Computational Fluid Dynamic Modeling of a Downdraft Wood-Fired Furnace

Megan Karalus karalm2@u.washington.edu

Applied Computational and Mathematical Sciences Seminar 7 May 2009

Outline

- Motivation
- Wood Combustion & Emissions
- The Problem
- Addressing the Problem
- 2 The Model
- Solving the Model
 - Finite Difference
 - Finite Volume
- 4 Results and Numerical Difficulties
- 5 Conclusions

Introduction The Model Solving the Model

Results and Numerical Difficulties

Motivation Wood Combustion & Emissions The Problem Addressing the Problem

Motivation

• Heating your home with wood: OWHH (outdoor wood-fired hydronic heater)

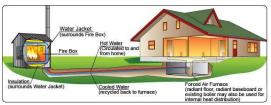


Figure: Typical OWHH Configuration

- All large combustors regulated by the EPA based on National Ambient Air Quality Standards for six air pollutants, three of which are of interest to wood combustion:
- EPA recently adopted a voluntary certification program to curb *PM* emissions from OWHH's

Introduction The Model

Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions The Problem Addressing the Problem

Motivation

• Heating your home with wood: OWHH (outdoor wood-fired hydronic heater)

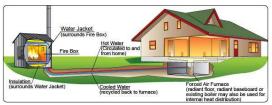


Figure: Typical OWHH Configuration

- All large combustors regulated by the EPA based on National Ambient Air Quality Standards for six air pollutants, three of which are of interest to wood combustion: *NO_x*, *PM*, *CO*.
- EPA recently adopted a voluntary certification program to curb *PM* emissions from OWHH's

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions The Problem Addressing the Problem

Image: Image:

→ Ξ →

How Does Wood Burn?

- Wood is a biomass fuel composed of the 4 elements: CHON.
- Wood Combustion proceeds through 4 distinct but overlapping stages:

Stages

- Heating and Drying
- Pyrolysis and Devolatilization
- Flaming Combustion
- Char Oxidation
 - Governing processes: chemistry, heat transfer, fluid dynamics.

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions The Problem Addressing the Problem

Emissions

- *CO* is an intermediate species produced during flaming combustion oxidzed to *CO*₂.
- Two types of *PM* emissions: black carbon (i.e. soot, originates in the flame), and brown carbon (organic, originates in pyrolysis).
- CO and PM are emissions due to incomplete combustion only an 'emission' if they escape the flame.

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions The Problem Addressing the Problem

Emissions

- *CO* is an intermediate species produced during flaming combustion oxidzed to *CO*₂.
- Two types of *PM* emissions: black carbon (i.e. soot, originates in the flame), and brown carbon (organic, originates in pyrolysis).
- CO and PM are emissions due to incomplete combustion only an 'emission' if they escape the flame.

Criteria for Complete Combustion Time Temperature Turbulence (mixing)

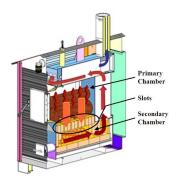

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions **The Problem** Addressing the Problem

Image: A math a math

э

The Aspen

Downdraft Unit

Figure: Schematic of the Aspen's operation

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions **The Problem** Addressing the Problem

Image: A image: A

The Problem(s)

- Good *PM* emission levels: 0.27 lbs/million BTU output (meets Phase II EPA certification limit of 0.32).
- Complicated design 'rule of thumb', 'trial and error'.

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions **The Problem** Addressing the Problem

The Problem(s)

- Good *PM* emission levels: 0.27 lbs/million BTU output (meets Phase II EPA certification limit of 0.32).
- Complicated design 'rule of thumb', 'trial and error'.

Aspen

How can we 'fine tune' the Aspen's design inorder to: (1) further reduce emission levels (2) reduce manufacturing cost?

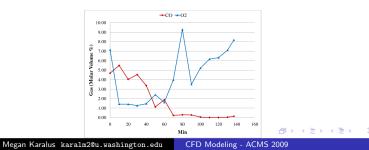
The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions **The Problem** Addressing the Problem

The Problem(s)

- Good *PM* emission levels: 0.27 lbs/million BTU output (meets Phase II EPA certification limit of 0.32).
- Complicated design 'rule of thumb', 'trial and error'.

Aspen

How can we 'fine tune' the Aspen's design inorder to: (1) further reduce emission levels (2) reduce manufacturing cost?


General

Can we develop a mathematical model that will predict wood combustion emissions?

The Model Solving the Model Results and Numerical Difficulties Conclusions Motivation Wood Combustion & Emissions The Problem Addressing the Problem

A Problem of Fluid Dynamics

- A full description of the solid combustion process in an OWHH is not yet practical.
- Narrow the scope: peak *PM* emissions; correlate with peak *CO* emissions
- Model flaming combustion of pyrolysis gas during peak CO production (model can therefore be steady state - snapshot).

Governing Equations Summary

Equation Name	Equation
Continuity	$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_j} \left(\rho u_j \right) = 0$
Momentum	$\frac{\partial}{\partial t}(\rho u_i) + \frac{\partial}{\partial x_j}(\rho u_i u_j) = -\frac{\partial P}{\partial x_i} + \frac{\partial \tau_{ij}}{\partial x_j} + \rho g_i$
Energy	$\frac{\partial}{\partial t}(\rho h) + \frac{\partial}{\partial x_j}(\rho u_j h) = \frac{\partial P}{\partial t} +$
	$\left \frac{\partial}{\partial x_i} \left(\frac{k}{C_p} \frac{\partial h}{\partial x_i} - \rho u'_j h' \right) - \frac{\partial \dot{q}_j^R}{\partial x_i} \right $
Mixture Fraction	$\frac{\partial}{\partial t}(\rho Z) + \frac{\partial}{\partial x_j}(\rho u_j Z) = \frac{\partial}{\partial x_j}\left(\rho D \frac{\partial Z}{\partial x_j}\right)$

э

Simplifications and Approximations

- Need to solve these equations in a 3-D domain, but turbulence is involved DNS is too expensive.
- Time average equations to remove 'turbulent fluctuating components' - introduce a turbulence 'closure model' (k-ε).
- Also need a radiation transport equation.
- Now we have 7 Parital Differential Equations to solve in 3-D!

Finite Difference Finite Volume

Finite Difference Method

Differential form of a generic conservation equation

$$\frac{\partial(\rho u_j \phi)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \phi}{\partial x_j} \right) + q_\phi \tag{1}$$

• The idea behind finite difference approximation is borrowed directly from the definition of a derivative:

$$\left(\frac{\partial\phi}{\partial x}\right)_{x_i} = \lim_{\Delta x \to 0} \frac{\phi(x_i + \Delta x) - \phi(x_i)}{\Delta x}$$
(2)

- Extrapolate: replace the partial derivatives by approximations, resulting in one algebraic equation per grid node
- Disadvantages: conservation is not enforced unless special care is taken; method is restricted to simple geometries.

Finite Difference Finite Volume

Finite Volume Method

Integral form of a generic conservation equation

$$\int_{S} \rho \phi \mathbf{v} \cdot \mathbf{ndS} = \int_{S} \mathbf{\Gamma} \nabla \phi \cdot \mathbf{ndS} + \int_{\Omega} \mathbf{q}_{\phi} \mathbf{d\Omega}$$
(3)

Subdivide domain into finite number of small control volumes (CVs) with a grid that defines the control volume boundaries not the computational nodes.

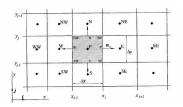


Figure: A typical CV and the notation used for a Cartesian 2D grid (Corrigon) Megan Karalm20u.washington.edu CFD Modeling - ACMS 2009

Finite Difference Finite Volume

Finite Volume Method cont....

Implementing the Method

• Approximate surface and volume integrals. Let *f* be a component of the convective or diffusive flux vector in the direction normal to the CV face.

1st Order:
$$F_e = \int_{S_e} f dS \approx f_e S_e$$
 (4)
2nd Order: $F_e = \int_{S_e} f dS \approx \frac{S_e}{2} (f_{ne} + f_{se})$ (5)

• Must interpolate to find values at CV surface: upwind scheme

$$\phi_e = \phi_P + (x_e - x_P) \left(\frac{\partial \phi}{\partial x}\right)_P + \dots \tag{6}$$

Finite Difference Finite Volume

Finite Volume Method cont...

Solution Strategy: linearize algebraic equations, form matrix, iterate.

Advantages:

- Can accomodate any type of grid
- Conservative by construction

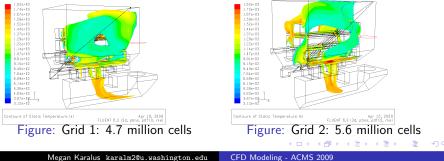
Disadvantages:

- Methods of higher than second order accuracy are more difficult to develop in 3D
- Three levels of approximation necessary: integration, differentiation, and interpolation.

Finite Difference Finite Volume

How to do this in real life

- Necessary Components: Equations, Domain, CFD package, Boundary Conditions.
- Need special 'accomodations' for Navier-Stokes Equations
- Software: Fluent


Errors

- **1** Modeling Errors: fuel choice, steady state assumptions, etc.
- **2** Discretization Errors: grid dependency, numerical diffusion.
- Iteration Errors: solution is not fully 'converged'.

The Model Solving the Model Results and Numerical Difficulties

My Work

- Flame Structure
- Grid Dependence
- Emissions

Grid Dependent Solution

- Numerical Diffusion
- Computational expense (24 hours, 6GB of RAM, parallel processing)

Under-prediction of stack emissions

- Turbulence modeling?
- Need a transient solution?

Difficult convergence

- buoyancy
- upwind interpolation second order

Conclusions

- The finite volume method has advantages and disadvantages.
- The simulation cannot be considered a reliable predictor of full furnace performance during peak pyrolysis.
- The simulation can be used to qualitatively understand furnace operation and suggest test scenarios to improve emissions peformance and reduce manufacturing costs.

- FLUENT 6.3 Users Guide, 2006.
- J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer, third edition, 2002.
- D. Tillman, A. Rossie, W. Kitto. Wood Combustion: Principles, Processes, and Economics. Academic Press, 1981.
- M. Huttenen, J. Saastamoinen, and et. al. Emission formation during wood log combustion in fireplaces - Part I: Volatile Combustion Stage. Progress in Computational Fluid Dynamics, 6(4/5):200-208, 2006.

- < ≡ >

- ∢ 🗇 ▶