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Abstract

Second-order sufficient conditions for local optimality have long been central to designing solu-
tion algorithms and justifying claims about their convergence. Here a far-reaching extension of such
conditions, called variational sufficiency, is explored in territory beyond just classical nonlinear pro-
gramming. Variational sufficiency is already known to support multiplier methods that are able,
even without convexity, to achieve problem decomposition, but further insight has been needed
into how it coordinates with other sufficient conditions. In the framework of this paper, it is shown
to characterize local optimality in terms of having a convex-concave-type local saddle point of an
augmented Lagrangian function. A stronger version of variational sufficiency is tied in turn to local
strong convexity in the primal argument of that function and a property of augmented tilt stability
that offers crucial aid to Lagrange multiplier methods at a fundamental level of analysis. Moreover,
that strong version is translated here through second-order variational analysis into statements that
can readily be compared to existing sufficient conditions in nonlinear programming, second-order
cone programming, and other problem formulations which can incorporate nonsmooth objectives
and regularization terms.
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1 Introduction

The classical sufficient condition for local optimality in the unconstrained minimization of a C2 function
on IRn combines the vanishing of the gradient with the positive-definiteness of the Hessian matrix.
That positive-definiteness makes the function be strongly convex around the minimizing point and
effectively reduces the problem locally to one of convex optimization. In minimizing a function subject
to constraints, there seems no hope of a local reduction to convex optimization, because the feasible
set is usually not convex. But this turns out to be a misconception. As will be shown here, hidden
convexity can emerge when localization is taken not only in the primal variables but also in the
Lagrange multipliers as dual variables. Moreover the typical second-order sufficient conditions for
local optimality in nonlinear programming and its extensions are truly anchored in that.

This is a new observation, but there have been some hints in the past in the theory of augmented
Lagrangians, where the so-called strong second-order sufficient condition in nonlinear programming
leads to a kind of local duality that explains the workings of the multiplier method of Hestenes
and Powell and its decendents. In this duality, the primal-dual pair in the first-order condition is
a local saddle point of the augmented Lagrangian — for a high enough level of augmentation. All
that was pointed out by Bertsekas in his 1982 book [2] and other works. But actually, the augmented
Lagrangian in this case is locally convex-concave in the primal and dual arguments, so the saddle point
corresponds to solving a localized primal-dual pair of optimization problems in the duality framework
of convex analysis. Again, there is effectively a local reduction to convex optimization, but it needs
to be “elicited” through augmentation.

Our goal is to develop this picture of sufficient conditions versus local duality in a much broader
setting. The generalized nonlinear programming problem we take up is to

minimize f0(x) + g(F (x)) for F (x) = (f1(x), . . . , fm(x)), where
f0, f1, . . . , fm are C1 on IRn and g is closed proper convex on IRm.

(1.1)

In particular, g could be the indicator δK of a closed convex set K of vectors u = (u1, . . . , um) ∈ IRm,
and then the g term in the objective would stand for the constraint F (x) ∈ K. Classical nonlinear
programming with equality and inequality constraints would correspond to

g = δK for K = {u | ui ≤ 0 for 1 ≤ i ≤ s, but ui = 0 for s+ 1 ≤ i ≤ m }. (1.2)

TakingK instead to be the Lorenz cone, would yield second-order cone programming in (1.1). Semidef-
inite programming comes up when the vectors x stand for matrices and K is the cone of symmetric,
positive-semidefinite matrices. However, other choices of g, which we call the modeling function in
(1.1), cover problems even with nonsmooth objectives. For instance, g could be a norm like || · ||1 or
|| · ||∞ with a role in “regularizing” solutions. On the other hand, nonsmoothness is paramount when

g(F (x)) = max{f1(x), . . . , fm(x)} in the case of g(u) = vecmax(u) = max{u1, . . . , um}. (1.3)

And of course, there can be a mixture of the various possibilities: the vector u could be partitioned
into subvectors uj with a different modeling function gj attached to each, and then g(u) would be the
sum of the expressions gj(uj), some capturing constraints and others representing composite terms
with possible nonsmoothness or regularization effects.

It may seem odd that, for work on sufficient conditions, we have taken the functions fi in (1.1) only
to be C1 instead of the usual C2. That is because we fundamentally rely on convexity-type properties,
hidden or explicit, and these can fully be articulated without assistance from assumptions about
second derivatives. This definitely distinguishes our approach from that of most others in the subject.
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However, after our main results have been established, the C2 case of (1.1), where the functions fi
are C2, will nonetheless be scrutinized to see what more can be said in terms of that structure in
connecting up with previously known conditions for local optimality in special cases of problem (1.1).
But even in the C2 case, the augmented Lagrangian functions that come into play will generally not
be twice differentiable but only C1+, i.e., continuously differentiable with gradient mappings that are
locally Lipschitz continous.

Although Lagrange multipliers are believed by many to be an accompaniment just of constraints,
they can be attached also to the composite expression in (1.1), as has long been known, cf. [19]. The
multipliers are induced by incorporating a perturbation parameter, and we do that by recasting (1.1)
in the form

(P ) minimize φ(x, u) subject to u = 0, where φ(x, u) = f0(x) + g(F (x) + u).

Problems of minimizing φ(x, u) in x for different choices of u than u = 0 are viewed as perturbations
of problem (1.1). The Lagrangian function corresponding to the perturbation scheme in (P ) is

l(x, y) = infu{φ(x, u)− y·u} = L(x, y)− g∗(y) in the notation
L(x, y) = f0(x) + y·F (x) = f0(x) + y1f1(x) + · · ·+ ymfm(x),

(1.4)

where g∗ is the convex function conjugate to g. If g = δK for a set K, then g∗ is the positively
homogeneous support function of K. If g itself is positively homogeneous, then g∗ is the indicator of a
set Y . For instance, if g is a norm, g∗ is the indicator of the unit ball of the dual norm. For the vecmax
function g in (1.3), g∗ is δY for the unit simplex, Y = { y = (y1, . . . , ym) | yi ≥ 0, y1+ · · ·+ ym = 1}. If
g is the indicator of a cone K, then g∗ is the indicator of the polar cone Y = K∗. The cone K in (1.2)
has Y being the familiar space of multiplier vectors for the classical constraint system in nonlinear
programming, namely Y = IRs

+ × IRm−s.
Also associated with problem (P ) is the augmented Lagrangian with parameter r, defined by

lr(x, y) = infu
{
φ(x, u)− y·u+

r

2
|u|2

}
for r > 0, where |u| = ||u||2. (1.5)

The minimization here can be carried out in different ways. With the help of the convex functions

gr(u) = minu′

{
g(u′) + r

2 |u
′ − u|2

}
with conjugate gr ∗(y) = g∗(y) + 1

2r |y|
2,

gr(u) = g(u) + r
2 |u|

2 with conjugate g∗r (y) = miny′
{
g∗(y′) + 1

2r |y
′ − y|2

}
,

(1.6)

one gets
lr(x, y) = f0(x) + gr(F (x) + 1

ry)−
1
2r |y|

2, or
lr(x, y) = L(x, y) + r

2 |F (x)|
2 − g∗r (y + rF (x)).

(1.7)

In the cone case with g = δK and g∗ = δY , the functions in these expressions come down to gr(u) =
r
2d

2
K(u) and g∗r (y) =

1
2rd

2
Y (y), where dK and dY are the distance functions for K and Y .

An important feature in (1.7) is that the functions gr and g∗r , as prox-regularizations of g and g∗,
are differentiable in y with gradient mappings that are Lipschitz continous globally ; the modulus for
∇gr is r, while for ∇g∗r it is r−1. In fact, because the formula for gr in (1.6) yields ∇gr(u) = r(u−u′)
for the unique u′ giving the minimum, which itself is characterized by 0 ∈ ∂g(u′) + r(u′ − u), one has

∇gr = I − (I + r−1∂g)−1 = r(I − proxr−1g), where

proxr−1g(u) = argminu′

{
r−1g(u′) + 1

2 |u′ − u|2
}
.

(1.8)
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The prox mappings associated with closed proper convex functions have a valuable characteristic called
firm expansiveness, and they are seen increasingly nowadays in numerical schemes in data science. If
g = δK , then proxr−1g is PK , the projection mapping onto K.

Observe that the augmented Lagrangian lr, as generated in (1.5) from φ, can equally be regarded
as the ordinary Lagrangian generated as in (1.4) from the augmented objective function

φr(x, u) = φ(x, u) +
r

2
|u|2, (1.9)

which has the extra property of being strongly convex in u. Since (1.4) and (1.5) make −l(x, ·) and
−lr(x, ·) the convex functions conjugate to φ(x, ·) and φr(x, ·), we also have the reciprocal formulas

φ(x, u) = supy { l(x, y) + y · u}, φr(x, u) = supy { lr(x, y) + y · u}. (1.10)

In replacing φ in (P ) by φr to get an augmented problem (Pr), the minimization still comes out to
be that in (1.1). Only the scheme of perturbations changes, and it changes very little: in minimizing
φr(x, u) in x for some u ̸= 0, the objective is the same as in mimizing φ(x, u) in x except for the
addition of a positive constant. But the effect on the properties of Lagrange multipliers is profound.

Both l(x, y) and lr(x, y) are always concave in y, but lr(x, y) is also differentiable in y, and∇ylr(x, y)
is Lipschitz continuous in y with modulus r−1. That’s a consequence of −lr(x, ·) being conjugate to
φr(x, ·), which is r-strongly convex in u, but it can also be seen in connection with the properies of
gr and g∗r in (1.7) that have been mentioned earlier, under which

the augmented Lagrangian lr(x, y) is a C1 function on IRn × IRn. (1.11)

It would not be C2 under the stronger assumption that the functions fi are C2, because gr and g∗r are
generally not C2, only C1+. However, that lesser property does imply that

the augmented Lagrangian lr(x, y) is C1+ when every fi is C2. (1.12)

Characterizations of optimality in our problem (P ) begin with first-order conditions expressed
by subgradients of the function φ in the sense of variational analysis [23]. The description of the
subgradients is simplified here by the fact that our assumptions make φ be everywhere an amenable
function (fully amenable if every fi ∈ C2) [23, 10.23]. For an amenable function f , all subgradients
are regular subgradients, i.e.,

z ∈ ∂f(w) ⇐⇒ f(w′) ≥ f(w) + z·(w′ − w) + o(w′ − w). (1.13)

Moreover f is subdifferentially continuous, meaning that f(w′) → f(w) as (w′, z′) → (w, z) in the
graph of the subgradient mapping ∂f , that being the closed set gph ∂f = { (w, z) | z ∈ ∂f(w)}. All
this accrues from the definition of amenability by way of the basic chain rule in [23, 10.6].

That same chain rule, when specifically applied to the structure of φ in (P ), yields:

(v, y) ∈ ∂φ(x, u) ⇐⇒ y ∈ ∂g(F (x) + u), v = ∇xL(x, y)
⇐⇒ v ∈ ∂xl(x, y), u ∈ ∂y[−l](x, y),

(1.14)

where the fact is used that y ∈ ∂g(u) ⇔ u ∈ ∂g∗(y). Likewise,

(v, y) ∈ ∂φr(x, u) ⇐⇒ v = ∇xlr(x, y), u = −∇ylr(x, y) ⇐⇒
v = ∇xL(x, η) and u = r−1(η − y) for η = ∇gr(F (x) + r−1y).

(1.15)
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Furthermore, in (1.14) and (1.15) the conditions on y correspond to attainment in the minimization
formulas (1.5) and (1.7):

u ∈ ∂y[−l](x, y) ⇐⇒ l(x, y) = φ(x, u)− y·u,
u = −∇ylr(x, y) ⇐⇒ lr(x, y) = φr(x, u)− y·u. (1.16)

First-order optimality through subgradients. The first-order condition for the local optimality
of x̄ in (P ), which is necessary under various constraint qualifications, is the existence of ȳ such that

(0, ȳ) ∈ ∂φ(x̄, 0). (1.17)

This can be expressed equivalently through (1.17) as

0 ∈ ∂xl(x̄, ȳ) and 0 ∈ ∂y[−l](x̄, ȳ), or ∇xL(x̄, ȳ) = 0 with ȳ ∈ ∂g(F (x̄)), (1.18)

or for that matter as (0, ȳ) ∈ ∂φr(x̄, 0), and then via (1.16) as

∇xlr(x̄, ȳ) = 0 and ∇ylr(x̄, ȳ) = 0, or ∇xL(x̄, ȳ) = 0 with ∇gr(F (x̄) + r−1ȳ) = ȳ. (1.19)

A particular constraint qualification under which the first-order condition is necessary is

y ∈ Ndom g(F (x̄)), ∇F (x̄)∗y = 0 =⇒ y = 0, (1.20)

where ∇F (x) denotes the Jacobian of F , ∇F (x)∗ is its transpose, and Ndom g is the normal cone
mapping associated with the convex effective domain of g, [23, 10.12].

In classical nonlinear programming with g = δK for the cone K in (1.2), the subgradient condition
ȳ ∈ ∂g(F (x̄)) in the first-order condition (1.18) specializes to the normal cone condition ȳ ∈ NK(F (x̄)).
That expresses complementary slackness and turns (1.18) into the familiar Karush-Kuhn-Tucker sys-
tem of relationships which a numerical method might try to solve. The equivalent statement in (1.19)
translates that task into something perhaps more agreeable: determining a zero of a gradient map-
ping ∇lr. Beyond that classical specialization, (1.19) likewise translates (1.18) into something more
advantageous. From that viewpoint, augmentation can be thought of as a kind of problem regulariza-
tion toward improved computations. Indeed, the quadratic term involved the passage from φ(x, u) to
φr(x, u) in (1.9) can directly be interpreted as a regularization.

In the convex case of (P ), where φ(x, u) is convex as a function of (x, u), not just u, the first-
order condition (1.17) is sufficient for global optimality in (P ). The convexity of φ(x, u) on IRn × IRn

corresponds to the convexity of the Lagrangian l(x, y) as a function of x ∈ IRn for each y ∈ IRm, cf.
[23, 11.48]. We already know that l(x, y) is concave in y, so in that case the Lagrangian version (1.18)
of the first-order optimality condition says equivalently that (x̄, ȳ) is a global saddle point of l(x, y)
with respect to minimizing in x and maximizing in y. That is the setting also for global duality theory,
where x̄ solves (P ) and ȳ solves an associated maximization problem (D), with the minimum value of
the objective in (P ) equaling the maximum value of the objective in (D).

For understanding where we are headed in this paper, it will be instructive now to observe, as a
conceptual bridge, that the first-order condition is also sufficient for global optimality even if φ itself
isn’t convex, as long as φr is convex for r sufficiently high. Then it corresponds to a global saddle
point of the augmented Lagrangian lr instead of l. This can be thought of as eliciting global convexity
and its benefits through the parameter r. The convexity of φ, or the elicitation of convexity of φr,
can be interpreted as a second-order condition which, when combined with the first-order condition, is
sufficient for global optimality. The key idea here is to replace global convexity of φr by a local property,
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called variational convexity [20], which will be shown to make the first-order condition correspond to
(x̄, ȳ) being a local saddle point of convex-concave type of the augmented Lagrangian lr(x, y).

More will be explained about variational convexity shortly. The essential point, for putting our
efforts into perspective, is its equivalence in the case of φr with local maximal monotonicity of the
subgradient mapping ∂φr relative to (x̄, 0) and (0, ȳ), which carries over also to the mapping (x, y) 7→
{ (v, u) | (v,−u) ∈ ∂lr(x, y)}. That’s important because local maximal monotonicity validates local
actions of the proximal point algorithm [16], [17], which is the engine that runs augmented Lagrange
multiplier methods of all sorts, as well as the progressive decompling algorithm of [21].

Our most fundamental results will be established already in Section 2. Follow-up will come in
Sections 3 and 4 in showing how, in the C2 case of (P ), the stronger version of those results can be
coordinated with properties of second derivatives of various generalized kinds. That effort will also
clarify relationships with other known sufficient conditions for local optimality in instances of (P ).

2 Variational sufficiency and local duality

Variational convexity of a lower semicontinuous (lsc) function f : IRn → (−∞,∞] is a condition relative
to a pair (w̄, z̄) in the graph of the subgradient mapping ∂f , according to which the subgradients and
associated function values of f behave exactly as if f were convex. In general, the definition requires
localization in function values as well as subgradients, but in the presence of subdifferential continuity,
as in the applications to be made here, localization in function values is superfluous. Variational
convexity of f with respect to a pair (w̄, z̄) ∈ gph ∂f refers then, more simply, to having open convex
neighborhoods W of w̄ and Z of z̄ such that

there exists a proper lsc convex function h ≤ f on W such that
[W ×Z] ∩ gph ∂h = [W ×Z] ∩ gph ∂f

and, for (w, z) belonging to this common set, also h(w) = f(w).
(2.1)

Variational strong convexity has h strongly convex on W.
Motivation for this property comes from attempts to understand localized monotonicity aspects

of subgradient mappings. It was proved long ago by Poliquin [12] that the mapping ∂f is maximal
monotone as a whole if and only if f is a convex function, but what about maximal monotonicity of ∂f
relative to a neighborhood W ×Z of (w̄, z̄)? Variational convexity implies that and was shown in [20]
to be equivalent to it when z̄ is a regular subgradient at w̄, as in (1.13). Earlier, in [13], local strong
monotonicity of ∂f was tied to the condition of variational strong convexity (without it yet having
that name), but only under the additional assumption of “prox-regularity” on f . It was identified
there as characterizing the tilt stability of a local minimum.

The consequences of variational convexity for computing a local minimum were first examined in
[20], where the localized version of the proximal point algorithm in [11] was translated into iterations
of local minimization. Then, in [21], it emerged as essential for guaranteeing the convergence of an
approach to problem decomposition with numerous specializations. That is where the second-order
condition for local optimality, which we are about to work with, was introduced.

Definition (variational approach to second-order sufficiency). The variational sufficient condition for
local optimality in (P ) holds with respect to x̄ and ȳ satisfying the first-order condition if there exists
r > 0 such that φr is variationally convex with respect to the pair ((x̄, 0), (0, ȳ)) in gph ∂φr. The
strong variational sufficient condition holds if φr is variationally strongly convex.
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Specifically in translating (2.1) to φr, the variational convexity in this definition refers to having
open convex neighborhoods W of (x̄, 0) and Z of (0, ȳ) such that

there exists a proper lsc convex function ψ ≤ φr on W such that
[W ×Z) ∩ gph ∂ψ = [W ×Z) ∩ gph ∂φr

and, for (x, u; v, y) belonging to this common set, ψ(x, u) = φr(x, u).
(2.2)

Variational strong convexity has ψ strongly convex on W. Note that the first-order condition on x̄ and
ȳ in (P ) in (1.17), as captured equally by (0, ȳ) ∈ ∂φr(x̄, 0), is reduced by (2.2) to (0, ȳ) ∈ ∂ψ(x̄, 0),
which through convexity guarantees local optimality in minimizing ψ(x, u) subject to x ∈ X and
u = 0. Local optimality in (P ) then follows, because ψ ≤ φr and ψ(x̄, 0) = φr(x̄, 0).

It may seem far-fetched that the kind of property in (2.2) could actually be useful, but it will be
revealed in what follows to take on a basic role in the theory of optimality. Far from being obscure
and inaccessible, it will be seen in later sections of this paper to build on second-order conditions that
have already served well for special cases of problem (P ), and moreover to be characterizable in the
C2 case by second-derivative conditions.

In the strong version of variational sufficiency, strong convexity of ψ on W with modulus s > 0
corresponds to the convexity on W of ψ(x, u)− s

2 |(x.u)|
2, which can be described equivalently as

ψ(x′, u′) ≥ ψ(x, u) + (v, y)·[(x′, u′)− (x, u)] + s
2 |(x

′, u′)− (x, u)|2
for (x′, u′) ∈ W when (v, y) ∈ ∂ψ(x, u).

(2.3)

That translates in (2.2) to φr having the property that

φr(x
′, u′) ≥ φr(x, u) + (v, y)·[(x′, u′)− (x, u)] + s

2 |(x
′, u′)− (x, u)|2

for (x′, u′) ∈ W when (v, y) ∈ Z ∩ ∂φr(x, u).
(2.4)

From that angle, strong variational sufficiency can be seen as a parametrically extended form of the
“quadratic growth condition” for a locally optimal solution x̄ to (P ), namely that φ(x′, 0) ≥ φ(x̄, 0) +
s
2 |x

′− x̄| for x′ in a neighborhood of x̄. That condition is the particular case of (2.4) for (x, u) = (x̄, 0)
and (v, y) = (0, ȳ), with u′ = 0.

Another insight into the significance of strong variational sufficiency comes from its effect of “sub-
gradient regularization” in replacing ∂φ by ∂φr. Variational strong convexity of φr with respect to
(0, ȳ) ∈ ∂φr(x̄, 0) corresponds to the set-valued inverse mapping ∂φ−1

r having a single-valued locally
Lipschitz localization at (0, ȳ) for (x̄, 0) with modulus s−1 [20, Theorem 3]. This means that the
mapping ∂φr is strongly metrically regular at (x̄, 0) for (0, ȳ) in the terminology of [4]. Again, strong
variational sufficiency is highlighted as the elicitation of an advantageous property in variational anal-
ysis through augmentation with r high enough.

More than being just a gimmick for getting local optimality, variational sufficiency also amounts
in (2.1) to a sort of local reduction of everything about (P ) to properties in a problem of convex
optimization for ψ. Although that convex problem may seem only “implicit,” it comes fully to life
through the augmented Lagrangian lr(x, y), as we now establish.

Theorem 1 (augmented Lagrangian characterization of variational sufficiency). With respect to x̄
and ȳ satisfying the first-order optimality condition in (P ), the variational sufficient condition for local
optimality holds if and only if, for r > 0 sufficiently large, there is a closed convex neighborhood X ×Y
of (x̄, ȳ) such that lr(x, y) is convex in x ∈ X when y ∈ Y as well as concave in y ∈ Y when x ∈ X .
Then (x̄, ȳ) is a saddle point of lr(x, y) with respect to minimizing in x ∈ X and maximizing in y ∈ Y.
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Proof. Suppose first that variational sufficiency holds, and choose within W and Z open convex
neighborhoods of the form X × U and V × Y, so that through (1.15) and (1.16):

(x, u, v, y) ∈ [(X × U)× [V × Y)] ∩ gph ∂φr ⇐⇒
(x, y) ∈ X × Y, ∇xlr(x, y) = v ∈ V, −∇ylr(x, y) = u ∈ U ,

, and then moreover lr(x, y) = φr(x, u)− y·u.
(2.5)

Consider ψ in (2.2) to be closed proper convex as a function on all of IRn × IRm (as can harmlesly be
achieved by extension), and let λ on IRn × IRm be the Lagrangian associated with ψ:

λ(x, y) = infu{ψ(x, u)− y·u}. (2.6)

By the rules of convex analysis, λ(x, y) is convex in x as well as concave in y, and

(v, y) ∈ ∂ψ(x, u) ⇐⇒ v ∈ ∂xλ(x, y), u ∈ ∂y[−λ](x, y), and then λ(x, y) = ψ(x, u)− y·u (2.7)

[23, 11.48]. In combining this with the properties in (2.2), we see that

for (x, y) ∈ X × Y and (v, u) ∈ V × U ,
(∇xlr(x, y),−∇ylr(x, y)) = (v, u)) ⇐⇒ (v, u) ∈ (∂xλ(x, y), ∂y[−λ](x, y)),

and then moreover lr(x, y) = λ(x, y).
(2.8)

Because (∇xlr(x, y),−∇ylr(x, y)) depends continuously on (x, y) and equals (0,0) for (x̄, ȳ), we can
ensure that it belongs to V × U by taking the neighborhood X × Y of (x̄, ȳ) somewhat smaller, if
necessary. Then, according to (2.8), lr(x, y) = λ(x, y) when (x, y) ∈ X × Y, so lr is convex-concave
on X × Y. The same then holds in passing to the closure of X × Y, inasmuch as convexity in x and
concavity in y are preserved when taking limits. Thus, X and Y can be replaced by their closures.

Conversely, suppose lr is convex-concave on a closed convex neighborhood X ×Y of (x̄, ȳ). Define
λ(x, y) by

λ(x, y) =


lr(x, y) when (x, y) ∈ X × Y,
−∞ when x ∈ X but y /∈ Y,
∞ when x /∈ X ,

(2.9)

and define ψ(x, u) by
ψ(x, u) = supy{λ(x, y) + y·u}. (2.10)

Then ψ is a closed proper convex function on IRn × IRm having λ as its convex-concave Lagrangian
as in (2.6):

λ(x, y) = infu{ψ(x, u)− y·u}. (2.11)

In particular from (2.9)–(2.10),

ψ(x, u) = sup
y∈Y

{ lr(x, y) + y·u} when x ∈ X ,

so that ψ ≤ φr on X × IRm by (1.10). In taking V × U = IRn × IRm, we trivially have both (2.5) and
(2.7). That leads directly to (2.2) and the claimed variational sufficiency.

Finally, we look at the first-order condition in its equivalent expression in (1.19) as the combination
of ∇xlr(x̄, ȳ) = 0 and ∇ylr(x̄, ȳ) = 0. The first of these equations says, through the convexity in x,
that lr(x, ȳ) has a minimum at x̄ over the neighborhood X , whereas the second says, through the
concavity in y, that lr(x̄, y) has a maximum at ȳ over the neighborhood Y. Thus, (x̄, ȳ) furnishes a
saddle point of lr over X × Y, as claimed.

In managing to identify the variational sufficient condition with a convex-concave-type saddle point
property, Theorem 1 opens the door to interpreting the local optimality associated with that condition
in the duality format of convex analysis [14], [15], [23, Chapter 11].
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Local primal and dual problems. In the saddle point circumstances of Theorem 1, let

Ψ(x, u) =

{
supy∈Y{ lr(x, y) + y·u} when x ∈ X ,

∞ when x ̸∈ X ,

Θ(v, y) =

{
infx∈X { lr(x, y)− v·x} when y ∈ Y,

−∞ when y ̸∈ Y,

(2.12)

The local primal problem is

(P r
X×Y) minimize Ψ(x, u) subject to u = 0,

whereas the local dual problem is

(Dr
X×Y) maximize Θ(v, y) subject to v = 0.

The incorporation of v as a perturbation variable in the dual problem, to match that role for u in
the primal problem, is essential for obtaining a full picture of the symmetric interconnections between
these variables and x and y. Dual problems with their own perturbations have been a theme since the
early days of convex analysis.

The formulas for Ψ and Θ in (2.12) can be written in terms of the function λ defined in (2.9). For
ψ this is (2.10), as utilized in the proof of Theorem 1 for the fact that then, through conjugacy, λ can
be recovered by (2.11). In parallel, Θ(v, y) = infx {λ(x, y) − v·x}. A comparison of that with (2.11)
reveals another conjugacy:

Θ(v, y) = infx,u{Ψ(x, u)− v·x− y·u} = −Ψ∗(v, y). (2.13)

The augmented Lagrangian property in Theorem 1 is equivalent to the “strong duality” assertion that

x̄ solves (P r
X×Y), ȳ solves (Dr

X×Y), and min(P r
X×Y) = max(Dr

X×Y). (2.14)

This local duality has a powerful implication for any computational method that aims to solve (P )
by generating sequences of primal and dual vectors xk and yk with the hope that they will converge
some locally optimal x̄ and associated multiplier ȳ. Suppose that the variational sufficient condition
holds for these elements, and that the method can be articulated as operating locally around (x̄, ȳ)
with utilization only of the local properties of the augmented Lagrangian lr. Then everything about
the method and its convergence reduces to its characteristics when applied in convex optimization.

A prominent class of algorithms in this category is comprised of the augmented Lagrangian-based
multiplier methods (ALM), which follow the pattern:

get xk+1 by locally minimizing lr(x, y
k) in x for r sufficiently high,

and afterward update yk to yk+1 by a formula yk+1 = Ur(x
k+1, yk).

(2.15)

Some variants add to lr(x, y
k) a localizing term ρ(x, xk), which is designed to keep xk+1 from straying

too far from xk. Some replace the fixed r by an increasing sequence of values rk.
Applications to such algorithms must be set aside for presentation outside of this paper [22]. For

now, the message is just that the parametric behavior with respect to y in the minimization of lr(x, y)
in x is an important ingredient in such computations. This is where the strong variational sufficiency
condition will contribute key assistance.
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The strong form of the variational sufficient condition for local optimality has, by definition, strong
convexity of the function ψ in the variational convexity of φr in (2.2). What extra property of the
augmented Lagrangian, beyond that in Theorem 1, should this correspond to?

We have seen in the proof of Theorem 1 that in this situation the augmented Lagrangian has a
local expression in terms of ψ, namely

lr(x, y) = minu{ψ(x, u)− y·u} for (x, y) ∈ X × Y. (2.16)

It looks from this that the strong convexity of φ might carry over to strong convexity of lr(x, y) in
x ∈ X when y ∈ Y. That turns out to be correct, but it’s not the whole story. To get to the full
picture, tilt stability of a minimum should be considered.

Recall that, with respect to x̄ furnishing the minimum over X of the convex function lr(·, ȳ), the
additional feature associated with strong convexity is tilt stability in the sense that the mapping

v 7→ argmin
x∈X

{ lr(x, ȳ)− v·x} (2.17)

is single-valued and Lipschitz continuous for v in some neighborhood of v = 0. What will come up
here is an enhancement of that property which replaces fixed ȳ by variable y.

Definition (augmented tilt stability). In the context of the local convexity-concavity of lr(x, y) in
Theorem 1, the property of augmented tilt stability will be said to hold if there is a neighborhood V
of 0 such that the mapping

(v, y) 7→ argmin
x∈X

{ lr(x, y)− v·x} for (v, y) ∈ V × Y (2.18)

is single-valued and Lipschitz continuous.

Obviously, this stability property is deeply suited to the analysis of algorithms of the ALM category
described in (2.15).

Theorem 2 (augmented Lagrangian characterization of strong variational sufficiency). The strong
version of the variational sufficient condition for local optimality corresponds to strengthening the
characterization of variational sufficiency in Theorem 1 to include augmented tilt stability. It corre-
sponds equally to having the functions lr(·, y) on X for y ∈ Y be strongly convex, all with the same
modulus of strong convexity. The modulus s > 0 for that strong convexity then yields, as s−1, a
modulus for the Lipschitz continuity in the augmented tilt stability.

Proof. We know from the proof of Theorem 1 that the Lagrangian λ(x, y) in (2.6) for the proper
convex function ψ in the condition (2.2) of variational sufficiency (when considered in its lsc extension
to clW and given the value ∞ outside of clW) coincides locally around (x̄, ȳ) with lr(x, y). The
question is how strong convexity of ψ is reflected equivalently in properties of λ. The answer will be
emerge from an investigation of the convex function ψ∗ conjugate to ψ,

ψ∗(v, y) = supx,u { v·x+ y·u− ψ(x, u)}, ψ(x, u) = supv,y { v·x+ y·u− ψ∗(v, y)}, (2.19)

which is related to λ by the fact, seen from (2.6), that

the convex functions λ(·, y) and ψ∗(·, y) are conjugate to each other. (2.20)

Strong convexity of ψ with modulus s > 0 corresponds to ψ∗ being a C1 function with gradient
mapping that is Lipschitz continuous with modulus s−1 [23, 12.60], given by

∇ψ∗(v, y) = (∇vψ
∗(v, y),∇yψ(v, y)) = argminx,u {ψ(x, u)− v·x− y·u}. (2.21)

10



But there’s another way of looking at it, through dualization of the description of that strong convexity
in (2.3) (with W now IRn × IRm). By taking the conjugates of the functions of (x′, u′) on both sides
of the inequality in (2.3), and appealing to the fact that the subgradient mapping ∂ψ∗ is the inverse
of ∂ψ, one obtains

ψ∗(v′, y′) ≤ ψ∗(v, y) + (x, u)·[(v′, y′)− (v, y)] + 1
2s |(v

′, y′)− (v, y)|2
when (x, u) ∈ ∂ψ∗(v, y), implying (x, u) = ∇ψ∗(v, y).

(2.22)

Likewise in (2.20), strong convexity of λ(·, y) with modulus s corresponds to ψ∗(·, y) being C1 with its
gradient mapping Lipschitz continuous with modulus s−1 and

∇vψ
∗(v, y) = argminx {λ(x, y)− v·x}. (2.23)

That is characterized in turn by the corresponding partial version of (2.22),

ψ∗(v′, y) ≤ ψ∗(v, y) + x·(v′ − v) + 1
2s |v

′ − v|2
when x ∈ ∂vψ

∗(v, y), implying x = ∇vψ
∗(v, y).

(2.24)

From these observations it’s evident that strong convexity of ψ, captured by the Lipschitz continuity
of ∇ψ∗ as the mapping in (2.21), yields the claimed property of augmented tilt stability. In particular
it entails the Lipschitz continuity of the mapping in (2.23), which is equivalent to the strong convexity
of λ(x, y) with respect to x.

The task that remains is demonstrating how the strong convexity of λ(x, y) in x implies that
ψ∗ is C1 with Lipschitz continuous gradient, or equivalently has a property of the form in (2.22).
There’s a slight twist, however. We proceed from here, not with ψ itself, but with its augmentation
to ψt(x, u) = ψ(x, u)+ t

2 |u|
2 for a value t > 0, which can be arbitrarily small. It’s easy to see that the

variational sufficiency relationship that ψ has with φr in (2.17) extends to the same kind of relationship
between ψt and φr+t, with at most a minor adjustment of neighborhoods, if necessary. It will suffice,
therefore, to show that the strong convexity of λ(x, y) in x with modulus s implies, for t < s, the
strong convexity of ψt by way of implying the corresponding dual property of ψ∗

t , namely the property
in (2.22) for t and ψ∗

t in place of s and ψ∗.
In terms of the augmented Lagrangian λt for ψt, which is given by λt(x, y) = minu {ψt(x, u)−y·u},

we have
infx {λt(x, v)− v·x} = −ψ∗

t (v, y) (2.25)

in parallel to (2.20). On the other hand, because −λt(x, ·) is conjugate to the function ψ(x, ·) + tj,
where j(u) = 1

2 |u|2, it is given by inf-convolution between −λ(x, ·) and the conjugate of tj, which is
t−1j. Thus,

λt(x, y) = supz

{
λ(x, z)− v·x− 1

2t
|z − y|2

}
, (2.26)

and from this the strong convexity of λ(·, z) is seen to be inherited by λt(·, y). The combination of
(2.25) and (2.26) tells us that

−ψ∗
t (v, x) = infx

{
supz

{
λ(x, z)− v·x− 1

2t
|z − y|2

}}
. (2.27)

Denote the function of (x, z) on the right side this formula by Λv,y(x, z). Obviously Λv,y(x, z) is
strongly concave in z with modulus t−1, while by our assumption on λ it is strongly convex in x with
modulus s.
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In minimax theory, any convex-concave function on IRn × IRm has an associated primal problem
and an associated dual problem, [15], [23, 11J]. The primal problem in the case of Λv,y is, according
to (2.27), the minimization in (2.25). The dual problem, corresponding to a switch between the inf
and sup in (2.27), is the maximization in z of the expression

infx Λv,y(x, z) = −ψ∗(v, z)− 1

2t
|z − y|2. (2.28)

The strong convexity in the primal and strong concavity in the dual guarantee that optimal solutions
to these problems exist uniquely and form a saddle point of Λv,y [23, 11.52 and 11.40]. In particular,
the minimum in the primal equals the maximum in the dual, hence because the minimum in the primal
is −ψ∗(v, y), we have

ψ∗(v, y) = minz
{
ψ(v, z) +

1

2t
|z − y|2

}
. (2.29)

Denote the expression being minimized in (2.29) by pz(v, y), noting that it is a differentiable convex
function of (v, y), so that

for z giving the minimum in (2.29), ∇ψ∗(v, y) = ∇pz(v, y) = (∇xψ
∗(v, z), t−1(y − z)). (2.30)

Recalling (2.24), and the corresponding property of the term qz(y) =
1
2t |y− z|2 in (2.29), namely that

qz(y
′) ≥ qz(y) +∇qz(y) · (y′ − y) +

1

2t
|y′ − y|2,

we see from (2.30) that

ψ∗
t (v

′, y′) ≤ ψ∗
t (v, y) +∇ψ∗·[(v′, y′)− (v, y)] +

1

2s
|v′ − v|2 + 1

2t
|y′ − y|2.

The same inequality holds then if s is replaced by some lower value, so under the assumption that
t < s, it holds with s replaced by t. We then have the condition on ψ∗

t that is dual to ψt being strongly
convex with modulus t, and the proof is finished.

3 Second-derivative criteria for strong variational sufficiency

How is variational sufficiency related to other sufficient conditions for local optimality that have been
developed from problem (P ), at least in special cases including classical nonlinear programming? Such
conditions all rely on second-order differentiation of some variety. Although so far we have only needed
the functions f0, f1, . . . , fm in (P ) to be C1, we can try to see what more may come to light when they
are C2 — which we are calling the C2 case of (P ). Under that stronger assumption, there is a prospect
that the strong convexity of the augmented Lagrangian in Theorem 2 can be characterized by some
second-derivative property of the fi’s with respect to the pair (x̄, ȳ) in the first-order condition.

A simple idea to keep in mind is that, if lr(x, y) happens to be C2 around (x̄, ȳ), the strong convexity
in Theorem 2 will hold if and only if the partial Hessian ∇2

xxlr(x̄, ȳ) is positive-definite. This can be
exploited directly in special circumstances — see Example 1 below. In general, though, we can’t count
on the augmented Lagrangian being C2 around (x̄, ȳ), because the functions gr and g∗r in (1.6)–(1.7)
are only C1+. What we nevertheless do have in the C2 case of (P ) is that the augmented Lagrangian
lr is C1+, as noted in (1.12). In other words, if the functions fi are C2, then lr is differentiable and
its gradient ∇lr(x, y) is locally Lipschitz continuous with respect to (x, y). That’s apparent from the
formulas for ∇lr(x, y) in (1.15) and the Lipschitz continuity of ∇gr and ∇g∗r .
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The “second-order” aspects of a function being C1+ deserve some review in a context beyond just
lr, because they will also apply to gr and g∗r . For a C1+ function f , the local Lipschitz continuity of ∇f
causes that gradient mapping to be differentiable almost everywhere; this is according to Rademacher’s
Theorem, cf. [23, 9.60]. The Jacobian ∇[∇f ](w) at w, a point where ∇f is differentiable, is the Hessian
∇2f(w) of f at w in the extended sense of [23, 13.1]. It furnishes a quadratic expansion of f ,

f(w′) = f(w) +∇f(w)·(w′ − w) + 1
2(w

′ − w)·∇2f(w)(w′ − w) + o(|w′ − w|2),

by [23, 13.2]. When f is prox-regular at w [23, 13.27], which will be seen to be true of the functions
we’ll specifically be working with in what follows, the existence of such an expansion at w is in fact
equivalent to the twice differentiability of f at w in the extended sense, and it guarantees that the
matrix ∇2f(w) is symmetric [23, 13.42].

Convexity and strong convexity of f can be characterized locally through this. Having the Hessians
∇2f(w) all be positive-semidefinite for w in some open convex set W (wherever they exist, or almost
everywhere that they exist) is equivalent to f being convex on W . That’s because, for almost all
w ∈W , the function θ(τ) = f(w+τω) will be C1+ on the τ -line segment where w+τω ∈W , moreover
with θ′(τ) locally Lipshitz in τ and θ′′(τ) = ω·∇2f(w + τω)ω. Since a Lipshitz continuous function
is the integral of its derivative (existing almost everywhere and essentially bounded locally), positive-
semidefiniteness of the Hessians corresponds to the function θ′(τ) being nondecreasing and therefore to
θ being convex. Since f is continuous, its convexity on segments in W with only negligible exceptions
means its convexity on W . Similarly, having the Hessians ∇2f(w) all be positive-definite for w in
some open convex set W (wherever they exist, or almost everwhere that they exist), and uniformly so
(i.e., ω·∇2f(w)ω ≥ α|ω|2 for some α > 0), is equivalent to f being strongly convex on W .

But this characterization of local strong convexity of a C1+ prox-regular function f can go farther.
The norms of the matrices ∇2f(w) are bounded by any local Lipschitz constant for ∇f , so we can
take limits and define

∇2
f(w̄) = {H | ∃wk → w̄ with ∇2f(wk) → H} (3.1)

to obtain a compact set of symmetric matrices, all with norms bounded by that Lipschitz constant;

this is the Hessian bundle for f at w̄. From the compactness of ∇2
f(w̄), we then get that

f is strongly convex around w̄ if and only if every H ∈ ∇2
f(w̄) is positive-definite. (3.2)

The convex hull of ∇2
f(w̄) would be the Clarke generalized Jacobian of the gradient mapping ∇f at

w̄, but taking convex hulls is unnecessary for our purposes and would only get in the way.
Another comparison can be made with the second-order subdifferential ∂2f(w̄), a set-valued map-

ping introduced by Mordukhovich [8], [9], which for continuously differentiable f is the coderivative
D∗(∇f)(w̄) of ∇f at w̄. We employed this in characterizing strong convexity in [13]. Our result there,
specialized to the function f being C1+ as well as prox-regular, says that

f is strongly convex around w̄ ⇐⇒ ω·ζ > 0 for all ζ ∈ ∂2f(w̄)(ω) when ω ̸= 0. (3.3)

This comes out actually to be the same as the criterion in (3.2), because

min {ω·ζ | ζ ∈ ∂2f(w̄)ω} = min {ω·Hω |H ∈ ∇2
f(w̄)} (3.4)

by [23, 9.62]. The disadvantage of (3.3) over (3.2), however, is that ∂2f(w̄) is more troublesome
to compute and can involve extraneous elements which cause asymmetry without contributing any
additional information about “positive-definiteness.”
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This can be seen even in very elementary examples like the strongly convex function f on IR having
f ′(w) = a+w for w ≥ 0 and f ′(w) = a−w for w ≤ 0, with a+ > a− > 0. In this one-dimensional

setting, of course, Hessians are just numbers, and ∇2
f(0) simply reduces for this f to {a−, a+}. The

set-valued mapping ω 7→ ∂2f(0)(ω), on the other hand, calculates out to give ∂2f(0)(ω) = { a−ω, a+ω}
when ω ≤ 0, but ∂2f(0)(ω) = { aω | a ∈ [a−, a+]} when ω > 0. In the specialization of (3.4) to this f ,
the symmetry-destroying elements aω when ω > 0 have no effect on the minimum.

When dealing with the C1+ functions gr and g∗r in (1.6), we have prox-regularity directly from

convexity and aren’t concerned with strong convexity, but we do need to understand ∇2
gr(u) and

∇2
g∗r (y) for the sake of the role they will soon come to play. In consequence of the definitions, the

gradient mappings ∇gr and ∇g∗r are Lipschitz continous with global Lipschitz constants r and r−1,

respectively. Therefore, the Hessian bundle∇2
gr(u) is a compact set of symmetric positive-semidefinite

matrices G with norms ≤ r, and likewise for ∇2
g∗r (y) except with r replaced by r−1.

Theorem 3 (Hessian bundle criterion for strong variational sufficiency). In the C2 case of (P ), the

augmented Lagrangian lr is a C1+ prox-regular function with Hessian bundles ∇2
lr(x, y) consisting

of symmetric matrices H that can be partitioned into Hxx, Hxy, Hyx, Hyy, relative to the x and y

arguments. Let ∇2
xxlr(x, y) denote the set of submatrices Hxx for H ∈ ∇2

lr(x, y). Then the properties
of lr in Theorem 2 around (x̄, ȳ) that correspond to strong variational sufficiency are equivalent to the
following:

every Hxx ∈ ∇2
xxlr(x̄, ȳ) is positive-definite. (3.5)

Moreover the matrices Hxx ∈ ∇2
xxlr(x̄, ȳ) are the matrices of the form

∇2
xxL(x̄, ȳ) +∇F (x̄)∗G∇F (x̄) for some G ∈ ∇2

gr(F (x̄) + r−1ȳ). (3.6)

Proof. To verify that lr(x, y) is prox-regular, we show that it is strongly amenable, i.e., rep-
resentable as the composition of a C2 mapping with a convex function under an appropriate con-
straint qualification, since that is known to yield prox-regularity [23, 13.22]. The formula lr(x, y) =
f0(x) + gr(F (x) + 1

ry) −
1
2r |y|

2 can be interpreted as coming from the composition of the C2 map-
ping C : (x, y) 7→ (f0(x), F (x) +

1
ry,

1
2r |y|

2) with the convex function c(ω, u, η) = ω + gr(u) − η. The
constraint qualification in question, involving dom c, is trivially satisfied because c is finite everywhere.

Next we determine the Hessians ∇2lr(x, y) at the points where the gradient mapping ∇lr is differ-
entiable by appealing to the formula in (1.15), which we consolidate here as

(∇xlr(x, y),∇ylr(x, y)) = (∇xL(x, η), r
−1(η − y)), where η = ∇gr(F (x) + r−1y), (3.7)

with the recollection that the first-order condition on (x̄, ȳ) has (∇xlr(x̄, ȳ),∇ylr(x̄, ȳ)) = (0, 0), in
which case η = ȳ. If gr were C2, we could rely on the standard chain rule for differentiating (3.7),
but in the circumstances faced here something more delicate is needed. Here’s the fact that will help:
if M(w) = M1(M2(w)) for a locally Lipshitz mapping M1 and a C1 mapping M2 with Jacobians of
full rank, then M is almost everywhere differentiable with ∇M(w) = ∇M1(M2(w))∇M2(w). The full
rank assumption guarantees that, for almost every w, M1 is differentiable at M2(w). The first-order
expansion of M1 at M2(w) combines then with the first-order expansion of M2 at w to provide a
first-order expansion of M at w with the indicated Jacobian ∇M(w), and that establishes the claim.

We apply this version of a chain rule to M(x, y) = ∇gr(F (x) + r−1y) with M1 = ∇gr and
M2(x, y) = F (x) + r−1y, for which ∇xM2(x, y) = ∇F (x) and ∇yM2(x, y) = r−1I. This yields
∇xM(x, y) = G∇F (x) and∇yM(x, y) = r−1G for G = ∇2gr(F (x)+r−1y) at points of differentiability.
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For the rest of the differentiation of (3.7), ordinary rules can be invoked. The result of the calculation
at points of differentiability is that, with η as in (3.7),

∇2
xxlr(x, y) = ∇2

xxL(x, η) +∇F (x)∗G∇F (x) for G = ∇2gr(F (x) + r−1y), while
∇2

xylr(x, y) = ∇F (x)∗G, ∇2
yxlr(x, y) = G∇F (x), ∇2

yylr(x, y) = r−2[G− rI].
(3.8)

Then, in passing to the bundle∇2
lr(x, y), we get the same expressions but withG ∈ ∇2

gr(F (x)+r−1y).
The special case of (x̄, ȳ) is covered by this as well, with the feature that η becomes ȳ. In particular,

the description of ∇2
xxlr(x̄, ȳ) in (3.6) is thereby confirmed.

The positive-definiteness of the matrices in ∇2
xxlr(x̄, ȳ) corresponds to the existence of a neighbor-

hood of (x̄, ȳ) in which every (x, y) has all the matrices in ∇2
xxlr(x, y) positive definite, and uniformly

so. Then, locally in y near ȳ, lr(x, y) is uniformly strongly convex in x near x̄, as was to be proved.

There is work left to do, because we still have to see more clearly the conditions on first derivatives
and generalized second-derivatives that correspond in problem (P ) to the existence of r > 0 such that
the property in Theorem 3 holds for lr at (x̄, ȳ). For that, more will have to be uncovered about
the Hessian properties of gr. Right away, though, we can draw some conclusions that are readily at
hand, ahead of the coming investigation of the ability of Hessian properties of gr to reflect geometric
“curvatures” that can influence local optimality.

Example 1 (strong variational sufficiency in nonlinear programming). In the C2 case of classical
nonlinear programming, where g = δK for the cone K in (1.2), let x̄ and ȳ satisfy the first-order
conditions, and let I(x̄, ȳ) be the set of indices i corresponding to the equality constraints and the
active inequality constraints having Lagrange multipliers ȳi > 0. Then the strong variational sufficient
condition holds if and only if

∇2
xxL(x̄, ȳ) is positive-definite relative to the subspace

S(x̄, ȳ) = { ξ | ∇fi(x̄)·ξ = 0 for every fi with i ∈ I(x̄, ȳ)}. (3.9)

The tighter form of this standard condition in which all the active inequality constraints are required
to have multipliers ȳi > 0 is equivalent to the augmented Lagrangian lr being C2 around (x̄, ȳ) for r
sufficiently high, with ∇2

xxlr(x̄, ȳ) positive-definite.

Detail. For this choice of g the function gr is r
2d

2
K for dK(u) giving the distance of u from the

indicated cone K. The augmented Lagrangian thus has the formula

lr(x, y) = f0(x) +
r

2

 s∑
i=1

max{0, fi(x) + r−1yi}2 +
m∑

i=s+1

(fi(x) + r−1yi)
2

− 1

2r

m∑
i=1

y2i .

Let I+(x, y) denote the set of indices ∈ [1, s] such that fi(x)+ r
−1yi > 0, and similarly I0(x, y) for = 0

and I−(x, y) for < 0. Around (x, y) having I0(x, y) = ∅, the terms for i ∈ I−(x, y) vanish, and lr is C2

with x-Hessian

∇2
xxlr(x, y) = ∇2

xxf0(x) +
∑

i∈I+(x,y)∪[s+1,m]

[
(yi + rfi(x))∇2fi(x) + r∇fi(x)∗∇fi(x)

]
. (3.10)

In the first-order condition on (x̄, ȳ), we have for the inequality constraints that either fi(x̄) = 0 with
ȳi ≥ 0 or fi(x̄) < 0 with ȳi = 0. Then, in taking the possible limits of the Hessians in (3.10) as
(x, y) → (x̄, ȳ), the only difference that emerges is for indices i ∈ I0(x̄, ȳ), which have fi(x̄) = 0 and
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ȳi = 0, since for them yi can approach ȳi either positively or negatively. The matrices in the Hessian

limit ∇2
xxlr(x̄, ȳ) are therefore exactly the ones of the form

∇2
xxL(x̄, ȳ) + r

∑
i∈I+(x̄,ȳ)∪[s+1,m]∪J

∇fi(x̄)∗∇fi(x̄) for some J ⊂ I0(x̄, ȳ). (3.11)

Such a matrix is positive-definite for high-enough r as long as ∇2
xxL(x̄, ȳ) is positive definite relative

to the subspace consisting of the vectors ξ such that ∇fi(x̄)·ξ = 0 for all i ∈ I+(x̄, ȳ) ∪ [s+ 1,m] ∪ J .
Since J can be any subset of I0(x̄, ȳ), having this for every matrix in (3.11) comes down to having
it for J = ∅, which corresponds to the biggest subspace. This yields the criterion in (3.9). When
I0(x̄, ȳ) = ∅, there is only one matrix in (3.11), and we get the C2 case of lr as described.

Example 1 confirms that the strong variational sufficient condition for local optimality reduces,
in nonlinear programming, to the strong second-order sufficient condition that is commonly invoked
in numerical methodology. That condition therefore does more than provide a convenient guarantee
of local optimality. It corresponds, through Theorems 1 and 2, to a local reduction of the nonlinear
programming problem to a convex optimization problem in a framework of local duality. At the same
time, Example 1 demonstrates that strong variational sufficiency is a fundamental and far-reaching
generalization of this classical sufficient condition.

The characterization of strong variational sufficiency in Example 1 in terms of positive-definiteness
relative to a critical subspace extends in the theorem coming next to a larger class of problems, but
some more insight into the gradient mapping ∇gr and its potential differentiability is needed in
providing support for that result. The important observation is that

gph∇gr = { (u+ r−1y, y) | (u, y) ∈ gph ∂g}, (3.12)

which has the interpretation that

gph∇gr = Ar( gph ∂g) for the linear transformation Ar : (u, y) 7→ (u+ r−1y, y). (3.13)

This follows from the conjugacy in (1.6) and the fact that the subdifferential mappings of a convex
function and its conjugate are inverse to each other:

y ∈ ∂g(u) ⇐⇒ u ∈ ∂g∗(y) ⇐⇒ u+ r−1y ∈ ∂(g∗ + r−1j)(y) for j(y) = 1
2 |y|2

⇐⇒ y ∈ ∂(g∗ + r−1j)∗(u+ r−1y), where (g∗ + r−1j)∗ = gr by (1.6).

The same linear transformation Ar in (3.12), which is invertible and thus preserving of tangent struc-
ture, can be utilized to understand how the difference quotient mappings

[∆τ∇gr(w)](ω) = τ−1[∇gr(w + τω)−∇gr(w)] at points w ∈ IRm (3.14)

are connected with the set-valued difference quotient mappings

[∆τ∂g(u |y)](ω) = τ−1[∂g(u+ τω)− y], for which
gph [∆τ∂g(u |y)] = { (ω, η) | (u, y) + τ(ω, η) ∈ gph ∂g}. (3.15)

We get from (3.13) that

A−1
r ( gph[∆τ∂g(u |y)) =

{
(ω + r−1η, η)

∣∣∣ (u+ r−1y, y) + τ(ω + r−1η, η) ∈ gph∇gr
}
,
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or in other words that

gph[∆τ∇gr(u+ r−1y)] = { (ω + r−1η, η) | (ω, η) ∈ gph[∆τ∂g(u |y)}. (3.16)

In ascertaining the differentiability of ∇gr at a point u + r−1y, we need to see what happens
to the mappings ∆τ∇gr(u + r−1y) as τ ↘0. Because those mappings are Lipschitz continuous with
modulus r, a property they inherit from ∇gr, a pointwise limit is automatically uniform on bounded
sets and corresponds moreover to set convergence of their graphs [23, 5.45]. But through (3.16) that
can be identified with set-convergence of the graphs of the mappings ∆τ∂g(u |y), which in fact are the
subgradient mappings of the second-order different quotient functions associated with g:

∆τ∂g(u |y) = ∂[12∆
2
τg(u |y)], where 1

2∆
2
τg(u |y)(ω) = τ−2[g(u+ τω)− g(u)− τy·ω)]. (3.17)

Set convergence of the graphs of subdifferential mappings of convex functions is tied to set convergence
of the epigraphs of those functions by Attouch’s Theorem [23, p. 552]. Moreover there is the duality
that

1
2∆

2
τg(u |y) and 1

2∆
2
τg

∗(y |u) are conjugate convex functions. (3.18)

For now, we will focus on just a special case of this difference quotient framework, but later, in
Section 4, it will be exploited in full. The special case concerns functions g that are polyhedral convex,
i.e., for which the epigraph epi g is a polyhedral convex set, this being equivalent to the same property
for the conjugate function g∗. These can also be described as the functions g such that dom g is a
polyhedral convex set on which g is piecewise linear (affine), see [14]. Their one-sided directional
derivatives

g′(u;ω) = lim
τ ↘ 0

τ−1[g(u+ τω)− g(u)]

have the distinguishing feature from piecewise linearity that actually

∀ρ > 0,∃ε > 0 such that g′(u;ω) = τ−1[g(u+ τω)− g(u)] when |ω| < ρ, τ < ε. (3.19)

Theorem 4 (strong variational sufficiency in polyhedral and piecewise linear modeling). Suppose in
the C2 case of (P ) that the modeling function g is polyhedral convex. With respect to y ∈ ∂g(u), or
equivalently u ∈ ∂g∗(y), let

Tg(u |y) = {ω | g′(u;ω) = y·ω}, Tg∗(y |u) = { η | g∗′(y; η) = u·η}, (3.20)

these being polyhedral convex cones polar to each other. Then for (x̄, ȳ) satisfying the first-order
conditions in (P ), expressed as having ∇xL(x̄, ȳ) = 0 with ȳ ∈ ∂g(F (x̄)), the strong variational
sufficient condition holds if and only if

∇2
xxL(x̄, ȳ) is positive-definite relative to the subspace

S(x̄, ȳ) =
{
ξ
∣∣∣ ∇F (x̄)ξ ∈ Tg(F (x̄) | ȳ)− Tg(F (x̄) | ȳ)

}
.

(3.21)

That subspace can be described equivalently in the notation ηF = η1f1 + · · ·+ ηmfm by

S(x̄, ȳ) =
{
ξ
∣∣∣ ∇[ηF ](x̄)·ξ = 0 for all η ∈ Tg∗(ȳ |F (x̄)) ∩ [−Tg∗(ȳ |F (x̄))]

}
. (3.22)

Proof. The polyhedral convexity of the cones in (3.20) is evident from that of g and g∗, which
makes the directional derivative functions g′(u; ·) and g∗′(y; ·) be piecewise linear and furnishes the
supplementary tangent-cone-type descriptions that

Tg(u |y) = {ω | y ∈ ∂g(u+ tω) for small t > 0} = T∂g∗(y)(u),

Tg∗(y |u) = { η |u ∈ ∂g∗(y + tη) for small t > 0} = T∂g(u)(y).
(3.23)

17



The polarity relationship will be confirmed in the calculations below. That polarity leads to the
equivalence of the descriptions of S(x̄, ȳ) in (3.21) and (3.22), inasmuch as it makes the subspaces
Tg(F (x̄) | ȳ) − Tg(F (x̄) | ȳ) and Tg∗(ȳ |F (x̄)) ∩ [−Tg∗(ȳ |F (x̄))] be orthogonally complementary. The
first is the smallest subspace containing Tg(F (x̄) | ȳ), while the second is the largest subspace contained
within Tg∗(ȳ |F (x̄)). Having ∇F (x̄)ξ lie in a subspace M is equivalent to having 0 = η·∇F (x̄)ξ =
∇[ηF ](x̄)·ξ for all η ∈M⊥.

We get from (3.19) that the second-order difference quotient in (3.17) has the reduced form

∀ρ > 0, ∃ε > 0 such that 1
2∆

2
τg(u |y)(ω) = τ−1[g′(u;ω)− y·ω] when |ω| < ρ, τ < ε. (3.24)

Since g′(u;ω)− y·ω ≥ 0 in general, with equality meaning that ω ∈ Tg(u |y), we see that

1
2∆

2
τg(u |y)(ω) → δTg(u | y)(ω) as τ ↘0. (3.25)

In parallel argument,
1
2∆

2
τg

∗(y |u)(η) → δTg∗ (u | y)(η) as τ ↘0. (3.26)

The pointwise convergence in (3.25) of convex functions of ω in the circumstances of (3.24) is equivalent
to epi-convergence of those functions, i.e., set convergence of their epigraphs by [23, 7.2]. Conjugacy
is preserved by epi-convergence according to Wijsman’s Theorem [23, 11.34]. The conjugacy of the
difference quotients in (3.18) thus implies the conjugacy of the indicator functions in (3.25) and (3.26),
which says that the cones in question are polar to each other. The epi-convergence of the functions
1
2∆

2
τg(u |y) also corresponds by Attouch’s Theorem [23, p. 552] to set convergence of the graphs of

their subdifferential mappings (3.15), the limit being the subdifferential mapping for the indicator
δTg(y |u), which is the normal cone mapping NTg(y |u). Because ∂g is a piecewise polyhedral mapping,

this convergence of ∆τ∂g(u |y) to NTg(y |u), brings the existence of a neighborhood U × Y such that

[U × Y] ∩ gph[∆τ∂g(u |y)] = [U × Y] ∩ gphNTg(u | y) for small τ > 0. (3.27)

Recall that the normal cone mapping NC for a closed convex set C is related to its projection
mapping PC by PC = (I +NC)

−1. This can be expressed for our purposes here as

(ω, η) ∈ gphNC ⇐⇒ (ω + r−1η, η) ∈ gph[r(I − PC)]

and then applied to C = Tg(u |y) to obtain, from (3.16) and the graphical convergence of ∆τ∂g(u |y)
to NTg(u | y), that

∆τ∇gr(u+ r−1y) converges pointwise locally uniformly to r
(
I − PTg(u | y)

)
as τ ↘0. (3.28)

Differentiability of∇gr at u+r−1y is the case of (3.28) where the limit is a linear mapping. Because
PC is a linear mapping if and only if C is a subspace, that corresponds precisely to the cone Tg(u |y)
being a subspace, or equivalently through polarity, to the cone Tg∗(y |u) being a subspace. That can
be identified through the supplementary formulas (3.23) with the relative interior condition

u ∈ ri ∂g∗(y), or equivalently y ∈ ri ∂g(u). (3.29)

This guides us to the question of the possible circumstances in which that property can hold for (u, y)
near (ū, ȳ)) with ū = F (x̄).
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Note first that, because Tg(ū | ȳ) is the tangent cone to ∂g∗(ȳ) at ū, the tangent cone to ∂g∗(ȳ) at
any u ∈ ri ∂g∗(ȳ) is the subspace generated by Tg(ū | ȳ). Thus,

Tg(u | ȳ) = Tg(ū | ȳ)− Tg(ū | ȳ) at points u arbitrarily close to ū. (3.30)

Observe next from the case of (3.27) for (ū, ȳ) that the set gph ∂g − (ū, ȳ) coincides locally around
the origin with gphNTg(ū | ȳ). Hence, for (u, y) in some neighborhood of (ū, ȳ), having y ∈ ∂g(u), or

equivalently u ∈ ∂g∗(y), entails u − ū ∈ Tg(ū | ȳ). Then the tangent cone to ∂g∗(y) at u, which is
Tg(u |y), must lie in the subspace Tg(ū | ȳ) − Tg(ū | ȳ). It follows that this subspace, generated as in
(3.30), includes all others that might be generated from pairs (u, y) approaching (ū, ȳ) in the graph of
∂g. Hence the condition in (3.21) is equivalent in these circumstances to the Hessian bundle criterion
in Theorem 3 for strong variational sufficienty.

To illustrate this result, we look at several cases which, primally or dually, involve faces of convex
sets. Recall that the face of a polyhedral convex set K with respect to a vector y is the polyhedral
convex set

face(K |y) = argmax { y·u |u ∈ K} = {u ∈ K | y ∈ NK(u)}. (3.31)

Example 2 (illustrations of the criterion in Theorem 4).
(a) If g is the indicator δK of a polyhedral convex set K, then g∗ is the support function σK for

K, while Tg(F (x̄) | ȳ) is the tangent cone to face(K | ȳ) at F (x̄), which is the same as the critical cone
consisting of the elements of TK(F (x̄)) that are ⊥ ȳ. In this case, (3.21) has

Tg(F (x̄) | ȳ)− Tg(F (x̄) | ȳ) = the subspace of IRm parallel to the affine hull of face(K | ȳ). (3.32)

(b) If g is the support function σY of a polyhedral convex set Y , then g∗ is the indicator δY , and
Tg∗(ȳ |F (x̄)) is the tangent cone to face(Y |F (x̄)) at ȳ, so that in (3.22)

Tg∗(ȳ |F (x̄) ∩ [−Tg∗(ȳ |F (x̄)] = { η ∈ IRm | ȳ ± τη ∈ face(Y |F (x̄)) for some τ > 0}. (3.33)

(c) Cases (a) and (b) unite when K is a polyhedral convex cone and Y is the polar cone K∗.
In particular, when K is the nonlinear programming constraint cone (1.2), the subspace S(x̄, ȳ) in
Theorem 4 becomes the subspace S(x̄, ȳ) in Example 1.

(d) If g is the vecmax function appearing in (1.3), then g = σY and g∗ = δY for the unit simplex
Y = { y | yi ≥ 0, y1 + · · ·+ ym = 1}. This is an instance of (b) in which a face of Y is a subsimplex:

face(Y |F (x̄)) = { y ∈ Y | yi = 0 for inactive i},

where the indices i called active have fi(x̄) = vecmax(F (x̄)) = max{f1(x̄), . . . , fm(x̄)}. Then

S(x̄, ȳ) = { ξ | ∇fi(x̄)·ξ has the same value for every active i with ȳi > 0}.

(e) If g is the norm || · ||∞, then g∗ = δY for Y = { y = (y1, . . . , ym) | |y1|+ · · ·+ |ym| ≤ 1} = IB1,
the unit ball for the norm || · ||1. This is an instance of (b) similar to (d) in which the active indices i
have |fi(x̄)| = ||F (x̄)||∞ and

face(IB1 |F (x̄)) restricts y ∈ IB1 to


yi = 0 for inactive i,
yi ≥ 0 for active i having fi(x̄) > 0,
yi ≤ 0 for active i having fi(x̄) < 0.

Then S(x̄, ȳ) = { ξ | ∇fi(x̄)·ξ has the same value for all active i with ȳi ̸= 0}.
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(f) If g = || · ||1, then g∗ = δY for Y = [−1, 1]m = IB∞, the unit ball for || · ||∞. This is an instance
of (b) in which

y ∈ face(Y |F (x̄)) ⇐⇒


yi = 1 if fi(x̄) > 0,
yi = −1 if fi(x̄) < 0,
yi ∈ [−1, 1] if fi(x̄) = 0.

Then S(x̄, ȳ) = { ξ | ∇fi(x̄)·ξ = 0 for all i such that fi(x̄) = 0 and − 1 < ȳi < 1}.

Detail. (a) When g = δK , having y ∈ ∂g(u), or equivalently u ∈ ∂g∗(y), reduces to having
y ∈ NK(u), which is the same as u belonging to face(K |y). Hence ∂g∗(y) = face(K |y). Since
Tg(u |y) is by (3.23) the tangent cone to ∂g∗(y) at u, it is the cone face(K |y) − u. Therefore, the
subspace Tg(u |y)−Tg(u |y) generated by Tg(u | ) is the same as the subspace generated by face(K |y).
In particular, the subspace Tg(F (x̄) | ȳ)− Tg(F (x̄) | ȳ) entering into (3.21) is the one claimed.

(b) This is the dual version of (a) with Tg∗(ȳ |F (x̄)) being the tangent cone at ȳ to ∂g(F (x̄)), which
here is face (Y |F (x̄)). Thus, Tg∗(ȳ |F (x̄)) = { η | ȳ + tη ∈ face (Y |F (x̄)) for some t > 0}.

(c) For the polar pair of cones K and Y , we have

ȳ ∈ NK(F (x̄)) ⇐⇒ F (x̄) ∈ NY (ȳ) ⇐⇒ F (x̄) ∈ K, ȳ ∈ Y, F (x̄) ⊥ ȳ,
⇐⇒ F (x̄) ∈ face(K | ȳ) ⇐⇒ ȳ ∈ face (Y |F (x̄)),

(3.34)

so that both versions (3.21) and (3.22) of the criterion in Theorem 4 can be looked at. For the nonlinear
programming constraint cone (1.2) as an example, face(K | ȳ) is the cone consisting of u = (u1, . . . , um)
such that ui ≤ 0 for i ∈ [1, s] with ȳi = 0, but ui = 0 otherwise. The affine hull of this is already a
subspace, obtained by dropping the nonpositivity requirement. That results in S(x̄, ȳ) in (3.21) being
the subspace in (3.9). From the other side, face (Y |F (x̄)) is the cone consisting of y = (y1, . . . , ym)
such that yi ≥ 0 for i ∈ [1, s] having fi(x̄) = 0 but yi = 0 for i ∈ [1, s] having fi(x̄) < 0. The vectors
η such that ȳ ± tη belongs to this for some τ > 0 are those for which ηi = 0 except for i ∈ [1, s] such
that fi(x̄) < 0, the inactive constraints. The condition in (3.22) then has S(x̄, ȳ) consisting of ξ such
that ξ ⊥

∑m
i=1 ηi∇fi(x̄) for all such η, and that again is the subspace in (3.9).

(d) This continues (b). For ȳ in the indicated subsimplex, the vectors η such that ȳ ± τη belongs
to that subsimplex for some τ > 0 are the vectors η = (η1, . . . , ηm) such that η1 + · · · ηm = 0 with
ηi = 0 unless ȳi > 0. Then in (3.22) we are looking at ξ such that

∑m
i=1 ηi[∇fi(x̄)·ξ] = 0 for all such

η. That corresponds to the values of ∇fi(x̄)·ξ agreeing for indices i having ȳi > 0.

(e) The argument of (d) needs only minor adjustment to cover this as well.

(f) The face in this instance allows little wiggle room. It contains ȳ ± τη for some τ > 0 if and
only if ηi = 0 unless −1 < ȳi < 1. That means in applying (b) that the resulting version of (3.22)
comes down to S(x̄, ȳ) consisting of ξ such that ∇fi(x̄)·ξ = 0 for i such that −1 < ȳi < 1.

4 Criteria using generalized quadratic forms

In moving beyond polyhedral modeling, we lose piecewise linearity and have to take “curvature” into
account. Realizations of the criterion for strong variational sufficiency in Theorem 3 have to go beyond
the positive definiteness of ∇2

xxL(x̄, ȳ) on some subspace S(x̄, ȳ) as in Theorem 4.
Much of the foundation has already been laid for the steps to be taken next. The key is the

relationship in (3.16) between the graph of the difference quotient mapping ∆τ∇gr(u+r−1y) in (3.14)
and the graph of the difference quotient mapping ∆τ∂g(u |y) in (3.15). The way forward in utilizing
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Theorem 3 requires us to identify when the mappings ∆τ∇gr(u+ r−1y) converge locally uniformly as
τ ↘0 to a linear mapping — the meaning of ∇gr being differentiable at u+r−1y — and furthermore to
understand how that linear mapping in the limit relates to the function g. On the basis of (3.16), this
translates into figuring out when the difference quotient mappings ∆τ∂g(u |y) converge graphically
at τ ↘0 to some mapping that is generalized linear in the sense that its graph is an m-dimensional
subspace of IRm×IRm. However, we also know that graphical convergence of the mappings ∆τ∂g(u |y)
is tied to epigraphical convergence of the second-order difference quotients in (3.17) through Attouch’s
Theorem [23, p. 552].

In the second-order theory of variational analysis developed in [23, Chapter 13], g is called twice
epi-differentiable at u for a subgradient y ∈ ∂g(u) if ∆2

τg(u |y) converges epigraphically to some
limit as τ ↘0. The limit function, called the second-order subderivative, is denoted by d2g(u |y). Like
∆2

τg(u |y), it is convex and positively homogeneous of degree 2, i.e., has d2g(u |y)(τω) = τ2d2g(u |y)(ω)
when τ > 0. The mappings ∆τg(u |y) then converge accordingly in graph to the subgradient mapping
∂[12d

2g(u |y)]. Putting this together with the facts already mentioned, we get that

∆τ∇gr(u+ r−1y) converges locally uniformly as τ ↘0 to a mapping M

⇐⇒
[
g is twice epi-differentiable at u for y and M = ∇qr(u+ r−1y), where

qr(ω) = minω′{ q(ω′) + r
2 |ω

′ − ω|2} in the case of q(ω) = 1
2d

2g(u |y)(ω),

(4.1)

and furthermore

M in (4.1) is linear ⇐⇒ ∂[12d
2g(u |y)] is generalized linear. (4.2)

This brings in the following concepts, where we build on the idea that the differentiable functions q
on IRm for which the gradient mapping is a linear transformation are the quadratic functions without
a linear or constant term. We will call them quadratic forms for simplicity.

Definition (generalized quadratic forms and generalized second-order differentiability). By a gener-
alized quadratic form on IRm will be meant a function q : IRm → (−∞,∞] with q(0) = 0 for which
the subgradient mapping ∂q : IRm →→ IRm is generalized linear. A function g on IRm will be called
generalized twice differentiable at u for a subgradient y if it is twice epi-differentiable at u for y with
the second-order subderivative d2g(u |y) being a generalized quadratic form q.

In broad terms, a generalized linear mapping A, say from IRn to IRm, is a set-valued mapping for
which gphA is a subspace of IRn × IRm. This comes down to meaning that domA is a subspace S of
IRn and A(0) is a subspace S′ of IRm, and there is an ordinary linear mapping A0 : S → IRm such
that A(x) = A0(x) + S′ for x ∈ S. In applying that description to the subgradient mapping ∂q for a
function q on IRm with q(0) = 0, the subspace S = dom ∂q has to be dom q. The subspace S′ = ∂q(0)
is then S⊥. This makes clear that generalized quadratic forms q are the functions representable as

q(ω) = 1
2ω·Qω + δS(ω) for a subspace S and a symmetric matrix Q with PSQPS = Q, (4.3)

where PS gives the projection onto S. The condition PSQPS = Q causes ω·Qω to depend only on PSω
and makes Q be uniquely determined by q and S as dom q. Then the subgradient mapping, given by

∂q(ω) =

{
Qω + S⊥ when ω ∈ S,
∅ otherwise,

(4.4)

is the corresponding generalized linear mapping. Note that the conjugate q∗ of a convex generalized
quadratic form q is another generalized quadratic form, and therefore from (3.18),

g is generalized twice differentiable at u for y with 1
2d

2g(u |y) = q

⇐⇒ g∗ is generalized twice differentiable at y for u with 1
2d

2g∗(y |u) = q∗.
(4.5)
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There are different ways of thinking about how a finite function g that is only differentiable almost
everywhere might nontheless be deemed twice differentiable at a point u. One can look to a second-
order expansion of g, or a first-order expansion of ∂g, or a limit of a second-order difference quotients,
and so forth. But when g is convex, they all come together as meaning that g is twice epi-differentiable
at u for y being∇g(u), and d2g(u |y) being a quadratic form [23, 13.42]. This is the natural background
for our definition of generalized twice differentiability.

To understand the generalization better through an easily visualized example, consider the finite
convex function

g(u1, u2) = max
{

1
2u

2
1,

1
2u

2
2

}
for (u1, u2) ∈ IR2, (4.6)

which is C2 except at points (u1, u2) having |u1| = |u2|. At the origin, g is merely differentiable
with ∇g(0, 0) = (0, 0). At points (u1, u2) = (t, t) other than the origin, ∂g(t, t) is the line segment
between (t, 0) and (0, t). Hence, for any λ ∈ (0, 1), the graph of ∂g around (u, y) for u = (t, t) and
y = (1 − λ)(t, 0) + λ(0, t) consists of the pairs (u′, y′) having u′ = u + (τ, τ) and y′ = y + (σ,−σ) for
τ and σ sufficiently small. The vectors (τ, τ, σ,−σ) in IR4, regardless of size, comprise the graph of a
generalized linear mapping from IR2 to IR2. This mapping is the subdifferential of the convex function
q on IR2 given by

q(ω1, ω2) =

{
1
2τ

2 when (ω1, ω2) = (τ, τ)
∞ otherwise ,

(4.7)

which is a generalized quadratic form. This tells us that g is generalized twice differentiable at u for
y with this q as 1

2d
2g(u |y). Note that generalized twice differentiability would not be obtained if the

subgradient y = (1 − λ)(t, 0) + λ(0, t) were taken with λ = 0 or λ = 1, instead of λ ∈ (0, 1). The
analysis of generalized twice differentiability is much the same at points u = (t,−t).

In the terminology of generalized quadratic forms and generalized twice differentiability, we can
recast (4.1) and (4.2) in the following way:

gr is twice-continuously differentiable at u+ r−1y if and only if g is generalized
twice differentiable at u for y, and then ∇2gr(u+ r−1y) is the constant Hessian

G associated with the quadratic form qr generated from q = 1
2d

2g(u |y) by

qr(ω) = minω′

{
q(ω′) + r

2 |ω
′ − ω|2

}
.

(4.8)

However, for the sake of applying Theorem 3, we require not only the Hessians of gr at various points
u + r−1y, but also their possible limits for sequences of points uk + r−1yk approaching F (x̄) + r−1ȳ,

which form the set ∇2
gr(F (x̄) + r−1ȳ). This leads us to define the quadratic bundle of g at u for y by

quad g(u |y) =


the collection of generalized quadratic forms q for which
∃ (uk, yk) → (u, y) with g generalized twice differentiable
at uk for yk and such that the generalized quadratic

forms qk = 1
2d

2g(uk |yk) converge epigraphically to q,

(4.9)

where the duality in (4.5) implies

q ∈ quad g(u |y) ⇐⇒ q∗ ∈ quad g∗(y |u). (4.10)

Theorem 5 (strong variational sufficiency through generalized quadratic forms). In the C2 case of
(P ) with x̄ and ȳ satisfying the first-order conditions, the strong variational sufficient condition for
local optimality holds if and only if

every q ∈ quad g(F (x̄) | ȳ) has 1
2ξ·∇2

xxL(x̄, ȳ)ξ + q(∇F (x̄)ξ) > 0 when ξ ̸= 0. (4.11)
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Proof. We know now that the matrices G ∈ ∇2
gr(F (x̄) + r−1ȳ) in Theorem 3 correspond to

the generalized quadratic forms q ∈ quad g(F (x̄) | ȳ) in having 1
2ω·Gω = qr(ω), the function defined

in (4.8). The criterion for strong variational sufficiency in Theorem 3 can be restated then as the
existence of high-enough r such that

every q ∈ quad g(F (x̄) | ȳ) has 1
2ξ·∇2

xxL(x̄, ȳ)ξ + qr
(
∇F (x̄)ξ

)
> 0 if ξ ̸= 0. (4.12)

For each q, let µr(q) denote the minimum attained by the quadratic form in (4.12) with respect to ξ
lying on the unit sphere of IRm. The desired property in (4.12) is that µr(q) > 0. The nonnegative
convex quadratic forms qr increase pointwise as r increases, and in that way these functions converge
both pointwise and epigraphically to q itself [23, 7.4(d)]. Then, through the positive homogeneity of
degree 2, the functions obtained by adding the indicator of the unit sphere to the quadratic forms
in (4.12) likewise epi-converge to the sum of that indicator and the generalized quadratic form in
(4.11). The values µr(q) converge in that case to µ(q), the corresponding minimum for the generalized
quadratic form in (4.11), because epi-convergence of lsc functions with uniformly bounded level sets
makes their minimum values converge [23, 7.33]. Thus, the property in (4.12) holds for a particular q
and high-enough r if and only if µ(q) > 0.

In fact, µr(q) is also continuous with respect to epi-convergence of the generalized quadratic forms
q [23, 7.33], and the bundle quad g(F (x̄) | ȳ) of such forms is compact with respect to that topology.
The bundle’s compactness is based on the correspondence of its elements with those of the compact

set ∇2
gr(F (x̄) + r−1ȳ) under a transformation that pairs epi-convergence on one side with matrix

convergence on the other. Hence the desired existence of r such that µr(q) > 0 for all q in that set
corresponds to having µ(q) > 0 for all q in that bundle, which is the property formulated in (4.11).

In the criterion of Theorem 5, it is only necessary to test the forms q that are minimal in
quad g(F (x̄) | ȳ), in the sense that there is no form q′ ̸= q in quad g(F (x̄) | ȳ) with q′ ≤ q, q′ ̸= q.
Every element of quad g(F (x̄) | ȳ) has a minimul q below it, as can be seen by considering totally
ordered subsets of the quadratic bundle and drawing on compactness with respect to epi-convergence.

Question 1. Does the criterion in Theorem 5 really need sometimes to invoke more than one of
the generalized quadratic forms q ∈ quad g(F (x̄) | ȳ). In other words, could more than one such q be
minimal, and could that make a difference? Answer. Yes.

Detail. An example is furnished by the function g on IR2 in (4.6) at (0, 0), where it is differentiable
with gradient (0, 0). We examine how the condition (4.12) operates with that g when F (x̄) = (0, 0)
and ȳ = (0, 0). For this we must determine the bundle quad g(0, 0 |0, 0) by way of the definition (4.9).
The first step is identifying when g is generalized twice-differentiable at u for y.

In the region where |u1| > |u2|, g is C2 with the quadratic form being q1(ω1, ω2) =
1
2ω

2
1, while the

region where |u1] < |u2| similarly yields q2(ω1, ω2) =
1
2ω

2
2. Along the line where ω1 = ω2, which is a

one-dimensional subspace S, we get, away from the origin, the form in (4.7). We can denote it here
by q3 and regard it as the restriction to S of q1 or equivalently q2, since the two agree on S. Likewise,
along the line where ω1 = −ω2, which is the subspace S⊥, we get q4 the restriction to that subspace
of q1 or q2. These are the only possibilities for generalized twice differentiability. Taking limits here
is trivial, so quad g(0, 0 |0, 0) = {q1, q2, q3, q4}. But both q3 and q4 are ≥ both q1 and q2, so that the
positive-definiteness condition in (3.48) needs only to be checked for q1 and q2.

The example is concerned with F (x̄) = (f1(x̄), f2(x̄)) = (0, 0) and ȳ = (0, 0), hence ∇2
xxL(x̄, ȳ) =

∇2f0(x̄). Thus, in the case of q1 the positive-definiteness condition requires

ξ·∇2f0(x̄)ξ + |∇f1(x̄)·ξ|2 > 0 when ξ ̸= 0, (4.13)

23



whereas for q2 it requires

ξ·∇2f0(x̄)ξ + |∇f2(x̄)·ξ|2 > 0 when ξ ̸= 0. (4.14)

In general, neither of these conditions is can subsume the other. They are needed in tandem.

Question 2. When g, although not generalized twice differentiable, is twice epi-differentiable at F (x̄)
for ȳ with second-order subderivative d2g(F (x̄) | ȳ), is the criterion in Theorem 5 equivalent perhaps
to the single condition

ξ·∇2
xxL(x̄, ȳ)ξ + d2g(F (x̄) | ȳ)

(
∇F (x̄)ξ

)
> 0 if ξ ̸= 0, (4.15)

despite d2g(F (x̄) | ȳ) not being a generalized quadratic form? Answer. No, the single condition (4.15)
can be weaker than (4.11) and not enough to trigger strong variational sufficiency.

Detail. This can be established by a continuation of the same example as in the preceding question,
but specializing to x ∈ IR2, f1(x1, x2) = x1, f2(x1, x2) = x2, and

f0(x1, x2) =
1

4
(1 + a)(x1 + x2)

2 +
1

4
(1− a)(x1 + x2)

2, with ∇2f0(x1, x2) ≡
[
1 a
a 1

]
. (4.16)

Then

[
2 a
a 1

]
and

[
1 a
a 2

]
are the Hessians for the quadratic forms in (4.13) and (4.14), so these

are positive-definite as long as their determinant values, both equal to 2−a2, are positive, i.e., as long
as a <

√
2. Therefore, that condition on a corresponds to the criterion in (4.11) being fulfilled.

The criterion in (4.15) has the simplification here that 1
2d

2g(0, 0 |0, 0) = g, because the g in
question is itself positively homogeneous of degree 2 with ∇g(0, 0) = (0, 0). Other simplifications are
that ∇F (x̄)ξ = (ξ1, ξ2) and

1
2ξ·∇2

xxL(x̄, ȳ)ξ = f0(ξ1, ξ2). The issue then in (4.15) is whether

(ξ1, ξ2) ̸= (0, 0) =⇒ 0 < f0(ξ1, ξ2) + g(ξ1, ξ2) = max{f0(ξ1, ξ2) + 1
2ξ

2
1 , f0(ξ1, ξ2) +

1
2ξ

2
2}.

For that to be true, we have to have, away from the (ξ1, ξ2) = (0, 0), that f0(ξ1, ξ2) +
1
2x

2
1 > 0 in the

“east-west” quadrants where |x1| ≥ |x2|, as well as f0(ξ1, ξ2)+ 1
2x

2
2 > 0 in the “north-south” quadrants

where |x2| ≥ |x1|. Both come down to behavior along the line ξ1 = −ξ2, where the two functions agree
and, in terms (ξ1, ξ2) = (t,−t) reduce according to (4.16) to 1

4(1 − a)(2t)2 + 1
2 t

2 = (32 − a)t2. Thus,

the criterion in (4.15) will be satisfied if and only if a < 3
2 . It follows that, for a between

√
2 and 3

2 ,
(4.15) holds without (4.11). In other words, (4.11) demands more than (4.15).

Second-order optimality conditions of the kind in (4.15) have recently been investigated very
deeply by Mohammadi et al. [7] in the case of g = δK for a closed convex set K. The negative
answer to Question 2 helps to delineate the difference between the results there and ours here, focused
together on augmented Lagrangians. The results are complementary. The theme in [7] is second-
derivative criteria corresponding to the standard quadratic growth condition on the objective function
at optimality, whereas our theme is second-derivative criteria corresponding to strong variational
sufficiency — which has been indentified in Section 1 with the parametrically extended form of the
quadratic growth condition in (2.4). The results here also cover a wider range of problems, with g not
just of the “geometric” form δK .

The example of g in (4.6) that has helped in resolving Questions 1 and 2 fits into the larger class,
beyond g being polyhedral convex, or equivalently piecewise linear, in which g is piecewise linear-
quadratic. This term means that dom g is the union of finitely many polyhedral convex sets, on
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each of which g can be expressed as a polynomial function of degree at most 2. Such functions on
IRm are characterized by having the graph of ∂g be the union of finitely many polyhedral convex
sets of dimension m in IRm × IRm, [23, 12.30]. That property generalizes piecewise linearity of ∂g
and corresponds to having the Lipschitz continuous gradient mapping ∇gr be piecewise linear. Then
there are only finitely many generalized quadratic forms q in quad g(u |y), one for the interior of each
m-dimensional “cell” in gph ∂g to which (u, y) belongs.

Of course, quad g(u |y) can consist of finitely many forms q, or even just one, without g having to
be piecewise linear-quadratic. Here is an illustration.

Example 3 (indicators of level sets and the Lorenz cone/second-order cone).
(a) Suppose g = δK , and let U be an open set where K has a local representation as a level set:

K ∩ U = {u ∈ U |h(u) ≤ 0} for a C2 function h on U . (4.17)

Let u ∈ K ∩U be a point where h(u) = 0 and ∇h(u) ̸= 0, so that ∂g(u) = NK(u) = {λ∇h(u) |λ ≥ 0}.
Then g is generalized twice differentiable at u for any nonzero y ∈ ∂g(u), and the quadratic bundle
quad g(u |y) consists solely of the generalized quadratic form

q = 1
2d

2g(u |y) with q(ω) =

{
1
2ω·∇2h(u)ω if ∇h(u)ω = 0,
∞ otherwise.

(4.18)

(b) The Lorenz cone/second-order cone in IRm is the closed convex cone

K = { (u1, u2, . . . , um) |u1 ≥ |(u2, . . . , um)}
= {u |h(u) ≤ 0} for h(u1, u2, . . . , um) = −u1 + |(u2, . . . , um)|. (4.19)

This fits the prescription in (a) at boundary points away from the origin, thus offering a specific in-
stance of a nonpolyhedral cone of importance in numerical optimization in which quad g(u |y) typically
consists of just a single q.

(c) For problem (P ) with g as in (a) or (b) serving to model the constraint F (x) ∈ K, the
condition in (4.11) reduces, when h(F (x̄)) = 0 and ∇h(F (x̄)) ̸= 0, to invoking a single q of form
(4.18), the sole element of quad g(F (x̄) | ȳ). That sufficient condition for local optimality corresponds
to strong variational sufficiency, ensuring the augmented tilt stability property in Theorem 2.

Detail. (a) This is a highly specialized case of a broader rule in [23, 13.17] for sets defined by
constraint systems. That rule applies here to δK by interpreting it as the composite function δIR− ◦ h.
(b) This extends the particular case of (a) by elementary calculation. (c) This just reviews the
consequences from Theorem 5 and Theorem 2.

In further analysis of the Lorenz cone, looking at its apex at u = 0, the vectors y ∈ ∂g(0) = NK(0)
have y1 = −1 and |(y2, . . . , ym)| ≤ 1. For such y having the inequality strict, there is again generalized
twice differentiability of δK and again a unique q which is δS for the subspace S consisting of the vectors
(ω1, ω2, . . . , ωm) such that ω1 = 0. On the other hand for y with y1 = −1 and |(y2, . . . , ym)| = 1, both
that q and the earlier one comprise the bundle quad g(0 |y).

Problems (P ) in which g = δK for the Lorenz cone K in (4.19) are called second-order cone
programming . They are rich in applications and have been the subject of much research, cf. [1], [3],
[10]. The formula for the second-order subderivative for this case in Example 3(b) is not itself new,
nor is the sufficiency of the resulting optimality condition in (4.11) — see [5, Prop. 2.1]. What is
new is the placement of this formula and optimality condition in the framework of quadratic bundles
and the criterion for strong variational sufficiency in Theorem 5, as brought out in Example 3(c). In
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contrast, recent work in [6] only derives from that special case of (4.11) a standard type of quadratic
growth property, not the parametrically extended quadratic growth property in (2.4) that corresponds
to strong variational sufficiency.

Beyond situations where the quadratic bundle quad g(F (x̄) | ȳ) in Theorem 5 may only consist of
a single q, as illustrated in Example 3, there are others where quad g(F (x̄) | ȳ) can be comprised of a
multiplicity of generalized quadratic forms, but a unique one of them is minimal. Then (4.11) would
only need to be tested for that one q. The next example demonstrates this possibility in building on
Example 2(b) and utilizing the face concept in (3.31).

Example 4 (a case of quadratic bundles having a single minimal element). Suppose for a polyhedral
convex set Y and a C2 convex function k on IRm that g is the convex function conjugate to g∗ = δY +k,
so that g(u) = supy∈Y { y·u− k(y)} and

y ∈ ∂g(u) ⇐⇒ u−∇k(y) ∈ NY (y) ⇐⇒ y ∈ face(Y |u−∇k(y)), (4.20)

Then g is twice epi-differentiable at u for every y ∈ ∂g(u), with 1
2d

2g(u |y) being the function h∗y,u
that is conjugate to the convex function

hy,u(η) = δT (y |u)(η) +
1
2η·∇2k(y)η, (4.21)

where
T (y |u) is the tangent cone at y to face(Y |u−∇k(y)). (4.22)

In other words,
1
2d

2g(u |y)(ω) = sup
η∈T (y |u)

{ω·η − 1
2η·∇2k(y)η}. (4.23)

Generalized twice differentiability of g corresponds in this to the polyhedral convex cone T (y |u) being
a subpace, which holds if and only if u−∇k(y) ∈ riNY (y).

Because Y has only finitely many faces, there are only finitely many generalized quadratic forms
q arising as conjugates h∗y,u with T (y |u) being a subspace. Any (ū, ȳ) ∈ gph ∂g has a neighborhood
such that the bundle quad g(ū | ȳ) is comprised of such q coming from (u, y) in that neighborhood.
But quad g(ū | ȳ) contains a single minimal element q among them, namely the generalized quadratic
form h∗ȳ,u coming from the points u for which u−∇k(ȳ) ∈ riNY (ȳ).

Thus, in the C2 case of (P ) with the modeling function g being of the category described here, the
criterion for strong variational sufficiency in Theorem 5 only requires checking for that single q.

Detail. In fact, all the assertions made about g translate to assertions about g∗, inasmuch as
generalized twice differentiability dualizes as in (4.5), and the same for twice epi-differentiability, again
due to (3.18), [23, 13.21]. It is easy to calculate directly from convergence of second-order difference
quotients that g∗ is twice epi-differentiable at y for any u ∈ ∂g∗(y) with 1

2d
2g∗(y |u) being the function

hy,u in (4.21). Polyhedrality of Y leads to having only finitely many generalized quadratic forms arise
as such functions. Then quad g∗(ȳ | ū) is comprised of the ones coming from (y, u) ∈ gph ∂g∗ in a small
enough neighborhood of (ȳ, ū). That translates through (4.10) into the corresponding claim about
quad g(ū | ȳ). Because conjugacy reverses dominance of one convex function over another, the existence
of a single minimal element in quad g(ū | ȳ) corresponds to the existence of a single maximal element
in quad g∗(ȳ | ū). The latter existence is established through the fact that having u−∇k(ȳ) ∈ riNY (y)
is equivalent to having ȳ ∈ ri face (Y |u−∇k(ȳ)), with face(Y |u−∇k(ȳ)) then being the smallest face
of Y containing ȳ. Then T (ȳ, u) is a subspace included in all the other nearby subspaces T (y, u).
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The case of Example 4 in which k(y) ≡ 0 can be seen as coinciding with Example 2(b). That
previous example relied on Theorem 4, but here an alternative argument via Theorem 5 is provided.

Problem (P ) with the modeling function g being of the kind in Example 4 is extended nonlinear
programming in the terminology of [18], [23, p. 506]. However, those problem models generally also
allow for a term δX(x) in the objective, which corresponds to adding a constraint x ∈ X to (1.1). The
Lagrangian l(x, y) comes out then nicely as the restriction of f0(x) + y1f1(x) + . . .+ ymfm(x)− k(y)
to X × Y .

Concluding remark. There is little doubt that the results in this paper could be broadened to
incorporate the extra feature in (P ) of a geometric constraint x ∈ X, drawing ultimately on curvature
aspects of X captured by second-order epi-derivatives of δX . That was not carried out for reasons
of exposition. In an attempt to accommodate a δX(x) term, everything would get complicated for
many readers all too soon — to the point where the basic message about this topic being a natural
generalization of nonlinear programming theory could get lost. Such an extension was therefore
relegated to a potential future effort.
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