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Abstract. Problems of Nash equilibrium, in original or generalized form, have mainly been
studied for the existence of a solution, but much more is possible with additional structure
involving convexity. An equilibrium can be characterized then as a solution to a variational
inequality problem, and this enables the application of a wide range of results in convex analysis
and modern variational analysis. In particular, an equilibrium problem can be formulated with a
parameter vector, and the question of expressing it as a well behaved function of that parameter
vector can be given a good answer.
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1 Equilibrium modeling with variational inequalities

The notion of an “equilibrium” gained its prominence in physics. The word itself derives from
Latin roots meaning “equal weight,” as in the traditional device for measuring the unknown
weight of an object by balancing it with known weights. Equilibrium in physics is typically a
balance of forces, and the standard mathematical model for it is an equation f(x) = 0 for a
mapping f : IRn → IRn, or perhaps a mapping from some infinite-dimensional function space
into itself, instead of IRn.

Besides looking for the existence of a solution to such an equation and studying its properties,
there is interest in understanding dependence of the solution on parameters. The formulation
then is f(p, x) = 0 for a parameter vector p, and the issue is whether this can be “solved for x in
terms of p” to get a function x = s(p). The main tool for that is the implicit function theorem,
one of the most celebrated results in classical analysis.

Beyond physics, there are many situations where equilibrium notions are important but an
equation model is inadequate. In economics, for instance, equilibrium may be associated with
a balance between supply and demand for various goods in a market. The balance is supposed
to emerge from the actions of a collection of “agents” who optimize their buying and selling
according to their preferences. In that setting, inequalities have to be respected as well as
equations, because the quantity of a good acquired by an agent can be ≥ 0 but not < 0.
Indeed, inequalities are characteristic in general of optimization, where expressions are usually
constrained by upper bounds or lower bounds rather than being required to hold at a fixed level.

Equilibrium is a key concept also in game theory. The balance then must be found between
the competing interests of different “players” as agents, and optimization likewise has a very
essential role.

What kind of mathematical model can serve in those optimization-oriented settings in place
of f(x) = 0? An attractive answer has slowly emerged after decades of work in optimization
theory and variational analysis. The name in use for it (one might wish for something better) is
a generalized equation, taking the following form:

−f(x) ∈ F (x) for f : IRn → IRn and F : IRn →→ IRn. (1.1)

The notation F : IRn →→ IRn signals that F is, in general, a set-valued mapping (multi-valued
mapping) with a subset gphF of IRn × IRn serving its graph (instead of a subset of IRn × 2IRn

);
y ∈ F (x) means (x, y) ∈ gphF . The effective domain of F is domF = {x |F (x) 6= ∅ }. In the
special case of the zero mapping, where y ∈ F (x) if and only if y = 0, which is expressed as
F ≡ 0, the generalized equation −f(x) ∈ F (x) reduces to the equation f(x) = 0.

The theory of generalized equations is by now very well developed. The book [1] offers an
introduction along with many powerful results. In particular there are extensions of the implicit
function theorem to parameterized generalized equations,

−f(p, x) ∈ F (x) with parameter vector p. (1.2)

The issue once more is “solving” this to get a function x = s(p), at least in some localized sense.
In contrast to the classical situation, a solution function can’t be expected to be differentiable,
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because of “kinks” introduced by underlying one-sided constraints, however Lipschitz continuity
is often with in grasp. The first to produce such an implicit function theorem was Robinson
[8] in 1980, and he was also the originator of the term “generalized equation.” Since then, the
subject has gone much farther.

An especially rich and well appreciated category of generalized equations is associated with the
set-valued mappings F coming from convex analysis as normal cone mappings. For a nonempty,
closed, convex set C ⊂ IRn, and a point x ∈ C, normality is defined by

v is a normal vector to C at x ⇐⇒ v·(x′ − x) ≤ 0 for all x′ ∈ C. (1.3)

This is written as v ∈ NC(x); thus, NC is the set-valued mapping IRn →→ IRn described by

gphNC = { (x, v) | x ∈ C, v normal to C at x }. (1.4)

The corresponding generalized equation

−f(x) ∈ NC(x), i.e., x ∈ C and f(x)·(x′ − x) ≥ 0 for all x′ ∈ C (1.5)

is called the variational inequality for f and C. When x ∈ intC one has NC(x) = {0} (and
conversely), so that −f(x) ∈ NC(x) becomes f(x) = 0. Indeed the variational inequality for f
and C reduces entirely to that equation when C is all of IRn.

An immediate example in optimization comes from the minimization of a differentiable func-
tion g over a nonempty, closed, convex set C. The first-order necessary condition for that is
−f(x) ∈ NC(x) for f = ∇g (gradient mapping). When g is convex, this necessary condition is
also sufficient. Note that when the minimizing point x is not on the boundary of C, this comes
out as ∇g(x) = 0, the classical first-order condition for unconstrained minimization. When C
is specified by a system of constraints, the elements of NC(x) can be expressed by linear combi-
nations of the gradients of those constraints. The coefficients are Lagrange multipliers, and the
variational inequality then provides a Lagrange multiplier rule.

Extensions of all this can be made to nonconvex sets C through a broader definition of NC ,
but convex analysis [10] will dominate here. For the extended theory, we refer to the variational
analysis book [11].

With enough convexity, Nash equilibrium can be expressed by a variational inequality as well.
Consider players i = 1, . . .m with strategy vectors xi taken from nonempty, closed, convex sets
Ci ⊂ IRni . Player i has a cost function gi(xi, x−i), where the notation x−i, standard in game
theory, refers to the part of the “supervector” (x1, . . . , xm) obtained by deleting xi. We speak
of a cost function instead of a pay-off function in order to keep with minimization instead of
switching to maximization. A Nash equilibrium, by definition then, is an x = (x1, . . . , xm) such
that

xi minimizes gi(·, x−i) over Ci for i = 1, . . . ,m. (1.6)

Under the assumption that gi(xi, x−i) is differentiable with respect to xi, this relates to the
first-order conditions

−∇xi
gi(xi, x−i) ∈ NCi

(xi) for i = 1, . . . ,m, (1.7)
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which moreover are sufficient for (1.6) when gi(xi, x−i) is convex with respect to xi. The crucial
observation is that the optimality conditions can be put together as the variational inequality

−f(x1, . . . , xm) ∈ NC(x1, . . . , xm) (1.8)

for the function
f(x1, . . . , xm) = (∇x1g1(x1, x−1), · · · ,∇xmgm(xm, x−m)) (1.9)

and the closed, convex set
C = C1 × · · · × Cm. (1.10)

This due to the fact in convex analysis that

NC1×···×Cm(x1, . . . , xm) = NC1(x1)× · · · ×NCm(xm). (1.11)

Thus, as long as the sets Ci are nonempty, closed and convex, and the functions gi(xi, x−i) are,
in the xi argument, convex and differentiable, a Nash equilibrium is equivalent to the variational
inequality (1.8) under (1.9) and (1.10).

Yet another form of equilibrium, sometimes called generalized Nash equilibrium arises when
the strategies available to player i are affected by the choices made by the other players. The
simplest case is that of a joint constraint (x1, . . . , xm) ∈ C for a set C that isn’t just a product
of separate sets in the spaces IRni as in (1.10). An equilibrium corresponds then, at least from
an initial perspective, to modifying the minimization requirement in (1.6) to

xi minimizes gi(·, x−i) over Ci(x−i), (1.12)

where
Ci(x−i) = {xi | (xi, x−i) ∈ C }. (1.13)

When C is closed and convex , the sets Ci(x−i) are closed and convex as well. The corresponding
first-order conditions for optimality in (1.12), utilizing differentiability of gi(xi, x−i) in xi, then
take the form

−∇xi
gi(xi, x−i) ∈ NCi(x−i)

(xi) for i = 1 . . . ,m. (1.14)

Again, these relations are sufficient as well as necessary for the equilibrium if gi(xi, x−i) is also
convex in xi. We are then in the picture of a generalized equation

−f(x1, . . . , xm) ∈ F (x1, . . . , xm) for f in (1.9) and F (x1, . . . , xm) = Πm
i=1NCi(x−i)

(xi), (1.15)

but this is not a variational inequality where F = ND for some D.
The generalized Nash equilibrium (1.12)–(1.13) can actually be posed as an “ungeneralized”

Nash equilibrium for a different choice of sets C̃i and functions g̃i. This is accomplished by taking
C̃i = IRni and

g̃i(xi, x−i) =
{
gi(xi, x−i) when (xi, x−i) ∈ C,
∞ when (xi, x−i) 6∈ C.

(1.16)
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In other words, there isn’t anything “generalized” about such an equilibrium notion except for
the introduction of ∞ “costs.” Nonetheless, there are technical obstacles in working with that
∞ format, and a variational inequality representation is anyway still out of reach.

An equilibrium in the sense of (1.12)–(1.13) may also be too weak an idea, not paying
enough attention to capturing the effects of strategy interactions induced by the joint constraint
(x1, . . . , xm) ∈ C. As an improvement, in the case where C is a closed, convex set and the
gradients in (1.9) exist, we propose turning directly to the variational inequality (1.8)–(1.9) for
C itself. This is motivated by a further rule of convex analysis, beyond (1.11), namely that

(v1, . . . , vm) ∈ NC(x1, . . . , xm) =⇒ vi ∈ NCi(x−i)
(xi) for i = 1 . . . ,m (1.17)

under (1.13). On this basis, any solution x = (x1, . . . , xm) to the variational inequality (1.8)–
(1.9) is in particular a solution to the generalized equation (1.15), which is equivalent to the
earlier version of equilibrium in (1.12)–(1.13) when gi(xi, x−i) is convex in xi. Such a solution
x will be called a strong generalized Nash equilibrium

Note also that, in passing this way to NC(x1, . . . , xm) itself, the door is opened also to
Lagrange multiplier rules associated with a specification of C by a system of equation or inequality
constraints. As noted earlier, such rules enter through formulas for the normal vectors v ∈ NC(x)
in that set-up.

The virtue of these observations is that a variational inequality model for equilibrium fits
into a framework of analysis where perturbations can be studied and computational methods are
available. Approaches to equilibrium through fixed-point theory alone fall short of providing the
problem structure needed for that.

2 Results on Existence

In possession now of equilibrium examples enjoying convexity, we can proceed to look at what
the theory of variational inequalities has to offer for them.

The first question to ask about a variational inequality (1.5) is whether it has a solution.
This is much easier to answer than the same question for a generalized equation (1.1) with less
structure, and there are two distinct approaches. The first makes use of the characterization of
normal vectors v to a closed convex set C at a point x ∈ C by means of the

projection mapping PC : z → PC(z) = nearest point of C to z. (2.1)

The mapping PC is nonexpansive, i.e., globally Lipschitz continuous with Lipschitz constant 1,
and one has

v ∈ NC(x) ⇐⇒ PC(x+ v) = x. (2.2)

According to that, the problem of solving a variational is equivalent to a special fixed-point
problem:

−f(x) ∈ NC(x) ⇐⇒ M(x) = x for M(x) = PC(x− f(x)). (2.3)

This yields an immediate result through the fact that a continuous mapping from a compact
convex set into itself is sure to have a fixed-point:
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Background Theorem 1 (existence via compactness). If the function f is continuous from the
nonempty, closed, convex set C ∈ IRn into IRn, and C is bounded, then the variational inequality
−f(x) ∈ NC(x) has at least one solution.

We can readily apply this to the Nash equilibrium models above.

Application Theorem 1. Let C be a nonempty, closed, convex set in IRn = Πm
i=1IR

ni , and let
the functions gi(x1, . . . , xm) on C be convex and differentiable in xi with their gradients in xi
being continuous with respect to x = (x1, . . . , xm). If C is also bounded, then the variational
inequality (1.8)–(1.9) has at least one solution x = (x1, . . . , xm).

(a) In the Nash equilibrium model (1.6), with C = C1×· · ·×Cm, this is equivalent to x being
an equilibrium.

(b) In the generalized Nash equilibrium model (1.12)–(1.13), this means that x furnishes a
strong equilibrium.

Of course, the existence of a Nash equilibrium (1.6) can be obtained via compactness and
continuity of the functions gi themselves without having to look at any gradients. The importance
of (a) in this theorem lies not simply in such existence but rather in tying it to a variational
inequality, with the potential advantages mentioned at the end of the preceding section. In
(b), there is something more: the strong equilibrium in question even depends on a variational
inequality formulation for its definition. Existence of a generalized Nash equilibrium is obtained
in manner that discriminates in favor of stronger properties than would follow from just the
existence of a solution to (1.12)–(1.13), which anyway would be difficult to guarantee in the
absence of sharper assumptions.

Although compactness is common in connection with Nash equilibrium, situations can cer-
tainly be contemplated in which the set C might be unbounded. This can often be handled
through truncation arguments, which systematically cut parts away from C while demonstrating
that equilibrium is not thereby affected. However, another approach to existence of solutions to
variational inequalities can get around boundedness by appealing instead to “monotonicity.”

Monotonicity is a property deeply embedded in convex analysis, and it is best explained by
starting from a general perspective. Consider a set-valued mapping T : IRn →→ IRn; monotonicity
of T isn’t related to an “ordering,” but refers rather to having

y ∈ T (x), y′ ∈ T (x′) =⇒ (x′ − x)·(y′ − y) ≥ 0. (2.4)

If T : IRn →→ IRn is monotone and there is no T ′ : IRn →→ IRn such that gphT ′ ⊃ gphT ,
gphT ′ 6= gphT , then T is maximal monotone. Monotonicity and maximal monotonicity are
obviously preserved in passing from T to its (set-valued) inverse T−1, where x ∈ T−1(y) if and
only if y ∈ T (x). When T is maximal monotone, its effective domain domT = {x |T (x) 6= ∅ } is
almost convex in the sense of lying between some convex set D and its closure. That holds also
then for the effective range of T , which is domT−1.

A special case of monotonicity is that of T being single-valued, i.e., just a function f . The
condition in (2.4) reduces then to (x′ − x)·(f(x′) − f(x)) ≥ 0. If f is monotone with all of
IRn as its domain, and also continuous, then f is maximal monotone. In the case of f being
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differentiable with Jacobian matrices ∇f(x) ∈ IRn×n, monotonicity comes down to the property
that

w·∇f(x)w ≥ 0 for all x and w, (2.5)

or in other words, that the Jacobians are alway positive semidefinite. Beware, however, that this
is positive semidefiniteness of a matrix J which need not be symmetric; it depends only in the
symmetric part 1

2 [J + JT ] of J . These facts and many others are laid out in [11, Chapter 12].
Along with monotonicity there is the property of strong monotonicity, where the inequality

in (2.4) is strengthened to (x′ − x)·(y′ − y) ≥ µ||x′ − x||2 for some µ > 0, with || · || denoting the
Euclidean norm. In the case of T = f , this would be (x′−x)·(f(x′)− f(x)) ≥ µ||x′−x||2, and it
would be guaranteed for differentiable f by having w·∇f(x)w ≥ µ||w||2 in (2.5). The advantage
of T being both maximal monotone and strongly monotone with constant µ > 0 is that T−1

is then a single-valued Lipschitz continuous mapping from all of IRn into itself with Lipschitz
constant µ−1.

The crucial set-valued example for our purposes here is that

if T = f +NC with C nonempty closed convex and f : C → IRn

monotone and continuous, then T = f +NC is maximal monotone.
If f is strongly monotone on C, then T = f +NC is strongly monotone.

(2.6)

In particular, for f = 0 we have the maximal monotonicity of NC itself. On the other hand,
for f = I (identity mapping) we have the maximal monotonicity of (I + NC)−1, which is the
projection mapping PC . Because f = I is strongly monotone with constant µ = 1, PC is Lipschitz
continuous with Lipschitz constant 1, as already noted.

The connection with the existence of solutions to variational inequalities is that having −f(x)
in NC(x) corresponds to having 0 in (f +NC)(x), hence

−f(x) ∈ NC(x) ⇐⇒ x ∈ (f +NC)−1(0). (2.7)

Under the maximal monotonicity in (2.6), this corresponds to 0 belonging to the almost convex
set dom(f+NC)−1, for which various special criteria can be devised. Here is one of them, coming
in part from [11, 12.52].

Background Theorem 2 (existence via monotonicity). Let C be a nonempty, closed, convex
set, and let f : C → IRn be monotone and continuous. For any a ∈ C and r > 0,

if f(x)·(x− a) > 0 for all x ∈ C with ||x− a|| > r, then
there exists x with ||x− a|| ≤ r such that −f(x) ∈ NC(x).

(2.8)

More particularly, for f strongly monotone on C, a unique solution exists to −f(x) ∈ NC(x).

Making use of this in the context of Nash equilibrium requires us to assess the monotonicity of
the mapping f in (1.9). This is easiest when f is continuously differentiable, which corresponds
to the functions gi being twice continuously differentiable. The Jacobians of f then have the
form

∇f(x) =
[
Jij(x)

]m,m

i=1,j=1
for Jij(x) = ∇2

xixj
gi(x1, . . . , xm), (2.9)
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where ∇2gi denotes the Hessian of gi (the matrix of its second-partial derivatives). The mono-
tonicity criterion in (2.5) comes out in terms of w = (w1, . . . , wm) as

∑
i=1m

wi·∇2
xixi

gi(x)wi ≥ −
∑m,m

i=1,j=1,i 6=j
wi·
∇2

xixj
gi(x) +∇2

xixj
gj(x)

2
wj, (2.10)

with strong monotonicity having a term µ
∑m

i=1 ||wi||2 added on the right. In the context of gi
being convex with respect to xi, the matrices ∇2gi(x) are of course positive semidefinite. Strong
convexity over C would make them be positive definite. The right side of (2.10), on the other
hand, represents interactions between the different players. This yields good insight:

f in (1.9) will be strongly montone on C if the functions gi are strongly convex in xi
and the effects of the cross term interactions between players are sufficiently small.

(2.11)

Application Theorem 2. If the functions gi are strongly convex in xi and the sum on the right
of (2.10) remains sufficiently small with respect to the positive sum on the left, for w 6= 0, then
regardless of whether C is bounded the variational inequality (1.8)–(1.9) for Nash equilibrium
will have a unique solution x = (x1, . . . , xm).

3 Results on Parametric Stability

Our attention focuses now on a parameterized variational inequality,

−f(p, x) ∈ NC(x) for x ∈ C ⊂ IRn, p ∈ IRd (3.1)

and its set-valued solution mapping

S : p{x | − f(p, x) ∈ NC(x) }, (3.2)

having effective domain in IRd and effective range in C. The right way to think about extending
the classical implicit function theorem from f(p, x) = 0 to the variational inequality framework
is through the notion of a “localization” of S relative to a pair (p̄, x̄) with x̄ ∈ S(p̄). Suppose
there are neighborhoods P of p̄ and X of x̄ such that

gphS ∩ [P ×X] is the graph of a single-valued mapping s : P → C. (3.3)

Then s is called a single-valued localization of S at p̄ for x̄. We will be interested not only in
the existence of s on the basis of assumptions on f , C and (p̄, x̄), but also in whether s can
be Lipschitz continuous. In the case of Lipschitz continuity, we speak of parametric stability of
the variational inequality. Observe that parametric stability at p̄ for x̄ guarantees in particular
the existence, for each p in the neighborhood P of p̄, of a unique solution x belonging to the
neighborhood X of x̄ in C.
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For Nash equilibrium this seems to be an entirely new topic. There, f has the form (1.9), so
that in contemplating a parameterization we have in mind the pattern that

f(p, x1, . . . , xm) = (∇x1g1(p, x1, x−1), · · · ,∇xmgm(p, xm, x−m)). (3.4)

In other words, we are raising the question of how an equilibrium, or generalized equilibrium,
might respond to shifts in parameters in the cost fnctions gi. This widens the territory for
equilibrium studies far beyond just existence and demonstrates at the same time the advantages
of passing from fixed-point theory alone to approaches that utilize special structure in the context
of variational analysis.

We present in this direction a result, which is far from the most general possible for extraction
from the theory in [1, Chapter 2], but does serve to illustrate the ideas.

Background Theorem 3 (a criterion for parametric stability). Let x̄ ∈ S(p̄) for the variational
inequality (3.1) and its solution mapping (3.2), with f continuously differentiable, and let l be
the linearization of f with respect to x at (p̄, x̄):

l(x) = f(p̄, x̄) +∇xf(p̄, x̄)(x− x̄). (3.5)

Suppose that (l + NC)−1 is single-valued and Lipschitz continuous. Then parametric stability
holds for the parameterized variational inequality (3.1) at p̄ for x̄.

Application Theorem 3. Consider the parameterized version of the variational inequality
(1.8)–(1.9) indicated by (3.4) under the assumption that the functions gi(p, x1, . . . , xn) are twice
continuously differentiable. Let x̄ = (x̄1, . . . , x̄m) be a solution for p̄, and suppose that the
(nonsymmetric) matrix

∇xf(p̄, x̄) =
[
Jij(p̄, x̄)

]m,m

i=1,j=1
with Jij(p̄, x̄) = ∇2

xixj
gi(p̄, x̄1, . . . , x̄m), (3.6)

is positive definite. Then parametric stability holds: the solution mapping S has a single-valued
Lipschitz continuous localization s at p̄ for x̄.

This result follows by invoking (2.6) for l to get the desired single-valuedness and Lipschitz
continuity of (l +NC)−1 in Background Theorem 3.

Not only Lipschitz continuity but also semidifferentiability of the localization s can be inves-
tigated, i.e., the existence of directional derivatives

Ds(p; p′) = lim
ε↘ 0

s(p+ εp′)− s(p)
ε

. (3.7)

Results in [1, Chapter 2] can assure this when C is polyhedral . (A closed, convex set C is
polyhedral if and only if it is the intersection of a finite collection of hyperplanes and/or closed
half-spaces, or in other words, when it can be specified by a system of finitely many linear
equation or inequality constraints.)

Although Nash equilibrium has been the target of discussion here, models of economic equi-
librium have likewise already been articulated in the variational inequality framework: see [4],
[5], [6], and most recently [2] and [7]. The latter two draw heavily on the theory parametric
stability.
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