Erratum to
 Symmetric Markov Processes, Time Change, and Boundary Theory

by Zhen-Qing Chen and Masatoshi Fukushima

Princeton University Press, 2012
(Last update: April 11, 2021)

- p.15, line 8: There is a gap in the proof of $C_{b}(F) \cap L^{2}(F ; m)$ being dense in $L^{2}(F ; m)$. Here we show the part (ii) of Lemma 1.1.14 directly that $\left\{T_{t} ; t \geq 0\right\}$ is a strongly continuous semigroup on $L^{2}(E ; m)$.

Since m is σ-finite, there is a partition $\left\{E_{k} ; k \geq 1\right\}$ of F so that $m\left(E_{k}\right)<$ ∞ for every $k \geq 1$. Since every $f \in L^{2}(F ; m)$ can be L^{2}-approximated by a sequence of simple functions in $L^{2}(F ; m)$, it suffices to show that for any $A \subset F$ having $m(A)<\infty, T_{t} 1_{A}$ converges to 1_{A} in $L^{2}(F ; m)$ as $t \rightarrow 0$. For simplicity, denote $\left.m\right|_{E_{j}}$ by m_{j}. Since each m_{j} is a regular measure, for any $\varepsilon>0$, there a compact set $K_{j} \subset A$ and an open set $U_{j} \supset A$ so that $m_{j}(A \backslash K)<\varepsilon / 2^{j}$ and $m_{j}\left(U_{j} \backslash A\right)<\varepsilon / 2^{j}$. Since $m(A)=\sum_{j=1}^{\infty} m_{j}(A)$, there is some $N \geq 1$ so that $\sum_{j=N+1}^{\infty} m_{j}(A)<$ $\varepsilon / 2$. Define $K=\cup_{j=1}^{N} K_{j}$. Then $K \subset A, K$ is compact,

$$
\begin{equation*}
m(A \backslash K) \leq \sum_{j=1}^{N} m_{j}\left(A \backslash K_{j}\right)+\sum_{j=N+1}^{\infty} m_{j}(A)<\varepsilon, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
m\left(\cap_{j=1}^{\infty} U_{j} \backslash A\right) \leq \sum_{j=1}^{\infty} m_{j}\left(U_{j} \backslash A\right)<\varepsilon \tag{2}
\end{equation*}
$$

For each $j \geq M$, define

$$
g_{j}(x)=\frac{d\left(x,\left(\cap_{k=1}^{j} U_{k}\right)^{c}\right)}{\left.d\left(x,\left(\cap_{k=1}^{j} U_{k}\right)^{c}\right)\right)+d(x, K)} .
$$

Clearly $g_{j} \in C_{b}(F)$ with $0 \leq g_{j} \leq 0$ on $F, g_{j}=1$ on K, and $g_{j}=0$ on $\left(\cap_{k=1}^{j} U_{k}\right)^{c}$. Note that g_{j} is decreasing in j and $g_{\infty}(x):=\lim _{j \rightarrow \infty} g_{j}(x)$ vanishes on $\left(\cap_{k=\infty}^{j} U_{k}\right)^{c}$. Hence by (2),

$$
\int_{F} 1_{A^{c}}(x) g_{\infty}(x)^{2} m(d x) \leq m\left(\cap_{k=1}^{\infty}\left(U_{k} \cap A^{c}\right) \leq \sum_{k=1}^{\infty} m_{k}\left(U_{k} \backslash A\right)<\varepsilon\right.
$$

Thus by the monotone convergence theorem, there is some $N_{1} \geq N$ so that

$$
\int_{F} 1_{A^{c}}(x) g_{N_{1}}(x)^{2} m(d x)<\varepsilon
$$

Hence by the L^{2}-contractiveness of $\left\{T_{t} ; t \geq 0\right\}$ and the Cauchy-Schwartz inequality,

$$
\begin{aligned}
& \limsup _{t \rightarrow 0}\left\|1_{A} g_{N_{1}}-T_{t}\left(1_{A} g_{N_{1}}\right)\right\|_{L^{2}(F ; m)}^{2} \\
\leq & 2\left\|1_{A} g_{N_{1}}\right\|_{L^{2}(F ; m)}^{2}-2 \liminf _{t \rightarrow 0} \int_{F} 1_{A} g_{N_{1}} T_{t}\left(1_{A} g_{N_{1}}\right) m(d x) \\
= & 2\left\|1_{A} g_{N_{1}}\right\|_{L^{2}(F ; m)}^{2}-2 \liminf _{t \rightarrow 0}\left(\int_{F} 1_{A} g_{N_{1}} P_{t} g_{N_{1}} m(d x)-\int_{F} 1_{A} g_{N_{1}} T_{t}\left(1_{A^{c}} g_{N_{1}}\right) m(d x)\right) \\
\leq & 2 m(A)^{1 / 2}\left\|1_{A^{c}} g_{N_{1}}\right\|_{L^{2}(F ; m)}<2 \sqrt{m(A) \varepsilon} .
\end{aligned}
$$

On the other hand, as by (1),

$$
\left\|1_{A}-1_{A} g_{N_{1}}\right\|_{L^{2}(F ; m)} \leq m(A \backslash K)^{1 / 2} \leq \varepsilon^{1 / 2}
$$

we have

$$
\begin{aligned}
\limsup _{t \rightarrow 0}\left\|1_{A}-T_{t} 1_{A}\right\|_{L^{2}(F ; m)} & \leq 2 \varepsilon^{1 / 2}+\limsup _{t \rightarrow 0}\left\|1_{A} g-T_{t}\left(1_{A} g_{N_{1}}\right)\right\|_{L^{2}(F ; m)} \\
& \leq 2 \varepsilon^{1 / 2}+2(m(A) \varepsilon)^{1 / 4}
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, this shows that $\lim \sup _{t \rightarrow 0}\left\|1_{A}-T_{t} 1_{A}\right\|_{L^{2}(F ; m)}=$ 0 .

- p.27, line 13: 'countable base' should be 'a countable base'.
- p.27, line 16: '(ii).' should be '(ii')'.
- p.40, line -19: S_{n} should be $S_{n h}$.
- p.42, line 15: ' \rightarrow ' should be ' $=$ '
- p.44, line -7: the first (2.1.20) should be (2.1.19).
- p.44, line -6: ' $G\left(\eta-\eta G^{\eta} \eta\right)$ ' should be ' $G_{\alpha}\left(\eta-\eta G^{\eta} \eta\right)$ '
- p.110, line 13: ' $\left\{p_{B}^{1}>0\right\}$ ' should be ' $\left\{p_{B}^{1}<1\right\}$ '
- p.110, line 16: ' $\left\{p_{B}^{1} \geq \frac{1}{k}\right\}$ ' should be ' $\left\{p_{B}^{1} \leq 1-\frac{1}{k}\right\}$ '
- p.110, line 20: ' $p_{B}^{1}\left(X_{\sigma}\right)=0$ ' should be ' $p_{B}^{1}\left(X_{\sigma}\right)=1$ '
- p.143, line -2: the phrase "In view of Theorem 3.5.4" should be replaced by "In view of Lemma 1.3.15 and Theorem 3.1.4".
- p.206, line 12: delete ' F '.
- p.219, lines 4 and 5: ' $d t$ ' should be ' $d r$ ' (two places)
- p.219, Theorem 5.5.9: $(U(d x, d y)+J(d x, d y))$.
- p.376, in $\left(\mathbf{M}^{\circ} .3\right)$: ${ }^{\prime} \sup _{x \in V} G_{1}^{0} \varphi^{(i)}(x)<\infty$ ' should be ' $\inf _{x \in V} G_{1}^{0} \varphi^{(i)}(x)>$ 0 '.
- p.384, line 12: ' $H^{1}(D)$ ' should be ' $H_{e}^{1}(D) \cap L^{2}(D ; m)$ '.
- p.474, line 9: 'holds' should be 'holes'.

