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Abstract

In the distributional robustness approach to optimization under uncertainty, ambiguity about
which probability distribution to use is addressed by turning to the worst that might occur with
respect to a specified set of alternative probability distributions. Such sets are often taken to be
neighborhoods of some nominal distribution with respect to a stochastic divergence like that of
Kullback-Leibler or Wasserstein. Here that approach is coordinated with the fundamental quad-
rangle of risk with its quantifications not only of risk, but also regret, deviation and error, along
with the functionals that dualize them.

Stochastic divergences are introduced axiomatically and shown to constitute the duals of risk
measures in a special class. Rules are uncovered for how regret measures for those risk measures can
be obtained by appropriate extensions of the divergence functional. This reveals clearly the pattern
in which the robustness functionals coming from divergence neighborhoods can be provided with
other formulas featuring minimization instead of maximization, which is beneficial for optimization
schemes. To get everything to fit, however the aversity properties of risk and the rest that, until
now, have been imposed in the quadrangle of relationships must be relaxed. A suitable substitute,
called subaversity, is found that works while only differing from aversity for functionals that are
not positively homogeneous.
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1 Uncertain expectations

The distinguishing feature of optimization problems in a host of applications is that the decision x to
be optimized may have an uncertain outcome which depends on factors unknown until later, such as
future weather or future demands, or the hidden weakness of some material. A simple way to think
of this is that the outcome is a loss or cost expressed as a function f(x, ω) of x and an uncertain state
ω as an element of a space Ω. It would be good to choose x to “minimize” the loss, but what can that
mean when there is a different function of x for each different ω ∈ Ω?

The theory of risk, very generally, approaches this by organizing ways in which the different
functions for different states ω can be consolidated into a single function of x on which minimization
can be performed. Prominent in this are the coherent measures of risk that were introduced by
Artzner, Delbaen, Eber and Heath [5] in 1999 with common-sense axioms that have since been refined
or relaxed. In the fundamental quadrangle of risk proposed by Rockafellar and Uryasev [26] in 2013,
measures of risk are combined with measures of deviation, error and regret in a framework that
links issues in optimization with issues in statistics, often to a surprising extent. The four kinds of
measures (“quantifiers” really, not measures in the sense of measure theory in mathematics) are convex
functionals on a space of random variables, and they furthermore can be dualized through conjugacy,
where even more of interest comes to light. Still, how does one first get to having a space of random
variables in which the risk quadrangle can be articulated?

Looking at this on a more basic level, where a decision x doesn’t need to enter, we can model
uncertain losses as outcomes X(ω) of real-valued functions X on the state space Ω. That depiction
of uncertainty doesn’t make X be a random variable, though. To get that, we also need probabilities.
They can be anchored by designating some probability distribution P0 on Ω (technicalities about that
being left aside, for now). With respect to P0, X has a cumulative distribution function

FX,P0(ξ) = P0-probability of {ω ∈ Ω |X(ω) ≤ ξ}. (1.1)

In a problem with loss expression f(x, ω), there is likewise then for each x a P0-based random vari-
able Xx = f(x, ·). We could consolidate the family of ω-dependent loss functions x 7→ f(x, ω) by
minimizing, say, the expected value E[Xx] as a function of x, and that is just one of many good
options.

This relies on having a stochastic model of uncertainty, which can be very effective when a natural
designation of P0 is at hand. There are many situations, however, in which it might not be at
hand, through a lack of information, in particular. This has the motivated robustness approaches to
optimization coming up next.

There are ways of avoiding probabilities entirely, and some have a long tradition. Faced with
f(x, ω), we could try minimizing as a function of x the worst of losses as ω ranges over Ω (again with
technicalities in interpretation left aside). More sophisticated in this direction, is the designation of a
subset Ω0 of Ω, as indicating the uncertain states that should really be of concern, and then minimizing
the worst that could happen with ω restricted to Ω0; see the 1998 paper of Ben-Tal and Nemirovski
[8] and their 2009 book with El Ghaoui [6]. Such an approach has its virtues and successes, but can
be overly conservative and thereby costly.

Distributional robustness offers a compromise of a sort. Instead of relying on a solitary distribution
P0 or avoiding probabilities altogether, we can turn to sets of distributions: P ∈ P. Instead of working
with EP0

[X], we can hedge by assigning to X the worst-case value

sup
P∈P

EP [X] (1.2)
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This keeps expectations in the foreground but regards those expectations themselves as uncertain, or
as commonly said, ambiguous. Again there is a long history, going back to two-person games, but
returning to prominence in ways explained in [16] and [30].

What might go into choosing a set P of alternative distributions P? The idea of designating a
subset Ω0 ⊂ Ω and looking at the worst of outcomes for ω ∈ Ω0 can be identified with choosing P to be
the set of “all” probability distributions P having their support within Ω0 (assigning zero probability
to everything outside of Ω0). Another idea, gaining in popularity, is taking P to be a “neighborhood”
of some nominal (tentative, or best-guess) P0, in the form

{P | I(P∥P0) ≤ β} for some β ∈ (0,∞), (1.3)

where I(P∥P0) is a stochastic divergence expression giving a “distance” of P from P0 that vanishes
only when P = P0. Important examples, which can serve as guidelines and will be discussed in detail
later along with a variety of other examples, are the Kullbach-Leibler and Wasserstein divergences.
Kullback-Leibler divergence has strong ties to information theory and Bolzano-Shannon entropy, but
is essentially limited to probability distributions P expressible by a density with respect to the nominal
P0. Wasserstein divergence, which comes out of optimal transport, is valuable not so much for its
interpretation as for its practical advantages in being able to compare P0 with distributions P that
might even have disjointly situated support.

Our aim here is to show how distributional robustness can be integrated into broader approaches
in risk theory to the benefit of both. A key part of this is developing a very broad concept of
stochastic divergence I(P∥P0) and showing how the maximization formulas (1.2) for the associated
neighborhoods (1.3), furnishing a nest of risk measures, can be partnered with minimization formulas
involving regret measures. Up to now, such alternative minimization formulas have been developed in
individual cases without the risk-regret pattern coming into view. But that pattern has a critical role
in the quadrangle of risk in also designating a measure of error that can enter into regression and other
tasks. Here we determine exactly the conditions on regret measures and error measures that tie them
to a stochastic divergence. Futhermore, we bring out a direct duality between a stochastic divergence
and a “parent” measure of risk which provides elementary alternative expressions for the risk measures
(1.2) coming from (1.3). Fitting such parent risk measures into the fundamental quadrangle triggers
a need for relaxing of the aversity property on which the quadrangle has so far relied. We find a good
substitute and introduce it as subaversity.

We don’t begin with quadrangle issues, because they reside in the random variable framework.
Instead, we examine connections between distributional robustness and measures of risk that don’t
require designating a P0 with all of Ω as its support. Coherency of a measure of risk in the sense in
[5] is central to understanding the connections. But coherency in the slightly relaxed sense where the
original axiom of positive homogeneity is suppressed turns out to be essential as well. It is needed in
particular to cover the parent risk measure that dualizes a stochastic divergence.

The developments with the relaxed, or general, version of coherency lead to a consideration of
graduated robustness. The robustness captured in (1.2) by designating an ambiguity set P of prob-
ability distributions P , instead of just a single distribution P0, is “black-and-white” in allowing no
gradation. Imagine more broadly the designation of not just P but also an expression J (P ) with
values in [0,∞], vanishing on P but nonzero for distributions not in P. Make the interpretation that
a distribution P with J (P ) ∈ (0,∞) is worth admitting in an evaluation of robustness, although at a
lower level of influence than the ones in P, as calibrated by the size of J (P ). From that perspective,
replace (1.2) by

supP {EP [X]− J (P )}, (1.4)
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where of course only distributions P with J (P ) < ∞ really matter in the maximization. In this
graduated version of robustness, J is an ambiguity graduator with P as its core. Stochastic divergences
of P from a nominal P0 will come out as certain cases of graduators J having {P0} as the core P.

Here, in speaking of a graduator we are introducing a term that can be allied with “indicator” in
referring to any function with values in [0,∞) with min = 0 and argmin ̸= ∅. It “graduates” from that
argmin set, its “core,” where it has the value 0. In the extreme when the value jumps immediately
from that set to ∞, it is the indicator of that set. In other words, a graduator is in concept a “fuzzy”
indicator. When the graduator J in (1.4) is specialized to be the indicator of P, with

J (P ) = 0 when P ∈ P but otherwise J (P ) =∞, (1.5)

the supremum reduces to the earlier one in (1.2).
This brings us to questions of technical underpinnings. What structure should be provided for

the state space Ω as a platform for comparing various different probability distributions on it? What
class of functions X : Ω → IR should be admitted as representing uncertain losses/costs? For many
applications it would be good to target a probability space (Ω,A, P0) given by a field of sets A in
the measure-theoretic sense and a probability measure P0 on A and then restrict X to being in a
particular linear function space Lp(Ω,A, P0). But we hold back from that for two reasons. One, of
course, is our reluctance to charge ahead by fixing a particular P0 without investigating things from
a wider perspective. Another is our desire to bypass a mire of technical complications, especially
when no single best resolution of them is obvious. For example, it would be advantageous to compare
distributions with finite support, arising empirically, with “continuous” distributions. We would run
into that even in replacing (Ω,A, P0) by (Ω,A, µ) for a general measure µ, as in modeling a region of
some IRd with µ as Lebesgue measure.

Our strategy here is therefore to leave those puzzles and complications aside and concentrate on
the case of Ω being a finite set. This, after all, is the setting in which coherent risk was originally
explored by Artzner et al. in [5]. It works well for explaining basic ideas and their relationships, and
anyway is a case of major practical importance in its own right which can benefit from direct handling.
Extensions beyond finite Ω are left to be carried out elsewhere, but Ruszczyński and Shapiro in [28]
offer a particularly broad and sturdy foundation which could help with the technicalities in that.
Also important in this picture is the paper of Shapiro [29] as a precedent for risk theory treatment
of stochastic divergences in a setting of Lp spaces of random variables tied to a designated P0. The
divergences there, posed rather generally although not axiomatically, aren’t themselves dualized to
risk measures, nor are they given a quadrangle orientation, but much is developed about their law
invariance, which is a topic we don’t take up in this paper.

The first stage in our plan for placing distributional robustness and stochastic divergences in a
larger matrix of interacting concepts is to explain connections between robustness and coherency.
Section 2 is devoted to that. Divergences in example and generalizations are the next topic, in Section
3. Measures of regret and their role in producing alternative minimization formulas for the risk
measures connected with divergences are taken up in Section 4. Finally, in Section 5, we pass to
fully coordinating with the quadrangle of risk in its framework of random variables X backed up by
a nominal probability distribution P0.
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2 Robustness in its relationship to coherency

In taking the state space Ω to be finite, we don’t have to worry about which functions on it should be
admitted. We can just work with the linear space

L(Ω) = { all functions X : Ω→ IR }

as a finite-dimensional vector space. It could be identified with IRn under an indexing of the elements
of Ω as ω1, . . . , ωn, but that would get in our way. The would-be inner product of IRn comes out better
for our purposes as

⟨X,Y ⟩ =
∑

ω∈Ω
X(ω)Y (ω).

The convergence of a sequence {Xk} to X is the convergence of Xk(ω) to X(ω) for every ω. The
space of all probability distributions on Ω is simply

P(Ω) = {P ∈ L(Ω) |P ≥ 0, ⟨1, P ⟩ = 1},

where 1 in the inner product with P is the constant function “1” as an element of L(Ω),2 so that
⟨1, P ⟩ =

∑
ω∈Ω P (ω). This is a compact convex subset of L(Ω), its “canonical simplex.” The expec-

tation of an uncertain loss X ∈ L(Ω) with respect to a distribution P ∈ P(Ω) is

EP (X) =
∑
ω∈Ω

X(ω)P (ω) = ⟨X,P ⟩.

In this framework, distributional robustness revolves around functionals RP : L(Ω) → IR having
the form

RP(X) = sup
P∈P

EP (X) for nonempty P ⊂ P(Ω). (2.1)

Note that the supremum doesn’t change if P is replaced by its closure or by its convex hull, so that
only closed convex sets P matter in the formula, and for them “sup” can be replaced by “max.”

An immediate question is what distinguishes such functionals RP from other functionals on L(Ω).
What are their particular properties with respect to X? An answer to that was provided as the key
contribution of the original paper of Artzner et al. [5] on risk. To explain it, we need to go over the
axioms they introduced — as subsequently refined.

The idea behind a measure of risk R is that it consolidates an uncertain loss X into a single
representative value R(X). Two fundamental examples are

R(X) = EP [X] for a P ∈ P(Ω), or R(X) = maxX = max
ω∈Ω

X(ω). (2.2)

The first is risk-neutral in looking only at an average. That might be justified in circumstances where
P is trusted, something occurs over and over, and the pain of a real loss, a positive X(ω), is perfectly
balanced by later gaining back the same amount with equal probability. The second is concerned only
with the worst that can happen and makes no allowance for balancing ups and downs.

Between these extremes there are many other possibilities, as will be seen. But it must be under-
scored that the “risk” in X to be evaluated by R is in the extent of loss, which is completely different
from the degree of uncertainty in X. (Later, in the quadrangle framework, there will be measures of
deviation D as introduced in [27], which evaluate how uncertain X might be.)

2In general we use the same symbol C for a number and for the corresponding constant function on Ω. It will always
be clear from the context which interpretation is intended. But sometimes for emphasis we write X ≡ C instead of just
X = C, and on the other hand X ̸≡ C as shorthand for X not being a constant function for any C.
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Definition 2.1 (coherent measures of risk). A functional R on L(Ω) is a coherent measure of risk in
the general sense if it satisfies:

(R1) R is convex with closed level sets {X |R(X) ≤ ξ}, ξ <∞,
(R2) R(X) = C when X ≡ C,
(R3) R(X) ≤ R(X ′) when X ≤ X ′.

It is a coherent measure of risk in the basic sense if, in addition, it satisfies
(R4) R(λX) = λR(X) for λ > 0.

It needs to be pointed out right away that the part of (R1) about level sets being closed is redundant
in our setting of finite Ω and has been included only as a bridge of clarity toward other choices of
Ω. From the combination of (R2) and (R3) we have R(X) ≤ C when X ≤ C, so that R(X) < ∞
when X is bounded from above. Here that’s true for every X ∈ L(Ω) because Ω, so R must be finite
everywhere and therefore, by the convexity in (R1), continuous everywhere.

The axioms (R1)–(R4), following [26], are equivalent to the ones in the original definition of
coherency in [5], but in contrast they ask for convexity outright in (R1). Under (R4), R is convex if
and only if

R(X +X ′) ≤ R(X) +R(X ′), (2.3)

and in [5] this subadditivity property was the axiom combined with (R4) instead of direct convexity.
However, that formulation is inconvenient when the omission of (R4) is contemplated as an extension
of coherency. Another advantage of directly imposing (R1) is that

(R1)+(R2) =⇒ R(X + C) = R(X) + C for constants C. (2.4)

In [5], the property in (2.4) is taken as an axiom instead of the simpler (R2), but that’s redundant
— as well as trickier to interpret and justify. The general principle of convex analysis which leads in
particular to (2.4) will be useful here for more than just that, so we record it for reference as follows.

Proposition 2.2 (recession properties of convex functions [19, Theorem 8.5+]). For a finite convex
function R, if there exist X0, X

′ and ξ such that R(X0 + τX ′) ≤ R(X0) + τξ when τ ≥ 0, then
R(X + τX ′) ≤ R(X) + τξ for all X when τ ≥ 0. If in fact R(X0 + τX ′) ≤ R(X0) + τξ for all τ , both
positive and negative, then R(X + τX ′) = R(X) + τξ for all X and all τ .

The risk measures in (2.2) are coherent in the basic sense, and more examples will soon be in hand.
The desirability of insisting always on the positive homogeneity in (R4) came into question, however.
The landmark book of Föllmer and Schied [14] in mathematical finance, in forgoing that property,
speaks of “convex measures of risk.” But that designation seems inadequate, because the functionals

R(X) = EP [X] + γEP [ (X − EP [X] )2 ], γ > 0, (2.5)

satisfy (R1) and (R2) without satisfying (R3). Such convex mean-variance functionals have long been
employed as measures of risk in finance, but their lack of the monotonicity in (R3) is disturbing, and
signals to us an “incoherency” as crucial as a lack of convexity. That’s behind our preference for
speaking of convex functionals satisfying (R1), (R2) and (R3), but not (R4), as still being coherent,
which began with [20]. It’s a terminology that emphasizes what truly counts in making sense of risk
and thereby leaves out measures R like those in (2.5).

Artzner et al. in [5] established the correspondence in the theorem we state next. But the result
can easily be derived from basic rules of convex analysis, as we record in the proof given here.
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Theorem 2.3 (robustness dualization of basic coherency). The measures of risk R on L(Ω) that are
coherent in the basic sense correspond one-to-one, through the formula

R(X) = max
P∈P

EP [X], (P = “risk envelope” for R) (2.6)

with the nonempty closed, convex sets P ⊂ P(Ω). Thus, the robustness functionals RP in (2.1) are
precisely the measures of risk on L(Ω) that are coherent in the basic sense.

Proof. As known from [19, Section 13], the formula SC(X) = supY ∈C⟨X,Y ⟩ yields a one-to-one
correspondence between the nonempty closed convex sets C ⊂ L(Ω) and the closed proper convex
functions on L(Ω) that are positively homogeneous — their support functions, with SC being finite
if and only if C is bounded. Here we are specializing that to C = P ⊂ P(Ω), and therefore are
dealing with finite R satifying (R1) and (R4), but the question remains of what additional properties
of R correspond to constraining Y ∈ C to be nonnegative with ⟨1, Y ⟩ = 1. Those properties can be
identified through the rule that

C ⊂ C′ ⇐⇒ SC ≤ SC′ .

Taking C′ = {Y |Y ≥ 0} we get as SC′ the indicator of {X |X ≤ 0}, hence the property that
R(X) ≤ 0 = R(0) when X ≤ 0. But by Proposition 2.2 this is equivalent to the seemingly stronger
property that R(X +X ′) ≤ R(X) when X ′ ≤ 0, which is (R3). Taking C′ = {Y | ⟨1, Y ⟩ = 1}, on the
other hand, we have SC′(X) = C when X ≡ C and SC′(X) = ∞ for nonconstant X. That tells us
that R(C) ≤ C for all C, positive and negative, and then equality must hold by Proposition 2.2.

Having characterized the basic robustness functionals RP in (2.1), we now take up the task of
characterizing graduated robustness functionals of the form

RJ (X) = sup
P∈P(Ω)

{EP [X]− J (P )} for a graduator J on P(Ω). (2.7)

Recall from the introduction of the term “graduator” in Section 1, ahead of (1.4), that it refers here
to a function from P(Ω) to [0,∞] that is 0 on a nonempty set P ⊂ P(Ω), its argmin. As in (2.1),
where we only had a set P by itself, and we noted that P might just as well be closed and convex,
both closure and convexification of J yield the same RJ . We pin these natural properties down in
the following axioms.

Definition 2.4 (coherent graduators). A functional J on P(Ω) will be called a coherent graduator
of ambiguity if it satisfies:

(J1) J is convex with values in [0,∞],
(J2) the level sets {P ∈ P(Ω) | J (P ) ≤ β} are closed for β ∈ [0,∞),
(J3) minJ = 0: ∃P with J (P ) = 0.

In line with the interpretation of (2.7) as the earlier (1.4), J graduates ambiguity from the set
P = {P | J (P ) = 0}, which the axioms ensure is nonempty, closed, and convex inP(Ω). In the extreme
case where J is simply the indicator of P as in (1.5), (2.7) reduces to (2.1). But we are interested
now in situations beyond that, where some “graduation” is definitely offered and the correspondence
in Theorem 2.3 is a specialization of something broader.

Theorem 2.5 (robustness dualization of general coherency). The measures of risk R on L(Ω) that
are coherent in the general sense correspond one-to-one, through the formula

R(X) = sup
P∈P(Ω)

{
EP [X]− J (P )

}
, (J = “dualizing graduator” for R) (2.8)
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with the coherent graduators J in Definition 2.4. Thus, the graduated robustness functionals RJ in
(2.7) are precisely the measures of risk on L(Ω) that are coherent in the general sense.

Proof. By taking J to be ∞ outside of P(Ω), we get on the basis of (J1)–(J3) a closed proper
convex function on all of L(Ω). Then (2.8) can be restated equivalently as

R(X) = sup
Y ∈L(Ω)

{ ⟨X,Y ⟩ − J (Y )},

in saying that R is the conjugate J ∗, and then J is the conjugate of R. This is the fundamental
one-to-one duality correspondence in convex analysis, extending the one in Theorem 2.3, for indicators
J by dropping positive homogeneity (R4) from the properties required of R. It obeys the rule that
J ≥ J ′ if and only if R ≤ R′, when R′ and J ′ are likewise conjugate to each other. From that, the
argument that (R2) and (R3) complete the characterization is the same as the one using Proposition
2.2 in the proof of Theorem 2.3, since R(0) = − inf J in the conjugacy.

3 Bringing in stochastic divergences

In applications of distributional robustness in optimization, special attention is given to cases where
the set of distributions P is a sort of neighborhood of a given distribution P0 with respect to some
version of stochastic divergence I(P∥P0) indicating how far P is from P0,

Rβ(X) = max
P∈Pβ

EP [X] for Pβ =
{
P ∈ P(Ω)

∣∣∣ I(P∥P0) ≤ β
}
, β ∈ (0,∞). (3.1)

Two examples were mentioned in the introduction: Kullbach-Leibler divergence and Wasserstein di-
vergence. We review them now, with other examples, and go on to paint a picture of how stochastic
divergences in general conception fit into the framework of coherent risk.

Definition 3.1 (Wasserstein divergence). Consider on Ω× Ω any expression W (ω, ω′) such that

W (ω, ω′) ∈ [0,∞), with W (ω, ω′) = 0 ⇐⇒ ω = ω′. (3.1)

Let P(Ω× Ω) denote the set of all probability distributions Π on Ω× Ω. Then

I(P∥P0) =

{
minimum of EΠ[W ] =

∑
ω,ω′ W (ω, ω′)Π(ω, ω′) over

all Π ∈ P(Ω× Ω) having P and P0 as its marginals,
(3.2)

where the marginality constraint means that
∑

ω′ Π(ω, ω′) = P (ω) and
∑

ω Π(ω, ω′) = P0(ω
′).

This revolves around “probability transport” with Π(ω, ω′) being the amount of probability taken
from P0(ω

′) and transported to ω to be part of P (ω), the transportation cost per unit being W (ω, ω′).
The minimization problem is in the category of linear programming, where an optimal solution is sure
to exist and the minimum value as a function of P is convex and piecewise linear. Under (3.1), the
minimum value is 0 only when P = P0, so a “distance” of P from P0 is expressed in general.

A reason for the popularity of Wasserstein divergence in many of the applications made of it is
that no restriction is placed on the supports of the distributions P and P0, the support of P being in
our framework

suppP = {ω ∈ Ω |P (ω) > 0}. (3.3)

The sets suppP and suppP0 might even be disjoint. There has been much written about this, and
the Gao-Kleywegt paper [15] could be a good entry point.
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Other notions of stochastic divergence, like the one we’ll look at next, depend on P being repre-
sentable by a density with respect to P0:

P (ω) = Q(ω)P0(ω), requiring suppP ⊂ suppP0. (3.4)

The densities that fill this role are the functions Q ≥ 0 on suppP0 having EP0 [Q] = 1.

Definition 3.2 (Kullbach-Leibler divergence). For P density-representable as in (3.4), let

I(P∥P0) = EP0

[
Q logQ

]
, (3.5)

but otherwise take I(P∥P0) =∞. (Here 0 log 0 = 0 in the usual convention from taking limits.)

The formula in (3.5), an expression of relative entropy coming from information theory, is well
known in convex analysis as giving an example of a continuous convex function of P having positive
values unless P = P0, in which case Q ≡ 1 and the value is 0.

Robustness neighborhoods based on Kullbach-Leibler divergence are the centerpiece of the 2012
paper of Ahmadi-Javid [2]. For him, the neighborhood risk measures Rβ in this case constituted
entropic value-at-risk , EVaRα(X) = Rβ(X) with α = 1 − e−β, which switches the β-range (0,∞) to
an α-range (0, 1).3

But potentially useful neighborhoods beyond these, that have been touted for usefulness in robust
optimization by Ben-Tal et al. in [7], can be obtained by putting different expressions φ(Q) in place
of Q logQ in (3.5) to get φ-divergences,

I(P∥P0) =

{
EP0 [φ(Q) ] if suppP ⊂ suppP0,
∞ otherwise,

(3.6)

which have various roles in statistics as explained by Liese and Vajda [17]. This divergence idea, going
back at least to Csiszár [11] (1963) and independently to Ali and Silbey [4] (1966), was more recently
taken up by Ahmadi-Javid in [1] (2011) and [2] (2012) as well as by Breuer and Csiszár [10] (2013),
who went somewhat further with what they called Bregman-divergences — for which there needs to
be a different φ for each ω. The Breuer-Csiszár results, couched in terms of moment constraints, are
challenging to coordinate with numerical optimization methodology, however.

Dommel and Pichler, still more recently in [12] (2021), pursued the matter more like Ahmadi-Javid
and with outlook and terminology more closely aligned with ours here. They focused on φ-divergences
defined from finite convex functions φ on [0,∞) with φ(1) = 0 that are continous from the right at 0
and have φ(q)/q → ∞ as q → ∞. Breuer and Csiszár in [10] instead imposed strict convexity on φ
without making any assumption at 1 or about a q limit at ∞, whereas Ahmed-Javid only asked for
φ(1) = 0 (although from the context it’s clear that right continuity at 0 was also intended). Observe,
though, that by taking any r ∈ ∂φ(1) (thus r = φ′(1) if the left and right derivatives of φ agree at
1), and replacing φ in (3.6) by φ1 with φ1(q) := φ(q)− φ(1)− r[q − 1], there would be no change at
all in the resulting I(P∥P0). Therefore, in dealing with (3.6), nothing is lost by “normalizing” to the
common ground of

φ finite convex on [0,∞) with lim
q↘ 0

φ(q) = φ(0), minφ = 0, and 1 ∈ argminφ. (3.7)

This has the advantage of making immediately obvious that I(P∥P0) is a convex functional of P that
attains at P0 its minimum value, 0. If no point other than 1 belongs to the interval argminφ, as

3The α here is 1− α in [2].
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would hold under the strict convexity demanded by Breuer and Csiszár, then surely I(P∥P0) > 0
when P ̸= P0, but that would fail if the interval has 1 in its interior, as allowed in (3.7) in reflection
of the assumptions of Dommel and Pichler.

Note that the normalization to (3.7) amounts in the case of Kullback-Leibler divergence to harm-
lessly replacing the strictly convex expression q log q in (3.5) by q log q − q + 1.

The conditions in (3.7), perhaps strengthed to argminφ = {1} without requiring strict convexity,
might be relaxed in other directions. We’ll pick up again on φ-divergences at the end of Section 4.

Standards for what might, very generally, be called a stochastic divergence will be proposed be-
low. The next example, like Wasserstein divergence, falls outside the φ-divergence pattern and offers
another perspective on what needs to be included in such generality.

Definition 3.3 (CVaR divergence, or superquantile divergence). For P density-representable as in
(3.4), let

I(P∥P0) = P0-maxQ− 1 = max
ω∈suppP0

Q(ω)− 1, (3.8)

but otherwise take I(P∥P0) =∞.

Once more we have from this formula a convex function of P that vanishes when P = P0, the case
when Q ≡ 1, but otherwise is positive, since in other cases there must be some ω with Q(ω) > 1 or
we wouldn’t have P in P(Ω) along with P0.

What’s behind the CVaR name of this divergence, not previously brought to anyone’s attention?
The worst-case functionals Rβ associated with its neighborhoods Pβ in (3.1) turn out to produce the
CVaR family of risk measures. What are they? For the P0-random variable obtained from X with its
cumulative distribution function FX,P0 in (1.1), the upper α-tail distribution for α ∈ (0, 1), referring
to the worst 100(1−α)% outcomes,4 is the conditional probability distribution for X in that tail. The
P0-conditional-value-at-risk of X at level α ∈ (0, 1) is

P0-CVaRα(X) = expected value of X in its upper α-tail distribution, (3.9)

as rigorously pinned down in [25] to mean the expected value associated with the cumulative distri-
bution function

Fα
X,P0

(ξ) =
1

1− α
max{FX,P0(ξ)− α, 0}. (3.10)

In these terms, our assertion about the stochastic divergence introduced in Definition 3.1 as CVaR
divergence is the following:

the neighborhoods Pβ in (3.1) for (3.8) produce
Rβ(X) = P0-CVaRα(X), where 1− α = (1 + β)−1.

(3.11)

This rests on specializing Theorem 2.3 to R(X) = P0-CVaRα(X), knowing that the risk envelope P
consists then of all P given by densities Q in (3.4) such that Q ≤ (1− α)−1 on suppP0.

The CVaR definition in (3.9) is delicate because there can be α such that, for ξ = P0-VaRα(X),
the P0-value-at-risk (the least ξ such that FX,P0(ξ) ≥ α), the probability P0 assigns to [ξ,∞) is more
than 1 − α, yet the probability it assigns to (ξ,∞) is less than 1 − α, due to a jump in FX,P0 at
ξ. Then there seems to be no α-tail at all. But that’s resolved through (3.10), in effect by splitting
a probability atom at ξ.5 Much the same concept of risk was floated earlier under names like tail

4For instance, for α = 0.9 this means the worst 10% of outcomes.
5In our discrete-probability setting with Ω finite, atoms are of course unavoidable. Cumulatative distribution functions

are always step functions.
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risk and expected shortfall, but without this necessary tail refinement for having a measure of risk
that’s coherent in all situations. Fölmer and Schied in their very influencial book [14] in mathematical
finance have promoted “average-value-at-risk” rather than “conditional-value-at-risk.” On the other
hand, because of numerous applications where financial terminology seems inappropriate, and “value-
at-risk” is identified as “quantile,” a standard notion in statistics, superquantile has been proposed
as a suitable alternative name for “conditional value-at-risk” [23]. That explains the double name for
the divergence in Definition 3.3.

Building on these examples of stochastic divergences and the properties they have that seem
essential, we now offer a general description to work with.

Definition 3.4 (stochastic divergence, in general). A function I(P∥P0) of P ∈ P(Ω) will be said to
give a stochastic divergence from P0 ∈ P(Ω) if it satisfies:

(I1) I(·∥P0) is convex with values in [0,∞],
(I2) the level sets {P ∈ P(Ω) | I(P∥P0) ≤ β} are closed for β ∈ [0,∞),
(I3) min I(·∥P0) = 0 with argmin I(·∥P0) = {P0},
(I4) {P ∈ P(Ω) | suppP ⊂ suppP0} ⊂ cl {P ∈ P(Ω) | I(P∥P0) <∞}.

Clearly (I1), (I2) and (I3) mimic the axioms (J1), (J2) and (J3) for a coherent graduator in
Definition 2.4, except that (I3) strengthens (J3) in making P0 be the only distribution in the argmin.
The purpose of this strengthening, and the further axiom (I4), is to guarantee that a worthy nest
of ambiguity neighborhoods of P0 is generated in considering distributions P with I(P∥P0) ≤ β
for a “distance” β > 0. The associated worst-case functionals are available then for deployment in
distributionally robust optimization in a vast extension of the methodology already in widespread use
for Wasserstein and Kullbach-Leibler divergences.

Much more about divergence neighborhoods will be examined in the next section of this paper.
The remainder of this section is aimed at identifying where stochastic divergences fit in the coherency
correspondence of Theorem 2.5.

Theorem 3.5 (risk dualization of stochastic divergences). A functional J on P(Ω) is a stochastic
divergence I(·∥P0) from P0 ∈ P(Ω) if and only if it is a coherent graduator for which the corresponding
risk measure R in Theorem 2.5 satisfies for all X and the nondecreasing function τ → τ−1R(τX) on
(0,∞),

R(X) ≥ EP0
[X] and lim

τ ↘ 0
R(τX)/τ = EP0 [X],

lim
τ ↗∞

R(τX)/τ ≥ P0-maxX := max{X(ω) |ω ∈ suppP0},
(3.12)

with the limit as τ ↘0 meaning that R is differentiable at 0 and ∇R(0) = P0. Here R is coherent in
the general sense, but definitely not in the basic sense.

Proof. The issue is how the strenghening of graduator axioms from (J1)–(J3) to (I1)–(I4) affects
the correspondence in Theorem 2.5. Because R(0) = 0 by (R2), R(τX)/τ is the difference quotient
∆τR(X) = [R(0 + τX)−R(0)]/τ . The finite convexity of R is inherited by ∆τR, and ∆τR(X) as a
function of τ > 0 is nondecreasing, thus having limits when τ ↗∞ and when τ ↘0. The limits are

lim
τ ↗∞

∆τR(X) = R0+(X), lim
τ ↘ 0

∆τR(X) = R′(0;X),

the first being the recession function associated with R according to [19, Theorem 8.5] and the second
being by definition the directional derivative function at the origin.

The recession function R0+ is known to be the support function of the closure of the effective
domain of the conjugate, here the closed convex set cl[domJ ] [19, Theorem 13.3]; that’s therefore
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the limit on the left side in the second line of (3.12). The right side of that relation gives the support
function of the set of probability distributions P supported by P0. The inequality between left and
right corresponds exactly to the inclusion required by (I4).

On the other hand, the directional derivative, here a finite convex function of X, is the support
function of the subgradient set ∂R(0) [19, Theorem 23.4], which in conjugacy is the set argminJ [19,
Theorem 23.5]. Differentiability is the case where this subgradient set is a singleton consisting of the
gradient [19, Theorem 25.1]. With the limit being EP0 [X] = ⟨P0, X⟩, the gradient is P0.

Although R is coherent in the general sense by Theorem 2.5, it can’t be coherent in the basic sense,
because that would put it in the sway of Theorem 2.3, where J is an indicator function. Axioms (I3)
and (I4) preclude J as a graduator from actually being an indicator.

Example 3.6 (dualization of Wasserstein divergence). For J (P ) = I(P∥P0) in the case of (3.2), the
dualizing measure of risk that is coherent in the general sense is

R(X) = EP0 [X
◦] where X◦(ω′) = max

ω∈Ω
{X(ω)−W (ω, ω′)}. (3.13)

Detail. Because R is the convex function conjugate to J (P ) = I(P∥P0) that’s defined by the linear
programming formula in (3.2), it is biven by

max
{ ∑

ω

X(ω)
∑
ω′

Π(ω, ω′)−
∑
ω,ω′

W (ω, ω′)Π(ω, ω′)
∣∣∣Π(ω, ω′) ≥ 0,

∑
ω

Π(ω, ω′) = P0(ω
′)
}
.

Letting π(ω, ω′) = Π(ω, ω′)/P0(ω
′) when ω′ ∈ suppP0 and noting that Π(ω, ω′) must be 0 when

ω′ /∈ suppP0, we can express this as

max
{ ∑

ω,ω′

P0(ω
′)π(ω, ω′)

[
X(ω)−W (ω, ω′)

] ∣∣∣π(ω, ω′) ≥ 0,
∑

ω π(ω, ω′) = 1
}

=
∑

ω′ P0(ω
′)maxω{X(ω)−W (ω, ω′)} = EP0

[X◦],

as claimed in (3.13).

Example 3.7 (dualization of Kullbach-Leibler divergence). For J (P ) = I(P∥P0) in the case of (3.5),
the dualizing measure of risk that is coherent in the general sense is

R(X) = logEP0
[expX]. (3.14)

Detail. The duality between the expressions in (3.5) and (3.14) is a familiar example in the theory
of conjugate convex functions, cf. [19, pp. 148–149].

Example 3.8 (dualization of CVaR divergence). For J (P ) = I(P∥P0) in the case of (3.8), the
dualizing measure of risk that is coherent in the general sense is

R(X) = 1 + C for the unique C with EP0 [max{X − C, 0}] = 1. (3.15)

Detail. Here max{X − C, 0} denotes the function ω 7→ max{X(ω) − C, 0} in L(Ω). We want
to determine the functional R conjugate to the functional J that’s given on all of L(Ω) by J =
J1 + J2 + J3 − 1, where

J1(Y ) = indicator of {Y |Y (ω) ≥ 0 forω ∈ suppP0, but =0 otherwise }
J2(Y ) = indicator of {Y |

∑
ω Y (ω) = 1},

J3(Y ) = max of Y (ω)/P0(ω) for ω ∈ suppP0.

12



The conjugate is given by infimal convolution of the conjugates [19, Theorem 16.4],

R(X) = 1 +min {J ∗
1 (X1) + J ∗

2 (X2) + J ∗
3 (X3) |X1 +X2 +X3 = X}, (3.16)

where the minimum is sure to be attained because R(X) is finite and the functions J ∗
i , being con-

jugate to polyhedral convex functions Ji, are themselves polyhedral convex [19, Theorem 19.2]. The
conjugates on L(Ω) are

J ∗
1 (X1) = indicator of {X1 |X1(ω) ≤ 0 for ω ∈ suppP0},
J ∗
2 (X2) = C when X2 ≡ C but =∞ otherwise,
J ∗
3 (X3) = indicator of S = {X3 |X3(ω) ≥ 0 for ω ∈ suppP0, EP0 [X3] = 1},

(3.17)

so (3.16) refers to minimizing 1 + C over all C and X1 such that X − X1 − C ∈ S with X1 ≤ 0 on
suppP0. In terms of X ′ = X −X1, we can characterize the feasible values of C as the ones for which
there exists X ′ ≥ X on suppP0 such that also X ′ ≥ C on suppP0 and EP0 [X

′] = 1+C. That existence
obviously corresponds to EP0 [max{X,C}] ≤ 1+C, which can be written as EP0 [max{X −C, 0}] ≤ 1.
Thus in (3.16) we are minimizing 1 +C subject to that inequality. The left side of the inequality is a
function of C that has the constant value 0 when C ≥ maxX, but grows strictly from that toward ∞
as C decreases toward −∞. Then there is a unique value of C for which the inequality is an equation,
and that C furnishes the minimum in (3.16).

4 Supporting formulas for divergence-based robustness

Stochastic divergences have been valuable in distributionally robust optimization for providing ambi-
guity sets as neighborhoods of a nominal distribution P0. Working with the generalization of stochastic
divergence in Definiton 3.4, we can investigate this on a much broader level than ever before (although
here just for finite Ω). The neighborhoods

Pβ = {P ∈ P(Ω) | I(P∥P0) ≤ β} for 0 < β <∞, (4.1)

are closed convex sets by (I1) and (I2) which have only P0 in their intersection by (I3), yet through
(I4) contain more than just P0. They form a nest which strictly increases with respect to β up to
some limit, namely

β̄ = sup {β | ∃P, I(P∥P0) = β} ∈ (0,∞], (4.2)

after which they evermore coincide. Their union, by (I4), encompasses, among the distributions P
that can be represented by densities with respect to P0, all but perhaps some extreme cases. This nest
gives rise to a “spectrum” of coherent measures of risk in the basic sense as the worst-case functionals

Rβ(X) = max
P∈Pβ

EP [X] for Pβ, β ≤ β̄, as in (4.1)–(4.2), (4.3)

which interestingly produces parallels to the familiar CVaR spectrum of risk measures that was ob-
served in (3.11).

The task now is developing formulas of minimization type for the functionals Rβ which offer
alternatives to the maximization in (4.3) and can better be integrated into computational schemes in
distributionally robust optimization. A fundamental rule comes first.
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Theorem 4.1 (neighborhood risk from dualized risk). Relative to the risk measure R in Theorem 3.5
that dualizes a stochastic divergence I(P∥P0) for a given P0, the worst-case functionals Rβ in (4.3)
satisfy

Rβ(X) = inf
0<λ<∞

{
λβ + λR(λ−1X )

}
. (4.4)

Here the infimum over (0,∞) can be sharpened to a minimum over [0,∞] by interpreting λR(λ−1X)
for λ = 0 as the recession function R0+(X), its limit as λ↘0.

Proof. This just invokes the standard formula in [19, Theorem 13.5] for support functions of level
sets of a convex function, here J (P ) = I(P∥P0), in terms of the conjugate function, here R.

Applying this rule to Wasserstein divergence by way of its dualization in Example 3.6 we get

Rβ(X) = min
λ≥0

[
λβ +

∑
ω′ max

ω∈Ω
{X(ω)− λW (ω, ω′)}P0(ω

′)
]
, (4.5)

as was observed in [13, (12b)] and noted again in [15, Theorem 1]. This can also be cast as a linear
programming formula:

Rβ(X) = min{λβ + EP0 [Λ] |λ ≥ 0, Λ(ω′) ≥ X(ω)− λW (ω, ω′), ∀ω, ω′}. (4.6)

Applying the rule instead to Kullbach-Leibler divergence by way of its dualization in Example 3.7,
yields

Rβ(X) = inf
0<λ<∞

λ
[
β + logEP0

[exp(λ−1X)]
]
, (4.7)

in harmony with the results of Ahmadi-Javid [2] about his EVaR, entropic value-at-risk.
For CVaR divergence, we already know from (3.11) that the rule in Theorem 4.1 must lead to

Rβ being the risk measure P0-CVaRα where 1 − α and 1 + β are reciprocals to each other, but it’s
instructive to see how that comes out through (4.4) with the R in Example 3.8. With C ′ in place of C
in the formula for R in (3.15), we are minimizing in (4.4) λ(β+1+C ′) over λ > 0 and C ′ ∈ IR subject
to the constraint EP0 [max{λ−1X − C ′, 0}] = 1. Introducing C as λC ′, this transforms to minimizing
λ(1 + β) +C over λ > 0 and C ∈ IR subject to EP0 [max{X −C, 0}] = λ. That reduces to minimizing
EP0 [max{X − C, 0}](1 + β) + C over C ∈ IR, hence to

min
C

{
C +

1

1− α
EP0

[
max{X − C, 0}

] }
where 1− α = (1 + β)−1. (4.8)

That’s in fact the alternative CVaRα formula that was brought to light in [24] and refined to allow
for probability atoms in [25].

Risk formulas involving a trade-off between C and something about X−C, as in (4.8), are “regret”
formulas in the quadrangle theory of [26]. They take the form of minimizing C + V(X − C) for a
functional V acting as a “measure of regret.” The interpretation is that, by accepting an immediate
loss of cost or loss of the amount C, it’s only the residual loss X − C that remains uncertain, and
V assesses the perceived present impact of that future prospect. Similar formulas were explored by
Ben-Tal and Teboulle in 2007 [9] in connection with obtaining a “certainty equivalent” as the optimal
C, but with a focus on expected utility. This connection is explained in [26] in terms of regret being
a sort of anti-utility, but not limited to an expectation form, and that’s what we develop here next.
An extended philosophical discussion of regret and utility from such a general perspective is available
in [21].
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Definition 4.2 (coherent measures of regret). By a coherent measure of regret will be meant a
functional V on L(Ω) with values in (−∞,∞] that satisfies:

(V1) V is convex with closed level sets {X | V(X) ≤ γ}, γ <∞,
(V2) V(C) ≥ C, and the interval {C | V(C) = C} is bounded, containing 0,
(V3) V(X) ≤ V(X ′) when X ≤ X ′.

It is positively homogeneous if also
(V4) V(λX) = λV(X ′) for λ > 0.

Theorem 4.3 (deriving risk from regret). For any coherent measure of regret V, the formula

R(X) = min
C
{C + V(X − C)}, (4.9)

where “min” signals that the infimum is surely attained, gives a measure of risk R that is coherent in
the general sense. It is sure to be coherent in the basic sense if V satisfies the additional axiom (V4).

If V is a measure of regret yielding in (4.9) the risk measure R that dualizes a stochastic divergence
I(·∥P0) in the manner of Theorem 3.5, then the associated neighborhood risk measures (4.3) satisfy

Rβ(X) = min
C
{C + Vβ(X − C)} (4.10)

for the coherent and positively homogeneous measures of regret derived from V by

Vβ(X) = inf
λ>0

{
λ
[
β + V(λ−1X)

] }
. (4.11)

Here the infimum over (0,∞) can be sharpened to a minimum over [0,∞] by interpreting λV(λ−1X)
for λ = 0 as the recession function V0+(X), which is its limit as λ↘0.

Proof. The formula in (4.9) expresses R as resulting from inf-convolution of V with the convex
function W that has W(X) = C if X ≡ C but W(X) = ∞ otherwise. By (V1), this operation is
covered by [19, Corollary 9.2.2]. It says that R will be closed proper convex with attainment of the
minimum under the recession function condition that V0+(X) +W0+(−X) > 0 for all X ̸= 0. Here
W0+ = W, because W is positively homogeneous, so W0+(−X) = −C if X ≡ C, but otherwise
W0+(−X) = ∞. The condition thus comes down to requiring V0+(C) > C for C ̸= 0. That’s
guaranteed by (V2). It’s easily seen that (4.9) preserves the monotonicity in (V3). Next, application
of Theorem 4.1 to R expressed by (4.9) leads to

Rβ(X) = inf
λ>0,C

{
λβ + λC + V(λ−1X − C)

}
. (4.12)

In changing variables from C to C ′ = λC, this transforms to minimizing λβ + C ′ + V(λ−1[X − C ′]),
where the minimization in λ can be carried out first. That’s the meaning of the combined formulas
(4.10) and (4.11).

Example 4.4 (CVaR regret). A coherent measure of regret V that yields in (4.9) the risk measure
R in Example 3.8 that dualizes CVaR divergence is given by

V(X) = EP0 [max{X, 0}] if EP0 [max{X, 0}] ≤ 1, otherwise V(X) =∞. (4.13)

The corresponding regret measures in (4.11) for the risk measures Rβ, already identified as P0-CVaR
risk measures (3.11) are

Vβ(X) = (1− α)−1EP0 [max{X, 0}], where 1− α = (1 + β)−1, (4.14)
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so that (4.10) corresponds to the formula already seen in (4.8).

Detail. With (4.13) giving V, (4.9) concerns the minimization of C + EP0 [max{X − C, 0}] subject
to EP0 [max{X − C, 0}] ≤ 1, but that’s attained when EP0 [max{X − C, 0}] = 1. Thus (4.9) says
R(X) = 1+C for C making EP0 [max{X−C, 0}] = 1, and that agrees with the formula in Example 3.8.
Turning to (4.11) in the case of the V in (4.13), we face the minimization of λ[β+EP0 [max{λ−1X, 0}]
subject to EP0 [max{λ−1X, 0}] ≤ 1, which means EP0 [max{X, 0}] ≤ λ. The minimum value is therefore
(1 + β)EP0 [max{X, 0}] as claimed in (4.14).

Example 4.5 (Kullbach-Leibler regret). The risk measure R associated with Kullbach-Leibler diver-
gence in (3.14) fits (4.9) with

V(X) = EP0 [expX]− 1. (4.15)

Correspondingly then in (4.11),

Vβ(X) = inf
λ>0
{λ[β + EP0 [expλ

−1X]− 1}, (4.16)

and therefore in (4.10)

Rβ(X) = inf
λ>0, C

{
C + λ

[
β + EP0 [expλ

−1(X − C)]− 1
]}

. (4.17)

Detail. The regret measure in (4.16) was recorded already in [26, Example 8]. The rest just follows
from the prescriptions in Theorem 4.3.

For Wasserstein divergence, a suitable choice of a measure of regret hasn’t been determined. More
about that will be explained after Theorem 4.6.

Every coherent measure of risk R can be expressed as in (4.9) for some coherent measure of regret
V, but there’s no uniquess to V and the real challenge is determining a V that’s natural for R and
somehow useful in adding information. The construction platform emerges through duality.

Theorem 4.6 (dualization of regret). Coherent measures of regret V correspond one-to-one, through
the formula

V(X) = sup
Y≥0
{ ⟨X,Y ⟩ − K(Y )}, (4.18)

with the functionals K on L+(Ω) = {Y ∈ L(Ω) |Y ≥ 0} that satisfy:
(K1) K is convex with values in [0,∞],
(K2) the level sets {Y ≥ 0 | K(Y ) ≤ β} are closed for β ∈ [0,∞),
(K3) minK = 0 and argminK meets P(Ω),
(K4) domK in L+(Ω) contains Y with

∑
ω Y (ω) > 1 and Y with

∑
ω Y (ω) < 1.

In this correspondence, V produces the risk measure R if and only if the graduator J on P(Ω) that
dualizes R in Theorem 2.5 is the restriction of K to P(Ω). The case where J (P ) = I(P∥P0) for a
stochastic divergence as in Definition 3.4, requiring also

(K5) P(Ω) ∩ argminK = {P0} and cl[domK] ⊃ {P ∈ P(Ω) | suppP ⊂ suppP0},
is the case where V further satisfies:

(V5) infC{C + V ′(0;X − C)} = EP0 [X] for the directional derivative function V ′,
(V6) lim

τ ↗∞
V(τX)/τ ≥ P0-maxX := max {X(ω) |ω ∈ suppP0}.

Proof. In taking K(Y ) to be ∞ for Y outside of L+(Ω), we get K to be a closed proper convex
function on L(Ω) having V as its conjugate, and therefore reciprocally

K(Y ) = sup
X
{ ⟨X,Y ⟩ − V(X)}. (4.19)
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The recession function V0+ is then the support function of cl[domK] [19, Theorem 13.3], so having
domK ⊂ L+(Ω) means having V0+ ≤ the support function of L+(Ω), which is the indicator of L−(Ω),
or in other words, V0+(X ′) ≤ 0 when X ′ ≤ 0. That corresponds to the monotonicity of V in (V3),
because V0+(X ′) ≤ α if and only if V(X +X ′) ≤ V(X) + α for all X [19, Theorem 8.5].

It was observed in the proof of Theorem 4.3 that (4.9) represents R as coming from inf-convolution
of V with the convex function W having

W(X) = C if X ≡ C, but W (X) =∞ otherwise. (4.20)

In duality, that means the function conjugate to R, namely its dualizing graduator J , is the sum of
the conjugates V∗ and W∗, with V∗ = K and W∗ being the indicator of the hyperplane

H =
{
Y

∣∣∣ ∑
ω
Y (ω) = 1

}
. (4.21)

This tells us that V gives us R if and only if J is obtained by adding the indicator to H to K, which
in terms of domains amounts to restricting K to P(Ω).

From that, (K3) is confirmed as a consequence of the properties specified for V. Conversely, since
argminK is in conjugacy the subgradient set V, while V(0) = minK, (K3) provides some P ∈ P(Ω)
such that V(X) ≥ ⟨X,P ⟩ = EP [X] for all X. Then in particular, V(C) ≥ C for all constants C.

What about (K4), which requires the existence of elements Y ∈ domK on both sides of the
hyperplane H? Because V0+ is the support function of cl[domK], that’s captured by requiring both
V0+(1) > 0 and V0+(−1) > 0. But that’s also equivalent to the condition in (V2) about the C interval
there being bounded.

All that remains is confirming the extra conditions associated with stochastic divergence. The
properties of K in (K5) obviously correspond, in restricting K to get J , to the extra properties J
must have beyond Definition 2.4 to have the form I(·∥P0) in Definition 3.4. The claim is that these
properties dualize to (V5) and (V6).

The infimum in (V5) represents the inf-convolution of theW function in (4.20) and the directional
derivative function V ′(0, ·). The first is the support function of the hyperplane H in (4.15), while the
second is the support function of the subgradient set ∂V(0) (inasmuch as V is finite and closures aren’t
needed) [19, Theorem 23.2]. Through conjugacy, that subgradient set is argminK [19, Theorem 23.5].
Inf convolution of the support functions of two convex sets produces the support function of their
intersection, at least under finiteness, as here [19, Corollary 16.4.1]. Thus, (V5) says H∩ argminK =
{P0}. That’s the same as the argmin condition in (K5), inasmuch as domK ⊂ L+(Ω).

In (V6), the max gives the support function of the set {P ∈ P(Ω) | suppP ⊂ suppP0}, while the
limit gives V0+(X) [19, Theorem 8.5]. Because V0+ is the support function of cl[domK], the inequality
is equivalent to the inclusion in (K5). That completes the proof.

Theorem 4.6 provides a full and clear picture of how to get a coherent measure of regret V that can
serve through formula (4.10) in giving an alternative minimization description of the neighborhood
robustness functionals (4.3) associated with a general stochastic divergence I(·∥P0) by way of (4.10)
and (4.11). First, extend J = I(·∥P0) as a functional on P(Ω) satisfying (I1)–(I4) to a functional K on
L+(Ω) satisfying (K1)–K(5). The key points in that are making sure that the extended function still
has minimum value 0 and that its effective domain contains elements on both sides of the hyperplane
H in (4.21). Second, determine V from K by (4.18).

It’s evident that the prescribed extension of J = I(·∥P0) is always possible and by no means
unique. As in finding a good regret measure for a given risk measure, the real goal is coming up with
an extension K that is “natural,” It should be convenient for carrying out the dualization to V and
having that V furnish a practical expression for use in (4.10)–(4.11).

17



Can the prescription in Theorem 4.6 also be followed to get a regret V for Wasserstein divergence?
The trouble there is that it’s hard to see how the formula (3.2) for Wasserstein divergence can be
extended “naturally” beyond P(Ω) to L+(Ω), because having Y (ω) =

∑
ω′ Π(ω, ω′) for a function

Π(ω, ω′) ≥ 0 with
∑

ω Π(ω, ω′) = P0(ω
′) makes Y have to be some P ∈ P(Ω).

Here’s a good-looking way of extending J to K that follows all the rules and can always be
employed, but may offer less help in the end than might be wished. Take

K(Y ) = λJ (λ−1Y ) for λ =
∑

ω
Y (ω) if Y ≥ 0, Y ̸≡ 0, and K(0) = 0. (4.22)

In this case K is positively homogeneous and vanishes along the ray { τP0 | τ ≥ 0}, in consequence of
J having minimum 0 attained at P0. That makes V be the indicator of a closed convex set C having
the origin on its boundary and P0 as a normal vector there, moreover with X ∈ C implying X ′ ∈ C
for all X ′ ≤ X. The corresponding formula (4.9) for R boils down then to saying that R(X) is the
smallest C such that X − C ∈ C. But R(X) ≤ C if and only if R(X − C) ≤ 0, so this means C is
simply the level set {X |R(X) ≤ 0}.

In other situations, there is an easy and more interesting path to follow between stochastic diver-
gence and regret because of underlying separability in the divergence formula.

Theorem 4.7 (expectational regret and its relationship to divergence). With respect to a pair of
closed proper convex functions v and k on IR that are conjugate to each other:

v(x) = sup
y
{xy − k(y)}, k(y) = sup

x
{xy − v(x)}, (4.23)

the functionals V on L(Ω) having the form

V(X) = EP0 [v(X)] (4.24)

with respect to a given distribution P0 are conjugate to the functionals K on L(Ω) having the form

K(Y ) =

{ ∑
ω k

(
Y (ω)/P0(ω)

)
P0(ω) if Y (ω) = 0 when P0(ω) = 0,

∞ otherwise.
(4.25)

In this relationship K satisfies (K1)–(K5), the properties under which its restriction to P(Ω) gives a
stochastic divergence I(·∥P0), when k satisfies

1 ∈ int[dom k] ⊂ (0,∞), min k = 0, argmin k = {1}. (4.26)

The corresponding dual properties to those, under which V satisfies (V1)–(V3) and (V5)–(V6), are

v is a nondecreasing function with v(0) = 0 and v′(0) = 1, hence
v(x) ≥ x for all x, but having the interval {x | v(x) = x} bounded. (4.27)

Detail. In (4.24) we have V(X) =
∑

ω Vω(X(ω)) for Vω(x) = v(x)P0(ω). The conjugate functional
K = V∗, obtained by maximizing

∑
ω X(ω)Y (ω) − V(X) over all possibilities for X(ω), is given then

by K(Y ) =
∑

ω V ∗
ω (Y (ω)). From (4.23) we have V ∗

ω (y) = P0(ω)k
(
y/P0(ω)

)
for ω with P0(ω) > 0, but

V ∗
ω = indicator of 0 for ω with P0(ω) = 0, since then Vω(x) ≡ 0. That establishes (4.25) as the formula

for the conjugate.
Properties (K1) and (K2) for K and (V1)–(V2) for V are, of course, immediate from k and v being

closed proper convex, and (V2) reflects (4.27). Having minK = 0 with P(Ω) ∩ argminK = {P0}
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corresponds to having min k = 0 with argmin k = {1}, in which case actually argminK = {P0}. That
takes care of (K3) and (K5), because the inclusion in (K5) is automatic for this form of K. Finally,
having (K4) corresponds to having the interval dom k lie in [0,∞) with 1 belonging to its interior.
The k properties in (4.26) thus fill the role that was claimed for them.

We could next go through the properties (V3),(V5), (V6), and determine what they demand
of v, but there’s a shortcut. We already know that (V1)–(V3) and (V5)–(V6) dualize (K1)–(K5),
so it suffices to observe that the properties of v in (4.27) dualize those of k in (4.26). In fact, by
the elementary rules for the one-dimensional conjugacy in (4.23), v nondecreasing corresponds to
dom k ⊂ [0,∞), while

−v(0) = inf k, ∂v(0) = argmin k, −k(1) = inf{ v(x)− x}, ∂k(1) = argmin{ v(x)− x},

with ∂v(0) reducing to {1} if and only if v is differentiable at 0 with v′(0) = 1, and on the other hand,
∂k(1) bounded if and only if 1 ∈ int[dom k].

Example 4.8 (φ-divergences). These divergences, defined in (3.6) with the basic assumptions on φ
taken to be the normalized ones in (3.7), fit into the framework of Theorem 4.7 to the specialization
to k = φ with (3.7) strengthened to insist on argminφ = {1}.

The condition in (3.7) that domφ be all of [0,∞) corresponds to requiring v(x)/x → ∞ as
x → ∞). Imposing on φ the additional assumption that φ(q)/q → ∞ as q → ∞ corresponds to
requiring dom v = (−∞,∞). On the other hand imposing strict convexity on φ corresponds to
requiring differentiability everywhere of v.

Example 4.8 confirms that in the case of a φ-divergence I(P∥P0) = EP0 [φ(Q)] as in (3.6) and the
neighborhood risk measures Rβ derived from it via (3.1), we have the alternative formula

Rβ(X) = inf
λ>0, C

{
C + λ

[
β + EP0

[
v
(
λ−1[X − C]

)]]}
(4.28)

coming from Theorem 4.3 as the combination of (4.10) and (4.11). The explorations of φ-divergence
by Ahmadi-Javid [1], [2], and by Dommel and Pichler [12], reached this same formula as an all-in-
one result, whereas we have taken pains to separate the pattern of derivation into the (4.10) part
as “immediate from convex analysis” and the trickier (4.11) part. It may be recalled from Section
3, though, that the assumptions of Dommel and Pichler in [12] also brought in the condition about
φ(q)/q while, in normalized form, they allowed more than just 1 to be in argminφ.

The work of Breuer and Csiszár [10] on φ-divergences relied on strict convexity of φ, but on the
other hand allowed for φ(ω, q) instead of just φ(q), producing divergences that in our notation here
come out as

I(P∥P0) =
∑

ω∈suppP0

φ(ω,Q(ω))P0(ω) for Q(ω) = P (ω)/P0(ω)

when suppP ⊂ suppP0, but ∞ otherwise.
(4.29)

Theorem 4.7 can easily be extended this by taking conjugate functions v(ω, ·) and k(ω, ·) in (4.23).

5 Integrating stochastic divergences into the risk quadrangle

From now on, we operate with a fixed distribution P0 having suppP0 = Ω. This puts us in the
framework where every X ∈ L(Ω) can be interpreted as a random variable with its cumulative distri-
bution function FX,P0 in (1.1) being written as FX , and with its expectation EP0 [X] and highest value
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maxP0
X just as E[X] and maxX. Despite it being fixed, we view P0 as a nominal distribution sub-

ject perhaps to uncertainty. It’s the focus of our continued treatment of ambiguity and distributional
robustness.

Everything about stochastic divergences comes out simpler now, with I(P∥P0) just I(P ), say, but
we can only compare P0 to distributions P representable by a density Q with respect to P0. In that,
we forgo a capability of Wasserstein divergence, in particular, but open the way to other capabilities
that stochastic divergences might provide. We examine the possible connections they have to the
fundamental quadrangle of risk in the pattern

risk R ←→ D deviation
optimization ↑↓ S ↓↑ estimation

regret V ←→ E error

So far, we have effectively only been looking at the optimization side of this quadrangle, where a
measure of risk R can be obtained from a measure of regret V. On the other side a measure of error
E(X) assesses the nonzeroness of X, and a measure of deviation D assesses the uncertainty of X as
its nonconstancy. The two sides are related by

D(X) = R(X)− E[X], E(X) = V(X)− E[X], (5.1)

with respect to which

D(X) = inf
C
E(X − C) corresponds to R(X) = inf

C
{C + V(X − C)}. (5.2)

This pairing of R and V with D and E may seem a tiny distinction to make but has profound
consequences in affording a different perspective.

As a baseline for the relationships between R, V, D and E in our context of ambiguity concerns
centered on P0, we can take for granted now that

R(X) ≥ E[X] for all X,
V(X) ≥ E[X] for all X,
D(X) ≥ 0 for all X,
E(X) ≥ 0 for all X.

(5.3)

For positively homogeneousR, the first inequality just corresponds to P0 belonging to the risk envelope
P associated with R in Theorem 2.3, and without homogeneity its membership in argminJ for the
dualizing graduator in Theorem 2.5. The second inequality is a natural counterpart in relation to the
infimum in (5.2), and the rest then is automatic from (5.1). But a stricter version of these properties
was deemed necessary in developing the quadrangle in [26].

Definition 5.1 (aversity). The functionals R, V, D, E , are averse when

R(X) ≥ E[X] for all X, with > when X ̸≡ C,
V(X) ≥ E[X] for all X, with > when X ̸≡ 0,
D(X) ≥ 0 for all X, with > when X ̸≡ C,
E(X) ≥ 0 for all X, with > when X ̸≡ 0.

(5.4)

The terminology of aversity coordinates with risk aversity in stochastic optimization. In optimizing
a decision by minimizing an expected cost, an allowance is being made for higher and lower cost
outcomes to balance each other out. That makes sense in applications where the same situation is
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faced over and over again, and consequences over the long run are the appropriate focus. But in
many applications the prospect of an unusually high loss outweighs most other prospects. Thus, the
risk-neutral risk measure R(X) = E[X] may need to be replaced by one satisfying the first of the
aversity conditions in (5.4), according to which the difference betweenR(X) and E[X] for an uncertain
X should be a positive risk premium. It’s evident from (5.1) and (5.2) that the V aversity in (5.4)
implies the R aversity and is equivalent to the E aversity. That in turn implies the D diversity, which
is equivalent to the R aversity.

The properties of E and D are crucial to understanding their side of the quadrangle. The min-
imization formula for D in (5.2) seeks the constant C that best represents the random variable X
with respect to the error in the difference X − C, as measured by E . The S in the quadrangle refers
to S(X) being the argmin of E(X − C) in C, that being called the statistic associated with X by E .
Much about it, with lots of examples, is in the paper [26] and needn’t be reviewed here.

The remarkable insight provided by the optimization-statistics connection in the quadrangle is
that risk-averse optimization, centered on averse R(X) assisted by averse regret V(X) inevitably ties
into a pattern error of E(X), deviation D(X) and statistic S(X) that supports generalized regression
and other potentially valuable tools of analysis, such as in [22].

The task before us is figuring out how stochastic divergences fit into this quadrangle picture. It
turns out that the aversity in Definition 5.1 demands too much and would exclude the risk measures R
that dualize divergences in Theorem 3.5. Weaker properties are needed, but they must still allow for
a reasonable interpretation of error and deviation in relinquishing the strictness in (5.3). We propose
the following concept of subaversity.

Definition 5.2 (subaversity). The functionals R, V, D, E , are subaverse when

(R0) R(X) ≥ E[X], and ∀X ̸≡ C, ∃λ > 0 with R(λX) > λE[X],
(V0) V(X) ≥ E[X], and ∀X ̸≡ 0, ∃λ > 0 with V(λX) > λE[X],
(D0) D(X) ≥ 0, and ∀X ̸≡ C, ∃λ > 0 with D(λX) > 0,
(E0) E(X) ≥ 0, ∀X ̸≡ 0, ∃λ > 0 with E(λX) > λE[X].

(5.5)

Note in (R0) that, ifR(λX) = λE[X] when λ > 0, the condition reduces to requiringR(X) > E[X]
for nonconstant X. Similarly tor (V0), (D0) and (E0). Thus, subadversity only differs from aversity
for functionals that are not positively homogeneous!

Theorem 5.3 (aversity and subaversity from stochastic divergences). For a stochastic divergence
I = I(·∥P0) under the axioms (I1)–(I4) in Definition 3.4, the coherent risk measure R that dualizes it
as a graduator in Theorem 2.5 and Theorem 3.5 is generally subaverse rather than averse. However,
the coherent risk measures Rβ in (4.3), tied to the nested divergence neighborhoods, are indeed averse.

The regret measures V coming from an extension of I to a functional K as described in Theorem
4.7 likewise are generally just subaverse. The same also then for the associated error measure E and
deviation measure D.

Proof. We know from Theorem 3.5 that R(X) ≥ E[X] for all X. Any X such that R(λX) = λE[X]
for all λ > 0 has E[X] ≥ maxX by (3.12), but that only holds for constant X.

Similarly, because P0 ∈ Pβ in (4.1) we know Rβ(X) ≥ E[X] for all X. For X such that Rβ(X) =
E[X], we have from Theorem 4.7 that

0 = inf
0<λ<∞

{
λβ +

(
λR(λ−1X)− E[X]

)}
, (5.6)

where by Theorem 3.5 the term in parentheses is nonnegative and nondecreasing with limit as τ ↗∞
being ≥ maxX. Those properties make (5.5) impossible unless X is constant. Thus Rβ is averse.
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The quadrangle scheme in [26] required aversity, but Theorem 5.3 makes clear that subaversity
must be accommodated in order to take full advantage of the ideas surrounding stochastic divergence.
Where might this lead in quadrangle modification? Coherency deserves consideration in that as well,
already on the baseline in (5.3).

They translate through (5.2) to the following properties of D and E , which build on the baseline
in (5.3), before any upgrade to subaversity.

Proposition 5.4 (translations of coherency). Through (5.2), the risk properties (R1)–(R4) in Defi-
nition 2.1 translate to the following properties of the functional D ≥ 0:

(D1) D is convex with closed level sets, {X | D(X) ≤ ξ}, ξ <∞,
(D2) D(X) = 0 when X ≡ C,
(D3) D(−X) ≤ E[X] when X ≥ 0,
(D4) D(λX) = λD(X) for λ > 0.

On the other hand, the regret properties (V1)–(V4) in Definition 4.2 translate through (5.2) to the
following properties of the functional E ≥ 0:

(E1) E is convex with closed level sets {X | E(X) ≤ ξ}, ξ <∞,
(E2) {C | E(C) = 0} is bounded, containing 0,
(E3) E(−X) ≤ E[X] when X ≥ 0,
(E4) E(λX) = λE(X) for λ > 0.

Proof. All this is elementary, except that (D3) and (E3) may be mysterious. Observe first that
the monotonicity axiom (R3) can equivalently be expressed, in the presence of the other axioms,
simply as R(−X) ≤ 0 when X ≥ 0; this is a consequence of the facts in Proposition 2.2. But
R(−X) = D(−X)− E[X] in (5.2), so this becomes (D3). The same path leads to (E3).

As explained after Definition 2.1, the combination of (R2) and (R3) ensures in our case of finite Ω
that R is finite on all of L(Ω). That carries over in Proposition 5.4 to (D2) and (D3) ensuring such
finiteness. Then, as through convexity, D is continuous and the level set requirement is axiomatically
fulfilled.

Definition 5.5 (coherency of error and deviation). A functional D ≥ 0 on L(Ω) will be called a
coherent measure of deviation, in the general sense, if it satisfies (D1), (D2) and (D3), and in the basic
sense if it also satisfies (D4). A functional E ≥ 0 on L(Ω) will be called a coherent measure of error
if it satisfies (E1), (E2) and (E3).

From the perspective of statistics on the right side of the quadrangle, the coherency axioms (E3)
and (D3) are clearly a sharp restriction. They exclude functionals like E(X) = E[X2] and D(X) =
E[(X − E[X])2] = σ2(X) at the heart of statistical theory. This returns us, though, to the reasons
why “coherency” was introduced. Popular risk measures of the form R(X) = E[X] + γσ2(X) for
γ > 0, fitting the quadrangle pattern in the case of E(X) = γE[X2], lack monotonicity. That’s such
a powerful consideration for risk, but still — the quadrangle could well have serious applications in
a mode where E and D are allowed to violate (E3) and (D3) at the expense of getting nonmonotone
R and V. That was in fact the framework adopted in the original quadrangle formulation in [26].
But our purposes here, we’ll keep to coherency and what it entails. In doing this, we explore a kind
of asymmetric statistics in which errors on the good side, here outcomes ≤ 0, receive a distinctive
treatment through (E3).

Theorem 5.6 (The risk quadrangle featuring coherency and subaversity). The quadrangle relation-
ships in (5.1) and (5.2) are fully coordinated and sustained when

(R) the risk measure R satisfies (R0), (R1), (R2) and (R3).
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(V) the regret measure V satisfies (V0), (V1), (V2) and (V3).
(D) the deviation measure D satisfies (D0), (D1), (D2) and (D3).
(E) the error measure E satisfies (E0), (E1), (E2) and (E3).

These properties propogate through the specified relationships, moreover with the minimum in (5.2)
being attained on a nonempty closed and bounded interval S(X). The same holds with the addition
of the axioms (R4), (V4), (D4) and (E4).

Proof. Mostly this just summarizes facts we already know from Proposition 5.4 and Theorem 4.3.
Details related to subaversity are the only thing demanding attention. The coordination of subaversity
between R and D through (5.1), and between V and E is apparent. We just have to confirm that
subaversity passes through the minimization formulas in (5.2) with the claims about minimizing C
values being correct. The two formulas are equivalent, so we can concentrate on the one for D in
terms of E while observing that, in terms of recession functions,

subaversity of E corresponds to E0+(X ′) > 0 for X ′ ̸≡ 0,
subaversity of D corresponds to D0+(X ′) > 0 for X ′ ̸≡ C.

(5.7)

Posing the formula as

D(X) = inf
C
F(X,C) for F(X,C) = E(X − C) on L(Ω)× IR, (5.8)

we can apply [19, Theorem 9.2] with respect to the linear mapping A : (X,C) 7→ X and the recession
function

F0+(X ′, C ′) = E0+(X ′ − C ′). (5.9)

According to the cited rule, if

F0+(X ′, C ′) ≤ 0, F0+(−X ′,−C ′) > 0 =⇒ X ′ ̸= 0, (5.10)

then the minimum is sure to be attained in (5.8) and will result in having

D0+(X ′) = min
C′
F0+(X ′, C ′). (5.11)

We’re assuming the subaversity of E in (5.7) and therefore have in (5.9) that F0+(X ′, C ′) > 0 unless
X ′ ≡ C ′, so the implication in (5.10) is true by virtue of its assumption being impossible to be satisfied.
Then in (5.11) from (5.9) we have D0+(X ′) = minC′ E0+(X ′−C ′), and that comes out 0 when X ′ = C
for some constant C, but since E0+(X ′−C ′) > 0 for all C ′ otherwise, the attained minimum is positive
otherwise.

Finally, we would like to mention that, since this paper was written, more about fitting risk
measures from φ-divergence neighborhoods into the quadrangle of risk has been put together by
Malandii, Gupta, Peng and Uryasev in [18],
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