Erratum to

Symmetric Markov Processes, Time Change, and Boundary Theory

by Zhen-Qing Chen and Masatoshi Fukushima

Princeton University Press, 2012

(Last update: April 11, 2021)

p.15, line 8: There is a gap in the proof of C_b(F) ∩ L²(F; m) being dense in L²(F; m). Here we show the part (ii) of Lemma 1.1.14 directly that {T_t; t ≥ 0} is a strongly continuous semigroup on L²(E; m).

Since *m* is σ -finite, there is a partition $\{E_k; k \ge 1\}$ of *F* so that $m(E_k) < \infty$ for every $k \ge 1$. Since every $f \in L^2(F;m)$ can be L^2 -approximated by a sequence of simple functions in $L^2(F;m)$, it suffices to show that for any $A \subset F$ having $m(A) < \infty$, $T_t 1_A$ converges to 1_A in $L^2(F;m)$ as $t \to 0$. For simplicity, denote $m|_{E_j}$ by m_j . Since each m_j is a regular measure, for any $\varepsilon > 0$, there a compact set $K_j \subset A$ and an open set $U_j \supset A$ so that $m_j(A \setminus K) < \varepsilon/2^j$ and $m_j(U_j \setminus A) < \varepsilon/2^j$. Since $m(A) = \sum_{j=1}^{\infty} m_j(A)$, there is some $N \ge 1$ so that $\sum_{j=N+1}^{\infty} m_j(A) < \varepsilon/2$. Define $K = \bigcup_{j=1}^N K_j$. Then $K \subset A$, K is compact,

$$m(A \setminus K) \le \sum_{j=1}^{N} m_j(A \setminus K_j) + \sum_{j=N+1}^{\infty} m_j(A) < \varepsilon,$$
(1)

and

$$m(\bigcap_{j=1}^{\infty} U_j \setminus A) \le \sum_{j=1}^{\infty} m_j(U_j \setminus A) < \varepsilon.$$
(2)

For each $j \ge M$, define

$$g_j(x) = \frac{d(x, (\bigcap_{k=1}^j U_k)^c)}{d(x, (\bigcap_{k=1}^j U_k)^c)) + d(x, K)}$$

Clearly $g_j \in C_b(F)$ with $0 \leq g_j \leq 0$ on F, $g_j = 1$ on K, and $g_j = 0$ on $(\bigcap_{k=1}^{j} U_k)^c$. Note that g_j is decreasing in j and $g_{\infty}(x) := \lim_{j \to \infty} g_j(x)$ vanishes on $(\bigcap_{k=\infty}^{j} U_k)^c$. Hence by (2),

$$\int_F 1_{A^c}(x)g_{\infty}(x)^2 m(dx) \le m(\bigcap_{k=1}^{\infty} (U_k \cap A^c) \le \sum_{k=1}^{\infty} m_k(U_k \setminus A) < \varepsilon.$$

Thus by the monotone convergence theorem, there is some $N_1 \ge N$ so that

$$\int_F 1_{A^c}(x)g_{N_1}(x)^2 m(dx) < \varepsilon.$$

Hence by the $L^2\mbox{-}{\rm contractiveness}$ of $\{T_t;t\geq 0\}$ and the Cauchy-Schwartz inequality,

$$\begin{split} &\limsup_{t \to 0} \|1_A g_{N_1} - T_t(1_A g_{N_1})\|_{L^2(F;m)}^2 \\ &\leq 2\|1_A g_{N_1}\|_{L^2(F;m)}^2 - 2\liminf_{t \to 0} \int_F 1_A g_{N_1} T_t(1_A g_{N_1}) m(dx) \\ &= 2\|1_A g_{N_1}\|_{L^2(F;m)}^2 - 2\liminf_{t \to 0} \left(\int_F 1_A g_{N_1} P_t g_{N_1} m(dx) - \int_F 1_A g_{N_1} T_t(1_{A^c} g_{N_1}) m(dx)\right) \\ &\leq 2m(A)^{1/2} \|1_{A^c} g_{N_1}\|_{L^2(F;m)} < 2\sqrt{m(A)\varepsilon}. \end{split}$$

On the other hand, as by (1),

$$||1_A - 1_A g_{N_1}||_{L^2(F;m)} \le m(A \setminus K)^{1/2} \le \varepsilon^{1/2},$$

we have

$$\limsup_{t \to 0} \|1_A - T_t 1_A\|_{L^2(F;m)} \leq 2\varepsilon^{1/2} + \limsup_{t \to 0} \|1_A g - T_t (1_A g_{N_1})\|_{L^2(F;m)}$$
$$\leq 2\varepsilon^{1/2} + 2(m(A)\varepsilon)^{1/4}.$$

Since $\varepsilon > 0$ is arbitrary, this shows that $\limsup_{t\to 0} \|1_A - T_t 1_A\|_{L^2(F;m)} = 0.$

- p.27, line 13: 'countable base' should be 'a countable base'.
- p.27, line 16: '(ii).' should be '(ii')'.
- p.40, line -19: S_n should be S_{nh} .

- p.42, line 15: ' \rightarrow ' should be '='
- p.44, line -7: the first (2.1.20) should be (2.1.19).
- p.44, line -6: $(G(\eta \eta G^{\eta} \eta))$ should be $(G_{\alpha}(\eta \eta G^{\eta} \eta))$
- p.110, line 13: ${p_B^1 > 0}$ should be ${p_B^1 < 1}$
- p.110, line 16: $\{p_B^1 \ge \frac{1}{k}\}$ ' should be $\{p_B^1 \le 1 \frac{1}{k}\}$ '
- p.110, line 20: ${}^{'}p_B^1(X_{\sigma}) = 0$ ' should be ${}^{'}p_B^1(X_{\sigma}) = 1$ '
- p.143, line -2: the phrase "In view of Theorem 3.5.4" should be replaced by "In view of Lemma 1.3.15 and Theorem 3.1.4".
- p.206, line 12: delete 'F'.
- p.219, lines 4 and 5: 'dt' should be 'dr' (two places)
- p.219, Theorem 5.5.9: (U(dx, dy) + J(dx, dy)).
- p.376, in (**M**°.**3**): ' $\sup_{x \in V} G_1^0 \varphi^{(i)}(x) < \infty$ ' should be ' $\inf_{x \in V} G_1^0 \varphi^{(i)}(x) > 0$ '.
- p.384, line 12: ' $H^1(D)$ ' should be ' $H^1_e(D) \cap L^2(D;m)$ '.
- p.474, line 9: 'holds' should be 'holes'.