at (m;, ;) and a Lagrange multiplier \; for the budget constraint:

where
mi; =m{ + p(2) — ;). (23)

The so-called complementary slackness conditions (22), expressed in a manner typical in op-
timization, say that for each good the corresponding components of the nonnegative vectors
(mi, x;) and A\;(1,p) — Vu;(m;, x;) cannot both be positive; at least one or the other must be 0.
Specializations can be gleaned from the categorization of goods in our model by attractiveness
and indispensability. Let the goods other than money be indexed by 7 =1,...,n, so that

= (..., 2,...) with z;; >0, p=_(...,pj,...) with p; > 0.

Since indispensable goods, including money, occur only in positive amounts in O;, we can reduce

33The format in [17] is that of survival sets U; not necessarily of orthant type, but the cited result depends on
having orthant-like structure locally around the equilibrium under investigation. That is true automatically here
for the same reasons that have been laid out in deriving (20).

34Plain quasi-concavity of the utility function u; would not suffice for this.
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(22) through assumptions A2 and A3 to

Ai = (Ou;/Om;)(my, ;) (hence A\; > 0),

Aip; = (Ou;/0x;;)(m;, x;) for indispensable goods j of agent 1,

Aipj > (Ou;/0x;5)(m;, ;) for attractive but not indispensable goods j, (24)
with equality holding when z;; > 0,

x;; = 0 for goods j that are not attractive for agent i.

The conditions for solutions to these problems for ¢ = 1,...,r to constitute an equilibrium
(p,m, x) associated with (m°, 2°) are the combination of (23) and (24) with
Zi:l Tij = Zi:l zy; for j=1,...,n. (25)

4 Proof of the robust stability theorem, second part

The remainder of the proof, which is concerned with tatonnement stability, must delve deeper
into the variational analysis through which the results in [17] that we have been applying were
themselves derived. Some background in [16], concerning solution mappings associated with
variational inequality models for expressing optimality conditions and equilibrium, will be es-
sential.®® To make things easier for readers not familiar with that subject, we start with a brief
overview.

Variational inequalities. The variational inequality associated with a nonempty, closed, con-
vex set C C RN and a mapping f : C — R with parameter p € IR" takes the form finding
w € C' such that

_f(pa w) € NC(w)v (26)

where N¢(w) is the normal cone to C' at w, defined by
v € No(w) <= weC and v-(w' —w) <0 for all w' € C. (27)

The normal cone No(w) at any w € C' is closed and convex. It always contains v = 0, and
that is its only element when w is an interior point of C', which is true of course for every w in
the special case when C' = RY. The variational inequality reduces then to the vector equation
f(p,w) = 0, and this is the sense in which variational inequality models expand on equation
models. Vectors v # 0 necessarily exist in No(w) when w is a boundary point of C. They can
be of any length and are the outward normals to the (closed) supporting half-spaces to C' at w.

The solution mapping associated with (26), which may be set-valued (i.e., a relation, or a
correspondence in terminology common to economics literature), is

S:p—=A{w| — f(p,w) € Ne(w) }. (28)

35Variational analysis as laid out in [40] has also been the key to our other papers on economic equilibrium,
namely [23], [24], [25] and [26].
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Results in [16] generalize the classical implicit function theorem for equations by providing criteria
under which, in localization around a pair (p,w) with @ € S(p), the mapping S is single-valued
and Lipschitz continuous, moreover with one-sided derivatives having a specific formula. The
best case, which will be in play here, centers on C' being polyhedral, i.e., expressible as the
intersection of a finite collection of closed half-spaces. A useful object then is the critical cone
to C at a point w € C' with respect to a normal v € Ng(w), which is the polyhedral cone

K(w,v) ={w € To(w) |[vw =0},

where To(w) is the tangent cone to C at w, equal to the polar of Ngo(w). All these cones
are important in the study of optimality conditions, and to a large extent the passage from
equations to variational inequalities is motivated by modeling circumstances that involve first-
order optimality conditions associated with inequality constraints, such as the nonnegativity of
goods in our economic setting.

The form of generalized implicit function theorem for (26) that was basic in Dontchev and
Rockafellar [17], and will be basic here again, refers to the smallest linear subspace K*(w,v)
containing the critical cone K(w,v) as well as the largest linear subspace, K~ (w,v) contained
within K (w,v). Under the assumption that the function f in (26) is continuously differentiable,
it focuses on a particular solution w € S(p) and invokes for the normal vector v = — f(p, w) the
criterion that

w' e K™ (w,—f(p,w)), Vuf(p,w)w L K (p,—f(p,w)), W' Vuf(p,ww <0 = w' =0,

where V,, f(p,w) denotes the N x N Jacobian of f with respect to the w argument. The
conclusion then is that the solution mapping S does have a single-valued Lipschitz continuous
localization around (p, w) for which the one-sided derivatives relative to vectors p’ exist and are
given by

DS(p;p’) = the unique solution w’ to the auxiliary variational inequality
=[Vpf(p,w)p" + Vu [ (p, w)w'] € Nk pu)(w').

This is from [16, Theorem 2E.8]. Note that in the equation case, with C' = IR" and f(p,w) = 0,
the critical cone and its associated subspaces are all just IRY itself. The criterion to be invoked
reverts then to having V,, f(p, w)w’ = 0 imply w’ = 0, or in other words, the full rank condition
on the Jacobian matrix V,, f(p,w), as in the classical implicit function theorem.

For utilizing this general perturbation theory here, the target is the excess demand mapping
Z in (9) and specifically the monotonicity-type property we claim for it in (14). That property
will be deduced from a formula for one-sided derivatives of Z. Clearly from (9), the key ingredient
in that has to be formulas for one-sided derivatives of the agents’ demand mappings X; in (7).
From now on the initial holdings (m?, 2°) will be fixed, so in working with these mappings we
can pass to simpler notation:

X(p) = Xi(pim{,a)),  Z°(p) =3, [XD(p) — 2P = Z(p;m",2°). (29)

16



It has already been noted that (through ample survivability) X?(p) is a uniquely determined
goods vector in O; for every price vector p > 0, and indeed that it is the unique solution to
the conditions in (24) with m; given by (23) (and A; given by the first line in (24)). We are
involved, in other words, with solving these conditions for x; as a function of p. If it were not
for the third line in (24), we could view this from the classical perspective of solving a system
of equations and try to apply the implicit function theorem. The inequality complication would
drop away, of course, if we could be sure that the demand vector x; would be > 0 in all its
components, but allowing goods that are attractive but not indispensable to have zero demand
for some combinations of prices is an important goal of our efforts.

It will help to reconfigure our task as the analysis of the enlarged mapping

SY:p { (my, m4, ;) satisfying (23)-(24) }. (30)

From that analysis, the properties we require of X?, as a component mapping, will be easy to
extract. By interpreting S? as the solution mapping associated with a “variational inequality”
problem, we will have available the above extension of the implicit function theorem, which can
handle the inequality condition in (24).

In the case to which we want to apply this, the solution mapping will be S?, already known
to be single-valued. This case identifies (23)—(24) with the variational inequality?3¢

w; = (mi,xi, >\z) & Cz = BZ—H X B,

filp,w;) = —(Vui(my, x;) — Ni(1, p),my — m? — p-(2? — z,)). (31)

—fi(p,w;) € Ne,(w;) for {
We will be analyzing this relative to an arbitrary p > 0 and (m;, z;, \;) = w; = S?(p). Then
(my, z;) € Oy, and since the analysis is local, the fact that Vu; is undefined at points of _/R’l+1
outside O; will not matter. The analysis will utilize the Jacobian expressions

vpfi(p, ’UJ@)p/ = [)‘Z(Oap/)7p,<xl - ‘T?) ]7 (32)
Vo filp, wiw; = [=V2u(mg, T;) (mg, 27) + Xi(1, p), —mj — pi],

where V2u; is the matrix of second partial derivatives of ;. It will involve us not only with the
normal cone N¢,(w;), but also its polar, the tangent cone T¢, (w;), and the “critical cone”

Ki(p,wi) = {w; = (mj, x5, ) € T, (wi) | fi(p, wi)wi =0} (33)

79 Yo

Because C; is a polyhedral convex set (actually a cone itself), the critical cone K;(p,w;) is
polyhedral convex as well. The theorem about solution mappings to variational inequalities over
polyhedral sets that we are going to apply requires us also to look at

K;(Z% wi) = K;(p, wi) - Kz’(P; wi) = smallest subspace D Ki(]% wi>7

K;(p,w;) N K;(p,w;) = largest subspace C K;(p, w;). (34)

Perturbation Result to be Applied (as specialized from [16, Theorem 2E.8]). Under the
criterion that

36 Again, this formulation could not be reached without utility being concave instead of just quasi-concave.
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the solution mapping SY for the variational inequality (31) is Lipschitz continuous in a neighbor-
hood of p and semidifferentiable there with one-sided directional derivatives given by

DS?(p;p') = the unique solution w! to the auxiliary variational inequality
=[Vpfilp, wi)p" + Vi, fi(p, wi)wi] € N, () (w5)-

The next step is to work out the details of this in our context of (31). The cone K;(p,w;)

and subspaces K, (p,w;) and K; (p,w;) come out, in expression with respect to the goods j, as

Kz(p, w,) =R x H?ZlKij(pj,mi, Tij, )\7,) X R, where
R if Tij > 0,

(36)

Kij(pjy m;, xij, )\z) = RJr if xij =0 and (8u1/8xw (mi, il')l) = )\ipja (37)
{0} if Tij = 0 and (0u1/3xm)(mz, IZ) < /\ipj7
K (p,w;) = R x I;_, K5 (pj, mq, 235, Ai) < IR, where
R if Tij > 0, (38)
K;;(p], mg, Tij, )\z) = R if Tij = 0 and (8u1/8xm)(mz, ill'l) = )\ipja
{0} if Tij = 0 and (0u1/3xm)(mz, IZ) < /\ipj7
Ki_(pa mg, Tq, /\1) = IR x H?ZIK'L;(p]?mZa Ty, )\’L> X R, where
R if Tij > 0, (39)

Ki;(pj,ms, x5, Ni) = § {0} if w5 = 0 and (9u;)/0i5)(my, ;) = Nipy,

{0} if z;; = 0 and (Qu;)/0xij(mi, z;)) < \ip;.

In (37), (38) and (39) the same three categories of indices j are involved, and it will be convenient

to speak of them as categories 1, 2 and 3. Unattractive goods j are clearly always in category

3, which gives {0} in every case. Let J* refer to all the indices j in categories 1 and 2, and let

J~ refer to those only in category 1. In these terms we proceed toward verifying (35), which can
written as

only (mf,zi, X}) = (0,0,0) satisfies the conditions

(R A1

(ml, 2}, \)) = w) € K;(p,w;),

(mj, o), Np)[—=VPu (my, ;) (mi, @) + Ni(1, p), —m; — pai] <0,

(X T )

(40)

The first of the three conditions in (40) narrows our attention to cases of (m},x}, \}) having

xi; = 0 for all j ¢ J*, while the second further narrows it to A} = 0 and mj + p-z; = 0, along with
having the components of the vector Vu;(m;, Z;)(m/, ;) be 0 except possibly for some of them

17 7
that belong to indices j ¢ J~. The quadratic expression in the third condition reduces then to
—(ml, x})-V?u;(m;, z;)(m}, x}). Because of the negative definiteness coming from our assumption
A4, this expression cannot be < 0 unless m; = 0 and zj; = 0 for all attractive goods j. But
x;; = 0 already for unattractive goods, so we conclude that (40) does hold, and with it the
properties of S? listed in the Perturbation Result above.
It follows then that the demand mapping X! is likewise locally Lipschitz continuous and

semidifferentiable. More specifically, we have from (36) through (32) that

DS?(p;p') is the unique solution (m/, !, \}) to the variational inequality

_P‘i<07p/> + )\;(1,]?) - V2ui<mi7 xl)(m;7 1};), _p,'(xi - J}?) - m; - p:c;] (41)

€ N, (pwy) (Wi) With w; = (my, zi, \i), wi = (mj, 7, \),

(R A1
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where the details of the cone K;(p,w;) are in (37). The one-sided directional derivatives of X?
are given then by
DX?(p;p') = 2, for the (m}, 2}, \)) in (41). (42)

1)) TN

It is evident now that the excess demand mapping Z° in (29) is Lipschitz continuous locally as
well, and semidifferentiable with its one-sided derivatives given by

DZ%(p;p)) =Y. @ where x} = DX (p;p'). (43)

This brings us to the stage where we have confirmed all of the claims of the Robust Stability
Theorem except for the “monotonicity” property (14). Directional derivatives will help with that,
as follows. The inequality in (14) can be equivalently be rewritten (with a change of variables
that alters the meaning of p’) as

—ullp'|]? = ([p+p’]—p)-(ZO(p+p’)—ZO(p))—/Olp’-DZO(ertp’;p’)dt,

inasmuch as the (Lipschitz continuous) function z(t) = Z°%(p + tp') is differentiable for almost
every t with 2%(t) = DZ°%p + tp’;p’). Our task in these terms is reduced to demonstrating the
existence of p > 0 for which

—ullf'|P > p-DZ%p;p)) = Py, DX{(p;p)) when pe N, p+p/ € N, p #0,  (44)
provided that the ball N around the equilibrium price vector p and the ball Ny around the
equilibrium holdings (m, p) in (14) are chosen small enough. Here by (42) we have

P Z:Zl DX{(p;p) =Y plaf with 2 from (m}, 2}, \]) solving (41) (45)

(2 2 )

and can make that the platform for our analysis.
It is important now to notice a sort of uniformity in the local behavior of the sets in (37),
(38) and (39), namely that

K; (p,w;) C K (p,w;) C Ki(p,w;) C K (p,w;) C K (p, w;)

for (p,w;) near enough to (p, w;). (46)

This is evident from the formulas for these sets and the continuity of the partial derivatives of
u;. A follow-up to this observation, taking advantage of the fact that making p be close to p also
makes w; = S°(p) be close to w; = SY(p) through the continuity of S?, is that

if (mf, x}, \}) solves in (41) with p near enough to p, then (m},z}, \)) € K (p, w;),

—[0(0, ) + N1, p) — V2us(ms, ) (), 2), —p'-(i — 2%) — m] — pat] L K; (1),
(2, X)-( = (0, ) + XL p) — V2, (s, ) (1, ), —p-(axs — a0) — ), — pa]) = 0.
(47)
In view of (38) and (39), we must then have

p'(x; — 2%) + m} + pxl =0 for all agents i, and

z;; = 0 when a good j is unattractive to agent 4.

(48)
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The equation in the third condition of (47) reduces in this case to
i+ No(m + 2p) — (ml, )V (my, ) (m), ) = 0.
Since A; > 0, we can rewrite this, using the first line of (48), as
Pl =7 (ml,

DN (my, ) (m), 2) + Np/ [z — 2] }a (49)

7

PR R
line of (48) and the negative definiteness of the submatrix of V2u;(m;, z;) with respect to the
attractive goods for agent 7 in our assumption A4. Hence

where moreover (m},z})-V?u;(m;, z;)(m!, z}) < 0 unless (m},z’) = (0,0) through the second

r r 1 r N
p/' Zizl ‘r; - Zi:1<m;7 x;) {xv2uz(mz; xl)} (mia I;) + Zz‘:l x:p/'[xi - l’?], (50)

where the first sum on the right is < 0 unless (m}, «}) = (0,0) for all .

The crux of the matter emerges as making sure that the negativity of the quadratic sum in
(50) cannot be overpowered by the second sum. The quadratic sum has the form

(m/, ') A(m,z, \)(m',2") for m'"=(...om},...), 2’ =(..,2},...),

where A(m, z, \) is a negative definite matrix depending continuously on (m, z, A), which in turn

is comprised of elements (m;, z;, \;) = S2(p) = Si(p;mY, 2?) that depend continuously on p and
0

also on (mP%, 29).37 Its eigenvalues can therefore be bounded locally away from 0:

there exist € > 0 and closed balls N at p and Ny at (m,Z) such that

. 1
S () [ VP, )|t 2) < <l )P when p € N, (n%,00) € Ny O

An upper estimate of the size of the second sum in (50) must next come into play. For this
we return to the conditions in (47). With (..., A,,...) denoted by X, let

Wi(p;m®,2°) = { (m/, 2/, X, p') satisfying the first two conditions in (47) for all i }.
Because K (p,w;) and K; (p,w;) are linear subspaces, W (p;m°, 2°) is a linear subspace as well.
We claim

there exist p > 0 and balls N" at p and Nj at (m,Z) such that

(", M < pl[(m, 2")]] (52)
for all (p/,m/,2’,\') € W(p;m®,2°) when p € N’, (m° 2°) € N}.

If this were not true, there would be sequences of elements

(p*,m'™, 2™ XN*) € W(pF;m®, 2%) with p* € N', (m%, %) € Ny,
such that [|(p’%, N*)|| =1 for all k and |(m'*,2'%)|| — 0.

0 0 ,.0

3TThe continuity of S;(p;m?, z¥) with respect to (m?,z?) is seen from the optimality conditions (23)—(24) for

R R
the optimization problem of agent i, which involve (m{,z?) only through (23). A limit of solutions to these

conditions coming from a convergent sequence of such initial holdings must be another solution.
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Passing to convergent subsequences, we would arrive in the limit at elements

(p’*,m’*,x’*,)\’*) c W(p*;mO*’xO*) with p* c N,, (m0*7$0*> c N(,),
such that (p'*,N'*) # (0,0) but (m'*,2'*) = (0,0).

This is an impossible situation for the following reason. It entails

which first implies \;* = 0 and then that p;* = 0 for all goods j having zj; > 0. But then p}* = 0
for all goods j, yielding a contradiction because our assumptions make it impossible for any j to
have z}; = 0 for every agent 7. Thus, (52) is confirmed.

Putting (52) now to use, and noting that |[(p’,N)|| < pl|(m/,2)|| implies that ||p/|| <
pll(m/,2)|| and |X))| < pl|(m/,2')|| for all i, as well as ||x; — 2?|| < ||z — 2°||, we get the

upper bound
DY ro 1
> el < o 3 5 lle =2l I,

which holds when p is close enough to p and (m?, z°) is close enough to (i, ). Since A — A and
T — T as p — p because (m;, Tj, \;) = S;(p; m°, 2°) for all 4, there is also a local upper bound

1

hy X]”x—fﬂoll < vz — 2.
1

Putting all this together with (51), we obtain from (50) and (52) that
Py < =(e vl =) )| 2P < —p (e = wpllz — 2O )[Ip|?

when p is close enough to p. The coefficient u = p~2(e — vp||T — 2°||) is sure to be > 0 when z°
is close enough to z. We have already determined that having (m’,2") = (0,0) is incompatible
with p’ # 0, so the desired conclusion, supporting the existence of a neighborhood N as in (44),
has been reached.

5 Appendix: simpler proof under full indispensability

Suppose that every good is indispensable to every agent. The suborthants O; all coincide then
with the interior of IR, so that all holdings, initial and final, are positive. The existence of an
equilibrium is guaranteed in the usual way, and the stability analysis can be carried out with
just the classical implicit function theorem, obviating the need for advanced methodology. The

optimality conditions for the utility maximization problems are described solely by equations:

m; —m0 — pe(a? — 1) = 0, fori=1,...,r (53)

Those conditions together with

POINETED DI S (54)

21



characterize an equilibrium in the enhanced® sense of a combination (p,m,z,\) that depends
on the initial holdings (m°, z%). Note that not only the goods and prices but also the multipli-
ers \; will all be positive here, as follows via indispensability from the first condition in (53),
corresponding to the first condition in (24).

Although the implicit function theorem is typically articulated with matrices, we will need to
apply it in several ways and can operate in this setting more conveniently with the linearizations
of the equations in question, namely

{)\g(l p) + Xi(0,0) — V2u;(my, z;)(m, 2}) = (0,0), for i —1,... .1 (55)

= m® = p(af — ;) — p(a? — 21) =0,

2;1 i = Z;l x?’ =0, (56)

where the “primed” elements stand for perturbations. Because all goods are indispensable, the
Hessians V2u;(m;, z;) are negative definite, not just partially.

To establish shift stability we are interested in applying the implicit function theorem to solve
(53)—(54) for (p,m,z,\) in terms of (m" z°) in the local sense around a reference equilibrium
(p,m,, \) and its own holdings (m°, 2°) = (m, ). This specializes (55) to

m! —md — (20 — ) = 0, fori=1,...,r. (57)

{X( P) + Xi(0,p") — V2u;(my, ;) (m), 24) = (0,0),

The condition we need to verify, corresponding to the nonsingularity of the Jacobian in the im-
plicit function theorem, is the following: when (m°’, z%’) = (0,0), the only solution (p/,m’, z’, \')
to (56)—(57) is (p/, m/, ', X') = (0,0,0,0). In other words, we have to show that only (p', m’, ', ') =
(0,0,0,0) solves

r I / — Y. AN w2 ey / =
Zi:l xi - 07 >\z(]‘7p) + )\1(07])) V ul(m’w ‘rl)(mw xz) (07 O)? mi + p ‘ri - 0 (58)
This is seen through first multiplying the Hessian condition on the left by (m!, z}) to obtain

A;(m; +ﬁ$;) + j\lp/x; (mm mz) v2ui(mi> ji><mz7 xz) - 07

where the first term vanishes by the third condition in (58), and next through dividing by A; and
adding over ¢, to get

p Zz 1 _Zz 1 /\ z? z V2ui(miafi)<ml,$z) = 0.

Now the first term vanishes through the first condition in (58), so the Hessian sum must vanish
as well. Since the Hessians are negative-definite, that implies (m},z}) = (0,0) for all i. The
second condition in (58) then says M,(1,5) + A;(0,p') = (0,0), which requires both )\, = 0 and
p’ = 0. This ends the argument for shift stability, with the equilibrium mapping coming out as

continuously differentiable, not just semidifferentiable.

38We use this term when the multipliers are included, as in our other papers.
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The argument for tatonnement stability goes along similar lines but replaces the supply-
demand equation (56) by
z— Zi:l T — Zi:l ) =0, (59)

where z is now an additional variable giving the excess demand This equation linearizes to

? = Z:=1 i — Z;l z;' =0. (60)

Again we have a reference equilibrium (p,m,Z, ) but the reference initial holdings need not

equal (m,z). However, it will be important eventually to have them close enough to (m, Z).
Our first step is to demonstrate that, with such closeness, and with p near p, the conditions

(53) can be solved for (m,z, ) in terms of (m°, 2% p). For this, the linearization to work with is

{X(l P) + M0, »p) Veu(me Bi)(mp ) = 0,00 g i1 (61)
my —mg' —p(a7 — %) — p(ai’ — ;) =0,

which differs from (57) in having a p’ term in the second line because 2 need not equal ;. The
issue is whether, when (m?’, 2%’ p’) = (0,0, 0), the only possible solution to the linear equations
(61) is (m/,2’, \') = (0,0,0). This is confirmed exactly as before for (57), through having p’ = 0,
but it was good anyway to have the p’ term because it provides information about derivatives
Specifically, the rate of change (m/,2’,\') of (m,z, \) relative to a rate of change (m{’ 2%, p’)
away from (mP, 2%, p) is obtained by solving these equations. In particular, we get for some p > 0
a bound of type

[1(m, 2/, I < pll(mi”, 25", ) (62)

A second step, with a side purpose, is to observe that, locally around the same reference ele-
ments, we can also solve (55) for (p, \) as a (continuously differentiable) function of (m®, 2%, m, x).
The same linearized equations give the basis for the test. We have to demonstrate that, when
(mY" 29" m/, 2") = (0,0,0,0), the only solution to (61) is (p', \') = (0,0). Indeed, we already see
this from the first line of (61) through the Hessian term vanishing. The purpose of this step was
as follows. The continuous differentiability of the solution function implies, for the partial func-
tion going from (m, z) to (p, \) with (m°, 2°) as parameter, the existence of a Lipschitz constant

that is effective as long as both (m, x) and (m°, x°) are close enough to the equilibrium holdings
(m, ). That yields bounds

Pl < sll(m’, ), [IX]] < wl[(m, 2] (63)
For the final step we fix (m°, %) and focus on (m{’, z?") = (0,0), thereby reducing (61) to
! = 3 / 2 = .
A (1 p)+)\ (0 p) V uz(mlﬁxl)<mz7$z) <0’0)7 fOI' Z: 1’.”7,,5. (64)
—p(a7 — 2) + pai =0,

The rate of change x, at the reference elements is determined by solving this for (zf, \}), and the
rate of change of the excess demand z (at the reference z = 0) is

2 = Z;l . (65)
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In (64) we once again use the trick of multiplying the Hessian equation on the left by (m/, z})
and then invoking the second line. This yields

ANp' (@) — &) + Aip'a — (m, 2)-Vui(mg, Z;) (), #}) = 0.

Next we divide by \; and sum over i, obtaining with (65) that

roo 1 Y
p’.z’ — Zi:l S\—(m;, x;)VuZ(m,, fz)(m;’ ZL‘;) _ p/. Zi:l TZ(I? _ fz)

In this expression we have for some € > 0 a bound of type

Sl ) Vg, £ 21) < —e] | (), 2|

i=1 ). (2 [2ad
(]

coming from the negative-definiteness of the Hessians (and the positivity of each );, but also for
some v > 0 a bound of type

ro A _
B3 T 3 < vl )P
coming from (63). Putting these bounds together with the one in (62), we arrive at
P < —ple —vll2® — z|)Ilp'|)*

as long as 2° is near enough to T to ensure that ¢ — v||(z® — Z)|| > 0. This means that locally

we have p'-2' < —pul|p||* for some p > 0. Since 2’ = Jp' for the Jacobian of the excess demand
mapping at p, we get the desired monotonicity property for tatonnement.
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