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Introduction

The pricing of Collateralized Debt Obligations (CDOs) contracts is a difficult quantitative
problem faced by credit risk markets. The main issue is uncertainty about obligors default
risk. This paper considers a so-called “implied copula” CDO pricing model for calibrating
default distribution. The idea of this model is that, conditional on different market states,
the obligors have different hazard rates. For example, if the market goes up then the obligor
may have a lower risk of default (low hazard rate), or if the market goes down then it is
more likely for the obligor to default during the contract period (high hazard rate).

To find the probability distribution of hazard rates, Hull and White (2006) suggested
the so-called “implied copula” model. This is not a specific copula like Gaussian, Student-t,
or double-t. It is called implied because it can be deduced from market quotes. The CDO
tranche quotes are used for calibration. The Hull and White (2006) model minimizes the
sum of deviations from no-arbitrage equations and a smoothing term. The motivation in
the deviation term comes from the equality between the mid-price of the CDO tranche and
the expected payoff on this tranche (no-arbitrage constraint in risk-neutral setting). This
equality may not be feasible for some CDO price quotes. The smoothing term is introduced
to reduce the noise in the distribution. We observed, however, that optimal solution is
quite sensitive to the smoothing term coefficient. Hull and White (2010) introduced a two
parameter version of the implied copula model. One of the parameters was determined by
default risk of the portfolio underlying the CDO, while the second parameter was related to
the degree of default correlation among the names of the underlying portfolio.

Several others considered similar approaches, including the “Implied Factor Model” of
Rosen and Saunders (2009) and Nedeljkovic et. al. (2010); the “Implied Archimedean
Copula” of Vacca (2008); papers based on minimum entropy: Dempster et. al. (2007),
Meyer-Dautrich and Wagner (2007), and Halperin (2009); and others (Walker (2006)).

This paper applies an “entropy approach” to the implied copula model. We found the
distribution by maximizing the entropy with no-arbitrage constraints based on bid and ask
prices of CDO tranches. In our numerical experiments, these constraints were feasible and we
did not need to introduce penalties for deviation from no-arbitrage constraints. To reduce
the noise in the data we introduced a new class of distributions, called Convex-Concave-
Convex (CCC) distributions. This is a wide class of distribution containing the normal,
gamma, and the F distributions. By definition, the PDF of CCC distribution is convex from
the beginning to some point, then it is concave to some further point, and then it is again
convex to the end. For discrete distributions, we described CCC distributions by a system
of linear constraints. The class of CCC distributions is quite general and it can be used
in various applications. This paper presents an application of CCC distribution for CDO
calibration. The case study compares Hull and White (2006) and our approach based on
CCC distributions.

We used December, 2006 iTraxx tranche quotes from Arnsdorf and Halperin (2007)
containing the bid and ask quotes. We also considered more recent data where the mar-



ket was in unstable condition. To do the case study we used the Portfolio Safeguard
(PSG) package (MATLAB and Run-File Text Environments) by American Optimal De-
cisions (AORDa.com). The case study shows that the approach has a stable performance.
We provided the MATLAB and Text codes used for conducting numerical experiments, see
link®.

Here we illustrate the application of the CCC class of distributions with a couple of
graphs from the case study in this paper. We used the entropy approach to calibrate the
loss distribution. Figure 1 and 2 represent distribution of hazard rates implied from 5 year
iTraxx (100 hazard rate scenarios). Figure 1 shows the distribution without CCC constraint,
while Figure 2 with CCC constraint. The graph in Figure 1 exhibits a noisy behavior (hump
in the area [—5,0]). Imposing additional CCC constraints removes the hump, as shown on
Figure 2.

The paper proceeds as follows: Section 1 summarizes the implied copula model introduced
by Hull and White (2006). Section 2 proposes the CCC distribution and describes how
to calibrate it with the entropy approach. It provides the formal optimization problem
statements and a heuristic algorithm for finding probability distribution. Section 3 discusses
the case study.

1. Conventional Copula and the Implied Copula

This section summarizes the implied copula approach proposed by Hull and White (2006).
For a full model description, a reader may refer to the Hull and White (2006) paper. A
one-factor Gaussian copula model, first introduced by Li (2000), has became an industry
standard. It models default intensities as a weighted sum of a market factor and an id-
iosyncratic term, a firm-dependent component. The model provides a correlation structure
between default intensities of different obligors.

Define default intensities X;(1 <i < n) by:

where V' is a market factor and W; is an idiosyncratic term (firm-dependent component). Let
Q;(t) be the cumulative distribution of (unconditional) time to default o*f company i and
let F;(t) be the cumulative distribution of X;. Default intensity is then mapped to default
time 7; as F;(X;) = Qqi(m:).

A convenient way of defining @); is through a company hazard rate. The latter has
an interpretation of default intensity if the default is modeled as the first event in a non-
homogeneous Poisson process. The hazard rate \;(7) is related to Q;(t) in the following way:

Shttp://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/cs_
calibration_copula/



Figure 1: Distribution obtained with the maximum entropy approach. The graph has a
hump in the area [—5, 0].
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Figure 2: Distribution obtained with the maximum entropy approach and CCC constraints.
The CCC constraint removed the hump in the area [—5,0].
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Hazard rates are popular in credit risk applications due to ease of implementation, convenient
analytic expressions and clear physical interpretation.

We define a grid Aq, ..., A\; of possible hazard rates®. In other words, we assume that
in each scenario the hazard rate is constant and the same for all obligors. As in Hull and
White (2010), we set the lowest hazard rate such that there is almost no chance to default
(A1 = 1078), and the highest hazard rate such that almost all companies default immediately

Xi(7) (2)

6

SThe hazard rate can be viewed as a severity of the credit environment over the life of the CDO.



(A; = 100). The intermediate hazard rates are chosen so that the In)\; are equally spaced.
We present results for the number of hazard rates on the grid from 100 to 1,000. We tried
to determine if the increasing number of scenarios of hazard rates leads to some stable
limiting distribution. This property is expected from a “well defined” model where the
increasing of precision improves the performance of the model. For a specific value of the
market factor, defaults of each company or obligation are independent and described by their
conditional hazard rates. These hazard rates are simultaneously higher or lower. Hull and
White (2006) proposed a so-call “implied copula” model prescribing the same unconditional
hazard rate to each company and then moved all hazard rates simultaneously (or, more
precisely, proportionally) so that the collateral hazard takes on pre-defined values Aq, ..., A;.
The scenarios for hazard rate \; have probabilities p;.

To fit a probability distribution for hazard rates to the market we consider CDO price
data. We used the 5-year quotes for iTraxx index tranches on December, 2006”. By sampling
default scenarios corresponding to each level of )\;, the net payoff® of each tranche j can be
determined, conditional on the hazard rate scenario A;. Denote this payoff by a,;. Note that
this net payoff is calculated with the mid-quotes for the spreads for every tranche. Later,
we will describe how the bid and ask quotes can be used in no-arbitrage consideration. A
probability p; is assigned to {\;} to form a probability distribution of hazard rates. No-
arbitrage considerations in a risk-neutral setting assume that the expected net payoff of each
CDO tranche is equal to zero?

1

Zawpzzo j:].,,J (3)

i=1

The numerical experiments with the market data show that, in some cases, the constraints
(3) are infeasible. In such cases, we need to find a distribution by solving equation (3)
approximately. Some criterion has to be defined to choose a distribution the closest to a
feasible one. Hull and White (2006) proposed solving the following optimization problem to
find a suitable probability distribution:

"We used data from Arnsdorf and Halperin (2007).

8The difference between expected present value of premium leg payments and default leg payments.

9Tranche payoffs (with both payment legs included) have to be zero under no-arbitrage assumptions.
The tranche spread has to be established at a level that the expected payoffs through the premium leg are
precisely equal to the expected default losses, in other words, so that the premium leg has the same present
value as the default leg.



Problem A
min(D(p) + S(p))

p

subject to

probability distribution constraints

where D(p) is a deviation term

and S(p) is a smoothing term

-1 2
Pit1+Pic1 — 2p;
() C@Z [ 0.5(dist — diy) } ' 0

The deviation term penalizes deviations from zero of the net expected payoff of every
tranche. The smoothing term enforces that every three consecutive points on the hazard
rate distribution are approximately on the same line. The smoothing term is larger for larger
differences from the straight line.

The smoothing term introduces distortion into resulting distribution, but a reasonable
level of distortion may be better than a ragged distribution shape. The smoothing effect
appears to decrease with the increase in the number of atoms in the distribution. Also, the
coefficient ¢ has to be chosen by trial and error.

Let us consider the case presented in the paper of Hull and White (2006). We used the
data (see the Table 1) to simulate the expected cash flows on every tranche for different
hazard rates. Then we solved the optimization Problem A. Figures 4 and 5 show graphs
of optimal distributions obtained for different numbers of points and different values of the
smoothing term coefficient c.

It seems that if we find a “good” smoothing coefficient ¢ for a particular number of
atoms in the distributions, it does not work the same way if we change the number of atoms.
Therefore, the smoothing coefficient ¢ should be chosen individually for every number of
points on the hazard rate grid. Moreover, we can not find a “reasonable” justification of
why one smoothing coefficient is better than any other one.



The next section discusses “the entropy approach” for finding the “best” probability
distribution. With this approach we excluded from the model free parameters, such as the
smoothing coefficient c.

2. Implied Copula: Entropy Approach with CCC constraints

Hull and White (2006) minimized the sum of squared deviations of tranche payoffs from
“perfect fit” (6) and the smoothing term (7). We used an alternative maximum entropy
principle and found the distribution in the class of CCC distributions.

The Maximum Entropy Principle (first introduced by Shannon, see also Golan (2002)) is
popular in information theory. This principle is actively used in financial applications; see for
instance Miller and Liu (2002), Chu and Satchell (2005), Mayer-Dautrich and Wagner (2007).
The essence of the Maximum Entropy Principle is that, with some given information about
the distribution (specified through equations and constraints), we maximize the entropy and
select the most “unknown” distribution. Therefore, we find the most “unknown” distribution
containing only available information about the distribution.

Compared to Hull and White (2006, 2010), instead of mid prices, we used bid and ask
prices. Denote by a;; and @;; the expected net payoff of tranche j conditional on hazard rate
1 for ask and bid prices, respectively. Then, the no-arbitrage constraints are as follows: for
ask prices the expected net payoff (Zi[:l a;;p;) of each CDO tranche is nonpositive and for
bid prices (31, @;;p;) is nonnegative.

We maximized Shannon entropy H(p) = — Ele p; In p; subject to the no-arbitrage con-
straints. We solved the following problem:

Problem B
min —H(p)
P
subject to
no-arbitrage constraints
I
ZQUPZSO,]:L,J, (8)
i=1
I

i=1

probability distribution constraints

I
i=1
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Figure 3: Example of a CCC distribution, the first inflection point w; = 30 and the second
inflection point w, = 50.

100

pi>0, i=1,....1. (11)

The set of probability distributions satisfying constraints (8), (9) is bigger than for con-
straints (3). Therefore, constraints (8), (9) may have a feasible solution and we may not
need to introduce the deviation term (6) to the objective.

The optimal solution of Problem A is very sensitive to the choice of ¢ in (7) and to the
number of points I on the grid (see Figures 4 and 5). Furthermore, it seems that with an
increasing number of points [ in the optimization Problem A, the optimal solution does not
stabilize. Some kind of stabilization can be seen for ¢ = 107° at the right bottom graph in
Figure 5). But, again, it is unclear why ¢ = 107° should be used.

We solved Problem B for different numbers of points also. We found that the shape of
the optimal distribution stabilized for number of points > 500. But we saw also that some
“noise” was present in the optimal distribution. To cope with that we defined the CCC class
of discrete probability distributions.

We say that a function belongs to CCC class if it is convex on the left up to some point,
then concave up to a further point, and then again convex on the right. Figure 3 shows an
example of CCC function.

By definition, a function f : R — R is convex if for any z; € R,x5 € R, A € [0,1] the
following inequality holds:

A1) + (1 = A)f(x2) > f(Az1 + (1 = A)w2).

8



Let 3 = Azy + (1 — A)xg, then A(zg — 1) = x5 — x3. Therefore, there is one to one
correspondence between A and z3 and the convexity property can be rewritten as follows:
for any x1, z9, x3 such that z; < x3 < x5 the following inequality holds,

(zo — x3) f(z1) + (23 — 1) f(22) 2> (T2 — 1) f(3).

With this observation, we can generalize the concavity/convexity property to any set
X C R, not necessarily convex, closed, etc. We say that f : X — R is convex on X, if for
any xi,rs,rs € X:

(z2 — x3) f(21) + (23 — 21) f(22) > (02 — 21) f(73).

Below is the formal definition of the CCC class of functions in general case.
Definition (general case). Let f: X — R. Then f(x) belongs to CCC class if and
only if there exist wy, w, € R such that the following inequalities hold:

1. w; < w,,
2. (xo—x3) f(x1) + (xs — 1) f(22) > (x2— 1) f(23), for all xy < x3 < x5 € (—00, wy]NX,
3. (xg —a3) f(x1) + (x3 — 1) f(22) < (22 — 1) f(23), for all vy < x5 < 29 € [wy,w,] N X,

4. (o —x3)f(x1)+ (23— 1) f(22) > (X0 —21) f(23), for all x1 < 23 < x5 € [w,, +00)NX .

First, we define the CCC class of continuous distributions.
Definition (continuous case). Let f: R — R be a continuous density function of

some continuous distribution. Then f(x) belongs to CCC class of distributions if f(x) is a
CCC function.

In our model we deal with discrete distributions. Let us define the CCC class of discrete
distributions.

Definition (discrete case). Let f :{dy,...,d;} — [0,1] be a probability measure
function on a sequence of points dy,...,d; : dy < dy < --- < dj, i.e Zi[:l f(d;) = 1. Then
f(z) belongs to CCC class of discrete distributions if the probability measure f belongs to the
class of CCC functions.

Clearly, f(z) belongs to the CCC class, if and only if, the inequalities 2-4 in the Defi-
nition (general case) of the CCC class of functions hold for every three consecutive points
d;i_1,d;,d; 1. In other words, the following proposition holds.

Proposition 1. Let f : {dy,...,d;} — [0,1] be a probability measure function on a
sequence of points dy,...,dy 1 dy < dy < --- < dy, i.e Zfil f(d;) = 1. Then f belongs to the
CCC class if and only if there exist indices wy, w, such that the following inequalities hold:

1. 1§wl§wr§]f



2. (diJrl — dl)f(dzfl) -+ (dl — difl)f(dﬂ»l) > (di,1 — dz+1)f(dl), fOT’ alli: 1 <i< wy,
3. (digr — d) f(dizr) + (d; — di—1) f(diy1) < (dicy — digr) f(ds), for all i: w; < @ < wy,
4o (dig1 — di) f(di1) + (di — di1) f(dig1) > (diy — diga) f(ds), for all iz w, <i < I.

The proof is obvious and we leave it to the reader.

Further, we suppose that the distance between every two consecutive points d;, d; 1 is
the same. In this case, Proposition 1 simplifies to:

Proposition 2. Let f : {dy,...,d;} — [0,1] be a probability measure function
(Zle f(d;) = 1) on a sequence of points dy,...,d; : dy < dy < --- < dj, such that the
distance between every two consecutive points d;,d;. 1 is the same. Then, f(z) belongs to
CCC class if and only if there exist dy,, d., such that the following inequalities hold:

1.1 <w <w, <1,

2. f(dimy) + fdipr) = 2f(dy), for alli: 1 < i < wy,

9. f(dio1) + f(dipr) < 2F(dy), for all iz wy, < i < wy,
4o f(diy) + F(disr) > 2f(dy), for alli: w, < i< I.

As it was mentioned earlier, our goal is to assign a probability p; to every hazard rate \;
to satisfy the market constraints. In this case, by a discrete distribution corresponding to
a vector (pi,...,pr) we mean a probability measure function f : {Ay,...,A;} — [0, 1] such
that f(\) =pi,i=1,...,1.

We solved Problem B with the additional constraints assuring that the distribution be-
longs to the CCC class. The CCC class of distributions can be specified in optimization
problem by linear constraints. CCC constraints “regularize” the solution by reducing “noise”
and they play the same role as the smoothing term S(p) in Problem A. In this way we can
avoid arbitrariness in the choice of the smoothing coefficient ¢. Also, the increasing number
of points \; on hazard rate grid does not lead to additional noise in distribution.

To solve Problem B in the CCC class of discrete distributions, we used Proposition 2 to
introduce CCC constraints. The CCC constraints include constraints on the left slope, right
slope and hump:

Convexity of the left slope:

Pi—1 + Di+1

5 >pi, i =2, ...,w —1, (12)

Concavity of the hump:

Pi—1 + Dit1

5 <p,i=w+1,..,w,—1, (13)

10



Convezity of the right slope:

Z%Epi,i:wr+l,...,l—l. (14)
The points wy, we may vary for different discrete distributions, therefore we incorporate them
into the optimization problem as variables. By adding the CCC constraints to Problem B
we have the following optimization problem:

Problem C
min —H(p)
Wy, Wr,p
subject to

no-arbitrage constraints

1

ZQijpi <0, <15>

i=1
I
Zaijpi >0, (16)
i=1
CCC constraints:
constraint on inflection points
wlgwra wle{lw"a[}a U}TE{L...,I}, (17>
convexity of the left slope
i—1 + Di .
%Zp’h,l:Qu"wwl_l? (18>
concavity of the hump
%Sp%i:wl—i_la”ww’r—l? (19>
convexity of the right slope
P TPl > pim w41, T =1 (20)

probability distribution constraints

11



pi>0, i=1,...,1.

Let us consider a subproblem of this problem with fixed w;, w,..

Problem C(w;,w,)

min —H (p)
P
subject to

no-arbitrage constraints

1
Zgijpi <0,
i=1

I
Zaijpi >0,
i=1
CCC constraints:
convexity of the left slope
Di—1 ;’pﬂ-l >

concavity of the hump

i—1 7+ Di .

% Spi,Z:UJl‘i‘l,.--,wr—l,
convexity of the right slope

%21)272:11}7"4_1771_17

probability distribution constraints

i:2,...,wl—1,

(23)

(29)

(30)



To solve Problem C, we can solve Problem C(w;,w,) for all possible pairs of integers
wy, w, such that 1 < w; < w, < I, and then choose the minimum among these solutions.
The number of subproblems (Problem C(wy;, w,)) is on the order of n?. Originally we solved
Problem B, but since its solutions had unexpected hump, we suggested to find the solution
to Problem B in the CCC class of functions (Problem C). Further, we provide a heuristic
algorithm for solving Problem C. We solved at first Problem B and then solved a sequence
of Problem C(w,w,) for different pairs of (wy, w,).

Here is the formal description of algorithm. Explanations are provided after the formal
description.

Algorithm:

Step 0. Initial optimal solution.

e Solve Problem B and denote its solution obtained for optimization problem by p*.
e Initialize w; = w, = argmax{p; :i=1,..., I} k=0, Hy = oo.

Step 1. Solve Problem C(w;, w,)

o Set k=k+1, exit_flag = 0.

e Solve Problem C(w;,w,) and obtain the optimal solution p; and Hy = H(p;).
Step 2. Shifting w, to the right

o If w. <[ and H;, < Hyp_4, then set w, = w, + 1, exit_flag = 1, and go to Step 1.
Step 3. Initialization of shifting w;, to the left

e If w; > 1, then set w; = w; — 1.

o If w; = 1, then stop the algorithm, and pj;_, is an approximation of the optimal
solution.

Step 4. Solve Problem C(w;,w,) (the same as Step 1)

o Set k=k+1.

e Solve Problem C(w;,w,) and obtain the optimal solution p; and Hy = H(p;).
Step 5. Shifting w; to the left

o If w; >1and Hy < Hy_1 then set w; = w; — 1, exit_flag = 1, and go to Step 4.

107f the maximum is not unique, the algorithm should be performed for eash point in the set argmaz{p; :
t=1,...,1}, and then the solution with the smallest objective value should be chosen.

13



o If exit_flag = 1, then go to Step 1.

o If (w, =1or Hy > Hi_1) and exit_flag = 0, then stop the algorithm, and p; ; is an
approximation of the optimal point.

The idea of this algorithm is that we step-by-step change inflection points w;, w, and
solve Problem C(w;, w,). In Step 0, we solve Problem B and obtain an optimal solution p*.
Then, we set w; = w, = argmax{p; : i =1,...,I}. In other words, we find the maximum
component of optimal vector p* and make w;, w, equal to its index. In Step 1, we solve
Problem C(w;, w,) with these w;, w, and obtain the optimal point and its objective value.
Then, we shift w, to the right, if it is possible, making w, = w, + 1. After that we go
to Step 1 and again solve Problem C(w;, w,) to obtain the optimal point and its objective
value. Then we compare this objective value with the previous one obtained in Step 1 (Hy
and Hj_1). This procedure stops when the new objective value is greater then the previous
one (Hy > Hy_1), or w, = I. In Steps 3 to 5 we run the same procedure, but now we shift
w; to the left. The procedure also stops when the new objective value is larger then the
previous one (Hy > Hy_1) , or w; = 1. If during the steps 1 through 4, the smaller objective
value is found by shifting w, or w;, then these steps should be performed again. In other
words, we shift the points w, and w; to reach local optimality. Finally, the algorithm returns
pj_1, which is an approximation of the optimal point. We do not prove that this algorithm
provides an optimal solution to Problem C. The case study in the following section shows
that this algorithm provides reasonable solutions.

14



3. Case study

We used Portfolio Safeguard (2008) in MATLAB and Run-File Text Environment to do
the case study (MATLAB and PSG Run-File text files are posted at the following link!!).
The provided files can be used for both simulating the expected cash flow matrices with the
tranche quotes and solving the optimization problems. Appendix 1 contains information on
running the case study with PSG.

For the case study, we have considered iTraxx index with different maturities. First,
we used 5-year iTraxx tranche quotes to simulate the expected cash flow matrices. For bid

i i . . . . . — \j=1,..,J j=1,...,J
prices, mid prices and ask prices we simulated different matrices (aij)?zl o ( ij)?zl I

(QU)Z:j}], for I=100, 200,..., 1,000. The number of tranches in the iTraxx index is six, so
J=6.

For particular i, j we simulated the times to default of 125 companies in the iTraxx index
and the corresponding tranche cash flows 10,000 times and than took the average. As we
mentioned earlier, the time to default of each company is exponentially distributed with
parameter ;. For simulation, we used the minimum hazard rate A\; = 107%, the maximum
hazard rate A\; = 100, and the distances between [n()\;) are equal. We assumed that the
tranche payments are made quarterly, the recovery rate, in case of default, equals to 40%
and the annual risk free rate is 4%. The reader may refer to the Hull and White (2006) to
find more details on the simulation procedure.

We solved Problem A (Hull and White (2006)) for 7=100, 300, 500 and 1,000 points.
We used six different smoothing term coefficients in Problem A. The graphs are presented
in Figures 4 and 5. The distribution functions in the graphs are not the actual solution
vectors. We scaled functions so that the areas under the graphs are equal (the horizontal
axis represents [n(\)). These graphs are implied densities of hazard rate distributions. We
found that the results are quite sensitive to the parameters ¢ and 1.

We compared our entropy approach with CCC constraints to the approach by Hull and
White (2006). We ran the proposed heuristic algorithm, described at the end of Section 2,
for I =100, 200, 300, 500, 800 and 1,000 points. The entropy maximization problem was
solved with PSG in MATLAB environment by calling ‘riskprog’ optimization subroutine. To
solve the problem, we need to put the matrix of constraints and ‘entropyr’ as parameters
to the riskprog subroutine. We conducted the case study on the laptop with processor Intel
Core 2 CPU @2GHz. The optimization time for Problem B varied from 0.01 sec. for / = 100
to 0.06 sec. for I = 1,000; for Problem C time varied from 0.36 sec. for I = 100 to 600
sec. for I = 1,000. Figure 6 shows six hazard rate distribution graphs for the six different
values of I. Every graph shows initial distribution pgy, which is a solution of problem B and
final optimal distribution p;. We found that imposing CCC constraints has not changed
significantly the shape of implied density functions. However, irregularities (humps, which

Uhttp://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/cs_
calibration_copula/
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we call “noise”) were streamlined.

Figure 7 compares the final distributions p; for different numbers of hazard rates (I =
100, 200, 300, 500, 800, and 1,000) on the grid. The last three graphs are almost identical,
which seems quite natural. We did not observe the similar stability in the Hull and White
(2006) even with a fixed smoothing coefficient c.

We applied our entropy approach with CCC constraint to the iTraxx thanches with
different contract periods: 5 years, 7 years and 10 years. These calculations show whether
the implied copula model can be used with the homogeneity assumption, i.e when hazard
rate of a company stays the same during the whole contract period. If this approach is
reasonable, we should obtain a similar distribution of hazard rates for different contract
periods. We simulated the matrices of expected cash flows using the prices from Table 1 for
[=100 for 5, 7 and 10-year contracts. Then, we used these matrices to solve Problem B and
Problem C with proposed heuristics. Figure 8 represents scaled solutions with In(\) on the
horizontal axis. The graphs are quite similar and show little dependence of the length of the
contract period.

We want to point out that the analyzed data were the market quotes for 5, 7, 10-year
iTraxx on December 20, 2006. At that time the credit derivatives market was flourishing
and expanding very fast. We also tested this model for the data taken for the later times
when the market was very unstable.

First, we used the data for the market quotes for the 5-year iTraxx on four different dates:
10/31/07,12/31/07, 6/30/08 and 9/30/08. The data contains only the closing prices. To get
the bid and ask prices we used typical bid-ask spreads for that times varying from 2% to 7%
depending on the tranche. Then, using the simulation technique described in the beginning
of this section, we simulated expected cash flow matrices for the bid and ask prices with the
number of hazard rate grid points I = 100. The implied density functions were obtained by
solving Problem B. Figure 9 shows corresponding graphs. The graphs show the evolution of
the hazard rate distribution function over the time. We want to mention that the Problem
C is infeasible with the assumed bid-ask spreads.

Second, we picked the two latest dates for which we have the price information for the
market quotes for 5, 7, 10-year iTraxx. The expected cash flow matrices were simulated the
same way. Figure 10 shows the hazard rate distributions for this case.
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Appendix 1: Running Case Study with Portfolio Safeguard (PSG)

PSG has several syntax formats for running optimization problems in MATLAB envi-
ronment:

e Optimization subroutines for optimizing nonlinear functions. Subroutines (e.g., ”riskprog”)
use as a parameter the name of a nonlinear function (e.g. "entropyr”), which is opti-
mized.

e General PSG format.

With PSG optimization language in general format, the problem solving typically involves
three main stages:

1. Mathematical formulation of a problem with a meta-code using PSG nonlinear func-
tions. Typically, a problem formulation involves 5-10 operators of a meta-code. See in
the end of the Appendix 1 the PSG meta-code for Problem C(w;, w,).

2. Preparation of data for the PSG functions in an appropriate format. For instance,
the meansquare error function is defined by the matrix of loss scenarios. One of those
matrices should be prepared if we use this function in the problem statement.

3. Solving the optimization problem with PSG using the predefined problem statement and
data for PSG functions. The problem can be solved in several PSG environments, such
as MATLAB environment and Run-File (Text) environment.

Further we present the PSG meta-code for solving Optimization Problem C(w;,w,), see
formulas (23)-(30). Meta-code, data and solutions can be downloaded from the link!'2.

Meta-Code for Optimization Problem C(w;,w,)

Problem: problem _CCC, type = minimize

Objective: objective_h, linearize = 1

entropyr_h(matrix_h)

Constraint: constraint_a, lower_bound = vector_bl, upper_bound = vector_b
linearmulti_a (matrix_a)

Constraint: constraint_aeq, lower_bound = 1, upper_bound = 1
linearmulti_aeq (matrix_aeq)

Box_of_Variables: lowerbounds = 0

Solver: VAN, precision = 5

© 00 1O UL W N

Here we give a brief description of the presented meta-code. We boldfaced the important
parts of the code. The keyword minimize tells a solver that the Problem C(w;,w,) is a

2http://www.ise.ufl.edu/uryasev/research/testproblems/financial_engineering/cs_
calibration_copula/
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minimization problem. The keyword Objective is used to define an objective function. The
objective function (23), that is the Shannon entropy function of the distribution, is defined in
lines 2,3 with the keyword entropyr and the data matrix, located in the file matrix_h.txt.
Each constraint starts from the keyword Constraint. The constraints (24)-(28) are system
of linear inequalities, defined in lines 4,5 with the keyword linearmulti. The coefficients
for the linear inequalities are given in the file matrix_a.txt. The probability distribution
constraint (29), is defined in lines 6,7 with keyword linearmulti and the matrix of unit
coefficients, located in the file matrix_aeq.txt. The Box_of Variables in line 8 sets the
non-negativity of the variables (probabilities).
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Table 1: The data are taken from Arnsdorf and Halperin (2007). Market quotes for 5, 7,
10-year iTraxx on December 20, 2006. Quotes for the 0 to 3% tranche are the percent of the
principal that must be paid up front in addition to 500 basis points per year. Quotes for
other tranches and the index are in basis points.

Maturity | Low stike | High Strike | Bid Ask
20-Dec-11 0% 3% 11.75% | 12.00%
20-Dec-11 3% 6% 53.75 55.25
20-Dec-11 6% 9% 14.00 15.50
20-Dec-11 9% 12% 5.75 6.75
20-Dec-11 12% 22% 2.13 2.88
20-Dec-11 22% 100% 0.80 1.30
20-Dec-11 0% 100% 24.75 25.25
20-Dec-13 0% 3% 26.88% | 27.13%
20-Dec-13 3% 6% 130.00 | 132.00
20-Dec-13 6% 9% 36.75 | 38.25
20-Dec-13 9% 12% 16.25 18.00
20-Dec-13 12% 22% 5.50 6.50
20-Dec-13 22% 100% 2.40 2.90
20-Dec-13 0% 100% 33.50 | 34.50
20-Dec-16 0% 3% 41.88% | 42.13%
20-Dec-16 3% 6% 348.00 | 353.00
20-Dec-16 6% 9% 93.00 | 95.00
20-Dec-16 9% 12% 40.00 | 42.00
20-Dec-16 12% 22% 13.25 14.25
20-Dec-16 22% 100% 4.35 4.85
20-Dec-16 0% 100% 44.50 | 45.50
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Figure 4: Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads.
The distributions were found by solving Problem A for numbers of variables 100 and 300,
and different smoothing term coefficients c.
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Figure 5: Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads.
The distributions were found by solving Problem A for numbers of variables 500 and 1,000,
and different smoothing coefficients c.
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Figure 6: Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads.
These graphs compare solutions of Problem B and Problem C obtained with the heuristic
algorithm for 6 cases with 100, 200, 300, 500, 800, 1,000 decision variables. Hump in the

area [-5,0] was removed by imposing CCC constraint
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Figure 7: Distributions of the collateral hazard rate implied by 5-year iTraxx tranche spreads.
The distributions in the CCC class were found by heuristic algorithm for 100, 200, 300, 500,
800, 1,000 decision variables.
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Figure 8: Distributions of the collateral hazard rate implied by 5, 7 and 10-year iTraxx
tranche spreads. The distributions were found by solving Problem B (upper chart) and
Problem C (lower chart) using heuristic algorithm for 100 decision variables.
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Figure 9: Distributions of the collateral hazard rate implied in 5-year iTraxx tranche spreads
for different dates. The distributions were found by solving Problem B with 100 decision
variables.
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Figure 10: Distributions of the collateral hazard rate implied by 5, 7 and 10-year iTraxx
tranche spreads at two different dates. The distributions were found by solving Problem B
with 100 decision variables.

5 yr, 10/31/07
7 yr, 10/31/07 .

o141 10 yr, 10/31/07 |

0.16 1

0.12

0.08

0.06

0.04

0.02

-15 -10 -5 0

| T T T
0.12 5 yr, 6/30/08

7 yr, 6/30/08
0.1 10 yr, 6/30/08 _

0.08

0.06

0.04

0.02

-15 -10 -5 0

28



