Random Sorting Networks
Alexander Holroyd (UBC & Microsoft)

with: Omer Angel Dan Romik
Balint Virag Vadim Gorin
1 \times 2
2 \times 1
3 - 3
4 - 4
1 2×2 4
2 1 3 3
3×3 1 2
4 4 4 1
1 \times 2 - 2 - 2 \times 3 \quad 4
2 \times 1 - 3 - 3 \times 2 \quad 3
3 - 3 \times 1 - 4 - 4 \quad 2
4 - 4 - 4 \times 1 - 1 \quad 1
1 \times 2 - 2 \times 2 - 2 \times 3 - 3 \times 4
2 - 1 \times 3 - 3 \times 2 - 4 \times 3
3 - 3 \times 1 - 4 - 4 \times 2 - 2
4 - 4 - 4 \times 1 - 1 - 1 - 1 - 1
To get from $1 \cdots n$ to $n \cdots 1$ requires

$$N := \binom{n}{2}$$

nearest-neighbour swaps
E.g. \(n=4 \):

\[
\begin{array}{cccccc}
1 & 2 & 2 & 2 & 3 & 3 & 4 \\
2 & 1 & 3 & 3 & 2 & 4 & 3 \\
3 & 3 & 1 & 4 & 4 & 2 & 2 \\
4 & 4 & 4 & 1 & 1 & 1 & 1 \\
\end{array}
\]

A Sorting Network =

any route from 1\ldots n to n\ldots 1

in exactly

\[N := \binom{n}{2} \]

nearest-neighbour swaps
Theorem (Stanley 1984).
\# of n-particle sorting networks = \[\frac{n!}{1^{n-1}3^{n-2}5^{n-3}\cdots(2n-3)^1} \]

Uniform Sorting Network (USN): choose an n-particle sorting network uniformly at random.

E.g. n=3:

\[P(\begin{array}{c} x \\ x \\ x \end{array}) = P(\begin{array}{c} x \\ x \\ x \end{array}) = \frac{1}{2} \]
swap locations
1 2 2 2 3 3 3 4
2 1 3 3 2 4 4 3
3 3 1 4 4 2 2
4 4 4 1 1 1 1

swap locations

particle trajectory
Efficient simulation algorithm for USN...
Swap locations, n=100
Swap locations, n=2000
Theorem (Angel, H, Romik, Virag, 2007) For USN:

1. **Sequence of swap locations**

 (s_1, \ldots, s_N) is stationary \(\forall n \)

2. **Scaled first swap location**

 \[
 \frac{s_1}{n} \xrightarrow{\text{dist}} \text{semicircle random variable} \quad \text{as } n \to \infty
 \]

3. **Scaled swap process**

 \[
 \xrightarrow{\text{dist}} \text{semicircle } \times \text{Lebesgue} \quad \text{as } n \to \infty
 \]

(Note: not true for all sorting networks, e.g. bubble sort)
Proof of stationarity:

\[
\begin{array}{ccccccc}
1 & \times & 2 & - & 2 & - & 2 & \times & 3 & - & 3 & \times & 4 \\
2 & \times & 1 & \times & 3 & - & 3 & \times & 2 & \times & 4 & \times & 3 \\
3 & - & 3 & \times & 1 & - & 4 & - & 4 & - & 2 & - & 2 \\
4 & - & 4 & - & 4 & \times & 1 & - & 1 & - & 1 & - & 1
\end{array}
\]
Proof of stationarity:
Proof of stationarity:

1 — 1 — 1 × 3 — 3 × 4
2 × 3 — 3 × 1 × 4 × 3
3 × 2 × 4 — 4 × 1 — 1
4 — 4 × 2 — 2 — 2 — 2
Proof of stationarity:

1 — 1 — 1 × 3 — 3 × 4 ···
2 × 3 — 3 × 1 × 4 × 3 ···
3 × 2 × 4 — 4 × 1 — 1
4 — 4 × 2 — 2 — 2 — 2 ×
Proof of stationarity:

\[
\begin{array}{cccc}
1 & 1 & 1 & 3 & 3 & 4 & 4 \\
2 & 3 & 3 & 1 & 4 & 3 & 3 \\
3 & 2 & 4 & 4 & 1 & 1 & 2 \\
4 & 4 & 2 & 2 & 2 & 2 & 1 \\
\end{array}
\]
Proof of stationarity:

\[(s_1,...,s_N) \mapsto (s_2,...,s_N,n-s_1)\] is a bijection from \{sorting networks\} to itself.

So for USN:

\[(s_2, \ldots, s_N) \overset{d}{=} (s_1, \ldots, s_{N-1})\]
Selected trajectories, n=2000
Scaled trajectory of particle i: $T_i: [0,1] \rightarrow [-1,1]$
Conjecture (AHRV)

trajectories → random Sine curves:

\[
\max_{i,t} |T_i(t) - A_i^n \sin(\pi t + \Theta_i^n)| \xrightarrow{\text{Prob}} 0
\]

(random) as \(n \to \infty \)

Theorem (AHRV)

scaled trajectories have subsequential limits which are Hölder(\(\frac{1}{2} \)) with prob 1

as \(n \to \infty \)
Half-time permutation matrix, $n=2000$
Conjecture (AHRV)

Scaled permutation matrix at time $N/2 \xrightarrow{d} \text{Archimedes measure}$

Projection of surface area measure on sphere $S^2 \subset \mathbb{R}^3$ onto \mathbb{R}^2

(unique circularly symmetric measure with uniform linear projections; $dx \, dy \over 2\pi \sqrt{1-x^2-y^2}$ on $x^2+y^2<1$)

Scaled permutation matrix at time $tN \xrightarrow{d} \begin{pmatrix} 1 & 0 \\ \cos \pi t & \sin \pi t \end{pmatrix} \circ \text{Arch. meas.}$
Theorem (AHRV)
scaled permutation matrix at time tN
is supported within a certain octagon
with prob $\rightarrow 1$
as $n \rightarrow \infty$

$(1 - \frac{1}{2} \sqrt{3 - \varepsilon})n$
Tools in proofs:

1. Bijection (Edelman-Greene 1987)
 \{\text{sorting networks}\} \leftrightarrow \{\text{standard staircase Young tableaux}\}

 (jeu de taquin algorithm)

2. New result for limiting profile of random staircase Young tableau
 (from similar result for square tableaux, Pittel-Romik)
Why do we believe the conjectures?

The permutahedron: embedding of Cayley graph \((S_n, \text{n.n. swaps})\) in \(\mathbb{R}^n\):

\[\sigma \mapsto \sigma^{-1} = (\sigma^{-1}(1), \ldots, \sigma^{-1}(n)) \in \mathbb{R}^n\]

\(n=4\): embeds in \((n-2)\)-sphere

1...n and n...1 are antipodal

\(n=5\)
Conjecture (AHRV)
USN lies close to some great circle on the permutahedron with prob $\to 1$
as $n \to \infty$

e.g. $o(n)$ in $| |_\infty$

In fact simulations suggest more like $O(\sqrt{n})$!

(Again, not true for every sorting network, e.g. bubble sort)
Analagous (much easier) fact:

random shortest route

1^{st} St & 1^{st} Ave to n^{th} St & n^{th} Ave

\approx straight line as $n \to \infty$
Theorem (AHRV) If a (non-random) sorting network lies close to some great circle, then:

(o(n) in $| |_{\infty}$)

1. Trajectories \approx Sine curves

2. Half-time permutation \approx Archimedes measure

3. Swap process \approx semicircle x Lebesgue

Simulation
Proof of Theorem:

close to great circle \Rightarrow

\approx Sine trajectories (up to a time change)

\Leftrightarrow \approx rotating disc picture

projections uniform \Rightarrow \approx Archimedes

swap rate uniform \Rightarrow rotation uniform

\Rightarrow no time change

calculation \Rightarrow semicircle law
Geometric Sorting Networks
Goodman, Pollack (1980):
- all 4-item sorting networks are geometric
- but not all 5-item ones:
Goodman, Pollack (1980):
- all 4-item sorting networks are geometric
- but not all 5-item ones:
Great circle conjecture says:
USN is \(\approx \) geometric as \(n \to \infty \)

but:

Theorem (Angel, H, Gorin, in prep)
\[
P(\text{USN is geometric}) \to 0 \quad \text{as} \quad n \to \infty
\]

Proof: in fact:
\[
P(\text{USN contains fixed swap pattern}) > 1 - e^{-cn}
\]

\[\text{e.g. Goodman-Pollack counterexample}\]
Subnetworks

1 2 3 4 5
Subnetworks
Subnetworks
Subnetworks
Subnetworks
Random Subnetworks

Take an n-item USN. Choose m out of the n items uniformly at random, indep. of USN.

Great circle conjecture \Rightarrow

m fixed, $n \to \infty$:

random m-out-of-n network \xrightarrow{d} geom. network of m indep. points from Archimedes distn.
Conjecture (Warrington, 2009)

\[P \left(\begin{array}{c} \text{random 4-out-of-} \normalsize n \\ \text{network} \end{array} \in \left\{ \text{geom. networks with 1 point in} \right. \right. \]

\[\left. \left. \text{hull(other 3)} \right\} \right) = \frac{1}{4} \]

for all \(n \)!
Theorem (Angel, H 2009)
Warrington’s conjecture is true.

Moreover, $\forall j < m \leq n,$

$$E(\text{# swaps in location } j \text{ in random } m\text{-out-of-}n \text{ network})$$

does not depend on n

and

$$= \frac{(j - \frac{1}{2}) \cdots \frac{7}{2} \frac{5}{2} \frac{3}{2} \cdots \frac{7}{2} \frac{5}{2} \frac{3}{2} \cdots}{(j - 1)! \times (m - j - 1)!}$$

consistent with Archimedeses distribution conjecture about $n \to \infty$ limit
Ingredients of proof

\[P(s_1 = k) = P(k-1 \text{ white balls added in first } n-2 \text{ in Polya urn}) \]

1st swap location in USN

Stationarity of USN

Exchangeability of Polya urn

\[P(wwwbb) = P(wbwbw) \]

Compute

\[P(\text{given space-time point in USN} \Rightarrow \text{swap at location } j \text{ in subnetwork}) \]
Uniform swap model...

Angel, H, Romik 2008
Amir, Angel, Valko
N.B. Not every sorting network lies close to a great circle! E.g. typical network through

(But this permutation is very unlikely).
Staircase Young diagram:

$\begin{array}{cccc}
\text{N cells} \\
\hline
\text{(E.g. } n=5) \\
\end{array}$
Standard staircase Young tableau:

```
1 2 4 8
3 5 6
7 10
9
```

Fill with 1, \ldots, N so each row/col increasing
Edelman-Greene algorithm:

1. Remove largest entry
Edelman-Greene algorithm:

1. Remove largest entry
Edelman-Greene algorithm:

2. Replace with larger of neighbours
Edelman-Greene algorithm:

2. Replace with larger of neighbours \(\uparrow \leftrightarrow\)
Edelman-Greene algorithm:

2. Replace with larger of neighbours \[\uparrow \leftarrow\] ...repeat
Edelman-Greene algorithm:

2. Replace with larger of neighbours \(\uparrow \leftarrow \) ...repeat
Edelman-Greene algorithm:

3. Add 0 in top corner
Edelman-Greene algorithm:

4. Increment
Edelman-Greene algorithm:

5. Repeat everything...
Edelman-Greene algorithm:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Repeat everything...
Edelman-Greene algorithm:

5. Repeat everything...
Edelman-Greene algorithm:
Edelman-Greene algorithm:

\[\text{etc} \]
Edelman-Greene Theorem:

After N steps,
Edelman-Greene Theorem:

After N steps,
get swap process
of a sorting network!
Edelman-Greene Theorem:

After N steps,
get swap process
of a sorting network

And this is a bijection!

And can explicitly describe inverse!
Theorem (Pittel-Romik): For a uniform random $n \times n$ square tableau, there exists a limiting shape with contours.

$$h_\alpha(u) = \frac{2}{\pi} [u \tan^{-1}(u/R) + \tan^{-1} R]$$

where $R = \frac{\sqrt{\alpha(2 - \alpha) - u^2}}{1 - \alpha}$

Corollary (AHRV): For uniform random staircase tableau, limiting shape is half of this. (Proof uses Greene-Nijenhuis-Wilf Hook Walk)
Proof of LLN (swap process \Rightarrow semic. x Leb.)

Swaps in space-time window $[an, bn] \times [0, \varepsilon N]$ come from entries $>(1-\varepsilon)N$ in tableau:

$\# \approx \text{area under contour} \approx \text{semicircle}$
Proof of octagon and Holder bounds

Inverse Edelman-Greene bijection
(≈ RSK algorithm) ⇒

entries <k in 1st row

≥ longest ↦ subseq. of swaps
 by time k

≥ furthest any particle moves up
 by time k

So can bound this using
limit shape.
Angel, H, Virag (in preparation):

Process of first k swaps in positions $cn \ldots cn+k$\text{→} random limit as $n \to \infty$

not depending on $c \in (0,1)$