Sections 1.1 to 1.3 Review

Algebra Skills Review: Here is a review of a few of the basic skils we discussed.

• Simplifying Fractions: $\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}$. Here are several examples:

(1)
$$3 \cdot \frac{5x}{2} = \frac{15x}{2}$$
 (2) $\frac{2}{5} \cdot \frac{x+3}{7} = \frac{2x+6}{35}$ (3) $\frac{2}{3}\left(3x+\frac{1}{2}\right) = 2x+\frac{1}{3}$

• Distribution: a(b+c) = ab + ac and $\frac{a+b}{c} = \frac{a}{c} + \frac{b}{c}$. Here are several examples:

(1)
$$5\left(4+\frac{x}{5}\right) = 20+x$$
 (2) $\frac{x+5}{5} = \frac{x}{5}+1$ (3) $\frac{3+4x}{5} = \frac{3}{5}+\frac{4x}{5}$

- To solve an equation:
 - 1. Expand/Simplify and Clear Denominators.
 - 2. Get all x's to one side, everything else to the other side.

Here is a basic example:

$\frac{1}{3}(x-6)$		
x-6	$=3+\frac{3x}{5}$	multiplied both sides by 3
5x - 30	= 15 + 3x	multiplied both sides by 5
5x	=45+3x	added 30 to both sides
2x	= 45	subtracted $3x$ from both sides
x	$=\frac{45}{2}$	divided both sides by 2

• Inequalities: All the same rules as equal signs, except you change the direction of the inequality if you multiply or divide by a negative number. Here's a basic example:

$\frac{x}{4} - 3$	< 10 + x	
x - 12	< 40 + 4x	multiplied both sides by 4
x	< 52 + 4x	added 12 to both sides
-3x	< 52	subtracted $4x$ from both sides
\overline{x}	$> -\frac{52}{3}$	divided by -3 (flip inequality!)

Linear Function Skill Review:

1. A linear function can be written in the slope-intercept form

$$y = mx + b$$
 (or, equivalently, $f(x) = mx + b$)

where

- $m = \text{slope} = \frac{\text{RISE}}{\text{RUN}} = \frac{y_2 y_1}{x_2 x_1}$, where (x_1, y_1) and (x_2, y_2) are any two points on the line.
- b = y-intercept = 'y-value when x = 0'
- 2. The general form of a linear function is:

$$ax + by = c.$$

We can solve for y in terms of x to give an equivalent line in the slope-intercept form, but often there is no need. If we want to graph a line in this form it is easy to find the x and y intercepts. To find the x-intercept, let y = 0 and solve for x. And to find the y-intercepts, let x = 0 and solve for y. Then you have two points and it is easy to draw the line.

3. The *point-slope* form is perhaps the quickest to use if you are trying to give the equation for a line. Given any two points, (x_1, y_1) and (x_2, y_2) , on a line we can quickly give the equation of the line by finding the slope, then writing

$$f(x) = m(x - x_1) + y_1$$
 (or, equivalently, $f(x) = m(x - x_2) + y_2$)

- 4. Other notable facts:
 - Two lines are parallel if they have the same slope.
 - Two lines are perpendicular if their slopes are negative reciprocals of each other (That is, $m_2 = -\frac{1}{m_1}$).
 - y = c describes the *horizontal* line of all points where y = c.
 - x = d describes the *vertical* line of all points where x = d.

Problem Set Up Review:

- I suggested the following problem solving strategies:
 - 1. Read the question carefully: What are you given? What do you want? What are the units?
 - 2. Label everything! Introduce variables for unknown values. (This is often the key step you need to get started on the problem.)
 - 3. Translate to algebraic expressions.
 - 4. Solve for anything you can. Even if you cant immediately answer the question, solve for something related.
 - 5. Make sure your final answer actually answers the original question.

If you're ever stuck, make up numbers and work out an example!

• Here is an example from an old exam (just to illustrate this problem solving method): Bob has \$50,000 to invest (he will invest it all). He has chosen one relatively safe investment fund that has an annual yield of 5% and another, riskier fund that has a 11.5% annual yield. How much should he invest in each fund if he would like to earn \$3,000 per year in interest from his investments?

Answer:

- 1. Read the question. Your final answer will be two dollar amounts (how much to put into each account).
- 2. Let x = 'the amount you put into the 5% account' and let y = 'the amount you put into the 11.5% account.'
- 3. The total amount of money invested is x + y and it needs to equal \$50,000. Thus

x + y = 50000, which means y = 50000 - x

The interest from the first account will be 0.05x and the interest from the second will be 0.115y and we want the interest to total to \$3,000. Thus,

$$0.05x + 0.115y = 3000.$$

Combining these two facts gives

$$0.05x + 0.115(50000 - x) = 3000.$$

4. Now we solve:

0.05x + 0.115(50000 - x)	= 3000	
0.05x + 5750 - 0.115x	= 3000	expanded
0.05x - 0.115x	= -2750	subtracted 5750 from both sides
-0.065x	= -2750	combined like terms
<i>x</i>	$= \frac{-2750}{-0.065} = \42307.69	divided by -0.065

5. Therefore, we need to invest x = \$42,307.69 into the 5% account and y = \$7,692.31 into the 11% account.