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BROWNIAN MOTION ON SOME SPACES
WITH VARYING DIMENSION1

BY ZHEN-QING CHEN AND SHUWEN LOU

University of Washington and University of Toronto

In this paper, we introduce and study Brownian motion on a class of
state spaces with varying dimension. Starting with a concrete case of such
state spaces that models a big square with a flag pole, we construct a Brow-
nian motion on it and study how heat propagates on such a space. We de-
rive sharp two-sided global estimates on its transition density function (also
called heat kernel). These two-sided estimates are of Gaussian type, but the
measure on the underlying state space does not satisfy volume doubling prop-
erty. Parabolic Harnack inequality fails for such a process. Nevertheless, we
show Hölder regularity holds for its parabolic functions. We also derive the
Green function estimates for this process on bounded smooth domains. Brow-
nian motion on some other state spaces with varying dimension are also con-
structed and studied in this paper.
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1. Introduction. Brownian motion takes a central place in modern probabil-
ity theory and its applications, and is a basic building block for modeling many
random phenomena. Brownian motion has intimate connections to analysis since
its infinitesimal generator is a Laplace operator. Brownian motion in Euclidean
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spaces has been studied by many authors in depth. Brownian motion on manifolds
and on fractals has also been investigated vigorously, and is shown to have in-
trinsic interplay with the geometry of the underlying spaces. See [21, 22, 25, 26]
and the references therein. In most of these studies, the underlying metric mea-
sure spaces are assumed to satisfy volume doubling (VD) property. For Brown-
ian motion on manifolds with walk dimension 2, a remarkable fundamental result
obtained independently by Grigor’yan [17] and Saloff-Coste [27] asserts that the
following are equivalent: (i) two-sided Aronson-type Gaussian bounds for heat
kernel, (ii) parabolic Harnack equality and (iii) VD and Poincaré inequality. This
result is then extended to strongly local Dirichlet forms on metric measure space
in [7, 28, 29] and to graphs in [14]. For Brownian motion on fractals with walk
dimension larger than 2, the above equivalence still holds but one needs to replace
(iii) with (iii′) VD, Poincaré inequality and a cut-off Sobolev inequality; see [1, 3,
4].

Recently, analysis on nonsmooth spaces has attracted lots of interest. In real
world, there are many objects having varying dimension. It is natural to study
Brownian motion and “Laplace operator” on such spaces. A simple example of
spaces with varying dimension is a large square with a thin flag pole. Mathemati-
cally, it is modeled by a plane with a vertical line installed on it:

(1.1) R
2 ∪R+ := {

(x1, x2, x3) ∈ R
3 : x3 = 0 or x1 = x2 = 0 and x3 > 0

}
.

Here and in the sequel, we use := as a way of definition and denote [0,∞) by
R+. Spaces with varying dimension arise in many disciplines including statistics,
physics and engineering (e.g., molecular dynamics, plasma dynamics); see, for
example, [24, 31] and the references therein.

The goal of this paper is to construct and study Brownian motion and Laplacian
on spaces of varying dimension, in particular, to investigate how heat propagates
on such spaces. Intuitively, Brownian motion on space R

2 ∪ R of (1.1) should
behave like a two-dimensional Brownian motion when it is on the plane, and like
a one-dimensional Brownian motion when it is on the vertical line (flag pole).
However, the space R2 ∪R is quite singular in the sense that the base O of the flag
pole where the plane and the vertical line meet is a singleton. A singleton would
never be visited by a two-dimensional Brownian motion, which means Brownian
motion starting from a point on the plane will never visit O . Hence there is no
chance for such a process to climb up the flag pole. To circumvent this difficulty,
we collapse or short (imagine putting an infinite conductance on) a small closed
disk B(0, ε) ⊂ R

2 centered at the origin into a point a∗ and consider the resulting
Brownian motion with darning on the collapsed plane, for which a∗ will be visited.
The notion of Brownian motion with darning is coined in [10] and its potential
theory has been studied in detail in [9] and [11], Sections 2–3. Through a∗, we put
a vertical pole and construct Brownian motion with varying dimension on R

2 ∪
R+ by joining together the Brownian motion with darning on the plane and the
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one-dimensional Brownian motion along the pole. It is possible to construct this
process rigorously via Poisson point process of excursions. But we find that the
most direct way to construct BMVD is by using a Dirichlet form approach, which
will be carried out in Section 2.

To be more precise, the state space of BMVD on E is defined as follows. Fix
ε > 0 and p > 0. Denote by Bε the closed disk on R

2 centered at (0,0) with ra-
dius ε. Let Dε := R

2 \ Bε . By identifying Bε with a singleton denoted by a∗, we
can introduce a topological space E := Dε ∪{a∗}∪R+, with the origin of R+ iden-
tified with a∗ and a neighborhood of a∗ defined as {a∗} ∪ (V1 ∩R+) ∪ (V2 ∩ Dε)

for some neighborhood V1 of 0 in R
1 and V2 of Bε in R

2. Let mp be the measure
on E whose restriction on R+ and Dε is the Lebesgue measure multiplied by p

and 1, respectively. In particular, we have mp({a∗}) = 0. Note that the measure mp

also depends on ε, the radius of the hole Bε .

DEFINITION 1.1. Let ε > 0 and p > 0. A Brownian motion with varying
dimensions (BMVD in abbreviation) with parameters (ε,p) on E is an mp-
symmetric diffusion X on E such that:

(i) its part process in R+ \ {a∗} or Dε has the same law as standard Brownian
motion killed upon leaving R+ \ {0} or Dε , respectively;

(ii) it admits no killings on a∗.

It follows from the mp-symmetry of X and the fact mp({a∗}) = 0 that BMVD
X spends zero Lebesgue amount of time at a∗.

Recall that a Markov process on E is said to be a Feller process if its tran-
sition semigroup {Pt ; t ≥ 0} is strongly continuous in (C∞(E),‖ · ‖∞), where
C∞(E) is the space of continuous functions on E that vanishes at infinity and
‖f ‖∞ := supx∈E |f (x)|. We say a Markov process on E has strong Feller prop-
erty if for every t > 0, Pt maps a bounded measurable function on E to a bounded
continuous function on E. The first part of the following theorem will be estab-
lished in Section 2, while its second part is a consequence of Theorem 1.3.

THEOREM 1.2. (i) For every ε > 0 and p > 0, BMVD with parameters (ε,p)

exists and is unique in law.
(ii) The BMVD is a Feller process having strong Feller property.

We point out that BMVD on E can start from every point in E. The parameter
ε and p determine how BMVD will move after hitting O; see Proposition 4.3 and
the paragraph following it. We further characterize the L2-infinitesimal generator
L of BMVD X in Section 2, which can be viewed as the Laplace operator on this
singular space. We show that u ∈ L2(E;mp) is in the domain of the generator L if
and only if �u exists as an L2-integrable function in the distributional sense when
restricted to Dε and R+, and u satisfies zero-flux condition at a∗; see Theorem 2.3
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for details. It can be shown (see Remark 3.3 below) that BMVD X has a transition
density function p(t, x, y) with respect to the measure mp that is continuous in x

for every t > 0 and y ∈ E. In fact, it follows from Theorem 6.3 that p(t, x, y) is
(locally) jointly Hölder continuous in (t, x, y). The kernel p(t, x, y) is also called
the fundamental solution (or heat kernel) for L. Note that p(t, x, y) is symmetric
in x and y. The main purpose of this paper is to investigate how the BMVD X

propagates in E; that is, starting from x ∈ E, how likely Xt travels to position
y ∈ E at time t . This amounts to study the properties of p(t, x, y) of X. In this
paper, we will establish the following sharp two-sided estimates on p(t, x, y) in
Theorem 1.3 and Theorem 1.4. To state the results, we need first to introduce
some notation. Throughout this paper, we will denote the geodesic metric on E

by ρ. Namely, for x, y ∈ E, ρ(x, y) is the shortest path distance (induced from the
Euclidean space) in E between x and y. For notational simplicity, we write |x|ρ
for ρ(x, a∗). We use | · | to denote the usual Euclidean norm. For example, for
x, y ∈ Dε , |x − y| is the Euclidean distance between x and y in R

2. Note that for
x ∈ Dε , |x|ρ = |x| − ε. Apparently,

(1.2) ρ(x, y) = |x − y| ∧ (|x|ρ + |y|ρ)
for x, y ∈ Dε

and ρ(x, y) = |x| + |y| − ε when x ∈ R+ and y ∈ Dε or vice versa. Here and in
the rest of this paper, for a, b ∈ R, a ∧ b := min{a, b}.

We now fix ε > 0 and p > 0. The following are the main results of this paper.

THEOREM 1.3. Let T > 0 be fixed. There exist positive constants Ci , 1 ≤
i ≤ 14 so that the transition density p(t, x, y) of BMVD satisfies the following
estimates when t ∈ (0, T ]:

(i) For x ∈ R+ and y ∈ E,

(1.3)
C1√

t
e−C2ρ(x,y)2/t ≤ p(t, x, y) ≤ C3√

t
e−C4ρ(x,y)2/t .

(ii) For x, y ∈ Dε ∪ {a∗}, when |x|ρ + |y|ρ < 1,

C5√
t
e−C6ρ(x,y)2/t + C5

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−C7|x−y|2/t

≤ p(t, x, y)

≤ C8√
t
e−C9ρ(x,y)2/t + C8

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−C10|x−y|2/t ;

(1.4)

and when |x|ρ + |y|ρ ≥ 1,

(1.5)
C11

t
e−C12ρ(x,y)2/t ≤ p(t, x, y) ≤ C13

t
e−C14ρ(x,y)2/t .
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Since p(t, x, y) is symmetric in (x, y), the above two cases cover all the cases
for x, y ∈ E. Theorem 1.3 shows that the transition density function p(t, x, y)

of BMVD on E has one-dimensional character when at least one of x, y is in
the pole (i.e., in R+); it has two-dimensional character when both points are on
the plane and at least one of them is away from the pole base a∗. When both x

and y are in the plane and both are close to a∗, p(t, x, y) exhibits a mixture of
one-dimensional and two-dimensional characters; see (1.4). Theorem 1.3 will be
proved through Theorems 4.6–4.8.

The large time heat kernel estimates for BMVD are given by the next theorem,
which are very different from the small time estimates.

THEOREM 1.4. There exist positive constants Ci , 15 ≤ i ≤ 29, so that the
transition density p(t, x, y) of BMVD satisfies the following estimates for t ≥ 8:

(i) For x, y ∈ Dε ∪ {a∗},
C15

t
e−C16ρ(x,y)2/t ≤ p(t, x, y) ≤ C17

t
e−C18ρ(x,y)2/t .

(ii) For x ∈R+, y ∈ Dε ∪ {a∗},
C19

t

(
1 + |x| log t√

t

)
e−C20ρ(x,y)2/t ≤ p(t, x, y) ≤ C21

t

(
1 + |x| log t√

t

)
e−C22ρ(x,y)2/t

when |y|ρ ≤ 1, and

C23

t

(
1 + |x|√

t
log

(
1 +

√
t

|y|ρ
))

e−C24ρ(x,y)2/t ≤ p(t, x, y)

≤ C25

t

(
1 + |x|√

t
log

(
1 +

√
t

|y|ρ
))

e−C26ρ(x,y)2/t when |y|ρ > 1.

(iii) For x, y ∈R+,

C27√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−C28|x−y|2/t + C27

t

(
1 + (|x| + |y|) log t√

t

)
e−2(x2+y2)/t

≤ p(t, x, y)

≤ C29√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−C30|x−y|2/t

+ C29

t

(
1 + (|x| + |y|) log t√

t

)
e−(x2+y2)/2t .

Theorem 1.4 will be proved through Theorems 5.14, 5.15 and 5.17. Note that
in Theorems 1.3 and 1.4, the constants Ck , 1 ≤ k ≤ 29, may depend on ε and p.
It is an interesting but delicate problem to study their quantitative dependence on
(ε,p). Clearly, as ε → 0, BMVD starting from a point in Dε will take longer and
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longer time to reach the base point a∗, and hence to climb up the pole. In the
limit, the disk Bε shrinks to a singleton (0,0) ∈ R

2 and the process starts from
the plane is just Brownian motion on the plane R

2 that will never visit the point
(0,0), while the process starts from the pole is just the reflected Brownian motion
on [0,∞). We do not pursue this quantitative dependence problem in this paper.
See, however, Proposition 4.3 and the paragraph following it on the effect of the
parameters (ε,p) on the behavior of BMVD X. See also Remark 4.5 for an open
problem on using PDE approach.

Due to the singular nature of the space, the standard Nash inequality and Davies’
method for obtaining heat kernel upper bound do not give sharp bound for our
BMVD. We cannot employ either the methods in [7, 17, 27–29] on obtaining heat
kernel estimates through volume doubling and Poincaré inequality or the approach
through parabolic Harnack inequality. In fact, (E,mp) does not have volume dou-
bling property, and we will show the parabolic Harnack inequality fails for BMVD
X; see Proposition 2.1 and Remark 4.9(iii). Hence a new approach is needed to
study the heat kernel of BMVD. A key role is played by the “signed radial process”
of BMVD, which we can analyze and derive its two-sided heat kernel estimates.
From it, by exploring the rotational symmetry of BMVD, we can obtain short time
sharp two-sided heat kernel estimates by the following observation. The sample
paths of BMVD starting at x reach y at time t in two possible ways: passing or
without passing through a∗. The probability of the second scenario, which occurs
when both x and y are in Dε or in R+, is given exactly by the probability transi-
tion density function of killed Brownian motion in Dε or in R+. The probability
of the first scenario can be computed by employing the strong Markov property of
BMVD at the first hitting time of the pole base a∗ and reducing it to the signed
radial process of BMVD, exploring the symmetry of BMVD starting from a∗. The
large time heat kernel estimates are more delicate. For large time estimate, the
key is to obtain the correct on-diagonal estimate. This is done through some del-
icate analysis of BMVD and Bessel process on the plane. As a corollary of the
sharp two-sided heat kernel estimates, we find that the usual form of the parabolic
Harnack inequality fails for parabolic functions of BMVD. Nevertheless, we will
show in Section 6 that joint Hölder regularity holds for bounded parabolic func-
tions of X.

Let XD be the part process of BMVD killed upon exiting a bounded connected
C1,1 open subset D of E. Denote by pD(t, x, y) its transition density function.
Using the Green function estimates and boundary Harnack inequality for absorbing
Brownian motion in Euclidean spaces, we can derive sharp two-sided estimates on
the Green function

GD(x, y) :=
∫ ∞

0
pD(t, x, y) dt

for BMVD in D. Recall that an open set D ⊂ R
d is called to be C1,1 if there

exist a localization radius R0 > 0 and a constant �0 > 0 such that for every
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z ∈ ∂D, there exists a C1,1-function φ = φz : Rd−1 → R satisfying φ(0) = 0,
∇φ(0) = (0, . . . ,0), ‖∇φ‖∞ ≤ �0, |∇φ(x)−∇φ(z)| ≤ �|x −z| and an orthonor-
mal coordinate system CSz : y = (y1, . . . , yd) := (ỹ, yd) with its origin at z such
that

B(z,R0) ∩ D = {
y ∈ B(0,R0) in CSz : yd > φ(ỹ)

}
.

For the state space E, an open set D ⊂ E will be called C1,1 in E if D∩(R+\{a∗})
is a C1,1 open set in R+ and D ∩ Dε is a C1,1 open set in R

2.

THEOREM 1.5. Suppose D is a bounded C1,1 domain of E that contains a∗.
Let GD(x, y) be the Green function of BMVD X killed upon exiting D. Then for
x �= y in D, we have

GD(x, y) �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δD(x) ∧ δD(y), x, y ∈ D ∩R+;
δD(x)δD(y) + ln

(
1 + δD∩Dε(x)δD∩Dε(y)

|x − y|2
)
, x, y ∈ D ∩ Dε;

δD(x)δD(y), x ∈ D ∩R+,

y ∈ D ∩ Dε.

Here, δD(x) := distρ(x, ∂D) := inf{ρ(x, z) : z /∈ D} and δD∩Dε(x) := inf{ρ(x, z) :
z /∈ D ∩ Dε}.

For two positive functions f and g, f � g means that f/g is bounded between
two positive constants. In the following, we will also use notation f � g (resp.,
f � g) to mean that there is some constant c > 0 so that f ≤ cg (resp., f ≥ cg).

The above space E of varying dimension is special. It serves as a toy model for
further study on Brownian motion on more general spaces of varying dimension.
Another two examples of spaces of varying dimension and BMVD on them are
given and studied in Section 8 of this paper. Even for this toy model, several inter-
esting and nontrivial phenomena have arisen. The heat kernel estimates on spaces
of varying dimension are quite delicate. They are of Gaussian type but they are not
of the classical Aronson Gaussian type [2]. The different dimensionality is also
reflected in the heat kernel estimates for BMVD. Even when both points x and y

are on the plane, the heat kernel p(t, x, y) exhibits both one-dimensional and two-
dimensional characteristics depending on whether both points are close to the base
point a∗ or not. In addition, both the Euclidean distance |x − y| and the geodesic
distance ρ(x, y) between the two points x and y play a role in the kernel estimates.
Heat kernel estimates have been studied in [19] for Brownian motion in R

2 pene-
trating some fractal fields that are of positive capacity with respect to the Brownian
motion in the plane. The upper and lower bound heat kernel estimates obtained in
[19] do not match as they are of different forms. The spaces of varying dimension
considered in this paper is singular in the sense that the original intersection of the
line and plane is a point that is polar to Brownian motion on the plane. As far as we
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know, this is the first paper that is devoted to the detailed study of heat propagation
on singular spaces of varying dimension and their related potential theory. More-
over, the lower and upper bound heat kernel estimates obtained in this paper are
sharp in the sense that they are of the same form, and they hold for all time t > 0.
Our approach is mainly probabilistic. For other related work and approaches on
Markov processes living on spaces with possibly different dimensions, we refer
the reader to [15, 20, 23] and the references therein.

The rest of the paper is organized as follows. Section 2 gives a Dirichlet form
construction and characterization of BMVD, as well as its infinitesimal generator.
Nash-type inequality for X is given in Section 3. In Section 4, we present small
time heat kernel estimates for X, while the large time estimates are given in Sec-
tion 5. Hölder continuity of parabolic functions of X is established in Section 6.
Section 7 is devoted to the proof of Theorem 1.5 on the two-sided sharp estimates
for the Green function of X in bounded C1,1 domains in E that contain the pole
base a∗. BMVD on a large square with multiple vertical flag poles or with an arch
are studied in Section 8.

For notation convenience, in this paper we set

(1.6) pD(t, x, y) := p(t, x, y) − pD(t, x, y),

where D is a domain of E and pD(t, x, y) is the transition density of the part
process killed upon exiting D. In other words, for any nonnegative function f ≥ 0
on E,

(1.7)
∫
E

pD(t, x, y)f (y)mp(dy) = Ex

[
f (Xt); t ≥ τD

]
,

where τD := inf{t ≥ 0 : Xt /∈ D}. Thus while pD(t, x, y) gives the probability den-
sity that BMVD starting from x hits y at time t without exiting D, pD(t, x, y) is
the probability density for BMVD starting from x leaves D before ending up at y

at time t .
We use C∞

c (E) to denote the space of continuous functions with compact sup-
port in E so that their restriction to Dε and R+ are smooth on Dε and on R+, re-
spectively. We also follow the convention that in the statements of the theorems or
propositions C,C1, . . . denote positive constants, whereas in their proofs c, c1, . . .

denote positive constants whose exact value is unimportant and may change from
line to line.

2. Preliminaries. Throughout this paper we denote the Brownian motion
with varying dimension by X and its state space by E. In this section, we will
construct BMVD using Dirichlet form approach. For the definition and basic prop-
erties of Dirichlet forms, including the relationship between Dirichlet form, L2-
infinitesimal generator, resolvents and semigroups, we refer the reader to [10] and
[16].
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For a connected open set D ⊂ R
d , W 1,2(D) is the collection of L2(D;dx)-

integrable functions whose first-order derivatives (in the sense of distribution) exist
and are also in L2(D;dx). Define

E0(f, g) = 1

2

∫
D

∇f (x) · ∇g(x) dx, f, g ∈ W 1,2(D).

It is well known that when D is smooth, (E0,W 1,2(D)) is a regular Dirichlet form
on L2(D;dx) and its associated Hunt process is the (normally) reflected Brownian
motion on D. Moreover, every function f in W 1,2(D) admits a quasi-continuous
version on D, which will still be denoted by f . A quasi-continuous function is
defined quasi-everywhere (q.e. in abbreviation) on D. When d = 1, by Cauchy-
Schwarz inequality, every function in W 1,2(D) is 1/2-Hölder on D. Denote by
W

1,2
0 (D) the E0

1 -closure of C∞
c (D), where E0

1 (f, f ) := E0(u,u) + ∫
D u(x)2 dx. It

is known that for any open set D ⊂ R
d , (E0,W

1,2
0 (D)) is a regular Dirichlet form

on L2(D; dx) associated with the absorbing Brownian motion in D.
For a subset A ⊂ E, we define σA := inf{t > 0,Xt ∈ A} and τA := inf{t ≥ 0 :

Xt /∈ A}. Similar notation will be used for other stochastic processes. We will use
Bρ(x, r) [resp., Be(x, r)] to denote the open ball in E under the path metric ρ

(resp., in R+ or R
2 under the Euclidean metric) centered at x ∈ E with radius

r > 0.
A measure μ on E is said to have (resp., local) volume doubling property if

there exists a constant C > 0 so that μ(Bρ(x,2r)) ≤ Cμ(Bρ(x, r)) for all x ∈ E

and every r > 0 (resp., r ∈ (0,1]).
PROPOSITION 2.1. For any p > 0, volume doubling property fails for mea-

sure mp .

PROOF. Note that for small r > 0 and x0 ∈ Dε with |x0|ρ = r , mp(Bρ(x0,

r)) = πr2 while mp(Bρ(x0,2r)) ≥ π(r2 + 2εr) + pr . Thus there does not exist
any constant C > 0 so that mp(Bρ(x,2r)) ≤ Cmp(Bρ(x, r)) for all x ∈ E and
every r ∈ (0,1]. �

The following is an extended version of Theorem 1.2(i).

THEOREM 2.2. For every ε > 0 and p > 0, BMVD X on E with parameter
(ε,p) exists and is unique. Its associated Dirichlet form (E,F) on L2(E;mp) is
given by

F = {
f : f |Dε ∈ W 1,2(Dε), f |R+ ∈ W 1,2(R+),and

(2.1)
f (x) = f (0) q.e. on ∂Dε

}
,

E(f, g) = 1

2

∫
Dε

∇f (x) · ∇g(x) dx + p

2

∫
R+

f ′(x)g′(x) dx.(2.2)
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PROOF. Let E and F be defined as above. Let u1(x) = E
x[e−σBε ] when x ∈

Dε and u1(x) = E
x[e−σDε ] when x ∈ R+. It is known that u1|Dε ∈ W 1,2(Dε),

u1|R+ ∈ W 1,2(R+), u1(x) = 1 for x ∈ ∂Dε and u1(0) = 1. Hence u1 ∈F .
Existence: Let

F0 = {
f : f |R2 ∈ W

1,2
0 (Dε), f |R+ ∈ W

1,2
0 (R+)

}
.

Then F is the linear span of F0 ∪ {u1}. It is easy to check that (E,F) is a strongly
local regular Dirichlet form on L2(E;m). So there is an mp-symmetric diffusion
process X on E associated with it. Using the Dirichlet form characterization, the
part process of X killed upon hitting a∗ is an absorbing Brownian motion in Dε

or R+, depending on the starting point. So X is a BMVD on E. Moreover, X is
conservative; that is, it has infinite lifetime.

Uniqueness: Conversely, if X is a BMVD, it suffices to check from definition
that its associated Dirichlet form (E∗,F∗) in L2(E;mp) has to be (E,F) given in
(2.1)–(2.2). Indeed, since a∗ is nonpolar for X, for all u ∈ F∗,

H 1
a∗u(x) := E

x[
e−σa∗ u(Xσa∗ )

] = u
(
a∗)

E
x[

e−σa∗ ] ∈ F ∩F∗

and u − H 1
a∗u(x) ∈ F0. Thus F∗ ⊂ F . On the other hand, since the part process

of X killed upon hitting a∗ has the same distribution as the absorbing Brownian
motion on Dε ∪ (0,∞), which has Dirichlet form (E,F0) on L2(E \ {a∗};mp),
we have F0 ⊂ F∗. It follows that F ⊂ F∗ and, therefore, F = F∗. Since X is a
diffusion that admits no killings inside E, its Dirichlet form (E∗,F∗) is strongly
local. Let μ〈u〉 = μc〈u〉 denote the energy measure associated with u ∈ F∗; see [10,
16]. Then by the strong locality of μc〈u〉 and the mp-symmetry of X, we have for
every bounded u ∈ F∗ = F ,

E∗(u,u) = 1

2

(
μc〈u〉

(
E \ {

a∗}) + μc〈u〉
(
a∗)) = 1

2
μc〈u〉

(
E \ {

a∗})
= 1

2
μc〈u〉(Dε) + 1

2
μc〈u〉(R+)

= 1

2

∫
Dε

∣∣u(x)
∣∣2 dx + p

2

∫
R+

∣∣u′(x)
∣∣2 dx = E(u,u).

This proves (E∗,F∗) = (E,F). �

Following [10], for any u ∈ F , we define its flux Np(u)(a∗) at a∗ by

Np(u)
(
a∗) =

∫
E

∇u(x) · ∇u1(x)mp(dx) +
∫
E

�u(x)u1(x)mp(dx),

which by the Green–Gauss formula equals∫
∂Bε

∂u(x)

∂ �n σ(dx) − pu′(a∗)
.
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Here, �n is the unit inward normal vector field of Bε at ∂Bε . The last formula
justifies the name of “flux” at a∗.

Let L be the L2-infinitesimal generator of (E,F), or equivalently, the BMVD
X, with domain of definition D(L). It can be viewed as the “Laplacian” on the
space E of varying dimension.

THEOREM 2.3. A function u ∈ F is in D(L) if and only if the distributional
Laplacian �u of u exists as an L2-integrable function on E \ {a∗} and u has zero
flux at a∗. Moreover, Lu = 1

2�u on E \ {a∗} for u ∈ D(L).

PROOF. By the Dirichlet form characterization, u ∈D(L) if and only if u ∈ F
and there is some f ∈ L2(E;mp) so that

E(u, v) = −
∫
E

f (x)v(x)mp(dx) for every v ∈ F .

In this case, Lu := f . The above is equivalent to

(2.3)

1

2

∫
E

∇u(x) · ∇v(x)mp(dx)

= −
∫
E

f (x)v(x)mp(dx) for every v ∈ C∞
c

(
E \ {

a∗})
and

(2.4)
1

2

∫
E

∇u(x) · ∇u1(x)mp(dx) = −
∫
E

f (x)u1(x)mp(dx).

Equation (2.3) implies that f = 1
2�u ∈ L2(E;mp), and (2.4) is equivalent to

Np(u)(a∗) = 0. �

3. Nash inequality and heat kernel upper bound estimate. In the rest of
this paper, we fix ε > 0 and p > 0. Recall that Dε := R

2 \ Be(0, ε). In the fol-
lowing, if no measure is explicitly mentioned in the Lp-space, it is understood as
being with respect to the measure mp; for instance, Lp(E) means Lp(E;mp).

LEMMA 3.1. There exists C1 > 0 so that

‖f ‖2
L2(E)

≤ C1
(
E(f, f )1/2‖f ‖L1(E) + E(f, f )1/3‖f ‖4/3

L1(E)

)
for every f ∈ F .

PROOF. Since Dε ⊂ R
2 and R+ are smooth domains, we have by the classical

Nash’s inequality,

‖f ‖2
L2(Dε)

≤ c‖∇f ‖L2(Dε)
‖f ‖L1(Dε)

for f ∈ W 1,2(Dε) ∩ L1(Dε)

and

‖f ‖3
L2(R+)

≤ C‖f ‖2
L1(R+)

∥∥f ′∥∥
L2(R+) for f ∈ W 1,2(R+) ∩ L1(R+).

The desired inequality now follows by combining these two inequalities. �
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The Nash-type inequality in Lemma 3.1 immediately implies that BMVD X on
E has a symmetric density function p(t, x, y) with respect to the measure mp and
that the following on-diagonal estimate by [8], Corollary 2.12, holds.

PROPOSITION 3.2. There exists C2 > 0 such that

p(t, x, y) ≤ C2

(
1

t
+ 1

t1/2

)
for all t > 0 and x, y ∈ E.

REMARK 3.3. Note that by [8], Corollary 2.12, one initially only gets that
the above estimate holds for a.e. x, y ∈ E. But it can be shown that p(t, x, y) can
be chosen so that for every t > 0 and y ∈ E, x �→ p(t, x, y) is continuous on E,
and so the estimate in Proposition 3.2 holds for every t > 0 and every x, y ∈ E.
Indeed, since X moves like Brownian motion in Euclidean spaces before hitting
a∗, it is easy to verify that for each t > 0, (x, y) �→ p(t, x, y) is continuous in
(E \ {a∗}) × (E \ {a∗}). For each t > 0 and fixed y ∈ E \ {a∗},∫

E
p(t/2, y, z)2mp(dz) = p(t, y, y) < ∞.

So by the Dirichlet form theory, x �→ p(t, x, y) = ∫
E p(t/2, x, z)p(t/2, z, y)×

mp(dz) is E-quasi-continuous on E. Since a∗ is nonpolar for X, x �→ p(t, x, y)

is continuous at a∗, and hence is continuous on E. By the symmetry and the
Chapman–Kolmogorov equation again, we conclude that

x �→ p
(
t, x, a∗) =

∫
E

p(t/2, x, z)p
(
t/2, z, a∗)

mp(dz)

is continuous on E. Consequently, p(t, x, y) is well defined pointwisely on
(0,∞) × E × E so that for each fixed t > 0 and y ∈ E, p(t, x, y) is a continuous
function in x ∈ E. Hence the estimate in Proposition 3.2 holds pointwise. More-
over, since for each y ∈ E, (t, x) �→ p(t, x, y) is a parabolic function for BMVD
X, Theorem 6.3 implies that p(t, x, y) is in fact locally jointly Hölder continuous
in (t, x, y).

We can use Davies’ method to get an off-diagonal upper bound estimate.

PROPOSITION 3.4. There exist C3,C4 > 0 such that

p(t, x, y) ≤ C3

(
1

t
+ 1

t1/2

)
e−C4ρ(x,y)2/t for all t > 0 and x, y ∈ E.

PROOF. Fix x0, y0 ∈ E, t0 > 0. Set a constant α := ρ(y0, x0)/4t0 and
ψ(x) := α|x|ρ . Then we define ψn(x) = ψ(x) ∧ n. Note that for mp-a.e. x ∈ E,

e−2ψn(x)
∣∣∇eψn(x)

∣∣2 = ∣∣∇ψn(x)
∣∣2 = |α|21{|x|ρ≤ n

|α| }(x) ≤ α2.
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Similarly, e2ψn(x)|∇e−ψn(x)|2 ≤ α2. By [8], Corollary 3.28,

(3.1) p(t, x, y) ≤ c

(
1

t
+ 1

t1/2

)
exp

(−∣∣ψ(y) − ψ(x)
∣∣ + 2t |α|2)

.

Taking t = t0, x = x0 and y = y0 in (3.1) completes the proof. �

As indicated by the statements of Theorems 1.3 and 1.4, the upper bound esti-
mate in Proposition 3.4 is not sharp.

4. Signed radial process and small time estimate. In order to get the sharp
two-sided heat kernel estimates, we consider the radial process of X. Namely, we
project X to R by applying the following mapping from E to R:

(4.1) u(x) =
{−|x|, x ∈ R+;
|x|ρ, x ∈ Dε.

We call Yt := u(Xt) the signed radial process of X. Observe that u ∈ Floc, where
Floc denotes the local Dirichlet space of (E,F), whose definition can be found,
for instance, in [10, 16]. By Fukushima decomposition ([16], Chapter 5),

Yt − Y0 = u(Xt) − u(X0) = M
[u]
t + N

[u]
t , Px-a.s. for q.e. x ∈ E,

where M
[u]
t is a local martingale additive functional of X, and N

[u]
t is a continuous

additive functional of X locally having zero energy. We can explicitly compute
M [u] and N [u]. For any ψ ∈ C∞

c (E),

E(u,ψ) = 1

2

∫
Dε

∇|x| · ∇ψ dx + p

2

∫
R+

(−1)ψ ′ dx

= −1

2

∫
Dε

div
(

x

|x|
)
ψ dx − 1

2

∫
∂Be(0,ε)

ψ(0)
∂|x|
∂ �n σ(dx) + pψ(0)

2

= −1

2

∫
Dε

1

|x|ψ dx − 2πε − p

2
ψ(0)

= −
∫
E

ψ(x)ν(dx),

where �n is the outward pointing unit vector normal of the surface ∂Be(0, ε), σ is
the surface measure on ∂Be(0, ε) ⊂ R

2, and

ν(dx) := 1

|2x|1Dε(x) dx + 2πε − p

2
δ{a∗}.

Recall that we identify 0 ∈ R+ with a∗. It follows from [16], Theorem 5.5.5, that

(4.2) dN
[u]
t = 1

2(u(Xt) + ε)
1{Xt∈Dε} dt + (2πε − p)dL0

t (X),
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where L0
t (X) is the positive continuous additive functional of X having Revuz

measure 1
2δ{a∗}. We call L0 the local time of X at a∗. Next, we compute 〈M [u]〉,

the predictable quadratic variation process of local martingale M [u]). Let un =
(−n) ∨ u ∧ n, and it immediately follows un ∈ F . Let Fb denote the space of
bounded functions in F . By [16], Theorem 5.5.2, the Revuz measure μ〈un〉 for
〈M [un]〉 can be calculated as follows. For any f ∈ Fb ∩ Cc(E),∫

E
f (x)μ〈un〉(dx) = 2E(unf,un) − E

(
u2

n, f
) =

∫
E

f (x)
∣∣∇un(x)

∣∣2mp(dx),

which shows that

μ〈un〉(dx) = ∣∣∇un(x)
∣∣2mp(dx) = 1Bρ(a∗,n)mp(dx).

By the strong local property of (E,F), we have μ〈u〉 = μ〈un〉 on Bρ(a∗, n). It
follows that μ〈u〉(dx) = mp(dx). Thus by [10], Proposition 4.1.9, 〈M [u]〉t = t for
t ≥ 0 and so Bt := M

[u]
t is a one-dimensional Brownian motion. Combining this

with (4.2), we conclude

dYt = dBt + 1

2(Yt + ε)
1{Xt∈Dε} dt + (2πε − p)dL0

t (X)

= dBt + 1

2(Yt + ε)
1{Yt>0} dt + (2πε − p)dL0

t (X).

(4.3)

We next find the SDE for the semimartingale Y . The semimartingale local time
of Y is denoted as L0

t (Y ), that is,

(4.4) L0
t (Y ) := lim

δ↓0

1

δ

∫ t

0
1[0,δ)(Ys) d〈Y 〉s = lim

δ↓0

1

δ

∫ t

0
1[0,δ)(Ys) ds,

where 〈Y 〉t = t is the quadratic variation process of the semimartingale Y .

PROPOSITION 4.1. L0
t (Y ) = 4πεL0

t (X).

PROOF. By computation analogous to that for Yt = u(Xt), one can derive,
using Fukushima’s decomposition for v(Xt) := |Xt |ρ , that

dv(Xt) = dB̃t + 1

2(|Xt |ρ + ε)
1{Xt∈Dε} dt + (2πε + p)dL0

t (X),

where B̃ is a one-dimensional Brownian motion. Observe that v(Xt) = |Yt |. Thus
we have

d|Yt | = dB̃t + 1

2(Yt + ε)
1{Yt>0} dt + (2πε + p)dL0

t (X).
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On the other hand, by Tanaka’s formula, we have

d|Yt | = sgn(Yt ) dYt + dL0
t (Y )

= sgn(Yt ) dBt + sgn(Yt )
1

2(Yt + ε)
1{Yt>0} dt

+ sgn(Yt )(2πε − p)dL0
t (X) + dL0

t (Y )

= sgn(Yt ) dBt + 1

2(Yt + ε)
1{Yt>0} dt

+ (2πε − p) sgn(Yt ) dL0
t (X) + dL0

t (Y ),

where sgn(x) := 1{x>0} − 1{x≤0}. Since the decomposition of a continuous semi-
martingale as the sum of a continuous local martingale and a continuous process
with finite variation is unique, one must have

(4.5) (2πε + p)L0
t (X) = sgn(Yt )(2πε − p)L0

t (X) + L0
t (Y ).

The local time L0
t (X) increases only when Yt = 0. Therefore,

(2πε + p)L0
t (X) = −(2πε − p)L0

t (X) + L0
t (Y ),

and so 4πεL0
t (X) = L0

t (Y ). �

The semimartingale local time in (4.4) is nonsymmetric in the sense that it only
measures the occupation time of Yt in the one-sided interval [0, δ) instead of the
symmetric interval (−δ, δ). One can always relate the nonsymmetric semimartin-
gale local time L0(Y ) to the symmetric semimartingale local time L̂0(Y ) defined
by

L̂0
t (Y ) := lim

δ↓0

1

2δ

∫ t

0
1(−δ,δ)(Ys) d〈Y 〉s = lim

δ↓0

1

2δ

∫ t

0
1(−δ,δ)(Ys) ds.

LEMMA 4.2. L̂0
t (Y ) = 2πε+p

4πε
L0

t (Y ) = (2πε + p)L0
t (X).

PROOF. Viewing |Yt | = | − Yt | and applying Tanaka’s formula to the semi-
martingale −Y , we can derive in a way analogous to the computation leading to
(4.5) that

(2πε + p)L0
t (X) = − sgn(−Yt )(2πε − p)L0

t (X) + L0
t (−Y)

= (2πε − p)L0
t (X) + L0

t (−Y).

Thus we get 2pL0
t (X) = L0

t (−Y), which yields

L̂0
t (Y ) = 1

2

(
L0

t (Y ) + L0
t (−Y)

) = 1

2

(
4πεL0

t (X) + 2pL0
t (X)

)
= (2πε + p)L0

t (X). �
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Lemma 4.2 together with (4.3) gives the following SDE characterization for the
signed radial process Y , which tells us precisely how X moves after hitting a∗.

PROPOSITION 4.3.

(4.6) dYt = dBt + 1

2(Yt + ε)
1{Yt>0} dt + 2πε − p

2πε + p
dL̂0

t (Y ).

Let β = 2πε−p
2πε+p

. SDE (4.6) says that Y is a skew Brownian motion with drift on
R with skew parameter β . It follows (see [26]) that starting from a∗, the process
Y (resp., X) has probability (1 − β)/2 = p

2πε+p
to enter (−∞,0) (resp., R+) and

probability (1 + β)/2 = 2πε
2πε+p

to enter (0,∞) (resp., Dε).
SDE (4.6) has a unique strong solution; see, for example, [5]. So Y is a strong

Markov process on R. The following is a key to get the two-sided sharp heat kernel
estimate on p(t, x, y) for BMVD X.

PROPOSITION 4.4. The one-dimensional diffusion process Y has a jointly
continuous transition density function P (Y)(t, x, y) with respect to the Lebesgue
measure on R. Moreover, for every T ≥ 1, there exist constants Ci > 0, 1 ≤ i ≤ 4,
such that the following estimate holds:

(4.7)

C1√
t
e−C2|x−y|2/t ≤ p(Y)(t, x, y) ≤ C3√

t
e−C4|x−y|2//t ,

(t, x, y) ∈ (0, T ] ×R×R.

PROOF. Let β := 2πε−p
2πε+p

and Z be the skew Brownian motion

dZt = dBt + βL̂0
t (Z),

where L̂0
t (Z) is the symmetric local time of Z at 0. The diffusion process Y can be

obtained from Z through a drift perturbation (i.e., Girsanov transform). The transi-
tion density function p0(t, x, y) of Z is explicitly known and enjoys the two-sided
Aronson-type Gaussian estimates (4.7); see, for example, [26]. One can further
verify that ∣∣∇xp0(t, x, y)

∣∣ ≤ c1t
−1 exp

(−c2|x − y|2/t
)
,

from which one can deduce (4.7) by using the same argument as that for Theo-
rem A in Zhang [32], Section 4. �

REMARK 4.5. As mentioned earlier, estimate (4.7) for p(Y)(t, x, y) is the
key to derive two-sided estimates on the transition density function p(t, x, y) of
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BMVD over finite time intervals. It follows from Proposition 4.3 that p(Y)(t, x, y)

is the fundamental solution of the following partial differential equation on R:

(4.8)

∂

∂t
u(t, x) = 1

2

(
∂2

∂x2 + 1

x + ε
1{x>0}

∂

∂x

)
u(t, x)

with
∂

∂x
u(t,0+) = 2πε

p

∂

∂x
u(t,0−).

Here, ∂
∂x

u(t,0+) and ∂
∂x

u(t,0−) denote the right and left derivative of x �→
u(t, x) at x = 0, respectively. An interesting question is whether one can use PDE
methods to solve (4.8) and obtain a more precise estimates on p(Y)(t, x, y) that
gives the explicit dependence on ε and p. If this can be done, then by exploring
the rotation invariance of the BMVD X starting from a∗ as in the proof of Theo-
rems 4.7 and 4.8 below, one may be able to sharpen the heat kernel estimates on
p(t, x, y) in Theorems 1.3 and 1.4 with explicit information on the dependence of
ε and p. So far, we are unable to solve (4.8) explicitly by using PDE methods.

Proposition 4.4 immediately gives the two-sided estimates on the transition
function p(t, x, y) of X when x, y ∈ R+ since Xt = −Yt when Xt ∈R+.

THEOREM 4.6. For every T ≥ 1, there exist Ci > 0, 5 ≤ i ≤ 8, such that the
following estimate holds:

C5√
t
e−C6|x−y|2/t ≤ p(t, x, y) ≤ C7√

t
e−C8|x−y|2/t for t ∈ (0, T ] and x, y ∈ R+.

Let A be any rotation of the plane around the pole. Using the fact that start-
ing from a∗, AXt has the same distribution as Xt , we can derive estimates for
p(t, x, y) for other x, y ∈ E. The next result gives the two-sided estimates on
p(t, x, y) when x ∈ R and y ∈ Dε .

THEOREM 4.7. For every T ≥ 1, there exist constants Ci > 0, 9 ≤ i ≤ 12,
such that for all x ∈ R+, y ∈ Dε and t ∈ [0, T ],

C9√
t
e−C10ρ(x,y)2/t ≤ p(t, x, y) ≤ C11√

t
e−C12ρ(x,y)2/t .

PROOF. We first note that in this case by the symmetry of p(t, x, y),

p(t, x, y) = p(t, y, x) =
∫ t

0
Py(σa∗ ∈ ds)p

(
t − s, a∗, x

)
.

By the rotational invariance of two-dimensional Brownian motion, Py(σa∗ ∈ ds)

only depends on |y|ρ , therefore, so does y �→ p(t, x, y). For x ∈ R+ and y ∈ Dε ,
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set p̃(t, x, r) := p(t, x, y) for r = |y|ρ . For all a > b > 0 and x ∈ R+,∫ b

a
p(Y )(t,−|x|, y)

dy = P−|x|(a ≤ Yt ≤ b) = Px

(
Xt ∈ Dε with a ≤ |Xt |ρ ≤ b

)
=

∫
y∈Dε :a≤|y|ρ≤b

p(t, x, y)mp(dy)

=
∫
y∈Dε :a+ε≤|y|≤b+ε

p(t, x, y)mp(dy)

=
∫ b

a
2π(r + ε)p̃(t, x, r) dr.

This implies when x ∈ R+, y ∈ Dε ,

(4.9) p(Y)(t,−|x|, |y|ρ) = 2π
(|y|ρ + ε

)
p̃

(
t, x, |y|ρ) = 2π

(|y|ρ + ε
)
p(t, x, y).

We thus have by Proposition 4.4 that

(4.10)

c1√
t
e−c2ρ(x,y)2/t ≤ p(t, x, y) ≤ c3√

t
e−c4ρ(x,y)2/t

for x ∈ R+ and y ∈ Dε with |y|ρ < 1.

When |y|ρ > 1, we first have

p(t, x, y) = 1

2π(|y|ρ + ε)
p(Y )(t,−|x|, |y|ρ)

� 1

(|y|ρ + ε)
√

t
e−c3ρ(x,y)2/t

≤ 1√
t
e−c3ρ(x,y)2/t ,

while since ρ(x, y) ≥ |y|ρ > 1,

p(t, x, y) = 1

2π(|y|ρ + ε)
p(Y )(t,−|x|, |y|ρ)

� 1

(|y|ρ + ε)
√

t
e−c4ρ(x,y)2/t

� 1√
t

√
t√

T ρ(x, y)
e−c4ρ(x,y)2/t � 1√

t
e−(c4+1)ρ(x,y)2/t .

(4.11)

This completes the proof. �

Theorems 4.6 and 4.7 establish Theorem 1.3(i). We next consider part (ii) of
Theorem 1.3 when both x and y are in Dε .

THEOREM 4.8. For every T ≥ 1, there exist constants Ci > 0, 13 ≤ i ≤ 22,
such that for all t ∈ [0, T ] and x, y ∈ Dε , the following estimates hold:
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When max{|x|ρ, |y|ρ} ≤ 1,

C13√
t
e−C14ρ(x,y)2/t + C13

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−C15|x−y|2/t

≤ p(t, x, y)

≤ C16√
t
e−C17ρ(x,y)2/t + C16

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−C18|x−y|2/t ;

(4.12)

and when max{|x|ρ, |y|ρ} > 1,

(4.13)
C19

t
e−C20ρ(x,y)2/t ≤ p(t, x, y) ≤ C21

t
e−C22ρ(x,y)2/t .

Here, | · | and | · |ρ denote the Euclidean metric and the geodesic metric in Dε ,
respectively.

PROOF. For x ∈ Dε and t ∈ (0, T ], note that

(4.14) p(t, x, y) = pDε
(t, x, y) + pDε(t, x, y),

where

(4.15) pDε
(t, x, y) =

∫ t

0
p

(
t − s, a∗, y

)
Px(σ{a∗} ∈ ds).

As mentioned in the proof for Theorem 4.7, p(t − s, a∗, y) is a function in
y depending only on |y|ρ . Therefore, so is y �→ pDε

(t, x, y). Set p̃Dε(t, x, r) :=
pDε

(t, x, y) for r = |y|ρ . For any b > a > 0,

Px

(
σa∗ < t,Xt ∈ Dε with a ≤ |Xt |ρ ≤ b

) =
∫
a≤|y|ρ≤b

pDε
(t, x, y)mp(dy)

= 2π

∫ b

a
(r + ε)p̃Dε(t, x, r) dr.

On the other hand,

Px

(
σa∗ < t,Xt ∈ Dε with a ≤ |Xt |ρ ≤ b

)
= P

(Y )
|x|ρ

(
σa∗ < t,Yt > 0 with a ≤ |Yt |ρ ≤ b

)
=

∫ t

0

(∫ b

a
p(Y )(t − s,0, r) dr

)
P

(Y )
|x|ρ (σ0 ∈ ds).

It follows that

2π(r + ε)p̃Dε(t, x, r) =
∫ t

0
p(Y)(t − s,0, r)P

(Y )
|x|ρ (σ{0} ∈ ds) = p(Y)(t,−|x|ρ, r

)
.

In other words,

(4.16) pDε
(t, x, y) = 1

2(|y|ρ + ε)
p(Y )(t,−|x|ρ, |y|ρ)

.
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It is known that the Dirichlet heat kernel pDε(t, x, y) enjoys the following two-
sided estimates:

c1

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c2|x−y|2/t

≤ pDε(t, x, y)

≤ c3

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c4|x−y|2/t

(4.17)

for t ∈ (0, T ] and x, y ∈ Dε . We now consider two different cases.
Case (i): max{|x|ρ, |y|ρ} ≤ 1 and t ∈ (0, T ]. In this case, it follows from (4.14)–

(4.17) and Proposition 4.4 that

c5√
t
e−c6(|x|ρ+|y|ρ)2/t + c5

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c7|x−y|2/t

≤ p(t, x, y)

≤ c8√
t
e−c9(|x|ρ+|y|ρ)2/t + c8

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c10|x−y|2/t .

(4.18)

Observe that

(4.19)
(|x|ρ + |y|ρ)2

/t � ρ(x, y)2/t if |x|ρ ∧ |y|ρ ≤ √
t .

When |x|ρ ∧ |y|ρ >
√

t , for a > 0, b > 0,

1√
t
e−a(|x|ρ+|y|ρ)2/t + 1

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−b|x−y|2/t

� 1√
t
e−a(|x|ρ+|y|ρ)2/t +

(
1√
t

+ 1

t

)
e−b|x−y|2/t

= 1√
t

(
e−a(|x|ρ+|y|ρ)2/t + e−b|x−y|2/t ) + 1

t
e−b|x−y|2/t .

(4.20)

The desired estimate (4.12) now follows from (4.18)–(4.20) and the fact (1.2).
Case (ii): max{|x|ρ, |y|ρ} > 1 and t ∈ (0, T ]. By the symmetry of p(t, x, y) in

x and y, in this case we may and do assume |y|ρ > 1 >
√

t/T . It then follows
from (4.16)–(4.17), Proposition 4.4 and (4.11) that

c11

t
e−c12(|x|ρ+|y|ρ)2/t + c11

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c13|x−y|2/t

≤ p(t, x, y)

≤ c14

t
e−c15(|x|ρ+|y|ρ)2/t + c14

t

(
1 ∧ |x|ρ√

t

)(
1 ∧ |y|ρ√

t

)
e−c16|x−y|2/t .

(4.21)
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When |x|ρ ∧ |y|ρ ≤ √
t , the lower bound estimate (4.13) follows from (4.21)

and (4.19), while the upper bound estimate (4.13) follows from Proposition 3.4.
Whereas when |x|ρ ∧ |y|ρ >

√
t , the desired estimate (4.13) follows from (4.21)

and (1.2). This completes the proof of the theorem. �

REMARK 4.9. (i) One cannot expect to rewrite the estimate of (4.12) as
t−1e−cρ(x,y)2/t . A counterexample is that x = y = a∗, in which case x and y can
be viewed as either on R+ or on Dε , therefore, both Proposition 4.4 and Theo-
rem 4.7 have already confirmed that p(t, x, y) � t−1/2, which is consistent with
the (4.12).

(ii) The Euclidean distance appearing in (4.12) cannot be replaced with the
geodesic distance. To see this, take x = (ε + t−1/2,0) and y = (−ε − t−1/2,0)

in Dε . The estimate of (4.12) is comparable with t−1/2 + t−1 exp(−ε2/t), but if
we replaced |x − y| with ρ(x, y), it would be comparable with t−1/2 + t−1. For
fixed ε, as t ↓ 0, t−1/2 + t−1 exp(−ε2/t) ∼ t−1/2, but t−1/2 + t−1 ∼ t−1.

(iii) Theorem 1.3 also shows that the parabolic Harnack inequality fails for X.
For a precise statement of the parabolic Harnack inequality, see, for exam-
ple, [17, 27, 29]. For s ∈ (0,1], take some y ∈ Dε such that |y|ρ = √

s. Set
Q+ := (3s/2,2s)×Bρ(y,2

√
s) and Q− := (s/2, s)×Bρ(y,2

√
s). Let u(t, x) :=

p(t, x, y). It follows from Theorem 1.3 that supQ+ u � s−1/2 + s−1 � s−1 and
infQ− u � s−1/2. Clearly, there does not exist any positive constant C > 0 so that
supQ+ u ≤ C infQ− u holds for all s ∈ (0,1]. This shows that parabolic Harnack
inequality fails for X.

PROOF OF THEOREM 1.2(ii). It follows from Remark 3.3, Theorem 1.3 and
the Lebesgue dominated convergence theorem that for every bounded function f

on E and t > 0,

Ptf (x) := Ex

[
f (Xt)

] =
∫
E

p(t, x, y)f (y)mp(dy)

is continuous on E. For f ∈ C∞(E), we have by Theorem 1.3 again that Ptf ∈
C∞(E). Clearly, since for every x ∈ E,

lim
t→0

Pt(x) = lim
t→0

Ex

[
f (Xt)

] = Ex

[
lim
t→0

f (Xt)
]
= f (x),

we have limt→0 ‖Ptf − f ‖∞ = 0 for every f ∈ C∞(E). This proves that the
BMVD is a Feller process having strong Feller property. �

5. Large time heat kernel estimates. Recall that X denotes the BMVD pro-
cess on E and its signed radial process defined by (4.3) is denoted by Y . In this
section, unless otherwise stated, it is always assumed that T ≥ 8 and t ∈ [T ,∞).
With loss of generality, we assume that the radius ε of the “hole” Be(0, ε) satis-
fies ε ≤ 1/4. We begin with the following estimates for the distribution of hitting
time of a disk by a two-dimensional Brownian motion, which follow directly from
Section 5.1 (Case (a), α = 1) of [18], and a Brownian scaling.
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PROPOSITION 5.1 (Grigor’yan and Saloff-Coste [18]). Let X be a Brownian
motion on R

2 and K be the closed ball with radius ε centered at the origin:

(i) If 0 < t < 2|x|2 and |x| ≥ 1 + ε, then

(5.1)
c

log |x| exp
(−C|x|2/t

) ≤ Px(σK ≤ t) ≤ C

log |x| exp
(−c|x|2/t

)
,

for some positive constants C > c > 0.
(ii) If t ≥ 2|x|2 and |x| ≥ 1 + ε, then

(5.2) Px(σK ≤ t) � log
√

t − log |x|
log

√
t

and

(5.3) ∂tPx(σK ≤ t) � log |x|
t (log t)2 .

Our first goal is to establish an upper bound estimate on
∫ t

0 p(s, a∗, a∗) ds in
Proposition 5.4. This will be done through two propositions by using the above
hitting time estimates.

PROPOSITION 5.2. p(t, a∗, a∗) is decreasing in t ∈ (0,∞).

PROOF. This follows from
d

dt
p

(
t, a∗, a∗) = d

dt

∫
E

p
(
t/2, a∗, x

)2
mp(dx)

=
∫
E

(
∂

∂t
p

(·, a∗, x
)
(t/2)

)
p

(
t/2, a∗, x

)
mp(dx)

=
∫
E
Lxp

(
t/2, a∗, x

)
p

(
t/2, a∗, x

)
mp(dx)

= −E
(
p

(
t/2, a∗, x

)
,p

(
t/2, a∗, x

)) ≤ 0. �

PROPOSITION 5.3. There exists some constant C1 > 0 such that

p
(
t, a∗, a∗) ≤ C1

log t

t
for t ∈ [8,∞).

PROOF. For t ≥ 8 and x ∈ Dε with 1 < |x|ρ <
√

t/3, by Proposition 5.2,

p
(
t, x, a∗) =

∫ t

0
Px(σa∗ ∈ ds)p

(
t − s, a∗, a∗) ≥ p

(
t, a∗, a∗)

Px(σa∗ ≤ t)

� p
(
t, a∗, a∗)(

1 − log |x|
log

√
t

)
,
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where the “�” is due to (5.3). Therefore,

1 ≥ Pa∗
(
Xt ∈ Dε with 1 < |Xt |ρ <

√
t/4

) =
∫
Dε∩{1<|x|ρ<

√
t/4}

p
(
t, a∗, x

)
dx

≥ c1p
(
t, a∗, a∗) ∫ √

t/4+ε

1+ε

(
1 − log r

log
√

t

)
r dr

≥ c2p
(
t, a∗, a∗) t

log t
.

By selecting C2 large enough, the above yields the desired estimate for p(t, a∗, a∗)
for t ≥ 8. �

PROPOSITION 5.4. There exists some C2 > 0 such that∫ t

0
p

(
s, a∗, a∗)

ds ≤ C2 log t for all t ≥ 4.

PROOF. For t ≥ 8 and x ∈ Dε with 1 < |x|ρ <
√

t/2, we have by (5.3),

p
(
t, x, a∗) ≥

∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds) � log |x|
t (log t)2

∫ t/2

0
p

(
s, a∗, a∗)

ds.

Thus by using polar coordinate,

1 ≥ Pa∗
(
Xt ∈ Dε with 1 < |Xt |ρ <

√
t/2

)
=

∫
{x∈Dε :1<|x|ρ<

√
t/2}

p
(
t, a∗, x

)
mp(dx)

�
∫ √

t/2

1

log(r + ε)

t (log t)2 (r + ε) dr ·
∫ t/2

0
p

(
s, a∗, a∗)

ds

= 1

t (log t)2

∫ √
t/2+ε

1+ε
r log r dr ·

∫ t/2

0
p

(
s, a∗, a∗)

ds

� t log t

t (log t)2

∫ t/2

0
p

(
s, a∗, a∗)

ds

= 1

log t

∫ t/2

0
p

(
s, a∗, a∗)

ds.

This yields the desired estimate. �

The above proposition suggests that p(t, a∗, a∗) ≤ c/t for t ∈ [4,∞). How-
ever, in order to prove this rigorously, we first compute the upper bounds for
p(t, a∗, x) for different regions of x, and then use the identity p(t, a∗, a∗) =∫
E p(t/2, a∗, x)2mp(dx) to obtain the sharp upper bound estimate for p(t, a∗, a∗).
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PROPOSITION 5.5. There exists C3 > 0 such that for all t ≥ 8 and x ∈ Dε

with 1 < |x|ρ <
√

t/2,

p
(
t, a∗, x

) ≤ C3

t
log

(√
t

|x|
)
.

PROOF. By Proposition 5.3, (5.2) and Proposition 5.4,

p
(
t, x, a∗) =

∫ t/2

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

+
∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

≤ c1

(
log t

t
Px(σa∗ ≤ t/2) + log |x|

t (log t)2

∫ t/2

0
p

(
s, a∗, a∗)

ds

)

≤ c2

(
log t

t

log(
√

t/|x|)
log

√
t

+ log |x|
t log t

)

≤ c3

(
1

t
log

(√
t

|x|
)

+ 1

t

)
≤ c4

t
log

(√
t

|x|
)
. �

The following asymptotic estimate for the distribution of Brownian hitting time
of a disk from [30], Theorem 2, will be used in the next proposition.

LEMMA 5.6 (Uchiyama [30]). Let (Bt )t≥0 be the standard two-dimensional
Brownian motion and σr := inf{t > 0, |Bt | ≤ r}. Denote by pr,x(t) the probability
density function of σr with B0 = x. For every r0, uniformly for |x| ≥ r0, as t → ∞,

pr0,x(t) = log(1
2ec0 |x|2)

t (log t + c0)2 exp
(
−|x|2

2t

)

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
O

(
1 + (log(|x|2/t))2

|x|2(log t)3

)
for |x|2 ≥ t,

2γ log(t/|x|2)
t (log t)3 + O

(
1

t (log t)3

)
for |x|2 < t,

where c0 is a positive constant only depending on r0 and γ = − ∫ ∞
0 e−u logudu

is the Euler constant.

PROPOSITION 5.7. There exists C4,C5 > 0 such that for all t ≥ 8 and all
x ∈ Dε ,

p
(
t, a∗, x

) ≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
C4

(
1

t
e−C5|x|2/t + (log(|x|2/t))2

|x|2(log t)2

)
when |x|ρ >

√
t ,

C4

t

(
e−C5|x|2/t + 1

(log t)2

)
when

√
t/2 ≤ |x|ρ ≤ √

t .
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PROOF. Note that

p
(
t, a∗, x

) =
∫ t

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

=
∫ t/2

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

+
∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds).

(5.4)

By the monotonicity of p(t, a∗, a∗) established in Proposition 5.2, estimate (5.1)
and Proposition 5.3,∫ t/2

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds) ≤ p
(
t/2, a∗, a∗)

Px(σa∗ ≤ t/2)

(5.1)≤ p
(
t/2, a∗, a∗) c1

log |x|e
−c2|x|2/t

(5.5)

≤ c1 log t

t log |x|e
−c2|x|2/t

≤ c3

t
e−c2|x|2/t .

On the other hand, by Proposition 5.4 and Lemma 5.6, for |x|ρ ≥ √
t ,∫ t

t/2
p

(
t − s, a∗, a∗)

P
x(σa∗ ∈ ds)

≤ sup
s∈[t/2,t]

pε,x(s) ·
∫ t

t/2
p

(
t − s, a∗, a∗)

ds

≤ c4

(
log |x|

t (log t)2 e−|x|2/(2t) + (log(|x|2/t))2

|x|2(log t)3

)
log t

= c4

(
log |x|
t log t

e−|x|2/(2t) + (log(|x|2/t))2

|x|2(log t)2

)

≤ c4

t
e−c5|x|2/t + c4

(log(|x|2/t))2

|x|2(log t)2 ,

(5.6)

while for
√

t/2 ≤ |x|ρ ≤ √
t ,∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

≤ sup
s∈[t/2,t]

pε,x(s) ·
∫ t

t/2
p

(
t − s, a∗, a∗)

ds(5.7)
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≤ c6

(
log |x|

t (log t)2 e−|x|2/(2t) + 1

t (log t)3

)
log t

≤ c6

t
e−c5|x|2/t + c6

t (log t)2 .

The desired estimate now follows from (5.4)–(5.7). �

PROPOSITION 5.8. There exists C6 > 0 such that

p
(
t, a∗, x

) ≤ C6 log t

t
e−x2/(2t) for all t ≥ 8 and x ∈ R+.

PROOF. Starting from x ∈ R+, BMVD X on E runs like a one-dimensional
Brownian motion before hitting a∗. Thus by the known formula for the first pas-
sage distribution for one-dimensional Brownian motion,

(5.8) Px(σa∗ ∈ dt) = 1√
2πt3

xe−x2/(2t) dt for x ∈ (0,∞).

This together with Propositions 5.2–5.4 and a change of variable s = x2/r gives

p
(
t, a∗, x

) =
∫ t/2

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

+
∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

≤ p
(
t/2, a∗, a∗) ∫ t/2

0

1√
2πs3

xe−x2/(2s) ds

+
∫ t

t/2
p

(
t − s, a∗, a∗) 1√

2πs3
xe−x2/(2s) ds

� log t

t

∫ ∞
2x2/t

1√
r
e−r/2 dr + x√

t3
e−x2/t

∫ t

t/2
p

(
t − s, a∗, a∗)

ds

� log t

t
e−x2/t + 1

t
e−x2/(2t) · log t

� log t

t
e−x2/(2t). �

We are now in a position to establish the following on-diagonal upper bound
estimate at a∗.

THEOREM 5.9. There exists C7 > 0 such that

p
(
t, a∗, a∗) ≤ C7

(
t−1/2 ∧ t−1)

for all t ∈ (0,∞).
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PROOF. For t ≥ 8, we have

p
(
t, a∗, a∗) =

∫
E

p
(
t/2, a∗, x

)2
mp(dx)

=
(∫

R+
+

∫
Dε∩{0<|x|ρ<1}

+
∫
Dε∩{1<|x|ρ<

√
t/2}

+
∫
Dε∩{|x|ρ>

√
t/2}

)
p

(
t/2, a∗, x

)2
mp(dx).

(5.9)

It follows from Proposition 5.8 that

(5.10)

∫
R+

p
(
t/2, a∗, x

)2
mp(dx) �

(
log t

t

)2
p

∫ ∞
0

e−x2/(2t) dx

� c1(log t)2

t3/2 .

By Proposition 3.4,∫
Dε∩{0<|x|ρ<1}

p
(
t/2, a∗, x

)2
mp(dx)

≤
(

sup
x∈Dε :0<|x|ρ<1

p
(
t/2, a∗, x

))2
mp

(
Dε ∩ {

0 < |x|ρ < 1
})

�
(

1√
t

)2
= 1

t
.

(5.11)

In view of Proposition 5.7,∫
Dε∩{|x|ρ>

√
t/2}

p
(
t/2, a∗, x

)2
mp(dx)

≤
∫
Dε∩{|x|ρ>

√
t/2}

(
c1

t
e−c2|x|2/t

)2
mp(dx)

+
∫
Dε∩{|x|ρ>

√
t}

c1

(
(log(|x|2/t))2

|x|2(log t)2

)2
mp(dx)

+
∫
Dε∩{√t/2≤|x|ρ≤√

t}
c1

(
1

t (log t)2

)2
mp(dx).

(5.12)

Using polar coordinate,∫
Dε∩{|x|ρ>

√
t/2}

(
c1

t
e−c2|x|2/t

)2
mp(dx) = c3

∫ ∞
√

t/2+ε

r

t2 e−c2r
2/t dr

≤ c4

t
,

(5.13)
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while ∫
Dε∩{|x|ρ>

√
t}

(
(log(|x|2/t))2

|x|2(log t)2

)2
mp(dx)

= 2π

∫ ∞
√

t+ε

r(log(r2/t))4

r4(log t)4 dr
u=r/

√
t≤ 2π

∫ ∞
1

(logu)4

u3t3/2(log t)4

√
t du(5.14)

= 2π

t(log t)4

∫ ∞
1

(logu)4

u3 du = c5

t (log t)4

and

(5.15)
∫
Dε∩{√t/2≤|x|ρ≤√

t}

(
1

t (log t)2

)2
mp(dx) � 1

t (log t)4 � 1

t
.

Hence it follows from (5.12)–(5.15) that

(5.16)
∫
Dε∩{|x|ρ>

√
t/2}

p
(
t/2, a∗, x

)2
mp(dx) ≤ c6

t
.

By Proposition 5.5 and using polar coordinates,∫
Dε∩{1<|x|ρ<

√
t/2}

p
(
t/2, a∗, x

)2
mp(dx)

� 1

t2

∫
x∈Dε∩{1<|x|ρ<

√
t/2}

(
log

(√
t

|x|
))2

mp(dx)

= 2π

t2

∫ √
t/2+ε

1+ε
r

(
log

(√
t

r

))2
dr

u=r/
√

t= 2π

t

∫ (
√

t/2+ε)/
√

t

(1+ε)/
√

t
u(logu)2 du ≤ c7

t
.

(5.17)

Combining (5.10), (5.11), (5.16) and (5.17), we conclude that p(t, a∗, a∗) ≤ c8/t

for t ≥ 8. On the other hand, taking x = y = 0 = a∗ in Theorem 4.6 yields that
p(t, a∗, a∗) ≤ c9t

−1/2 for t ∈ (0,8]. This completes the proof of the theorem. �

THEOREM 5.10. There is a constant C8 ≥ 1 so that

C−1
8

(
t−1/2 ∧ t−1) ≤ p

(
t, a∗, a∗) ≤ C8

(
t−1/2 ∧ t−1)

for all t ∈ (0,∞).

PROOF. In view of Theorem 5.9, it remains to establish the lower bound esti-
mate. By the Cauchy–Schwarz inequality, for M ≥ 1 to be determined later,

p
(
t, a∗, a∗) =

∫
E

p
(
t/2, a∗, x

)2
mp(dx)

≥
∫
{x∈E:|x|ρ≤M

√
t}

p
(
t/2, a∗, x

)2
mp(dx)
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≥ 1

mp({x ∈ E : |x|ρ ≤ M
√

t})(5.18)

×
(∫

{x∈E:|x|ρ≤M
√

t}
p

(
t/2, a∗, x

)
mp(dx)

)2

�
(
t−1/2 ∧ t−1)

Pa∗
(|Xt |ρ ≤ M

√
t
)2

.

We claim that by taking M large enough, Pa∗(|Xt |ρ ≤ M
√

t) ≥ 1/2 for every
t > 0, which will then give the desired lower bound estimate on p(t, a∗, a∗). Recall
the signed radial process Y = u(X) of X from (4.1) satisfies SDE (4.6). For any
a > 0 and δ ∈ (0, ε), let Zδ,a and Z̃δ,−a be the pathwise unique solution of the
following SDEs (see [5] Theorem 4.3):

Z
δ,a
t = a + Bt +

∫ t

0

1

Z
δ,a
s + δ

1{Zδ,a
s >0} ds + L̂0

t

(
Zδ,a)

,(5.19)

Z̃
δ,−a
t = −a + Bt +

∫ t

0

1

Z̃
δ,−a
s − δ

1{Z̃δ,−a
s <0} ds − L̂0

t

(
Z̃δ,−a)

,(5.20)

where B is the Brownian motion in (4.6), and L̂0(Zδ,a), L̂0(Z̃δ,−a) are the sym-
metric local times of Zδ,a and Zδ,−a at 0, respectively. Denote by Ya and Y−a

the pathwise solutions of (4.6) with Ya
0 = a and Y−a

0 = −a, respectively. By the
comparison principle from [5], Theorem 4.6, we have with probability one that
Ya

t ≤ Z
δ,a
t for all t ≥ 0 and Y−a

t ≥ Z
δ,−a
t for all t ≥ 0. On the other hand, there are

unique solutions to

dZa
t = a + Bt +

∫ t

0

1

Za
s

ds, dZ−a
t = −a + Bt +

∫ t

0

1

Z−a
s

ds.

In fact, Za and −Z−a are both two-dimensional Bessel processes on (0,∞) start-
ing from a. They have infinite lifetimes and never hit 0. By [5], Theorem 4.6, again,
diffusion processes Zδ,a is decreasing in δ, and Z̃δ,−a is increasing in δ. It is easy
to see from the above facts that limδ→0 Z

δ,a
t = Za

t and limδ→0 Z̃
δ,−a
t = Z−a

t . Con-
sequently, with probability one,

Ya
t ≤ Za

t and Y−a
t ≥ Z−a

t for every t ≥ 0.

In particular, we have for every t > 0, P(Y a
t ≥ M

√
t) ≤ P(Za

t ≥ M
√

t) and

P
(
Y−a

t ≤ −M
√

t
) ≤ P

(
Z−a

t ≤ −M
√

t
) = P

(
Za

t ≥ M
√

t
)
.

Let W be two-dimensional Brownian motion. Then we have from the above that
for every t > 0,

Pa(Yt ≥ M
√

t) + P−a(Yt ≤ −M
√

t) ≤ 2P(a,0)

(|Wt | ≥ M
√

t
)
.
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Passing a → 0 yields, by the Brownian scaling property, that

Pa∗
(|Xt |ρ ≥ M

√
t
) = P0

(|Yt | ≥ M
√

t
) ≤ 2P0

(|Wt | ≥ M
√

t
) = 2P0

(|W1| ≥ M
)
,

which is less than 1/2 by choosing M large. This completes the proof of the theo-
rem. �

In the next two propositions, we use the two-sided estimate for p(t, a∗, a∗) as
well as Markov property of X to get two-sided bounds for p(t, a∗, x) for different
regions of x. We first record an elementary lemma that will be used later.

LEMMA 5.11. For every x > 0,

1

1 + x
e−x2/2 ≤

∫ ∞
x

e−y2/2 dy ≤ eπ

1 + x
e−x2/2.

PROOF. Define φ(x) = ∫ ∞
x e−y2/2 dy − 1

1+x
e−x2/2. Then φ′(x) = − x

(1+x)2 ×
e−x2/2 < 0. Since limx→∞ φ(x) = 0, we have φ(x) > 0 for every x > 0. This
establishes the lower bound estimate of the lemma. For the upper bound, note that
for x ∈ (0,1),∫ ∞

x
e−y2/2 dy ≤ 1

2

∫ ∞
−∞

e−y2/2 dy =
√

π

2
≤

√
eπ/2e−x2/2,

while for every x > 0, using a change of variable y = x + z,∫ ∞
x

e−y2/2 dy ≤ e−x2/2
∫ ∞

0
e−xz dz = x−1e−x2/2.

This establishes the upper bound estimate of the lemma. �

PROPOSITION 5.12. There exist constants Ci > 0, 9 ≤ i ≤ 10, so that for all
x ∈ R+ and t ≥ 8,

C9

t

(
1 + |x| log t√

t

)
e−2x2/t ≤ p

(
t, a∗, x

) ≤ C10

t

(
1 + |x| log t√

t

)
e−x2/2t .

PROOF. Observing that when x ∈ R+, we have by (5.8),

p
(
t, a∗, x

) = p
(
t, x, a∗) =

∫ t

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

=
∫ t/2

0
p

(
t − s, a∗, a∗) x√

2πs3
e−x2/2s ds

+
∫ t

t/2
p

(
t − s, a∗, a∗) x√

2πs3
e−x2/2s ds.

(5.21)
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By Theorem 5.10, Lemma 5.11 and a change of variable r = x/
√

s,∫ t/2

0
p

(
t − s, a∗, a∗) x√

2πs3
e−x2/2s ds

� 1

t

∫ t/2

0

x

s3/2 e−x2/2s ds = 2

t

∫ ∞
x
√

2/t
e−r2/2 dr

� 1

t

1

1 + (x/
√

t)
e−x2/t ,

while

x√
2πt3

e−x2/t
∫ t/2

0
p

(
r, a∗, a∗)

dr ≤
∫ t

t/2
p

(
t − s, a∗, a∗) x√

2πs3
e−x2/2s ds

≤ 2x√
πt3

e−x2/2t
∫ t/2

0
p

(
r, a∗, a∗)

dr.

This, Theorem 5.10 and (5.21) yield the desired result. �

PROPOSITION 5.13. There exist Ci > 0, 11 ≤ i ≤ 14 such that

C11

t
e−C12|x|2ρ/t ≤ p

(
t, a∗, x

) ≤ C13

t
e−C14|x|2ρ/t for all t ≥ 8 and x ∈ Dε.

PROOF. When t ∈ [1,8], the estimates follows from Theorem 4.8. So it re-
mains to establish the estimates for t > 8. We do this by considering three cases.
Note that p(t, a∗, x) = p(t, x, a∗).

Case 1. 1 ≤ |x|ρ < 2
√

t . We have by Theorem 5.10 and Proposition 5.1,

p
(
t, x, a∗) =

∫ t/2

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

+
∫ t

t/2
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)

� 1

t
Px(σa∗ ≤ t/2) + log |x|

t (log t)2

∫ t/2

0
p

(
s, a∗, a∗)

ds

� 1

t

(
1 − log |x|

log
√

t

)
+ log |x|

t (log t)2

∫ t/2

0

(
1√
s

∧ 1

s

)
ds

� 1

t

(
1 − log |x|

log
√

t

)
+ log |x|

t log t
� 1

t
.

Case 2. |x|ρ ≥ 2
√

t . In the following computation, Bρ(x, r) := {y ∈ E :
ρ(x, y) < r}, and Be(x, r) := {y ∈ E : |y −x| < r}. We denote by {W ;P0

x, x ∈ R
2}
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two-dimensional Brownian motion and p0(t, x, y) = (2πt)−1 exp(−|x − y|2/2t)

its transition density. Since

p
(
t, x, a∗) = Ex

[
p

(
t − σBρ(a∗,2),XσBρ(a∗,2)

, a∗);σBρ(a∗,2) < t
]
,

it follows from Case 1, Theorem 4.6 and Theorem 4.8 that there is c1 ≥ 1 so that

p
(
t, x, a∗)

� Ex

[
(t − σBρ(a∗,2))

−1e
− (2+2ε)2

2c1(t−σBρ(a∗,2)) ;σBρ(a∗,2) < t
]

= E
0
x

[
(t − σBe(0,2+ε))

−1e
− (2+2ε)2

2c1(t−σBe(0,2+ε)) ;σBe(0,2+ε) < t
]

� E
0
x

[
(c1t − σBe(0,2+ε))

−1e
− (2+ε)2

2(c1t−σBe(0,2+ε)) ;σBe(0,2+ε) < t
]

≤ E
0
x

[
(c1t − σBe(0,2+ε))

−1e
− (2+ε)2

2(c1t−σBe(0,2+ε)) ;σBe(0,2+ε) < c1t
]

� E
0
x

[
p0(c1t − σBe(0,2+ε)),WσBe(0,2+ε)

,0);σBe(0,2+ε) < c1t
]

= p0(c1t, x,0) = (2πc1t)
−1 exp

(−|x|2/2c1t
)
.

Similarly, for the lower bound estimate, it follows from Case 1, Theorem 4.6 and
Theorem 4.8 that there is c2 ∈ (0,1] so that

p
(
t, x, a∗)

� Ex

[
(t − σBρ(a∗,2))

−1e
− 22

2c2(t−σBρ(a∗,2)) ;σBρ(a∗,2) < t
]

≥ E
0
x

[
(t − σBe(0,2+ε))

−1e
− 22

2c2(t−σBe(0,2+ε)) ;σBe(0,2+ε) < c2t
]

� E
0
x

[
(c2t − σBe(0,2+ε))

−1e
− (2+ε)2

2(c2t−σBe(0,2+ε)) ;σBe(0,2+ε) < c2t
]

� E
0
x

[
p0(c2t − σBe(0,2+ε)),WσBe(0,2+ε)

,0);σBe(0,2+ε) < c2t
]

= p0(c2t, x,0) = (2πc2t)
−1 exp

(−|x|2/2c2t
)
.

Realizing that |x|ρ > 2
√

t > 4
√

2 implies that |x|ρ � |x|, we get the desired esti-
mates in this case.

Case 3. 0 < |x|ρ < 1. Note that by Proposition 3.2,

(5.22)

∫
y∈Dε∩Bρ(a∗,2)

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

≤
∫
Dε∩Bρ(a∗,2)

(
c1√

t

)2
mp(dy) � 1

t
,
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while by Cases 1 and 2 above,

(5.23)

∫
Dε∩Bρ(a∗,2)c

p(t/2, x, y)p
(
t/2, a∗, y

)
mp(dy)

≤ sup
y∈Dε∩Bρ(a∗,2)c

p
(
t/2, a∗, y

)
� 1

t
.

On the other hand, by Theorem 5.10 again,∫
R+

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

= Ex

[
p

(
t/2,Xt/2, a

∗);Xt/2 ∈ R+
]

= Ex

[
p

(
t/2,Xt/2, a

∗);σa∗ < t/2 and Xt/2 ∈ R+
]

= Ex

[
Ea∗

[
p

(
t/2,Xt/2−s, a

∗)]∣∣
s=σa∗ ;σa∗ < t/2 and Xt/2 ∈R+

]
= Ex

[
p

(
t − σa∗, a∗, a∗);σa∗ < t/2 and Xt/2 ∈ R+

]
� 1

t
Px(σa∗ ≤ t/2 and Xt/2 ∈ R+) ≤ 1

t
.

(5.24)

The estimates (5.22), (5.23) and (5.24) imply that

p
(
t, a∗, x

) =
∫
Dε∩Bρ(a∗,2)

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

+
∫
Dε∩Bc

ρ(a∗,2)
p

(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

+
∫
R+

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy) � 1

t
.

On the other hand, there is a constant c3 > 0 so that Px(σa∗ ≤ 1) ≥ c3 for all
x ∈ Dε with |x|ρ ≤ 1. Hence we have by Theorem 5.10 that for t ≥ 2 and x ∈ Dε

with |x|ρ ≤ 1,

p
(
t, a∗, x

) = p
(
t, x, a∗) ≥

∫ 1

0
p

(
t − s, a∗, a∗)

Px(σa∗ ∈ ds)� 1

t
Px(σa∗ ≤ 1)� 1

t
.

In conclusion, we have p(t, a∗, x) � 1
t

for t ≥ 4 and x ∈ Dε with |x|ρ ≤ 1. This
completes the proof of the proposition. �

We are now in the position to derive estimates on p(t, x, y) for (x, y) ∈ Dε ×D

and t ∈ [8,∞), by using the two-sided estimate of p(t, x, a∗) and the Markov
property of X.
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THEOREM 5.14. There exist constants Ci > 0, 15 ≤ i ≤ 18, such that the
following estimate holds:

C15

t
e−C16ρ(x,y)2/t ≤ p(t, x, y) ≤ C17

t
e−C18ρ(x,y)2/t ,

(t, x, y) ∈ [8,∞) × Dε × Dε.

PROOF. As before, denote by {W ;P0
x, x ∈ R

2} two-dimensional Brownian
motion and p0(t, x, y) = (2πt)−1 exp(−|x −y|2/2t) its transition density. We first
note that, as a special case of [33], Theorem 1.1(a), there are constants c1 > c2 > 0
so that for t ≥ 1 and x, y ∈ Dε ,(|x|ρ ∧ 1

)(|y|ρ ∧ 1
)
t−1e−c1|x−y|2/t � p0

Dε
(t, x, y)

�
(|x|ρ ∧ 1

)(|y|ρ ∧ 1
)
t−1e−c2|x−y|2/t .

It follows that there is c3 ∈ (0,1] so that

(5.25) p0
Dε

(t, x, y)� p0
Dε

(c3t, x, y) for every t ≥ 1 and x, y ∈ Dε.

We will prove the theorem by considering two different cases.
Case 1. max{|x|ρ, |y|ρ} > 1. Without loss of generality, we assume |y|ρ > 1. In

this case, it is not hard to verify that ρ(x, y) � |x −y|. Recall from (1.6)–(1.7) that
for x, y ∈ Dε ,

pDε
(t, x, y) := p(t, x, y) − pDε(t, x, y) = Ex

[
p

(
t − σa∗, a∗, y

);σa∗ < t
]
.

By Proposition 5.13 and the assumption that ε ∈ (0,1/4], there are constants
c4 ≥ 1 so that for every x, y ∈ Dε with |y|ρ > 1,

pDε
(t, x, y)�

∫ t

0

1

t − s
e
− (|y|ρ+3ε)2

2c4(t−s) Px(σa∗ ∈ ds)

≤
∫ c1t

0

1

c4t − s
e
− (|y|ρ+2ε)2

2(c4t−s) P
0
x(σBe(0,ε) ∈ ds)

� E
0
x

[
p0(c4t − s,WσBe(0,ε)

, y);σBe(0,ε) < c4t
]

≤ p0(c4t, x, y).

(5.26)

Similarly, there is a constant c5 ∈ (0, c3] so that

pDε
(t, x, y)�

∫ t

0

1

t − s
e
− (|y|ρ−ε)2

2c5(t−s) Px(σa∗ ∈ ds)

≥
∫ c5t

0

1

c5t − s
e
− |y|2ρ

2(c5t−s)P
0
x(σBe(0,ε) ∈ ds)

� E
0
x

[
p0(c5t − s,WσBe(0,ε)

, y);σBe(0,ε) < c5t
]

= p0
Dε

(c5t, x, y).

(5.27)
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Since pDε(t, x, y) = p0
Dε

(t, x, y) and c4 ≥ 1, we have from (5.26) that

p(t, x, y) = pDε(t, x, y) + pDε
(t, x, y)� p0(t, x, y) + p0(c4t, x, y)

� p0(c4t, x, y)� t−1e−ρ(x,y)2/2c4t .

On the other hand, we have by (5.25) and (5.27) that for every t ≥ 1 and x, y ∈ Dε

satisfying |x|ρ + |y|ρ > 2,

p(t, x, y)� p0
Dε

(c5t, x, y) + p0
Dε

(c5t, x, y) = p0(c5t, x, y)� t−1e−|x−y|2/2c5t

� t−1e−ρ(x,y)2/c5t ,

where the last “�” is due to the fact that |x − y|/√2 ≤ ρ(x, y), which can be veri-
fied easily from the assumptions that |x|ρ +|y|ρ > 2 and ε ≤ 1/4. This establishes
the desired two-sided estimates in this case.

Case 2. max{|x|ρ, |y|ρ} ≤ 1. In this case, it suffices to show that p(t, x, y) � t−1

for t ≥ 8. The proof is similar to that of Case 3 of Proposition 5.13. By Proposi-
tion 3.2, for t ≥ 8,

(5.28)

∫
y∈Dε∩Bρ(a∗,2)

p(t/2, x, z)p(t/2, z, y)mp(dy)

≤
∫
Dε∩Bρ(a∗,2)

(
c6√

t

)2
mp(dy) � 1

t
,

while by Case 1,

(5.29)

∫
Dε∩B(a∗,2)c

p(t/2, x, z)p(t/2, z, y)mp(dz)

≤ sup
z∈Dε∩B(a∗,2)c

p(t/2, y, z)� 1

t
.

On the other hand, by Proposition 5.13, for t ≥ 8,∫
R+

p(t/2, x, z)p(t/2, z, y)mp(dz)

= Ex

[
p(t/2,Xt/2, y);Xt/2 ∈ R+

]
= Ex

[
p(t/2,Xt/2, y);σa∗ < t/2 and Xt/2 ∈R+

]
= Ex

[
Ea∗

[
p(t/2,Xt/2−s, y)

]∣∣
s=σa∗ ;σa∗ < t/2 and Xt/2 ∈ R+

]
= Ex

[
p

(
t − σa∗, a∗, y

);σa∗ < t/2 and Xt/2 ∈ R+
]

� 1

t
Px(σa∗ ≤ t/2 and Xt/2 ∈ R+) ≤ 1

t
.

(5.30)
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The estimates (5.28)–(5.30) imply that

p
(
t, a∗, x

) =
∫
Dε∩Bρ(a∗,2)

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

+
∫
Dε∩Bc

ρ(a∗,2)
p

(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

+
∫
R+

p
(
t/2, a∗, y

)
p(t/2, y, x)mp(dy)

� 1

t
.

On the other hand, there is a constant c7 > 0 so that Px(σa∗ ≤ 1) ≥ c7 for all x ∈ Dε

with |x|ρ ≤ 2. Hence we have by Proposition 5.13 that for t ≥ 2 and x ∈ Dε with
|x|ρ ≤ 1,

p(t, x, y) ≥
∫ 1

0
p

(
t − s, a∗, y

)
Px(σa∗ ∈ ds)� 1

t
Px(σa∗ ≤ 1)� 1

t
.

Therefore, we have p(t, x, y) � 1
t

for t ≥ 8 and x, y ∈ Dε with |x|ρ + |y|ρ ≤ 2.
This completes the proof of the theorem. �

THEOREM 5.15. There exist constants Ci > 0, 19 ≤ i ≤ 26, such that the
following estimates hold for (t, x, y) ∈ [4,∞) ×R+ × Dε: when |y|ρ < 1:

(5.31)

C19

t

(
1 + |x| log t√

t

)
e−C20ρ(x,y)2/t

≤ p(t, x, y) ≤ C21

t

(
1 + |x| log t√

t

)
e−C22ρ(x,y)2/t ;

while for |y|ρ ≥ 1,

C23

t

(
1 + |x|√

t
log

(
1 +

√
t

|y|ρ
))

e−C24ρ(x,y)2/t

≤ p(t, x, y) ≤ C25

t

(
1 + |x|√

t
log

(
1 +

√
t

|y|ρ
))

e−C26ρ(x,y)2/t .

(5.32)

PROOF. First note that by Proposition 5.13 and Theorem 4.8,

(5.33)
1

t
e−c1|y|2ρ/t � p

(
t, a∗, y

)
� 1

t
e−c2|y|2ρ/t for t ≥ 1 and y ∈ Dε

and

(5.34)

1√
t
e−c3|y|2ρ/t � p

(
t, a∗, y

)
� 1√

t
e−c4|y|2ρ/t

for t ≤ 1 and y ∈ Dε with |y|ρ ≤ 1.
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By (5.8),

(5.35)

p(t, x, y) =
∫ t

0
p

(
t − s, a∗, y

)
Px(σa∗ ∈ ds)

=
∫ t

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/(2s) ds.

It follows from (5.33) and Lemma 5.11 that for every y ∈ Dε and t ≥ 4,∫ t/2

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/(2s) ds

� −1

t
e−c2|y|2ρ/t

∫ t/2

s=0
e−|x|2

2s d

( |x|√
s

)

� 1

t
e−c2|y|2ρ/t 1

1 + |x|/√t
e−|x|2/t ≤ 1

t
e−c3ρ(x,y)2/t .

(5.36)

Similarly, we have

(5.37)

∫ t/2

0
p

(
t − s, a∗, y

) x√
2πs3

e−x2/(2s) ds � 1

t
e−(|x|2+c4|y|2ρ)/t

� 1

t
e−c5ρ(x,y)2/t .

We now consider two cases depending on the range of the values of |y|ρ .
Case 1. y ∈ Dε with |y|ρ < 1. In this case, we have by (5.33)∫ t−1

t/2
p

(
t − s, a∗, y

) x√
2πs3

e−x2/(2s) ds

�
∫ t−1

t/2

1

t − s
e−c2|y|2ρ/(t−s) |x|√

s3
e−x2/(2s) ds

� |x|
t3/2 e−|x|2/2t

∫ t−1

t/2

1

t − s
ds � |x| log t

t3/2 e−|x|2/2t .

Similarly, we have∫ t−1

t/2
p

(
t − s, a∗, y

) x√
2πs3

e−x2/(2s) ds � |x| log t

t3/2 e−|x|2/t .

On the other hand, by (5.34),∫ t

t−1
p

(
t − s, a∗, y

) x√
2πs3

e−x2/(2s) ds

� |x|√
t3

e−x2/(2t
∫ t

t−1

1√
t − s

e−c4|y|2ρ/(t−s) ds

� |x|√
t3

e−x2/(2t)
∫ t

t−1

1√
t − s

ds � |x|√
t3

e−x2/(2t),
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and similarly ∫ t

t−1
p

(
t − s, a∗, y

) x√
2πs3

e−x2/(2s) ds � |x|√
t3

e−x2/t .

These estimates together with (5.35)–(5.37) establishes (5.31).
Case 2. y ∈ Dε with |y|ρ > 1. Note that by (5.8),

p(t, x, y) =
∫ t

0
p

(
t − s, a∗, y

)
Px(σa∗ ∈ ds)

=
∫ t/2

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds

+
∫ t

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds.

(5.38)

By Theorem 4.8, (5.33) and a change of variable r = |y|ρ/
√

t − s, we have∫ t

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds �
∫ t

t/2

1

t − s
e−c6|y|2ρ/(t−s) |x|√

s3
e−x2/2s ds

� |x|
t3/2 e−x2/2t

∫ t

t/2

1

t − s
e−c6|y|2ρ/(t−s) ds

= |x|
t3/2 e−x2/2t

∫ ∞
|y|ρ/

√
2/t

2

r
e−c6r

2
dr.

Note that for each fixed a > 0,
∫ ∞
λ r−1e−ar2

dr = ∫ 1
λ r−1e−ar2

dr + ∫ ∞
1 r−1 ×

e−c2r
2
dr is comparable to log(1/λ) when 0 < λ ≤ 1/2. For λ ≥ 1/2, by

Lemma 5.11∫ ∞
λ

r−1e−ar2
dr ≤ 2

∫ ∞
λ

e−ar2
dr = 2√

2a

∫ ∞
√

2aλ
e−s2/2 ds � 1

1 + √
aλ

e−aλ2

≤ e−aλ2

and∫ ∞
λ

r−1e−ar2
dr �

∫ ∞
λ

e−2ar2
dr = 1

2
√

a

∫ ∞
2
√

aλ
e−s2/2 ds � 1

1 + √
aλ

e−2aλ2

� e−3aλ2
.

Hence we have

(5.39)
log

(
1 + λ−1)

e−3aλ2 �
∫ ∞
λ

r−1e−ar2
dr

≤ log
(
1 + λ−1)

e−aλ2
for any λ > 0.
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Thus we have∫ t

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds � |x|
t3/2 e−x2/2t log

(
1 +

√
t

|y|ρ
)
e−2c6|y|2ρ/t

≤ |x|
t3/2 log

(
1 +

√
t

|y|ρ
)
e−c7ρ(x,y)2/t .

Similarly, we have∫ t

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds � |x|
t3/2 log

(
1 +

√
t

|y|ρ
)
e−c8ρ(x,y)2/t .

These together with (5.36)–(5.37) establish (5.32). �

We will need the following elementary lemma.

LEMMA 5.16. For every c > 0, there exists C27 ≥ 1 such that for every t ≥ 3
and 0 < y ≤ √

t ,

C−1
27 log t ≤

∫ t

2

1

s

(
1 + y log s√

s

)
e−c|y|2/s ds ≤ C27 log t.

PROOF. By a change of variable r = y/
√

s,∫ t

2

y log s

s3/2 e−c|y|2/s ds ≤ log t

∫ t

2

y

s3/2 e−c|y|2/s ds = 2 log t

∫ y/
√

2

y/
√

t
e−cr2

dr � log t,

while since 0 < y ≤ √
t ,∫ t

2

1

s
e−c|y|2/s ds �

∫ t

2

1

s
ds � log t.

This proves the lemma. �

THEOREM 5.17. There exist constants Ci > 0, 28 ≤ i ≤ 31, such that the
following estimate holds for all (t, x, y) ∈ [8,∞) ×R+ ×R+:

C28√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−C29|x−y|2/t

+ C28

t

(
1 + (|x| + |y|) log t√

t

)
e−2(x2+y2)/t

≤ p(t, x, y)

≤ C30√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−C31|x−y|2/t

+ C30

t

(
1 + (|x| + |y|) log t√

t

)
e−(x2+y2)/2t .

(5.40)
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PROOF. When either x = a∗ or y = a∗, this has been established in Proposi-
tion 5.12 so we assume |x| ∧ |y| > 0. For simplicity, denote R+ \ {a∗} by (0,∞).
Since

p(0,∞)(t, x, y) = (2πt)−1/2(
e−|x−y|2/2t − e−|x+y|2/2t )

= (2πt)−1/2e−|x−y|2/2t (1 − e−2xy/t ),
there are constants c1 > c2 > 0 so that

(5.41)

1√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−c1|x−y|2/t

� p(0,∞)(t, x, y)� 1√
t

(
1 ∧ |x|√

t

)(
1 ∧ |y|√

t

)
e−c2|x−y|2/t

for all t > 0 and x, y ∈ R+. Note also

(5.42) p(t, x, y) = p(0,∞)(t, x, y) +
∫ t

0
p

(
t − s, a∗, y

)
Px(σa∗ ∈ ds).

We prove this theorem by considering two cases.
Case 1. |x| ∧ |y| ≥ √

t . In this case, p(t, x, y) ≥ p(0,∞)(t, x, y) � t−1/2 ×
e−c3|x−y|2/t . Thus we have by Proposition 3.4,

1√
t
e−c3|x−y|2/t � p(t, x, y)� 1√

t
e−c4|x−y|2/t .

So estimates (5.40) holds in this case.
Case 2. 0 < |x| ∧ |y| <

√
t . Without loss of generality, we may and do assume

|y| < √
t ∧ |x|. By (5.8),

(5.43)
∫ t

0
p

(
t − s, a∗, y

)
Px(σa∗ ∈ ds) =

∫ t

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds.

By Proposition 5.12 and Lemma 5.11,∫ t/2

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds

�
∫ t/2

0

1

t − s

(
1 + |y| log(t − s)√

t − s

)
e−y2/2(t−s) |x|√

2πs3
e−x2/2s ds

� 1

t

(
1 + |y| log t√

t

)∫ t/2

0

|x|
s3/2 e−x2/2s ds

r=|x|/√s

� 1

t

(
1 + |y| log t√

t

)∫ ∞
√

2|x|/√t
e−r2/2 dr

� 1

t

(
1 + |y| log t√

t

)
1

1 + |x|/√t
e−x2/t

� 1

t

(
1 + |y| log t√

t

)
e−(x2+y2)/t ,
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while by Proposition 5.12 and Lemma 5.16,∫ t−2

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds

�
∫ t−2

t/2

1

t − s

(
1 + |y| log(t − s)√

t − s

)
e−y2/2(t−s) |x|√

2πs3
e−x2/2s ds

� |x|
t3/2 e−x2/2t

∫ t−2

t/2

1

t − s

(
1 + |y| log(t − s)√

t − s

)
e−y2/2(t−s) ds

r=t−s= |x|
t3/2 e−x2/2t

∫ t/2

2

1

r

(
1 + |y| log r√

r

)
e−y2/2r dr

� |x|
t3/2 e−x2/2t log t � |x| log t

t3/2 e−(x2+y2)/2t .

A similar calculation shows∫ t/2

0
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds � 1

t

(
1 + |y| log t√

t

)
e−2(x2+y2)/t

and∫ t−2

t/2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds � |x|
t3/2 e−x2/t log t � |x| log t

t3/2 e−(x2+y2)/t .

By Theorem 4.6,∫ t

t−2
p

(
t − s, a∗, y

) |x|√
2πs3

e−x2/2s ds

�
∫ t

t−2

1√
t − s

e−c5y
2/(t−s) |x|√

2πs3
e−x2/2s ds

� |x|√
t3

e−x2/2t
∫ t

t−2

1√
t − s

ds

� |x|
t3/2 e−(x2+y2)/2t .

These estimates together with (5.41)–(5.43) establish the theorem. �

Theorem 5.17 together with Theorems 5.14 and 5.15 gives Theorem 1.4.

6. Hölder regularity of parabolic functions. As we noted in Remark 4.9(iii),
parabolic Harnack principle fails for the BMVD X. However, we show in this sec-
tion that Hölder regularity holds for the parabolic functions of X. In the elliptic
case (i.e., for harmonic functions instead of parabolic functions), this kind of phe-
nomenon has been observed for solutions of SDEs driven by multidimensional
Lévy processes with independent coordinate processes; see [6].
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To show the Hölder-continuity of parabolic functions of X, we begin with the
following two lemmas.

LEMMA 6.1. There exist C1 > 0 and 0 < C2 ≤ 1/2 such that for every x0 ∈ E

and R > 0,

pBρ(x0,R)(t, x, y) ≥ 1

2
p(t, x, y)

for t ∈ (
0,C1/(R ∨ 1)2]

and x, y ∈ Bρ(x0,C2R).

PROOF. By Theorem 1.3, there exist constants ci > 0, 1 ≤ i ≤ 4, such that for
all t ≤ 1 and x, y ∈ E,

(6.1)
c3√

t
e−c4ρ(x,y)2/t ≤ p(t, x, y) ≤ c1

t
e−c2ρ(x,y)2/t .

We choose 0 < c5 < 1/2 sufficiently small such that

(6.2)
(1 − c5)

2

(2c5)2 ≥ c2

c4
.

As t �→ t−1e−c0/t is increasing in t ∈ (0,1/c0], we have for 0 < t ≤ 1/(c2(1 −
c5)

2R2) and x, y ∈ Bρ(x0, c5R),

pBρ(x0,c5R)(t, x, y)

:= Ex

[
p(t − τBρ(x0,c5R),XBρ(x0,c5R), y); τBρ(x0,c5R) < t

]
� Ex

[
(t − τBρ(x0,c5R))

−1e
−c2((1−c5)R)2/(t−τBρ(x0,c5R)); τBρ(x0,c5R) < t

]
≤ t−1e−c2((1−c5)R)2/t � e−c2(1−c5)

2R2/2t ,

while

p(t, x, y) ≥ c3√
t
e−c4(2c5R)2/t

(6.2)≥ c3√
t
e−c2(1−c5)

2R2/2t .

Hence there is c6 ≤ 1/(c2(1 − c5)
2) so that p(t, x, y) ≥ 1

2 p̄Bρ(x0,c5R)(t, x, y) for
every R > 0, x0 ∈ E, 0 < t ≤ c6/(R ∨ 1)2 and x, y ∈ Bρ(x0, c5R). This proves the
lemma as pBρ(x0,c5R)(t, x, y) = p(t, x, y) − p̄Bρ(x0,c5R)(t, x, y). �

Let Zs = (Vs,Xs) be the space-time process of X where Vs = V0 + s. In the
rest of this section,

Q(t, x,R) := (
t, t + R2) × Bρ(x,R).

For any Borel measurable set A ⊂ Q(t, x,R), we use |A| to denote its measure
under the product measure dt × mp(dx).
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LEMMA 6.2. Fix R0 ≥ 1. There exist constants 0 < C3 ≤ 1/2 and C4 > 0 such
that for all 0 < R ≤ R0, x0 ∈ E, x ∈ Bρ(x0,C3R) and any A ⊂ Q(0, x0,C3R) with

|A|
|Q(0,x0,C3R)| ≥ 1

3 ,

(6.3) P(0,x)(σA < τR) ≥ C4,

where τR = τQ(0,x0,R) = inf{t ≥ 0 : Xt /∈ Bρ(x0,R)} ∧ R2 and σA := inf{t ≥ 0 :
(Vt ,Xt) ∈ A}.

PROOF. Let C1 and C2 be the constants in Lemma 6.1. Define C3 =
(C1/R

3
0)1/2 ∧C2. For x0 ∈ E and R ∈ (0,R0], denote by XBρ(x0,R) the subprocess

of X killed upon exiting the ball Bρ(x0,R) and pBρ(x0,R) its transition density with
respect to the measure mp . As |(0,C2

3R2/6)×Bρ(x0,C3R)| = |Q(0, x0,C3R)|/6
and |A| ≥ |Q(0, x0,C3R)|/3, we have∣∣{(t, x) ∈ A : t ∈ [

C2
3R2/6,C2

3R2]}∣∣ ≥ ∣∣Q(0, x0,C3R)
∣∣/6.

For s > 0, let As := {x ∈ E : (s, x) ∈ A}. Note that

Ex

∫ τR

0
1A(s,Xs) ds = Ex

∫ τR∧(C3R)2

0
1A

(
s,XBρ(x0,R))ds

=
∫ C2

3R2

0
Px

(
X

Bρ(x0,R)
s ∈ As

)
ds

=
∫ C2

3R2

0

∫
As

pBρ(x0,R)(s, x, y)mp(dy) ds

≥
∫ C2

3R2

C2
3R2/6

pBρ(x0,R)(s, x, y)mp(dy) ds.

(6.4)

We now consider two cases.
Case 1. mp(Bρ(x0,R)) > pR/6. In this case, we have by (6.4), Lemma 6.1 and

(6.1) that

Ex

∫ τR

0
1A(s,Xs) ds �

∫ C2
3R2

C2
3R2/6

∫
As

1√
t
e−c2ρ(x,y)2/tmp(dy) ds

� 1

R

∣∣{(t, x) ∈ A : t ∈ [
C2

3R2/6,C2
3R2]}∣∣

�
∣∣Q(0, x0,C3R)

∣∣/R �R2.

Case 2. mp(Bρ(x0,R)) ≤ pR/6. In this case, x0 must be in Dε with ρ(x0, a
∗) ≥

5R
6 and so mp(Bρ(x0,R)) ≥ (5R/6)2. Thus we have by (6.4) and Theorem 1.3(iii),

Ex

∫ τR

0
1A(s,Xs) ds �

∫ C2
3R2

C2
3R2/6

∫
As

1

t
e−c2ρ(x,y)2/tmp(dy) ds
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� 1

R2

∣∣{(t, x) ∈ A : t ∈ [
C2

3R2/6,C2
3R2]}∣∣

�
∣∣Q(0, x0,C3R)

∣∣/R2 �R2.

Thus in both cases there is a constant c0 > 0 independent of x0 and R ∈ (0,R0] so
that

(6.5) Ex

∫ τR

0
1A(s,Xs) ds ≥ c0R

2.

On the other hand,

Ex

∫ τR

0
1A(s,Xs) ds =

∫ ∞
0

Px

(∫ τR

0
1A(s,Xs) ds > u

)
du

=
∫ R2

0
Px

(∫ τR

0
1A(s,Xs) ds > u

)
du

≤ R2
Px(σA < τR).

The desired estimate now follows from this and (6.5). �

THEOREM 6.3. For every R0 > 0, there are constants C = C(R0) > 0 and
β ∈ (0,1) such that for every R ∈ (0,R0], x0 ∈ E, and every bounded parabolic
function q in Q(0, x0,2R), it holds that

(6.6)
∣∣q(s, x) − q(t, y)

∣∣ ≤ C‖q‖∞,RR−β(|t − s|1/2 + ρ(x, y)
)β

for every (s, x), (t, y) ∈ Q(0, x0,R/4), where

‖q‖∞,R := sup
(t,y)∈(0,4R2]×Bρ(x0,2R)

∣∣q(t, y)
∣∣.

PROOF. With loss of generality, assume 0 ≤ q(s) ≤ ‖q‖∞,R = 1. We first as-
sume x0 = a∗ and show that (6.6) holds for all (s, x), (t, y) ∈ Q(0, x0,R) [in-
stead of Q(0, x0,R/4)]. Let C3 ∈ (0,1/2] and C4 ∈ (0,1) be the constants in
Lemma 6.2. Let

η = 1 − C4/4 ≥ 3/4 and γ = C3/2 ≤ 1/4.

Note that for every (s, x) ∈ Q(0, a∗,R), q is parabolic in Q(s, x,R) ⊂ Q(0, a∗,
2R). We will show by induction that supQ(s,x,γ kR) |q| − infQ(s,x,γ kR) |q| ≤ ηk for
all integer k. For notation convenience, we denote Q(s, x, γ kR) by Qk . Define
ai = infQi

q , bi = supQi
q . Clearly, bi − ai ≤ 1 ≤ ηi for all i ≤ 0. Now suppose

bi − ai ≤ ηi for all i ≤ k and we will show that bk+1 − ak+1 ≤ ηk+1. Observe that
Qk+1 ⊂ Qk and so ak ≤ q ≤ bk on Qk+1. Define

A′ := {
z ∈ (

s + (
γ k+1R

)2
, s + (

C3γ
kR

)2)×Bρ

(
x,C3γ

kR
) : q(z) ≤ (ak + bk)/2

}
,
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which is a subset of Qk . Note that∣∣(s + (
γ k+1R

)2
, s + (

C3γ
kR

)2)×Bρ

(
x, γ kR

)∣∣ = 3

4

(
C3γ

kR
)2

mp

(
Bρ

(
x,C3γ

kR
))

.

We may suppose |A′| ≥ 1
2(C3γ

kR)2mp(Bρ(x,C3γ
kR)); otherwise we con-

sider 1 − q instead of q . Let A be a compact subset of A′ such that |A| ≥
1
2(C3γ

kR)2mp(Bρ(x,C3γ
kR)). For any given ε > 0, pick z1 = (t1, x1), z2 ∈

Qk+1 so that q(z1) ≥ bk+1 − ε and q(z1) ≤ ak+1 + ε. Note that Zτk
∈ ∂Qk as

BMVD Xt has continuous sample paths. So by Lemma 6.2,
bk+1 − ak+1 − 2ε ≤ q(z1) − q(z2)

= Ez1

[
q(ZσA∧τk

) − q(z2)
]

= Ez1

[
q(ZσA

) − q(z2);σA < τk

]
+Ez1

[
q(Zτk

) − q(z2); τk < σA

]
≤

(
ak + bk

2
− ak

)
Pz1(σA < τk)) + (bk − ak)Pz1(σA > τk)

= (bk − ak)
(
1 − Pz1(σA < τk)/2

)
≤ ηk(1 − C4/2)

≤ ηk+1.

Since ε is arbitrary, we get bk+1 − ak+1 ≤ ηk+1. This proves that bk − ak ≤ ηk for
all integer k.

For z = (s, x) and w = (t, y) in Q(0, a∗,R) with s ≤ t , let k be the smallest
integer such that |z − w| := |t − s|1/2 + ρ(x, y) ≤ γ kR. Then∣∣q(z) − q(w)

∣∣ ≤ ηk = γ k logη/ logγ ≤
( |z − w|

γR

)logη/ logγ

.

This establishes (6.6) for x0 = a∗ and for every (s, x), (t, y) ∈ Q(0, a∗,R) with
β = logη/ logγ . Note that β ∈ (0,1) since 0 < γ < η < 1.

For general x0 ∈ E, we consider two cases based on the distance ρ(x, a∗).
Case 1. |x|ρ < R/2. In this case, Q(0, x0,R/4) ⊂ Q(0, a∗,3R/4) ⊂ Q(0, a∗,

3R/2) ⊂ Q(0, x0,2R). By what we have established above,∣∣q(s, x) − q(t, y)
∣∣ ≤ C(R0)‖q‖∞,RR−β(|t − s|1/2 − ρ(x, y)

)β
for (s, x), (t, y) ∈ Q(0, x0,R/4).

Case 2. |x|ρ ≥ R/2. Since a∗ /∈ Q(0, x0,R/2), it follows from the classi-
cal results for Brownian motion in R

d with d = 1 and d = 2 that for every
(s, x), (t, y) ∈ Q(0, x0,R/4),∣∣q(s, x) − q(t, y)

∣∣ ≤ C(R0)‖q‖∞,R/2R
−β(|t − s|1/2 + ρ(x, y)

)β
≤ C(R0)‖q‖∞,RR−β(|t − s|1/2 + ρ(x, y)

)β
.

This completes the proof of the theorem. �
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7. Green function estimates. In this section, we establish two-sided bounds
for the Green function of BMVD X killed upon exiting a bounded connected C1,1

open set D ⊂ E. Recall that the Green function GD(x, y) is defined as follows:

GD(x, y) =
∫ ∞

0
pD(t, x, y) dt,

where pD(t, x, y) is the transition density function of the subprocess XD with
respect to mp . We assume a∗ ∈ D throughout this section, as otherwise, due to the
connectedness of D, either D ⊂ R+ or D ⊂ Dε . Therefore, GD(x, y) is just the
standard Green function of a bounded C1,1 domain for Brownian motion in one-
dimensional or two-dimensional spaces, whose two-sided estimates are known;
see [13]. It is easy to see from

pD(t, x, y) = p(t, x, y) −Ex

[
p(t − τD,XτD

, y); τD < t
]
,

that pD(t, x, y) is jointly continuous in (t, x, y).
Recall that for any bounded open set U ⊂ E, δU (·) := ρ(·, ∂U) denotes the

ρ-distance to the boundary ∂U .

PROOF OF THEOREM 1.5. For notational convenience, we set U1 := D ∩
(R+ \ {a∗}) and U2 := D ∩ Dε . Note that a∗ ∈ ∂U1 ∩ ∂U2 and U1 = (0, b) for
some b > 0. We first show that GD(x, a∗) is a bounded positive continuous func-
tion on D. By Theorem 1.3, there is a constant c1 > 0 so that for every x ∈ D,

Px(τD < 1) ≥ Px(X1 ∈ E \ D)

=
∫
R+∩Dc

p(1, x, z)mp(dz) +
∫
Dε∩Dc

p(1, x, z)mp(dz)

≥ c1.

(7.1)

Thus Px(τD ≥ 1) ≤ 1 − c1 for every x ∈ D. By the strong Markov property of X,
there are constants c2, c3 > 0 so that Px(τD ≥ t) ≤ c2e

−c3t for every x ∈ D and
t > 0. For t ≥ 2 and x, y ∈ D, we thus have by Theorem 1.3,

pD(t, x, y) =
∫
D

pD(t − 1, x, z)pD(1, z, y)mp(dz)

≤ c4

∫
D

pD(t − 1, x, z)mp(dz)

≤ c5e
−c3t .

By Theorem 1.3 again, we conclude that

GD

(
x, a∗) =

∫ 2

0
pD(t, x, y) dt +

∫ ∞
2

pD(t, x, y) dt

converges and is a bounded positive continuous function in x ∈ D. In particular,
GD(a∗, a∗) < ∞.
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We further note that x �→ GD(x, a∗) is a harmonic function in U1 and so it is a
linear function. As it vanishes at b := ∂D ∩R+, we have

(7.2) GD

(
x, a∗) = c6|b − x| � δD(x) for x ∈ U1.

(i) Assume x, y ∈ U1 ∪{a∗} and x �= y. If x = a∗ or y = a∗, the desired estimate
holds in view of (7.2). Thus we assume neither x nor y is a∗. By the strong Markov
property of X,

GD(x, y) = GU1(x, y) +Ex

[
GD(Xσa∗ , y);σa∗ < τD

]
= GU1(x, y) + GD

(
a∗, y

)
Px(σa∗ < τD).

Since x �→ Px(σa∗ < τD) is a harmonic function in U1 that vanishes at b, by the
same reasoning as that for (7.2), we have

(7.3) Px(σa∗ < τD) = c7|x − b| � δD(x) for x ∈ U1.

Thus

GD

(
a∗, y

)
Px(σa∗ < τD) � δD(x)δD(x) for x, y ∈ U1.

On the other hand, it is known (see, e.g., (29) on page 45 of [13]) that

(7.4) GU1(x, y) = G(0,b)(x, y) =
{

2x(b − y)/b if 0 < x < y < b,

2y(b − x)/b if 0 < y < x < b.

By symmetry of the Green function GD(x, y), without loss of generality, we may
and do assume that 0 < x < y < b. By considering the cases of x < b/2 and x ≥
b/2 separately, we conclude from the above estimates that

GD(x, y) � GU1(x, y) + δD(x)δD(y) � δD(x) ∧ δD(y).

(ii) Assume that x, y ∈ U2. By the strong Markov property of X,

GD(x, y) = GU2(x, y) +Ex

[
GD(Xσa∗ , y);σa∗ < τD

]
= GU2(x, y) + GD

(
a∗, y

)
Px(σa∗ < τD).

Since both y �→ GD(a∗, y) and x �→ Px(σa∗ < τD) are bounded positive harmonic
functions on D ∩ Dε that vanishes on Dε ∩ ∂D, it follows from the boundary
Harnack inequality for Brownian motion in R

2 that

(7.5) GD

(
a∗, y

) � δD(y) and Px(σa∗ < τD) � δD(x).

This combined with the Green function estimates of GU2(x, y) (see [13]) yields

GD(x, y) � ln
(

1 + δU2(x)δU2(y)

|x − y|2
)

+ δD(x)δD(y).
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(iii) We now consider the last case that x ∈ U1 ∪{a∗} and y ∈ U2. When x = a∗,
the desired estimates follows from (7.5) and so it remains to consider x ∈ U1 and
y ∈ U2. By the strong Markov property of X, (7.3) and (7.5),

GD(x, y) = Ex

[
GD(Xσa∗ , y);σa∗ < τD

] = GD

(
a∗, y

)
Px(σa∗ < τD)

� δD(x)δD(y).

This completes the proof of the theorem. �

8. Some other BMVD. In this section, we present two more examples of
spaces with varying dimension that are variations of R

2 ∪ R considered in pre-
vious sections. The existence and uniqueness of BMVD on these spaces can be
established in a similar way as Theorem 2.2 in Section 2. We will concentrate on
two-sided estimates on the transition density function on fixed time intervals of
these two BMVD. One can further study their large time heat kernel estimates.
Due to the space limitation, we will not pursue it in this paper.

8.1. A square with multiple flag poles. In this subsection, we study the BMVD
on a large square with multiple flag poles of infinite length. The state space E is
defined as follows. Let k ≥ 2 and {zj ;1 ≤ j ≤ k} be k points in R

2 that have
distance at least 4 between each other. Fix a finite sequence {εj ;1 ≤ j ≤ k} ⊂
(0,1/2) and a sequence of positive constants �p := {pj ;1 ≤ j ≤ k}. For 1 ≤ j ≤ k,
denote by Bj the closed disk on R

2 centered at zj with radius εj . Clearly, the
distance between any two distinct balls is at least 3. Let Dε =R

2 \ (
⋃

1≤i≤k Bi).
For 1 ≤ j ≤ k, denote by Lj the half-line {(zj ,w) ∈ R

3 : w > 0}. By identifying
each closed ball Bj with a singleton denoted by a∗

j , we equip the space E := Dε ∪
{a∗

1 , . . . , a∗
k }∪(

⋃k
i=1 Li) with induced topology from R

2 and the half-lines Lj , 1 ≤
j ≤ k, with the endpoint of the half-line Li identified with a∗

i and a neighborhood
of a∗

i defined as {a∗
i } ∪ (V1 ∩ Li) ∪ (V2 ∩ Dε) for some neighborhood V1 of 0 in

R and V2 of Bi in R
2. Let m �p be the measure on E whose restriction on Dε is

the two-dimensional Lebesgue measure, and whose restriction on Lj is the one-
dimensional Lebesgue measure multiplied by pj for 1 ≤ j ≤ k. So in particular,
m �p({a∗

i }) = 0 for all 1 ≤ i ≤ k. We denote the geodesic distance on E by ρ.
Similar to Definition 1.1, BMVD on the plane with multiple half lines is defined

as follows.

DEFINITION 8.1. Given a finite sequence �ε := {εj ;1 ≤ j ≤ k} ⊂ (0,1/2) and
a sequence of positive constants �p := {pj ;1 ≤ j ≤ k}. A Brownian motion with
varying dimension with parameters (�ε, �p) on E is an m �p-symmetric diffusion X

on E such that:

(i) its subprocess in Li , 1 ≤ i ≤ k, or Dε has the same law as that of standard
Brownian motion killed upon leaving R+ or Dε;

(ii) it admits no killings at a∗
i for every 1 ≤ i ≤ k.
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Recall that the endpoint of the half-line Li is identified with a∗
i , 1 ≤ i ≤ k.

Similar to Theorem 2.2, we have the following theorem stating the existence and
uniqueness of the planary BMVD X with multiple half lines.

THEOREM 8.2. For each k ≥ 2, every �ε := {εj ;1 ≤ j ≤ k} ⊂ (0,1/2) and
�p := {pj ;1 ≤ j ≤ k} ⊂ (0,∞), BMVD X on E with parameter (�ε, �p) exists and
is unique. Its associated Dirichlet form (E,F) on L2(E;mp) is given by

F = {
f : f |R2 ∈ W 1,2(

R
2);f |Li

∈ W 1,2(R), f |Bi
= f |Li

(
a∗
i

)
for 1 ≤ i ≤ k

}
,

E(f, g) = 1

2

∫
Dε

∇f (x) · ∇g(x) dx +
k∑

i=1

pi

2

∫
Li

f ′(x)g′(x) dx.

It is not difficult to see that BMVD X has a continuous transition density
p(t, x, y) with respect to the measure m �p .

PROPOSITION 8.3. There exist constants C1,C2 > 0 such that

p(t, x, y) ≤ C1

(
1

t
+ 1

t1/2

)
e−C2ρ(x,y)2/t for all x, y ∈ E and t > 0.

PROOF. By an exactly the same argument as that for Proposition 3.1, we can
establish Nash-type inequality for X. From it, the off-diagonal upper bound can be
derived using Davies’ method as in Propositions 3.2 and 3.4. �

The following theorem gives two-sided bounds for the transition density func-
tion p(t, x, y) when t ∈ (0, T ] for each fixed T > 0.

THEOREM 8.4. Let T ≥ 2 be fixed. There exist positive constants Cj , 3 ≤ j ≤
16 so that the transition density p(t, x, y) of BMVD X on E satisfies the following
estimates when t ∈ (0, T ]:

(i) For x, y ∈ Dε ∩ Bρ(a∗
i ,1) for some 1 ≤ i ≤ k,

C3√
t
e−C4ρ(x,y)2/t + C3

t

(
1 ∧ ρ(x, a∗

i )√
t

)(
1 ∧ ρ(y, a∗

i )√
t

)
e−C5|x−y|2/t

≤ p(t, x, y)

≤ C6√
t
e−C7ρ(x,y)2/t + C6

t

(
1 ∧ ρ(x, a∗

i )√
t

)(
1 ∧ ρ(y, a∗

i )√
t

)
e−C8|x−y|2/t .

(ii) For some 1 ≤ i ≤ k, x ∈ Li and y ∈ Li ∪ Bρ(a∗
i ,1), or x ∈ Li ∪ Bρ(a∗

i ,1)

and y ∈ Li ,

C9√
t
e−C10ρ(x,y)2/t ≤ p(t, x, y) ≤ C11√

t
e−C12ρ(x,y)2/t .
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(iii) For all other cases,

(8.1)
C13

t
e−C14ρ(x,y)2/t ≤ p(t, x, y) ≤ C15

t
e−C16ρ(x,y)2/t .

PROOF. The idea of the proof is to reduce it to the heat kernel for BMVD on
plane with one vertical half-line. For an open subset D of E, we use XD to denote
the subprocess of X killed upon leaving D and pD(t, x, y) the transition density
function of XD with respect to m �p .

Let C1 > 0 and C2 ∈ (0,1/2) be the constants in Lemma 6.1.
(i) We first show that the desired estimates hold for any x, y ∈ E with ρ(x, y) <

2C2 and for every t ∈ (0, T ]. In this case, let z0 ∈ E so that {x, y} ∈ Bρ(z0,C2).
Since ρ(a∗

i , a∗
j ) > 3 for i �= j , without loss of generality we may and do assume

that a∗
1 is the base that is closest to z and so min2≤j≤k ρ(z0, a

∗
j ) > 3/2. We have

by Lemma 6.1 that

(8.2)
pBρ(z0,1)(t,w, z) ≥ 1

2
p1(t,w, z)

for t ∈ (0,C1] and w,z ∈ Bρ(z0,C2),

where p1(t, x, y) stands for the transition density function of BMVD on the plane
with one vertical half-line L1 at base a∗

1 and vertical half line L1. This together
with Theorem 1.3 in particular implies that there is a constant c1 > 0 so that

pBρ(z0,1)(t,w, z) ≥ c1 for every t ∈ [C1/2,C1] and w,z ∈ Bρ(z0,C2).

It thus follows from the Chapman–Kolmogorov’s equation that there is a constant
c2 > 0 so that

(8.3) pBρ(z0,1)(t,w, z) ≥ c2 for every t ∈ [C1, T ] and w,z ∈ Bρ(z0,C2).

This together with (8.2) implies that there is a constant c3 > 0 so that

(8.4)
p(t,w, z) ≥ pBρ(z0,1)(t,w, z) ≥ c3p1(t,w, z)

for t ∈ (0, T ] and w,z ∈ Bρ(z0,C2).

On the other hand, we have by Proposition 3.4 and the fact that s �→ s−1e−a2/s is
increasing in (0, a2) and decreasing in (a2,∞) that for t ∈ (0, T ] and ρ(x, y) <

2C2 < 1,

p̄Bρ(z0,1)(t, x, y) := Ex

[
p(t − τBρ(z0,1),XτBρ(z0,1)

, y); τBρ(z0,1) < t
]

� t−1e−c4/t � e−c5/t � e−c6ρ(x,y)2/t .

Consequently,

(8.5)
p(t, x, y) = pBρ(z0,1)(t, x, y) + p̄Bρ(z0,1)(t, x, y)

� p1(t, x, y) + e−c6ρ(x,y)2/t .
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This together with (8.4) and Theorem 1.3 establishes the desired estimate of the
theorem for any x, y ∈ E with ρ(x, y) < 2C2 and t ∈ (0, T ].

(ii) Note that p(t, x, y) is symmetric in x and y. It suffices to consider the case
when x ∈ Li and y ∈ Li ∪ Bρ(a∗

i ,C2) for some 1 ≤ i ≤ k with ρ(x, y) ≥ 2C2.
Without loss of generality, we may and do assume i = 1 and ρ(x, a∗

1) < ρ(y, a∗
1)

if y ∈ L1. Let z0 ∈ L1 with ρ(z0, a
∗
1) = ρ(y, a∗

1) + C2. By the strong Markov
property of X, (8.4)–(8.5) and Theorem 1.3, we have for t ∈ (0, T ],

p(t, x, y) = Ex

[
p(t − σz0, z0, y);σz0 < t

]
≥ c3Ex

[
p1(t − σz0, z0, y);σz0 < t

]
= c3p1(t, x, y)� t−1/2e−c7ρ(x,y)2/y

and

p(t, x, y) = Ex

[
p(t − σz0, z0, y);σz0 < t

]
(8.5)
� Ex

[
p1(t − σz0, z0, y);σz0 < t

] +Ex

[
e−c6C

2
2/(t−σz0 );σz0 < t

]
≤ p1(t, x, y) + e−c6C

2
2/t

Px(σz0 < t)

� t−1/2e−c8ρ(x,y)2/y + e−c6C
2
2/t e−|x−z0|2/t

� t−1/2e−c9ρ(x,y)2/y.

In the second to the last last inequality, we used crossing estimate for one-
dimensional Brownian motion and Lemma 5.11. The above two estimates give
the desired estimates.

(iii) Let U1 = Dε \ ⋃k
j=1 Bρ(a∗

j ,C2). There are three remaining cases:

(a) x ∈ Li ∪ Bρ(a∗
i ,C2) and y ∈ Lj ∪ Bρ(a∗

j ,C2) for i �= j ;
(b) x ∈ Li ∪ Bρ(a∗

i ,C2) for some 1 ≤ i ≤ k and y ∈ U1 with ρ(x, y) ≥ 2C2;
(c) x, y ∈ U1 with ρ(x, y) ≥ 2C2.

We claim that (8.1) holds for all these three cases. The upper bound in (8.1)
holds due to Proposition 3.4 so it remains to establish the lower bound.

It follows from the Dirichlet heat kernel estimate for Brownian motion in C1,1-
domain [12, 33] that in case (c), for any t ∈ (0, T ],
(8.6) p(t, x, y) ≥ pD(t, x, y)� t−1e−c10|x−y|2/t ≥ t−1e−c10ρ(x,y)2/t .

For case (b), without loss of generality, we assume i = 1. Define u1(w) =
−ρ(w,a∗

1) for w ∈ L1 and u1(w) = ρ(w,a∗
1) analogous to (4.1). Let Y = u(X)

and τ1 := inf{t > 0 : Yt ≥ 2C2}. Then Y
(−∞,2C2)
t := Yt for t ∈ [0, τ1), and

Y
(−∞,2C2)
t := ∂ for t ≥ τ1 has the same distribution as the killed radial process

radial process Y in Section 4 for BMVD on plane with one vertical half-line. By
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Proposition 4.3 and the arguments similar to Proposition 4.4 of this paper and that
of [12], one can show that Y

(−∞,2C2)
t has a transition density function p0(t,w, z)

with respect to the Lebesgue measure on R and it has the following two-sided
estimates:

t−1/2
(

1 ∧ |w|√
t

)(
1 ∧ |z|√

t

)
e−c11|w−z|2/t

� p0(t,w, z)� t−1/2
(

1 ∧ |w|√
t

)(
1 ∧ |z|√

t

)
e−c12|w−z|2/t

for t ∈ (0, T ] and x, y ∈ (−∞,2C2). Thus we have for t ∈ (0, T ], x ∈ L1 ∪
Bρ(a∗

1 ,C2) and y ∈ U1 with ρ(x, y) ≥ 2C2,

p(t, x, y) ≥
∫
Dε∩(Bρ(a∗

1 ,6C2/4)\Bρ(a∗
1 ,5C2/4))

p(t/2, x, z)p(t/2, z, y)m �p(dz)

� t−1e−c13ρ(a∗
1 ,y)2/t

∫
Dε∩(Bρ(a∗

1 ,6C2/4)\Bρ(a∗
1 ,5C2/4))

p(t/2, x, z)m �p(dz)

≥ t−1e−c13ρ(a∗
1 ,y)2/t

∫ 6C2/4

5C2/4
p0(

t/2, u1(x),w
)
dw

(8.7)

� t−1e−c13ρ(a∗
1 ,y)2/t

∫ 6C2/4

5C2/4
t−1/2e−c11(6C2/4−u1(x))2/t dw

� t−1e−c13ρ(a∗
1 ,y)2/t e−c14(6C2/4−u1(x))2/t

� t−1e−c15ρ(x,y)2/t ,

where in the second inequality it was used that ρ(z, y) ≤ 5ρ(a∗
1 , y)/2, and in the

last two inequalities we used the fact that |6C2/4 − u1(x)| ≥ C2/2 and ρ(x, y) ≥
2C2.

Now for case (a) when x ∈ Li ∪ Bρ(a∗
i ,C2) and y ∈ Lj ∪ Bρ(a∗

j ,C2)

for i �= j , let z0 ∈ Dε so that both ρ(z, a∗
i ) and ρ(z, a∗

j ) take values within
(ρ(a∗

i , a∗
j )/3,2ρ(a∗

i , a∗
j )/3). We then have by (8.7) that for all t ∈ (0, T ],

p(t, x, y) ≥
∫
Dε∩Bρ(z0,C2)

p(t/2, x, z)p(t/2, z, y)m �p(dz)

� t−1e−c16ρ(x,z0)
2/t t−1e−c16ρ(y,z0)

2/tm �p
(
Dε ∩ Bρ(z0,C2)

)
� t−1e−c17ρ(x,y)2/t ,

where in the last inequality, we used the fact that ρ(x, y) ≥ 3. This completes the
proof that the lower bound in (8.1) holds for all three cases (a)–(c). The theorem is
now proved. �
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8.2. A large square with an arch. In this subsection, we study Brownian mo-
tion on a large square with an arch. The state space E is defined as follows. Let
z1, z2 ∈ R

2 with |z1 − z2| ≥ 6. Fix constants 0 < ε1, ε2 < 1/2 and p > 0. For
i = 1,2, denote by Bi the closed disk on R

2 centered at zi with radius εi . Let
Dε =R

2 \ (B1 ∪ B2). We short Bi into a singleton denoted by a∗
i . Denote by L a

one dimensional arch with two endpoints a∗
1 and a∗

2 . Without loss of generality, we
assume L is isometric to an closed interval [−b, b] for some b≥ 4. We equip the
space E := Dε ∪ {a∗

1 , a∗
2} ∪ L with the Riemannian distance ρ induced from Dε

and L, analogous to the last example of a large square with multiple flag poles. Let
mp be the measure on E whose restriction on L and Dε is the arch length measure
and the Lebesgue measure multiplied by p and 1, respectively. In particular, we
have mp({a∗

1 , a∗
2}) = 0. As before, BMVD on E is defined as follows.

DEFINITION 8.5. Given 0 < ε1, ε2 < 1/2 and p > 0, BMVD on E with pa-
rameters (ε1, ε2,p) on E is an mp-symmetric diffusion X on E such that:

(i) its subprocess process in L or Dε has the same distribution as the one-
dimensional or two-dimensional Brownian motion killed upon leaving L or Dε ,
respectively;

(ii) it admits no killings at {a∗
1 , a∗

2}.

Similar to Theorem 2.2, we have the following.

THEOREM 8.6. For every 0 < ε1, ε2 < 1/2 and p > 0, BMVD X on E with
parameter (ε1, ε2,p) exists and is unique. Its associated Dirichlet form (E,F) on
L2(E;mp) is given by

F = {
f : f |R2 ∈ W 1,2(

R
2)

, f |L ∈ W 1,2(L), f |Bi
= f |L(

a∗
i

)
, i = 1,2

}
,

E(f, g) = 1

2

∫
Dε

∇f (x) · ∇g(x) dx + p

2

∫
L

f ′(x)g′(x) dx.

It is easy to see that BMVD X has a continuous transition density function
p(t, x, y) with respect to the measure mp . Similar to that for Proposition 3.1,
Propositions 3.2 and 3.4, using the classical Nash’s inequality for one- and two-
dimensional Brownian motion and Davies’ method, one can easily establish the
following.

PROPOSITION 8.7. Let T ≥ 2. There exist C1,C2 > 0 such that

p(t, x, y) ≤ C1

(
1

t
+ 1

t1/2

)
e−C2ρ(x,y)2/t for all x, y ∈ E, t ∈ (0, T ].

The next theorem gives short time sharp two-sided estimates on p(t, x, y).
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THEOREM 8.8. Let T ≥ 2 be fixed. There exist positive constants Ci , 3 ≤ i ≤
16, so that the transition density p(t, x, y) of BMVD X on E satisfies the following
estimates when t ∈ (0, T ]:

(i) For x ∈ L and y ∈ E,

(8.8)
C3√

t
e−C4ρ(x,y)2/t ≤ p(t, x, y) ≤ C5√

t
e−C6ρ(x,y)2/t .

(ii) For x, y ∈ Dε ∪ {a∗
1 , a∗

2}, when ρ(x, a∗
i ) + ρ(y, a∗

i ) < 1 for some i = 1,2,

C7√
t
e−C8ρ(x,y)2/t + C7

t

(
1 ∧ ρ(x, a∗

i )√
t

)(
1 ∧ ρ(y, a∗

i )√
t

)
e−C9|x−y|2/t

≤ p(t, x, y)

≤ C10√
t
e−C11ρ(x,y)2/t

+ C10

t

(
1 ∧ ρ(x, a∗

i )√
t

)(
1 ∧ ρ(y, a∗

i )√
t

)
e−C12|x−y|2/t ;

(8.9)

otherwise,

(8.10)
C13

t
e−C14ρ(x,y)2/t ≤ p(t, x, y) ≤ C15

t
e−C16ρ(x,y)2/t .

PROOF. This theorem can be established by a similar consideration as that for
Theorem 8.4. Here, we only give a brief sketch. Let C1 > 0 and C2 ∈ (0,1/2) be
the constants in Lemma 6.1.

Case 1. ρ(x, y) < 2C2. The desired estimates can be obtained in a similar way
as that for Case 1 in the proof of Theorem 8.4, by using Lemma 6.1.

Case 2. ρ(x, y) ≥ 2C2. Due to the upper bound estimate in Theorem 8.7,
it suffices to show the following lower bound estimate hold: there exists some
c1, c2 > 0, such that

(8.11) p(t, x, y) ≥ c1e
−c2ρ(x,y)2/t for all t ∈ (0, T ].

We divided its proof into three subcases:

(i) Both x and y are in L∪Bρ(a∗
1 ,C2)∪Bρ(a∗

2 ,C2). Without loss of general-
ity, we assume x ∈ L ∪ Bρ(a∗

1 ,C2) and x is closer to a∗
1 if both x and y are on the

arch L. Denote by �(w, z) the arch length in L between two points w,z ∈ L, and
U1 := L∪Bρ(a∗

1 ,3C2)∪Bρ(a∗
2 ,3C2). We define a modified signed radial process

Yt = u(X
U1
t ), where

u(z) :=

⎧⎪⎪⎨⎪⎪⎩
ρ

(
z, a∗

1
)

if z ∈ Dε ∩ Bρ

(
a∗

1 ,3C2
)
,

−�
(
a∗

1 , z
)

if z ∈ L,

−�
(
a∗

1 , a∗
2
) − ρ

(
z, a∗

2
)

if z ∈ Dε ∩ Bρ

(
a∗

2 ,3C2
)
.
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By a similar argument as that for Section 4, we can show that Y is a subprocess of a
skew Brownian motion on R with skewness at points 0 and �(a∗

1 , a∗
2) and bounded

drift killed upon leaving I = (−�(a∗
1 , a∗

2) − 2C2,2C2). The desired lower bound
estimate for p(t, x, y) can be derived from the Dirichlet heat kernel estimate for
the one-dimensional diffusion Y .

(ii) Both x, y ∈ U2 := Dε \ (Bρ(a∗
1 ,C2/2) ∪ Bρ(a∗

2 ,C2/2)). In this case, the
desired lower bound estimate for p(t, x, y) follows from the Dirichlet heat kernel
estimate for two-dimensional Brownian motion in C1,1 domain U2.

(iii) x ∈ L ∪ Bρ(a∗
1 ,C2/2) ∪ Bρ(a∗

2 ,C2/2) and y ∈ Dε \ (Bρ(a∗
1 ,2C2) ∪

Bρ(a∗
2 ,2C2)). Without loss of generality, we assume x is closer to a∗

1 than to a∗
2 .

Let

D3 := {
z ∈ Dε : C2/2 ≤ ρ

(
z, a∗

1
) ≤ C2

}
.

Note that ρ(x, y) ≥ (ρ(x, z) + ρ(y, z))/5 for z ∈ D3. By Markov property,

p(t, x, y) ≥
∫
D3

p(t/2, x, z)p(t/2, z, y)mp(dz).

The desired lower bound for p(t, x, y) follows from the results obtained in (i) and
(ii). �
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